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Abstract A strategy for preparing multicolor
photoluminescent carbon nanodots (CNs) has been pro-
posed. Using three types of phenylenediamine and
methacrylic acid as raw materials and ethanol as a
solvent, a series of novel CNs were synthesized by
solvothermal one-pot method. Prepared CNs showed
bright green, yellow, and indigo blue fluorescence under
ultraviolet (UV) light, respectively. Three types of CNs
were spherical-like nano-sized particles, and their parti-
cle sizes were approximately 5 nm, 10 nm, and 10 nm,
respectively. The optical properties of CNs were char-
acterized using ultraviolet visible spectra and fluores-
cence spectra. The microscopic morphology was char-
acterized by transmission electron microscopy (TEM)
and dynamic light scattering (DLS). The elemental com-
position was characterized by Fourier transform infrared
spectroscopy (FT-IR) and X-ray photoelectron spectra
(XPS). We proposed that the different fluorescence
emissions of CNs might be attributed to the surface
oxygen content of the CNs. The CNs could also be
applied for multicolor patterning and polymer films,
invisible inks, and detection of metal ions.

Keywords Carbon nanodots . Photoluminescence .
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Introduction

Carbon-based nanoparticles, a new type of fluorescent
nanoparticles, have emerged in recent years. The
nanomaterials not only have excellent optical properties
and nanometer size but also have good biocompatibility,
environmental protection, and low toxicity (Kumar et al.
2017; L et al. 2015; Sahu et al. 2012;Wang et al. 2011a).
These fluorescent carbon-based nanomaterials are main-
ly classified into carbon quantum dots (CQDs) (Dong
et al. 2012; Lim et al. 2015), carbon nanodots (CNs) (Li
et al. 2013), graphene quantum dots (GCDs) (Pan et al.
2010; Peng et al. 2012), and polymer quantum dots
(PCDs) (Tao et al. 2017; Zhu et al. 2013b). The carbon
dot materials have been applied in various fields based
on their fascinating photoluminescent characteristics,
such as bioimaging (Gong et al. 2016; Mewada et al.
2014), fluorescent inks (Qu et al. 2012; Liu et al. 2016),
electrochemical sensing (Carrara et al. 2017; Liang et al.
2014), light-emitting devices (Sathyajith Ravindran
et al. 2003), and heavy metal ions detection
(Choudhary et al. 2016; Li et al. 2015; Yan et al. 2014;
Zhang et al. 2015).

Many strategies of preparing carbon dots have been
developed, including hydrothermal synthesis (Yuan
et al. 2015; Zhu et al. 2015), chemical oxidation (Qiao
et al. 2010), microwave synthesis (Wang et al. 2011b),
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ultrasonic synthesis (Ma et al. 2012), and laser synthesis
(Hu et al. 2011). Among them, the hydrothermal syn-
thesis approach has been widely used due to its facility
and rapidity. At present, there were two main sources of
synthesis of carbon dots. One of themwas bioprotein, in
whichmainly contains proteins and amino acids, such as
milk (Wang and Zhou 2014), leaves, and flowers of
plants (Feng et al. 2015b; Zhu et al. 2013a).

For example, Gao et al. (2014) hydrothermally treat-
ed the willow leaf to synthesize nitrogen-doped carbon
dots (n-CDs). The n-CDs showed strong blue fluores-
cence that could be directly used as a fluorescent ink and
possessed excellent electro-catalytic activity. The other
carbon sources were organic alcohol, organic acid, or-
ganic amine, and so forth (Kozák et al. 2013; Shi et al.
2016; Li et al. 2010). Liu et al. (2012) reported a general
strategy for the preparation of nitrided carbon dots
(CNDs) by microwave heating organic amines in the
presence of acid. The obtained CNDs can be used as a
mimetic peroxidase for colorimetric detection of H2O2

and glucose.
Although many carbon dot materials with various

photoluminescence properties have been reported, the
mechanism of different fluorescence emission of vari-
ous carbon dots remains unclear. At present, two more
mature mechanisms are quantum size effect (Sarkar
et al. 2016; Yu et al. 2013) and surface state that leads
to different PL emission states (Bao et al. 2015). Jiang
et al. (2015) prepared three types of CDs possessing
different fluorescence emissions. The research result
suggested that the difference in fluorescence emission
of CDs might be caused by the difference in particle size
and nitrogen content. Ding et al. (2016) strongly ex-
plored the PL mechanism of CDs. Their study demon-
strated that several CDs have different surface states due
to their different degrees of oxidation, resulting in dif-
ferent PL states.

