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Abstract The ever-growing market of electrochemical
energy storage impels the advances on cost-effective and
environmentally friendly battery chemistries. Lithium-
ion batteries (LIBs) are currently the most critical energy
storage devices for a variety of applications, while
sodium-ion batteries (SIBs) are expected to complement
LIBs in large-scale applications. In respect to their con-
stituent components, the cathode part is the most signif-
icant sector regardingweight fraction and cost. Therefore,
the development of cathode materials based on Earth’s
abundant elements (Fe and Mn) largely determines the
prospects of the batteries. Herein, we offer a comprehen-
sive review of the up-to-date advances on Fe- and Mn-
based cathode materials for LIBs and SIBs, highlighting
some promising candidates, such as Li- and Mn-rich
layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4,

NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian
blue analogs. Also, challenges and prospects are
discussed to direct the possible development of cost-
effective and high-performance cathode materials for fu-
ture rechargeable batteries.

Keywords Cathodematerials . Iron-based .Manganese-
based . Lithium ion batteries . Sodium ion batteries .

Energy storage

Introduction

The demand for electrical energy storage is increasing
exponentially along with the advancement of technol-
ogies and our ambition for clean and sustainable de-
velopment. As a state-of-the-art energy storage sys-
tem, lithium-ion batteries (LIBs) continue to power
consumer electronics and are increasingly used in
defense, automotive, and aerospace applications ow-
ing to their high energy density (Larcher and Tarascon
2015; Thackeray et al. 2012). Such penetration also
raises the concern of lithium shortage. In this context,
sodium-ion batteries (SIBs) have entered the spotlight
due to having similar electrochemistry and a higher
global abundance of Na (Slater et al. 2013; Yabuuchi
et al. 2014b). Though it is hard for them to compete
with LIBs in compact applications due to reduced
energy density, SIBs are deemed as the most promis-
ing complements to LIBs for large-scale electrical
storage applications (Palomares et al. 2012).
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A typical LIB is an enclosed device consisting of a
cathode, an anode, a separator, and an electrolyte. In
respect to the manufacturing cost of a LIB (Fig. 1a), the
cathode part accounts for the most significant share,
36% of the total cost, due to the high content of material
required and costly constitution (Kim et al. 2014). Most
cathode materials are compounds containing extractable
Li and multivalent transition metal (TM) ions. For ex-
ample, LiCoO2 (LCO) is the first commercially success-
ful cathode material and still the most commonly used
one (Mizushima et al. 1980; Nitta et al. 2015), in which
both Li and Co are non-abundant and expensive. How-
ever, the expense of the Co precursors is significantly
higher than Li ones. Thus, switching from Li to Na is
only expected to afford a 3.6 % cost reduction of cath-
ode materials in the case of SIBs. Therefore, to improve
the affordability and sustainability of the rechargeable
batteries, it is essential to develop low-cost cathode
materials incorporating earth abundant TM elements,
preferably Fe and Mn (Fig. 1b, c), which primarily
determine the scope and prospect of the rechargeable
batteries (Larcher and Tarascon 2015).

Although both LIBs and SIBs should be directed to
lower cost and higher performance, given the different
application scenarios and development phases of LIBs
and SIBs, the challenges existing in them still varies. In
LIBs, Mn-based spinel LiMn2O4 (LMO) and Fe-based
polyanionic LiFePO4 (LFP) are progressively replacing
LCO in some areas. However, both of them are restrict-
ed by lower galvanometric and volumetric energy den-
sities compared with LCO (Zheng et al. 2017). Conse-
quently, LFP and LMO are not capable of weight or
size-sensitive applications including advanced portable
devices and electrical vehicles (EVs). Therefore, a crit-
ical criterion for the development of future Fe- and Mn-
based cathodes for LIBs is to achieve comparable or
even higher energy densities. The energy density of
cathode material is determined collectively by its Li
storage capacity and discharge potential. In this regard,
some high-capacity and high-voltage materials such as
Li- and Mn-rich oxides, LiNi0.5Mn1.5O4, and LiFe1-
xMnxPO4 have attracted more attention. Meanwhile,
candidates should also meet the requirements of rate
capability, lifespan, and safety for practical applications.

