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Abstract Manganese dioxide as the electrode for aque-
ous zinc-ion batteries (AZIBs) is influenced by the
material dissolution. Herein, 3-MnO,/N-doped carbon
matrix (NCm) or MnsOg/NCm composites were fabri-
cated by effective synthesis process using polyaniline
(PANI) as carbon/nitrogen sources. The conductive N-
doped carbon layer was tied to 3-MnO,, which in-
creased the electrical conductivity of the 3-MnO, nano-
rod. At current densities of 200 mA gfl, the 3-MnO,/
NCm electrode delivered a higher discharge capacity of
331 mAh g ' comparing with 185 mAh g~' for the pure
[3-MnO, electrode. Besides, the MnsOg/NCm electrode
could provide a discharge capacity of 266 mAh g .
Therefore, the approach in this study may pave the
way on preparing manganese oxides/NCm materials
for AZIBs.
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Introduction

New electrical energy storage systems have drawn a
tremendous amount of attention as the excellent method
to overcome the shortcomings associated with the storage
and use of renewable energy (Lund 2007; Jiang et al.
2012; Zhai et al. 2011; Hu et al. 2016). Due to high
energy density and long cycling life, lithium-ion batteries
have dominated the worldwide battery market for digital
and mobile devices (Qiu et al. 2018a, b; Suo et al. 2015;
Dunn et al. 2011; Chang et al. 2010; Zhang et al. 2018;
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Zhang et al. 2018). However, the high cost and potential
safety problems can limit their large-scale applications
(Tarascon and Armand 2001; Wang et al. 2013a, b; Bruce
etal. 2012; Hu et al. 2017; Wu et al. 2018a, b). Nonethe-
less, a long lifetime, as well as high energy density,
remains a primary dispute (Cao et al. 2017).

During the past decade, a string of aqueous zinc-ion
batteries (AZIBs) cathode that can achieve reversibly
aqueous zinc-ion storage, for instance, tunnel-type
MnO, (Alfaruqi et al. 2015a, b; Zhao et al. 2018; He
et al. 2017; Boeun Lee et al. 2016), Prussian blue ana-
logues (Trocoli and La Mantia 2015; Zhang et al. 2015),
and vanadium oxides (Xia et al. 2018a, b; Yan et al.
2018; Senguttuvan et al. 2016; Sambandam et al. 2018;
Hu et al. 2018; Wei et al. 2018) have been reported. Xu
et al. assembled a MnO,/ZnSO,4 or Zn(NO3),/Zn system,
which contributed a high discharge capacity of
210 mAh g ' (Xu et al. 2012). Additionally, graphene
scroll-coated «-MnQ, nanowires have been studied as
cathodes materials, which demonstrated high capacity,
outstanding rate performance and distinguished stable
storage (Wu et al. 2018a, b). Besides, the graphene oxide
scrolls reduced the dissolution of a-MnO, and markedly
improved the conductivity for AZIBs. Furthermore, the
interplay between hydroxylated interphase on the surface
and the unique bivalence structure of MnsOg suppresses
the gas evolution reactions and provides the facile path-
way for ion transport via intra-/inter-layer defects of
MnsOg (Shan et al. 2016). Recently, MnO, @N-C was
used as the cathode and indicated that onion-like N-
doped carbon and amorphous carbon shell contributed
to a high reversibly capacity and cyclic stability for
rechargeable aqueous zinc-ion batteries (Fu et al. 2018).

A series of approaches have been studied to enhance
the electrochemical performances of MnO,/zinc salts/
Zn battery system. For instance, the electrical conduc-
tivity of the MnO, electrode was improved by doping
carbons (Hu et al. 2017; Zeng et al. 2017; Huang et al.
2018). Owing to its higher electronegativity (3.04) and
smaller atomic diameter, N-doped carbon matrix is
promising material and made a lot of gains (Fu et al.
2018). Herein, a special 3-MnO,/N-doped carbon ma-
trix (NCm) composites and MnsOg/NCm composites
were effectively prepared throughout one-pot hydro-
thermal method, and polyaniline (PANI) by heating
was used as the sources of carbon and nitrogen. This
study provides insights necessary to design other metal
oxides/NCm materials for AZIBs and other cost-
effective and environmentally friendly battery systems.
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Experimental
Materials synthesis