Herein, we synthesized six types of CNs using m-
phenylenediamine (or o-phenylenediamine or p-
phenylenediamine) and methacrylic acid as the car-
bon source by a facile and rapid one-pot solvothermal
method. These fluorescent CNs with different colors
were prepared by adjusting the reaction precursor and
reaction temperature. By characterizing the particle
size and surface state of the three CNs, we proposed
a possible PL mechanism that three CNs had the
difference in fluorescence emission. Moreover, pre-
pared CNs were applied as fluorescent inks and used
to detect metal ions.

Experimental section

Chemicals and instruments

Methacrylic acid (MAA), m-Phenylenediamine (mPD),
o-Phenylenediamine (oPD), p-Phenylenediamine
(pPD), polyvinyl alcohol (PVA), quinine sulfate, and
rhodamine 6G were obtained from Aladdin (Shanghai,
China) . CuSO4 , FeCl2 ·4H2O, FeCl3 ·6H2O,
CoCl2·6H2O, Pb(NO3)2, CdCl2, Cr(CH3COO)3·6H2O,
NiSO4·6H2O, MnSO4, AgNO3, Zn(CH3COO)2,
Al2(SO4)3, HgSO4, and alcohol were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, Chi-
na). All other chemicals were of analytical grade and
used without further purification.

Photo images were recorded with a digital camera
(Canon EOS 600D, Tokyo, Japan). The UV-visible
absorption spectra were recorded by using UV-visible
spectrophotometer (Shimadzu 3100, Tokyo, Japan). The
fluorescence spectra were obtained using molecular
fluorescence spectrometer (Hitachi F-4600, Tokyo, Ja-
pan). SEM morphology photographs were obtained by
using field-emission scanning electron microscope
(Hitachi S4800, Tokyo, Japan). TEM photographs were
obtained by using transmission electron microscopy
(Hitachi H7650, Tokyo, Japan). Dynamic light scatter-
ing (DLS) was measured by using laser nanoparticle
size analyzer (Malvern Zetasizer Nano ZS90, Shanghai,
China). FT-IR analysis was carried out with Fourier
transform infrared (FT-IR) spectrometer (Nicolet 6700,
Wisconsin, USA). X-ray photoelectron spectra (XPS)
were tested using photoelectron spectrograph
(ThermoFisher ESCALAB 250, Shanghai, China). So-
lutions were centrifuged using a high-speed centrifuge
(H1650, Hunan xiangyi Laboratory Instrument Devel-
opment Co., Ltd., Changsha, China). UV light source
was provided by the ultraviolet analyzer (Hangzhou
Qiwei Instrument Co., Ltd., Hangzhou, China).

Synthesis of a series of CNs

Three types of CNs (M/m1-CNs, M/o1-CNs, and M/p1-
CNs) were prepared by one-pot solvothermal synthesis
method. In brief, 0.32 mLMAA and 0.2 g mPD (oPD or
pPD) were dissolved in 20 mL alcohol and stirred for
10 min. Then, three types of solution were separately
transferred into Teflon-lined stainless steel autoclave
and heated at 200 °C for 3 h. After the autoclave cooled
to room temperature, three viscous solids were obtained
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and re-dispersed in ethanol. Yellow, red, and gray solu-
tions (M/m1-CNs, M/o1-CNs, and M/p1-CNs, respec-
tively) were obtained. And three types of solutions were
centrifuged at 10000 rpm for 5 min (repeat three times)
to remove agglomerated particles. Finally, three types of
CNs were gained from the supernatant. In addition to the
synthesis time became 8 h, other conditions were con-
sistent with the above steps, and other three types of
carbon nanodots (M/m2-CNs, M/o2-CNs, and M/p2-
CNs) were obtained.

Measurement of fluorescence quantum yields

The fluorescence quantum yields (QYs) were calculated
by using relative method (Jiang et al. 2015). Quinine
sulfate (QYs = 54% in 0.1 M H2SO4) was chosen as the
reference for M/o2-CNs. Rhodamine 6G (QYs = 95% in
alcohol) was chosen as the reference for the M/m1-CNs
andM/o1-CNs. The QYs of the three types of CNs were
calculated using the following equation:

φx ¼ φstdIxAstdηx
2=I stdAxηstd

2 ð1Þ
Here, φ is the QYs of the testing sample, I is the

measured integrated emission intensity, A is the optical
density, and η is the refractive index of the solvent. The
subscript Bstd^ refers to the standard samplewith known
QYs, and Bx^ represents the unknown samples. Absor-
bance of samples was always kept below 0.1 at the
excitation wavelength to minimize reabsorption effects.