Taking advantage of abundant Na sources, SIBs hold
the promise to support large-scale energy storage appli-
cations, which is critical in harnessing intermittent renew-
able energies such as solar and wind power. An essential
step to realizing large-scale SIB applications is the quest

of suitable electrode materials that meet the long-term
stability requirement and can deliver and accept large
amounts of energy quickly. However, the radii of Na+

(0.102 nm) is much larger compared to that of Li+

(0.076 nm), posing considerable challenges of sluggish
ion mobility and volumetric change of the hosts (Dai
et al. 2017; Yabuuchi et al. 2014b). Direct analogs from
LIB cathodes often result in continuous structural change
and inferior kinetics (Berthelot et al. 2010; Tripathi et al.
2013). Therefore, many efforts have been made on
crystal-structure engineering, nanostructuring, hybridiza-
tion, etc. For example, the combinations of different
polyanion groups such as Na4MnFe2(PO4)(P2O7) create
new open crystal frameworks with feasible paths for Na+

diffusion (Kim et al. 2016a).
Herein, this review summarizes the research ad-

vances on Fe- and Mn-based cathode materials for LIBs
and SIBs, respectively, which are categorized into ox-
ides, polyanion compounds, and hexacyanometalates
(for SIBs). With a grasp of the inherent properties and
up-to-date achievements of these candidates, especially
high-energy LIB cathode candidates and highly stable
SIB cathodes, we further discuss the impendent chal-
lenges and prospects in this field and put forward some
insights into the opportunity of Fe- and Mn-based cath-
ode materials. We hope that this review can inform
readers of the rationality and priority of Fe- and Mn-
based cathode materials as candidates for future LIBs
and SIBs, and call for further efforts to fulfill this goal.

Fe- and Mn-based oxides as LIB cathodes

The introduction of LCO cathode has empowered the
commercialization of the first LIB. LCO also guides the
investigation of a family of α-NaFeO2-type layered
oxides LiMO2, where M can be a TM or a mixture of
several (Chen et al. 2016). As shown in Fig. 2a, they
have a rhombohedral structure with a space group of
R-3m, in which the M-O octahedral slabs and Li-O
octahedral layers follow O3 stacking along the c axis.
Though LCO has a high theoretical capacity of
282 mAh g−1, the structure will undergo an irreversible
phase transition when more than half of the Li ions are
removed (Xia et al. 2007). Moreover, LCO also suffers
from safety issues due to its thermal instability at the
highly charged states (MacNeil et al. 2002). Therefore,
motivation exists for Co to be replaced by abundant,
inexpensive, and non-toxic transition metals.
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LiMnO2

After the success of LCO, researchers have made sig-
nificant efforts to investigate the Mn-based structural
analog of LCO (Fuchs and Kemmler-Sack 1994;
Rossouw et al. 1993). However, layered O3-type
LiMnO2 is challenging to prepare due to its thermody-
namic instability (Armstrong and Bruce 1996). More-
over, as the Mn ions in LiMnO2 all present as Mn3+,
which is susceptible to Jahn–Teller distortion, rendering
structural change and the disproportionation reaction to
soluble Mn2+. Such issues also haunt the thermodynam-
ically favorable orthorhombic LiMnO2 (Croguennec
et al. 1997a; Davidson et al. 1995; He et al. 2010; Liu
et al. 2007; Xiao et al. 2009). Therefore, to make cost-
effective and environmentally friendly layered oxides,
most of the research interest has been shifted to multi-
metal constitution such as LiNixMn1-xO2 (Rossen et al.

1992) and LiNixMnyCo1-x-yO2 (Shaju et al. 2002;
Tsutomu and Yoshinari 2001) (NMC). For example,
the existence of low valance Ni (Ni2+) can reduce the
proportion of Mn3+. The synergistic contributions of
various metals guarantee improved electrochemical per-
formance, leading to the successful commercialization
of NMC.