MnOOH/PANI precursor was synthesized via a one-
step hydrothermal method. First of all, 3 mmol of
MnSO,H,0 and 0.5 mol L™ of H,SO, (2 mL) were
transferred into 60 mL of deionized water, and magnet-
ically agitated until a clear solution was obtained. Next,
0.1 mol KMnQO, (20 mL) aqueous solution was slowly
dropped into the above mixture to form a dark violet
solution. Then, the mixed solution was agitated for 2 h at
room temperature. And then, 50 pL of aniline was
slowly dropped into the solution and continued to stir
for 2 h. At last, 0.125 g of (NH,4),S,05 was added into
the mixture. After agitating for another 30 min, the
mixture was poured to 110 mL of Teflon-lined stainless
steel autoclave and heated at 120 °C for 12 h. The
precursor was obtained by centrifugation after cooling,
washed with deionized water and ethanol three times,
and dried by vacuum drying oven. The 3-MnO,/NCm
was prepared through heating at 300 °C for 2 h in air
atmosphere. The MnsOg/NCm was prepared through
heating at 500 °C for 4 h in air atmosphere. The synthe-
sis route of MnOOH/PANI precursor is shown in
Scheme 1. Likewise, the 3-MnO, powders were also
synthesized with a similar method without the polymer-
ization with PANIL.

Materials characterization

The morphologies were characterized by scanning elec-
tron microscope (SEM, ZEISS SUPRATM 55). The
prepared samples were characterized by X-ray diffrac-
tion (XRD, SHMADZUXRD-6100AS) with Cu K&
radiation (A =1.5418 A). Transmission electron micro-
scope (TEM) and energy-dispersive X-ray spectroscopy
(EDS) were obtained using Tecnai G2F30 S-Twin op-
erated at 300 kV. X-ray photoelectron spectroscopy
(XPS) measurements were performed on an ESCALAB
250 spectrometer with Mg Ko X-ray source.

Electrochemical measurements

The 2032 coin-type cells were assembled in open air
atmosphere to evaluate the electrochemical performance
with a Neware BTS-4008 battery test system. The elec-
trochemical properties were investigated using products
as cathode, zinc foil as anode, filter paper as the
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Scheme 1 Schematic illustration of the fabrication process of MnOOH/PANI precursor

separator, and 1 mol L' ZnSO, aqueous solution as
electrolyte. To prepare the cathode, the homemade prod-
ucts, acetylene black, and polyvinylidene fluoride were
mixed in a weight ratio of 8/1/1, and the mixture was
dispersed in N-methyl-2-pyrrolidone to form a stable
homogeneous slurry. Then, the mixture was cast on
stainless steel foil and dried overnight under vacuum
conditions at 110 °C. An active material loading of
around 1.0 mg cm 2 was used, and the diameter of zinc
foil was 12 mm. The simulated cells were cycled at
room temperature within the voltage range of 1.00—
1.85 V (vs. Zn/Zn>"). Cyclic voltammograms (CV)
and electrochemical impedance spectroscopy (EIS)
were performed on a CHI660E electrochemical work-
station at room temperature. The EIS were tested at the
frequency range 0.01 Hz-100 kHz with alternating-
current voltage of 5 mV.

Results and discussion

The SEM and XRD were carried out to identify the
microstructure of the MnOOH/PANI intermediate, [3-
MnO,/NCm composites, and MnsOg/NCm composites.
SEM image of the MnO, (Supplementary Fig. S1)
demonstrates a homogeneous one-dimensional nanorod
structure. After reacting with PANI, the surface of the
nanorod is coated with numerous PANI nanoparticle,
and the size of MnOOH/PANI intermediate is
80~200 nm (Fig. 1a). The XRD pattern of the precursor
in Fig. 1b exhibits that all peaks can be assigned to
MnOOH (JCPDS 41-1379). Owing to PANI was amor-
phous, and PANI was not detected in the XRD pattern of
MnOOH/PANI. The morphology of the precursor does
not change after heat treatment at 300 °C (Fig. 1c) or
500 °C (Fig. le) for 4 h in air during the process of the
formation of MnO, and MnsOg. The XRD results of the
products suggest that all peaks can be assigned to [3-

MnO, (JCPDS 24-0735, Fig. 1d) and MnsOg (JCPDS
39-1218, Fig. 1f) during calcination, respectively.