Preparation and application of photoluminescent inks

Fluorescent photos of the three CN solutions were re-
corded using a digital camera under UV light. Mean-
while, some letters on filter paper were handwritten
using an ink pen filled with solutions of CNs. Some
figures of these patterns, letters, and paper artworks
were obtained using a digital camera under daylight
and UV light (365 nm), respectively.

Preparation of multicolor fluorescent CNs/PVA hybrid
films

The multicolor fluorescent CNs/PVA hybrid films were
prepared by hydrothermal treatment. Four gram PVA
was dissolved in 30 mL deionized water and stirred for
5 min. Different mass ratios of CN solution with the
same concentration were added in PVA solution, and

then the mixed solution was heated at 95 °C for 2 h
under stirring. After the reaction was completed, viscous
mixed solutions were covered on a glass plate and dried
at room temperature. Finally, multicolor fluorescent
CNs/PVA composite films were obtained.

Metal ions detection

Response property of metal ions to M/m1-CNs (M/o1-
CNs and M/o2-CNs) for fluorescence was characterized
by comparing the intensity of fluorescence emission.
Two milliliter M/m1-CNs (0.01 mg/mL) solution was
added to a centrifuge tube, and 0.1 mL of various metal
ion solution (0.1 M) and deionized water (as blank
contrast) were separately added into the above M/m1-
CNs solution. These metal ions were Cu2+, Fe2+, Fe3+,
Co2+, Pb2+, Cd2+, Cr3+, Ni2+, Mn2+, Ag+, Zn2+, Al3+,
and Hg2+, respectively. The fluorescence emission spec-
tra of mixed solutions with different metal ions were
tested and recorded by molecular fluorescence
spectrometer.

Results and discussions

Formation of CNs

The schematic diagram of the synthesis of fluorescent
CNs is outlined in Fig. 1a. A possible mechanism may
be that methacrylic acid and phenylenediamine under-
gone polymerization and dehydration at high tempera-
ture to form fluorescent carbon nanodots. Photographs
of M/m1-CNs, M/o1-CNs, and M/o2-CNs are shown in
Fig. 1b under daylight and UV light (365 nm), respec-
tively. Solutions of the three types of CNs dispersed in
ethanol showed yellow, red, and brown under daylight
and emitted strong green, yellow, and indigo fluores-
cence under UV light (365 nm). Interestingly, the color
of M/o2-CNs was observed for strong indigo under UV
light (365 nm), which was different from M/o1-CNs.
The situation provided a new idea to the synthesis of
fluorescent carbon nanodots for other researchers in this
field. That was, the fluorescence of carbon nanodots can
be adjusted by changing the reaction time.

As shown in Fig. S1, the solutions of M/m2-CNs,
M/p1-CNs, and M/p2-CNs were observed under day-
light and UV light (365 nm), respectively. The solutions
of M/m2-CNs showed yellow and transparent under
daylight, but exhibited strong green under UV light
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(365 nm), which was similar to the color of M/m1-CNs.
Fluorescence of the M/p1-CNs and M/p2-CNs was al-
ways weak. Therefore, three typical samples (M/m1-
CNs, M/o1-CNs, and M/o2-CNs) were researched as
the main object.