Mn-substituted LiNixMn1-xO2 has been initially de-
signed to address the issues in LiNiO2 (Chen et al. 2014;
Ohzuku et al. 1993), which is hard to prepare due to the
difficulties in controlling stoichiometry, Li/Ni ordering,
and the oxidation state of Ni (Nitta et al. 1995; Rossen
et al. 1992). In 2001, Ohzuku et al. prepared the isomet-
ric LiNi0.5Mn0.5O2 cathode which maintained a dis-
charge capacity of 150 mAh g−1 after 30 cycles. How-
ever, the binary LiNi0.5Mn0.5O2 still suffers from prob-
lematic preparation and cation disordering that results in
obstructive Li diffusion. In 2006, Kang et al. reported

Fig. 1 a Constitutional costs for manufacturing a typical LIB and
SIB. Values are from ref. (Kim et al. 2014). bAbundances of metal
elementals involved in standard cathode materials. Values are
taken from ref. (Nitta et al. 2015). c Sustainable (naturally

recycled) elementals (shown in green) in the periodic table, in
which main elements of current LIBs are circled in red.
Reproduced from ref. (Larcher and Tarascon 2015)
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the use of an ion-exchange process to prepare high-
quality LiNi0.5Mn0.5O2 with very low little intralayer
disordering, which could maintain a capacity of ∼
180 mAh g−1 even at a high rate of 6 °C (Kang et al.
2006). However, the extra cost from the method pre-
vents it from practical application.

Meanwhile, researchers investigated the co-
substitution of Co and Mn for better structural stability.
In 2001, Ohzuku et al. reported the isometric
LiNi1/3Mn1/3Co1/3O2 (NMC111) cathode, which demon-
strated a rechargeable capacity of 150 mAh g−1 in 3.5–
4.2 V or 200 mAh g−1 in 3.5–5.0 V (Tsutomu and
Yoshinari 2001). The appreciable capacity and cycling
stability of NMC soon attracted considerable interest from
the science community as well as industry. It is widely
recognized that high Ni content in the layered NMC as the
active redox species contributes to a higher capacity but at
the expense of safety and difficult preparation. High Mn
content existing as inactive Mn4+ enhances the structural
stability, and high Co content improves the rate perfor-
mance and processing ability. As the NMC materials still
consume Ni and Co largely, the next-generation cathodes
should be Ni and Co poor or free materials.

LiFeO2

In principle, the structure of LiMO2 is dependent on the
size of the M cation (Shirane et al. 1995). When Co is
substituted by similarly smaller M cations, such as V3+,
Cr3+, Ni3+, the layered rock-salt structure can be easily
preserved, whereas the same structure can hardly be
inherited when accommodating Fe3+ with much larger
size. In fact, the structural complexity of LiFeO2 ismuch
higher than other LiMO2. Around ten phases of LiFeO2

have been reported under different preparation

conditions (Catti and Montero-Campillo 2011).
Those include disordered rock salt α phase and its
derivate (Tabuchi et al. 1995), layered O3 phase
(Shirane et al. 1995), corrugated layered phase (or-
thorhombic), goethite-type (orthorhombic) (Sakurai
et al. 1997), β-NaFeO2-type (orthorhombic)
(Armstrong et al. 2008), and hollandite-type
(tetragonal) (Matsumura et al. 2002).

The electrochemical performance of LiFeO2 is
strongly related to the crystal structure, which decides
the Li+ pathway during the reaction. For example, bulk
α-LiFeO2 obtained by solid state reaction is found to be
electrochemically inactive as the iron ions block the Li
pathway in the disordered structure (Li et al. 2011).
However, the reactivity problem has been solved by
tailoring the particles into nanoscale. As a result, α-
LiFeO2 with particle size over 50 nm demonstrates a
discharge capacity up to 150 mAh g−1 in the 50th cycle
(Morales and Santos-Peña 2007). Another nano-α-
LiFeO2 also achieves similar results (Liu et al. 2016b).
Carbon modification can further enhance the reactivity,
and nanocrystalline porous α-LiFeO2–C composite can
deliver 230 mAh g−1 at 0.5 °C after 100 cycles (Rahman
et al. 2011).