The TEM provides more details about the 3-MnO,/
NCm composites. Figure 2a demonstrates that N-doped
carbon nanoparticles are tied to 3-MnO, nanorod, which
is corresponded with Fig. 1c. The HAADF-STEM and
EDX analysis were used to further confirm the element
distribution of the 3-MnO,/NCm composites (Fig. 2b—
g). The EDX mapping of the 3-MnO,/NCm composites
shows the homogeneous distribution of C (Fig. 2d), Mn
(Fig. 2e), O (Fig. 2f), and N (Fig. 2g), respectively. The
EDX results imply that C and N element are the homo-
geneous distribution of 3-MnO,/NCm. The survey on
XPS spectra of 3-MnO,/NCm composites indicates the
existence of C, Mn, O, and N elements in Fig. 2h, which
is in accordance with the EDX mapping result (Fig. 2b—
g). The typical high-resolution spectrum of C 1s in Fig.
2i includes four peaks, which locate at 284.4, 285.1,
286.4, and 288.2 eV in consistent with C—C, C-N, C—
0, and O=C-0, respectively (Li et al. 2017; Ren et al.
2017). From the spectrum of Mn 2p (Fig. 2j) reveals two
peaks (642.2 and 653.9 e¢V), which are in accordance
with the characteristic Mn 2p;,, and Mn 2p;/, binding
energies of MnO,, with the spin energy separation of
11.7 eV (Liu et al. 2010; Thirupathi and Smirniotis
2012). The spectrum of O 1s is presented in Fig. 2k, in
which two peaks at 529.8 and 531 eV are ascribed to
Mn—O-Mn and Mn—-O-H, respectively (Wang et al.
2013a, b). The XPS survey spectrum of N 1s is shown
in Supplementary Fig. S2.

The TEM image of MnsOg/NCm composites is
shown in Fig. 3a. The element distribution of MnsOg/
NCm was observed with HAADF-STEM and EDX
analysis (Fig. 3b—g). EDX results show the homoge-
neous distribution of C, Mn, O, and N element in
Mn;sOg/NCm (Fig. 3d—g). The MnsOg/NCm has been
analyzed by XPS as shown in Fig. 3h, and the XPS
result is in accordance with the EDX mapping result

@ Springer
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Fig. 1 SEM images (a) and XRD pattern (b) of the MnOOH/PANI precursor. SEM images (¢) and XRD (d) pattern of the 3-MnO,/NCm
composites. SEM images (e) and XRD (f) pattern of the MnsOg/NCm composites

(Fig. 3b—g). The C Is spectrum of MnsOg/NCm com-
posites is shown in Fig. 31 and four peaks at 285.9 eV,
285.4 ¢V, 285.7 ¢V, and 284.4 eV (Ren et al. 2017; Qiu
et al. 2018a, b). As recorded in Fig. 3j, the spectrum of
Mn 2p shows two peaks at 642.1 and 653.9 eV which
ascribe to Mn 2p5,, and Mn 2p; », respectively (Liu et al.
2015). The O 1s photoelectron spectrum (Fig. 3k) of the
Mn;sOg/NCm nanorod shows two peaks at about 530.0

@ Springer

and 531.8 eV (Gao et al. 2010). The high-resolution
spectrum of N1s is shown in Supplementary Fig. S3.
To research the electrochemical performance of the
[3-MnO,/NCm and MnsOg/NCm, CV and galvanostatic
discharge/charge measurement were executed.
Figure 4a shows the CV profiles of 3-MnO,/NCm
composites cathodes. The CV curves of 3-MnO,/
NCm reduction/oxidation peaks located at 1.22/1.38
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Fig. 2 TEM image of 3-MnO,/NCm composites (a). Drift
corrected spectrum image scanning (b) and HAADF-STEM image
of 3-MnO,/NCm composites (¢). EDX elemental mapping images

and 1.56 V, and the 3-MnO, peaks located at 1.23/1.39
and 1.62 V (Supplementary Fig. S4), indicating a sim-
ilar redox behavior. The peaks at 1.22 and 1.38 V for {3-
MnO,/NCm composites can be ascribed to the insertion
of H" and Zn”* into the B-MnO,/NCm composites,
corresponded with the reduction of Mn** to Mn**
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(Huang et al. 2018). In contrast, the peak at 1.56 V for
[3-MnO,/NCm composites corresponds to the extraction
of Zn2+, which involves the reversible oxidation of
Mn** to Mn** (Alfaruqi et al. 2015a, b; Islam et al.
2017a, b). The electrochemical properties of the
Mn;sOg/NCm composites cathodes are assessed using

@ Springer
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Fig. 3 TEM image of MnsOg/NCm composites (a). Drift

corrected spectrum image scanning (b) and HAADF-STEM image
of MnsOg/NCm composites (¢). EDX elemental mapping images

CVas shown in Fig. 4b. The CV curves of MnsOg/NCm
(Mn**,Mn**;05) show that sharp anodic peak centered
at about 1.67 V and two cathodic peaks at 1.20 and
1.33 V are related to extraction/insertion of Zn>* and
H* (Hao et al. 2018). Figure 4c shows that the discharge/
charge profiles of the 3-MnO,/NCm composite