Optical properties of CNs

Fluorescence properties, as the most important optical
properties of CNs, which of three typical types of CNs
(M/m1-CNs, M/o1-CNs, and M/o2-CNs) were system-
atically studied (Fig. 2). Firstly, the emission spectra of
the three types of CNs under different ranges of excita-
tion wavelengths are displayed in Fig. 2 a and b. The
maximum emission wavelengths of M/m1-CNs, M/o1-
CNs, and M/o2-CNs were located at 525 nm, 520 nm,
and 350 nmwith the excitation wavelengths in the range
of 300–480 nm, 380–540 nm, and 260–400 nm, respec-
tively. For the M/m1-CNs (Fig. 2a), decreases in emis-
sion intensity were observed when different excitation
wavelengths were excited, but a lesser extent of emis-
sion wavelength shifts. The result revealed that the M/
m1-CNs do not have an excitation-dependent property,
which can be ascribed to surface uniformity of the CNs
(Wang et al. 2017). The emission spectra of M/o1-CNs
and M/o2-CNs showed typical excitation-dependent PL
behavior. That was, the emission wavelength would
redshift with the increasing of the excitation wave-
length, which was usually the result of the combination
of the surface emitter and central aromatic clusters (Xu
et al. 2013; Zhang et al. 2015). Thus, the differences in
fluorescence might be the result of different surface
states of M/o1-CNs and M/o2-CNs, which can be actu-
alized by changing their reaction time. Furthermore, the
excitation spectra of the three types of CNs at the
maximum emission wavelength were also investigated.
The excitation spectra of M/m1-CNs, M/o1-CNs, and
M/o2-CNs are shown in Fig. 2d, which excitation wave-
lengths were located at 467 nm, 440 nm, and 310 nm,
respectively. The UV-visible spectra of the three types of
CNs, as shown in Fig. 2e, displayed similar characteris-
tic peak in the range of 280–300 nm, which were attrib-
uted to the formation of an aromatic system of CNs
(Kozák et al. 2013; Li et al. 2013). The inflorescence
quantum yields of the M/m1-CNs, M/o1-CNs, and M/
o2-CNs were 9.6%, 36.0%, and 42.3%, respectively.
Their different quantum yield of the three types of
CNs might be attributed to the surface passivation (Al
Awak et al. 2017; Feng et al. 2015a; Wang et al. 2010).

More effective surface passivation might cause higher
fluorescence quantum yields, which corresponded with
the degree of oxidation of these CNs.

Microscopic morphology of M/m1-CNs, M/o1-CNs,
and M/o2-CNs

Microscopic morphologies of the prepared M/m1-CNs,
M/o1-CNs, and M/o2-CNs were characterized by TEM
as shown in Fig. 3a–c. The three types of CNs were
spherical-like nano-sized particles, and their particle
sizes were approximately 5 nm, 10 nm, and 10 nm,
respectively. High-magnification TEM images in Fig.
S2 A–C showed single particle of the three types of
CNs. Obvious lattice fringes with a spacing about
0.21 nm were observed in Fig. S2 A–C, corresponding
to the (100) in-plane lattice of graphene (Ding et al.
2016). Whereas, a spot of amorphous structures was
also observed. These results indicated that these carbon
nanodots had both crystalline and amorphous proper-
ties. The above results indicated the successful synthesis
of carbon nanodots. To further verify the successful
synthesis of carbon nanodots and their microscopic
morphology, the particle size distribution of the three
carbon dots was measured by DLS. The DLS of M/m1-
CNs, M/o1-CNs, and M/o2-CNs is shown in Fig. 3d–f,
respectively. The particle size of the three types of CNs
was in the range of 4–10 nm, 6–16 nm, and 6–12 nm,
respectively. The average particle sizes of the three types
of CNs were 5 nm, 10 nm, and 9 nm, respectively,
corresponding to particle size of CNs observed from
TEM images. To sum up, both TEM and DLS demon-
strated successful synthesis of the three types of CNs
with nanoscale characteristics. The luminescence of M/
m1-CNs and M/o1-CNs with different colors might be
due to their different quantum sizes (sizes of M/m1-CNs
andM/o1-CNs were 5 nm and 10 nm, respectively). For
M/o1-CNs and M/o2-CNs, the two CNs had the same
particle size, but had difference in luminescence, which
might be attributed to the different surface composition
of the two CNs through different degrees of reaction.

FT-IR analysis

Figure 4a presented the FT-IR spectroscopy of the three
types of CNs; it can be seen that the three types of CNs
showed similar infrared characteristic absorption peak,
indicating that the three types of CNs had similar chem-
ical components. The characteristic peaks of M/m1-
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CNs, M/o1-CNs, and M/o2-CNs were at 3157 cm−1,
3145 cm−1, and 3129 cm−1, respectively, which were
attributed to the N–H vibration (Ding et al. 2016; Shi
et al. 2016). For M/m1-CNs and M/o1-CNs, the char-
acteristic peak at 3434 cm−1 was considered to be

caused by O–H vibration (Xue et al. 2016). However,
for M/o2-CNs, characteristic absorption peak near
3400 cm−1 was not obvious, probably due to the low
degree of oxidation of these CNs. Compared with the
raw material (Fig. 4b), new characteristic peaks at

Fig. 1 Formation of M/m1-CNs, M/o1-CNs, and M/o2-CNs (a). M/m1-CNs, M/o1-CNs, and M/o2-CNs dispersed in ethanol solution
under daylight and UV light (365 nm), respectively (b)
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Fig. 2 Emission spectra (a–c) ofM/m1-CNs,M/o1-CNs, andM/o2-CNs at different excitation wavelengths and excitation spectra (d) at the
maximum emission wavelength. The UV-visible spectra of M/m1-CNs, M/o1-CNs, and M/o2-CNs (e)

Fig. 3 TEM images of M/m1-CNs (a), M/o1-CNs (b), and M/o2-CNs (c). Particles size distribution of M/m1-CNs (d), M/o1-CNs (e), and
M/o2-CNs (f) by DLS
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1625 cm−1, 1630 cm−1, and 1644 cm−1 appeared for all
three types of CNs, indicating formation of a new struc-
ture of CNs.