Though electrochemical activities have repeatedly
been demonstrated for LiFeO2 with different phases, a
critical issue is the abnormal redox reaction. Different
from the reversible Li+ intercalation/deintercalation in
LCO on the basis of Co3+/Co4+, LiFeO2 cannot work on
the Fe3+/Fe4+ redox couple, as the Fe3+ 3d-orbital is
strongly hybridized with the oxygen 2p orbital in the
LiFeO2, the first delithation process will trigger the
oxygen removal instead of the oxidation of Fe3+

(Yabuuchi et al. 2012a). Hirayama et al. studied the
structure and electrode reactions of layered LiFeO2

Fig. 2 a Crystal structure of layered LiMO2. Reproduced from
ref. (Chen et al. 2016) with permission. b Cycling profile of
layered LiMnO2. Reproduced from ref. (Armstrong and Bruce

1996) with permission. c Structural illustration and voltage pro-
files of orthorhombic LiMnO2. Reproduced from ref. (Croguennec
et al. 1997b) and ref. (He et al. 2010) with permissions
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(Hirayama et al. 2011). As shown in Fig. 3, large
voltage hysteresis is identified in the first cycle of
LiFeO2, and the following profiles are similar with
initially reduced LiFeO2-x. X-ray diffraction (XRD)
patterns also clearly revealed the degradation of
the structure. To address the intrinsic redox issue,
the possible route is to incorporate other materials
to form solid solutions or nanocomposites. For
example, LiFeO2-Li2MnO3 solid solution (Li1+
x(FeyMn1−y)1−xO2) with optimized Fe content (0.2
< y < 0.4) is found to show high initial discharge
capacity (240–300 mAh g−1) under 40 mA g−1

(Tabuchi et al. 2010).

Li2MnO3-based oxides

With the low-cost constitution and very high deliverable
capacities exceeding 250 mAh g−1, Li2MnO3-based lay-
ered oxides are considered as one of the most promising
cathode candidates for next-generation LIBs (Thackeray
et al. 2007;Yabuuchi et al. 2011). Bare Li2MnO3 possesses
a layered structure that can be represented in conventional-
layered LiMO2 notation as Li(Li1/3Mn2/3)O2, in which Li

+

has substituted 1/3 of the Mn ions in the transition metal
layers. Such composition change also results in a symme-
try of monoclinic C2/m, and all the Mn are oxidized to the
more stable valance of 4+. Commonly, the Li2MnO3 is
incorporated with traditional layered LiMO2 to form a

class of Li- and Mn-rich layered oxides (LMRs), which
is deemed as either a single-phase solid solution (Jarvis
et al. 2012; Koga et al. 2012; Shukla et al. 2015) expressed
as Li(Li1/3-2x/3MxMn2/3-x/3)O2 or a structurally integrated
xLi2MnO3·(1-x)LiMO2 composite (Amalraj et al. 2013;
Gu et al. 2013; Thackeray et al. 2007; Yu et al. 2013). To
our best knowledge, the crystal structure may vary in
different samples, depending on the preparation method,
constitution, etc. Apart from the disputes on the structure
model, it is widely acknowledged that a range of technical
challenges including large initial irreversible capacity, volt-
age and capacity decay, and poor rate capability must be
solved before their application (Fig. 4).

The electrochemical properties of LMRs are highly
associated with a unique activation behavior. The typical
first charge profile involves several steps (Erickson et al.
2017). Below 4.4 V is a Li extraction from the Li-layer,
which requires oxidizable TM ions such as Ni2+ and
Co3+. Next is the activation of initially inactive Li2MnO3,
during which the removal of Li+ from the TM layers is
accompanied with the oxidation of O2−, leading to the
formation of oxygen vacancies and structural change
(Armstrong et al. 2006). Synchrotron XRD patterns
disclosed the loss of in-plane superstructure peaks, indi-
cating the irreversible structural change, which answers
the voltage hysteresis and large initial irreversible capac-
ity (Gent et al. 2017). Wang’s group reported the critical
role in the activation process. For a low Ni-doped LMR