@ Springer
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electrode compare with that obtained for the (3-MnO,
electrode at 200 mA g '. The 3-MnO,/NCm electrode
delivered a higher discharge capacity of 331 mAh g™
comparing with 185 mAh g~' for the pure B-MnO,
electrode in a 2 M ZnSO,4 aqueous electrolyte
(Alfaruqi et al. 2017). After 100th cycles, the capacity
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Fig. 4 CV curves of the 3-MnO,/NCm (a). Cycling performance
of the 3-MnO,/NCm at 200 mA gfl (¢). Rate performance of (3-
MnO,/NCm at different current densities (d). CV curves of the

of 143.7 mAh g ' is retained for the B-MnO,/NCm
electrode than that of the bare 3-MnO, electrode
(40.7 mAh g ') in a 2 M ZnSO, aqueous electrolyte.
The N-doped carbon-coated samples can accommodate
more Zn>" ions than the uncoated MnO, (Islam et al.
2017a, b). The cycling performance of bare 3-MnO,
electrode, shown in Supplementary Fig. S5, indicates
that the capacity of the bare 3-MnO, electrode
(120.5 mAh g_l) with 0.1 M MnSQO, additive ina 2 M
ZnS0, aqueous electrolyte at 200 mA g ' is slightly
lower than that of reported in literature (~ 135 mAh g,

Specific CapacityamAhg™?)

MnsOg/NCm (b). Cycling performance of the MnsOg/NCm at
200 mA gfl (e). Rate performance of MnsOg/NCm at different
current densities (f)

Islam et al. 2017a, b). The N-doped carbon and the
additional MnSOy in electrolyte can improve of the
capacity in the 3-MnO, electrode. After the initial cycle,
the increase in capacity is owing to the activation of
electrode (Islam et al. 2017a). The 3-MnO,/NCm and
[3-MnO, electrode show a gradual fading in capacity
which results from manganese dissolution in electrolyte
(Alfaruqi et al. 2015a, b). The electrochemical property
is further corroborated in the rate performances (Fig.
4d). The cell shows an excellent rate capability, achiev-
ing high capacities of 258, 136, 115, 95, 68, and
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Fig. 5 Nyquist plots of 3-MnO,/NCm hybrid composites and
pure 3-MnO, electrodes (a). Nyquist plots of the 3-MnO,/NCm
composites before the first cycle and after 100th cycles (b).
Nyquist plots of the MnsOg/NCm composites before the first cycle
and after 100th cycles (c)

37 mAh g ' at 100, 200, 300, 500, 600, and
1000 mA g ', respectively. The rate performances of
[3-MnO,/NCm electrode are lower than the additional
MnSOy in electrolyte. The results above indicate that
manganese oxides/N-doped carbon matrix composites

@ Springer

are promising for a high-performance and cost-effective
battery system.

Figure 5 illustrates the EIS results of 3-MnO,/NCm
composites and MnsOg/NCm composites. The spectrum
contains a semicircle and straight sloping line which
correspond to the Faradaic reaction and the charge
transfer resistance impedance (R.), respectively
(Alfaruqi et al. 2017). The diameter of the semicircle
for the 3-MnO,/NCm cathode is smaller than that of the
[3-MnO, cathode, suggesting lower charge-transfer im-
pedance in 3-MnO,/NCm composites (Fig. 5a). The
lower charge-transfer impedance of 3-MnO,/NCm is
ascribed to the co-effect of N-doping and carbon mate-
rial which increase the conductivity significantly (Ren
etal. 2017). EIS results demonstrate the steeper slope of
B-MnO,/NCm, suggesting rapid Zn>* diffusion in -
MnO,/NCm electrode. The calculated R value of the
[3-MnO,/NCm electrodes was 142.7 2 and increased to
377 Q) after 100 cycles (Fig. 5b). Figure Sc illustrates
that the calculated R, value (40 Q) of the MnsOg/NCm
was lower than that of the 3-MnO,/NCm. After 100 cy-
cles, the calculated R, value of the MnsOg/NCm elec-
trodes was 167 ). During the consistent discharge/
charge processes, the pathways for Zn** insertion/
extraction in manganese oxides/NCm composites
deconstructed, which may result in the mild raise of
the resistances (Wu et al. 2018a, b).

Conclusions

In summary, the metal oxides/NCm composites elec-
trodes were synthesized for use as cathodes in AZIB
via a one-pot hydrothermal method combining with
heat treatment. The 3-MnO,/NCm electrode regis-
tered a higher capacity than the 3-MnO, electrode.
Ascribing to the N-doped carbon matrix, the (-
MnO,/NCm composites exhibited high discharge
capacity and stable cycle performance for AZIB.
By the similar process of preparation, MnsOg/NCm
composites can deliver 266 mAh g ' at current
densities of 200 mA g '. Compare to -MnO,/
NCm composites, MnsOg/NCm composites have su-
perior electrical conductivity and lower reversible
capacities. The synthesis process showed in this
paper provides an effective and facile way to devel-
op other oxides/NCm composites for AZIBs and
other cost-effective and environmentally friendly
battery systems.
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