XPS analysis

The elemental composition of the three types of CNs
was measured by XPS spectroscopy, as shown in Fig. 5.
The result suggested that the three types of CNs have the
same chemical element composition, namely C, N, and
O. Three distinct peaks were at 285 eV, 398.4 eV, and
531.8 eV, which represented the C1s, O1s, and N1s of
the three types of CNs, respectively. However, the

intensity of their C1s, O1s, and N1s peaks was different,
indicating that the contents of C, N, and O elemental in
the three types of CNs were different. High-resolution
XPS C1s, N1s, and O1s spectra of M/m1-CNs, M/o1-
CNs, and M/o2-CNs were obtained (Fig. S3). The C1s
spectra of the three types of CNs can be decomposed
into four peaks located at around 284.7, 286.0, 284.3,
and 288.0 eV, corresponding to C–C, C–O, C=C, and
C=N/C=O groups, respectively (Han et al. 2017). The
C1s spectra revealed that three types of CNs were main-
ly composed of C–C and C–O groups, while C–N
groups were few in the CNs. The N1s spectra of the
three types of CNs indicated that the three CNs contain

Fig. 4 FT-IR spectra of the three types of CNs (a) and raw materials (b)

Fig. 5 XPS survey spectra of the
three types of CNs
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different N groups on the CNs surface and different
contents of similar functional groups. The O1s spectra
of the three types of CNs can be decomposed into two
peaks at 531.7 and 533.5 eV, representing C=O and C–
O groups, respectively. The C=O group content in M/
o2-CNs was less than that in M/o1-CNs. The above
results clearly showed that the three types of CNs con-
tain different functional groups and different contents of
similar functional groups. The C, N, and O element
content table is shown in Table 1. The content of the N
elements ofM/m1-CNs,M/o1-CNs, andM/o2-CNswas
7.03%, 6.22%, and 8.88%, and corresponding O con-
tents were 12.15%, 8.74%, and 3.69%, respectively.
Interestingly, as emission of the CNs red shift, the O
element content of CNs also increased. As a conse-
quence, we believed that the difference of O element
content might cause different fluorescence emissions of
the CNs.

Study on colorful patterns of invisible fluorescent inks
and multicolor CNs/PVA hybrid films

Based on excellent fluorescence properties of M/m1-
CNs, M/o1-CNs, and M/o2-CNs, the three types of
CNs as fluorescent inks were applied to write letters in
the filter paper. As shown in Fig. 6a–c, the correspond-
ing letters were written with theM/m1-CNs, M/o1-CNs,
andM/o2-CNs fluorescent inks, respectively. The letters
in Fig. 6 a, b, and c showed bright and clear green,
yellow, and indigo fluorescence under UV light
(365 nm), respectively. These fluorescent colors in filter
paper correspond to fluorescent colors of corresponding
CNs solution itself. Some signet dipped by CNs solution
was used to print rabbit (green), puppy (yellow), and
foal (indigo) patterns on the filter paper (Fig. 6d). The
patterns on filter papers were barely visible under day-
light, but showed bright and clear fluorescence under
UV light (365 nm). These results indicated that the CNs
as invisible inks were potentially applied for commerce
such as anti-counterfeiting and enciphering-message. In
addition, an interesting experiment was performed
based on several different fluorescence colors of CNs.
Different mass ratios CNs were added to the PVA gel to
fabricate multicolor photoluminescent CNs/PVA hybrid
gel films. The fluorescence of CNs/PVA hybrid filmwas
regulated by the mass ratio of CNs. Photographs of the

Table 1 The contents of C, N, and O atoms of the three types of
CNs

Sample O (%) N (%) C (%)