Fig. 3 a, b Charge/discharge curves of LiFeO2 (a) and oxygen-deficient LiFeO2-x (b). c XRD pattern of cycled O3-type LiFeO2.
Reproduced from ref. (Hirayama et al. 2011) with permission
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material, Li1.87Mn0.94Ni0.19O3, the Li2MnO3 activation
process took dozens of cycles (Fig. 1d). By combining
the electrochemical measurements with material charac-
terisation including in-situ XRD and high-angle annular-
dark-field scanning transmission electron microscopy
(HAADF-STEM) observation, it was unveiled that the
oxygen release reaction is completed in first five cycles
while the Li and TM ions from TM layers migrate
gradually to the Li layers, leading to a stepwise capacity
increase (Ye et al. 2015a). The stepwise capacity increase
can also be controlled by tuning the Ni or Co doping,
which also profoundly influences the rate capability and
cycling performance (Ye et al. 2014a, b, 2015b). Our
studies shed light on the compositional design for high-
performance LMRs.

As a promising cathode candidate that has been
under the spotlight in past years, extensive work has
been conducted to understand the local crystal structure,
structural evolution, electrochemical behavior of LMRs,
and to engineer the electrode materials for better perfor-
mance. The history and progress have also been sum-
marized elsewhere (Erickson et al. 2017; Hy et al. 2016;
Manthiram et al. 2016; Zheng et al. 2017). In the pursuit
of commercial application, the major obstacles includ-
ing voltage and capacity decay over cycling, initial
irreversible capacity, poor rate capability, and low volu-
metric energy density still need to be overcome.

LiMn2O4

Spinel LiMn2O4 is another classic cathode material for
LIBs, of which Thackeray et al. have studied the lithium
insertion/deinsertion properties since the 1980s
(Thackeray et al. 1983, 1984). Different from the lay-
ered structure, Li ions in the spinel structure occupy 1/8
tetrahedral sites, and the MnO6 octahedrons form a
three-dimensional (3D) framework, leaving vacant tet-
rahedral and octahedral interstitial sites for the highly
efficient diffusion of Li+ (Fig. 5a). Even though the low

concentration of Li ions in the spinel body (Li/Mn = 1:2)
results in only half of the theoretical specific capacity
(146 mAh g−1) of layered LiMO2, attributing to the low-
cost, stable, and kinetic Mn-based 3D spinel framework,
LiMn2O4 has progressively substituted LCO in some
large-scale and high-power applications. Another pro-
nounced feature from the spinel configuration is the flat
working voltage plateau at 4.0 V. In contrast, layered
structured cathodes display sloping potential profiles
and significantly lower potentials based on the same
Mn3+/Mn4+ redox couple. As an explanation, the 3D
spinel framework experiences negligible structural dis-
tortion during the insertion/deinsertion of Li ions, there-
by displaying an almost constant electrochemical poten-
tial due to the consistent site energy. However, the
layered structures are greatly distorted, resulting in the
gradual change in site energy and hence sloping poten-
tial profiles for the insertion of Li-ions. The Li ions in
the spinel structure are located in the tetrahedrons,
experiencing less repulsive forces from the local envi-
ronment comparedwith the Li ions in the octahedrons of
layered oxides, and the reduced site energy contributes
to a higher potential (Liu et al. 2016a).

Apart from the relatively low energy density, the
other most claimed issue is the limited cycle life of
LiMn2O4 due to Mn ions’ dissolution, especially under
elevated temperatures (Jang et al. 1996; Xia et al. 1997).
Previously, the cause of the degradation was ascribed to
the dissolution of Mn2+ ions, originating from the dis-
proportionation of Mn3+ ions LiMn2O4 (2Mn3+⇆Mn2+

+ Mn4+) (Gummow et al. 1994; Jang et al. 1996; Xia
et al. 1997). However, a recent combined analysis of
electron paramagnetic resonance and inductively
coupled plasma spectroscopy data disclosed that Mn3+

is the dominant dissolved Mn cation in LiPF6-based
organic electrolytes, and the Mn3+ can stably exist in
the electrolyte instead of suffering disproportionation
(Banerjee et al. 2017). Even though the metal dissolu-
tion is not negligible and haunts all the metal oxides, the
practical cycling performance depends on its micro-
structure and physico-chemical properties. In general,
hierarchical microstructures are considered as optimal
choices, which can shorten the ion diffusion pathway
compared with bulkmaterials. Meanwhile, in contrast to
nanosized particles, the primary micron particles can be
densely packed for high volumetric energy density and
show better structural integrity over repeated charge/
discharge cycles (Zhou et al. 2017). For example, as
shown in Fig. 5b–e, Lee et al. recently reported densely

�Fig. 4 a Crystal structure of monoclinic Li2MO3. Reproduced
from ref. (Mohanty et al. 2013) with permission. b Charge voltage
profile of a model LMR, 0.35LiMn2O3·0.65LiMn0.45Ni0.35Co0.20O2

with the illustration of structure evolution. Reproduced from ref.
(Erickson et al. 2017) with permission. c Synchrotron XRD patterns
over the first cycle showing the loss of in-plane superstructure
peaks. Reproduced from ref. (Gent et al. 2017) with permission. d,
e Our previous results and understandings of the activation process
on the basis of Li1.87Mn0.94Ni0.19O3. Reproduced from ref. (Ye et al.
2015a) with permission
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packed composites composed of carbon coated
nanosized Li1.015Al0.06Mn1.925O4, maintained 84.5%
of the initial capacity over 5000 cycles (Lee et al. 2017).

LiNi0.5Mn1.5O4

Substitution of Mn in LiMn2O4 by low-valance metal
ions (Co3+ (Kawai et al. 1998), Cr3+ (Sigala et al. 1995),
Ni2+ (Zhong et al. 1997), Fe3+ (Amine et al. 1997), Cu2+

(Ein-Eli et al. 1998), etc.) was initially designed to
enhance the cycling stability by elevating the valance
of Mn ions. Among the doped spinels, LiNi0.5Mn1.5O4

(LNMO) surprisingly displays one dominant plateau at
around 4.7 V along with good electrochemical activity,
thus presenting it as the most attractive spinel cathode
for high-energy and high-power densities (Ohzuku et al.
1999). The massive substitution of Mn by 1/4 Ni adds
complexity to the spinel structure, which is divided into
two different symmetries: Fd-3m and P4332. The former
one is isostructural to LiMn2O4 with Ni and Mn ions
randomly distributed in the 16d octahedral sites, named
the disordered phase. The later one has distinct 4a and

12d sites to accommodate Ni and Mn ions, known as an
ordered phase (Kim et al. 2004; Liu et al. 2012a). It is
accepted that oxygen stoichiometry plays a leading role
to determine the phase. In an oxygen-stoichiometric
LNMO, all theMn ions areMn4+ and inclined to occupy
distinct sites with Ni2+. The existence of oxygen vacan-
cies can bring about a fraction of the Mn3+ ions, leading
to a Ni/Mn disordered phase (Kim et al. 2004; Wang
et al. 2011b). Many reports have shown the disordered
LNMO to have better electrochemical performance due
to the more efficient Li+ diffusion and better conductiv-
ity of Mn3+ (Jin et al. 2012; Kim et al. 2004; Wang et al.
2011b; Xiao et al. 2012). However, it also plausible to
achieve high rate performance on the basis of an ordered
phase (Ma et al. 2010; Zhang et al. 2013b). Therefore,
more experimental and computational studies are re-
quired to understand the correlation between electro-
chemical performance and structural properties better.