M/m1-CNs 12.15 7.03 80.81

M/o1-CNs 8.74 6.22 85.04

M/o2-CNs 3.69 8.88 87.43

Fig. 6 Letters were written with
fluorescent inks made of CNs: M/
m1-CNs (a), M/o1-CNs (b), and
M/o2-CNs (c). Patterns printed
with inks made with three CNs
(d). Multicolor CNs/PVA hybrid
films under daylight (e) and UV
light (f) (365 nm) ((a)M/m1-CNs;
(b) M/o1-CNs; (c) M/o2-CNs; (d)
M/m1-CNs:M/o1-CNs = 3:1
(w:w); (e) M/m1-CNs:M/o2-
CNs = 2:1 (w:w); (f) M/o1-
CNs:M/o2-CNs = 1:4 (w:w))
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CNs/PVA gel film are shown in Fig. 6e, f under daylight
and UV light (365 nm), respectively, in which a–f
represented different mass ratios, respectively ((a) M/
m1-CNs; (b) M/o1-CNs; (c) M/o2-CNs; (d) M/m1-
CNs:M/o1-CNs = 3:1 (w:w); (e) M/m1-CNs:M/o2-
CNs = 2:1 (w:w); (f) M/o1-CNs:M/o2-CNs = 1:4
(w:w)). Gels a, b, and c were green, yellow, and indigo
fluorescence, respectively, corresponding the fluores-
cent colors of each CNs. Gels d, e, and f displayed light
green, cyan, and brown fluorescence, respectively. The
above results indicated that these CNs could be used for
producing new multicolor gels.

Detection of metal ions

The fluorescence emission spectra and its standardizing
of M/m1-CNs, M/o1-CNs, and M/o2-CNs solutions
with different metal ions are shown in Fig. S4 (metal
ions were Cu2+, Fe2+, Fe3+, Co2+, Pb2+, Cd2+, Cr3+,
Ni2+, Mn2+, Ag+, Zn2+, Al3+, and Hg2+, respectively).
As shown in Fig. 7a, Fe3+ had the strongest fluorescence
quenching for M/m1-CNs compared with the rest of the
metal ions, indicating that the M/m1-CNs had a specific
recognition function for Fe3+. Therefore, theM/m1-CNs
had potential application prospects in the field of detec-
tion of Fe3+. As shown in Fig. 7b, Fe2+, Fe3+, and Ag+

had stronger fluorescence quenching for M/o1-CNs, in
addition to Cu2+, Co2+, and Al3+ which partly quenched
fluorescence of M/o1-CNs. As shown in Fig. 7c, Fe2+

and Fe3+ had strong fluorescence quenching effect to
M/o2-CNs, while Ag+ and Al3+ partly quenched fluo-
rescence of M/o2-CNs. The quantitative detection of
Fe3+ ions for M/m1-CNs was performed. The fluores-
cence intensity of the CNs decreased gradually with the
increase of the concentration of Fe3+. There was a good
semilogarithmic correlation between the quenching

efficiency (F0/F1) and the concentration of Fe3+ in the
range from 10 to 300 μM (Fig. S5). Therefore, the
concentration of Fe3+ could be calculated using the
following calibration equation:

Log F0=F1ð Þ ¼ −0:00292þ 9:73493

� 10−4C R ¼ 0:98734ð Þ ð2Þ
F1 and F0 were the fluorescence emission intensity of
the M/m1-CNs added with and without metal ions,
respectively, and C represented the concentration of
Fe3+. The detection limit of Fe3+ was calculated to be
6 μM (at a S/N of 3).

Conclusions

In summary, we developed a facile, rapid, and green
one-pot solvothermal synthesis method to manufacture
multicolor fluorescence CNs. Different fluorescence
emissions of CNs were regulated by changing the raw
materials and reaction temperature. These CNs
displayed bright and stable fluorescence under UV light
(365 nm). Through the microscopic morphology and
surface element analysis of CNs, we preliminarily think
that the reason for the different fluorescence emission of
CNs may be caused by the difference in particle size and
the surface oxygen content. In addition, based on the
excellent stable fluorescence characteristics of the car-
bon dots, we prepared invisible fluorescent inks and
mixed fluorescence CNs/PVA hybrid films, which can
potentially be used in commercial applications such as
anti-counterfeiting, encrypted information, and lumines-
cent devices. Moreover, we successfully applied CNs
for the detection of metal ions, extending the application
of CNs in the field of detection.

Fig. 7 Comparison of the fluorescence emission intensity of M/m1-CNs (a), M/o1-CNs (b), and M/o2-CNs (c) with metal ions (F1 and F0
were the fluorescence emission intensity of the CNs added with and without metal ions, respectively)
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