Previously, with the aid of high-resolution transmis-
sion electron microscope (HR-TEM) imaging and
energy-dispersive X-ray spectroscopy (EDS) elemental
scanning, we observed minor P4332 phase on the edge

Fig. 5 a Crystal structure of spinel LiMn2O4. Reproduced from ref. (Chen et al. 2016) with permission. b–e Schematic diagram of the
composites and the corresponding electrochemical performance. Reproduced from ref. (Lee et al. 2017) with permission
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of Fd-3m body coupled with the different Mn/Ni ratio in
the naturally cooled sample (Fig. 6c). As shown in Fig.
6d, both the samples delivered favorable rate and cy-
cling performances. The role of the crystal phase may be
eclipsed by other factors (Zhu et al. 2014a). The phys-
ical morphology of LNMO which profoundly influ-
ences its performance (Yang et al. 2013; Yi et al. 2016;
Zhang et al. 2013a; Zhou et al. 2012; Zhu et al. 2014b).
In another study, we designed two types of porous
LNMOmicrospheres, and it was surprisingly found that
pore diameter shows a profound influence toward the
rate capability. The LNMO microspheres with larger
pores achieved a discharge capacity of 101.7 mAh g−1

even at 50 °C (Zhu et al. 2014b). This would inspire the
design of high-performance cathode materials via re-
fined control of physical parameters.

Perhaps the biggest barrier preventing LNMO from
the practical application is the lack of long-cycling
reliability. LNMO was initially introduced to prolong
the cyclability of primary LiMn2O4 spinel. However,
the exploitation of high-potential Ni2+/Ni4+ redox leads
to adverse cycling performance, as it is largely below the
highest occupied molecular orbital (HOMO) of current
electrolytes. Some investigators suggested the Mn4+ in
the ordered phase can stabilise the electrode for long
cycles (Zhang et al. 2013b). However, this hypothesis
was not supported by any experimental and computa-
tional evidences. On the contrary, Talyosef et al. identi-
fied the dissolution of manganese and nickel and reduc-
tion of Mn2+ and Ni2+ on the lithium counter electrode
by electrolyte and electrode analyses (Talyosef et al.
2005). X-ray absorption and optical fluorescence spec-
troscopy and imaging analyses conducted by Jarry et al.
also confirmed the formation of fluorescent Ni2+ and
Mn2+/3+ complexes with β-diketonate ligands and Ni2+

and Mn3+ oxalates and carbonates, accompanying the
oxidation of electrolyte (Jarry et al. 2015). The prob-
lematic Ni2+/Ni4+ redox is also reflected in the electro-
chemical process. Song et al. investigated a series of
spinel cathodes with compositions of LiNi0.5-xMn1.5+
xO4 (x = 0, 0.05, and 0.08) and found the removal of
the Ni4+/Ni2+ redox reactions from the surface stabilizes
the electrochemical performance at 55 °C. Doping with
alien ions and surface coating are widely used strategies
to improve the cyclability of cathode materials, which
have also been extensively studied on LNMO. In gen-
eral, elemental doping aims at improving the electronic
conductivity of LNMO by altering the conduction band
of the whole bulk, whereas the goal of the surface

coating is to reduce the side reactions by creating artifi-
cial electrode/electrolyte interfaces. A wide variety of
doping elementals (e.g., Na+, Mg2+, Cu2+, Zn2+, Al3+,
Cr3+, Co3+, Ti4+, F−) and coating layers (e.g., carbon,
Ag, ZnO, CuO, Al2O3, TiO2, ZrO2, Li3PO4, Al3PO4,
LiFePO4) have been exerted on LNMO and proved
effective for enhanced stability, which have been
summarised elsewhere (Xu et al. 2017b; Yi et al. 2016;
Yi et al. 2011). However, it should be noted that there is
a lack of long cycling results (over 1000 cycles). As
pristine LNMO can also stand for hundreds of cycles
(Zhang et al. 2013b), the modifications will only be
attractive if substantial improvements are achieved with
an acceptable extra cost on materials and processing.
This may rely on the introduction of new strategies or
techniques. Apart from electrode engineering, the de-
velopment of better electrolytes may provide a more
effective solution. As shown in Fig. 6e, f, Li et al.
reported the use of the lithium phosphorus oxynitride
solid electrolyte, which enables exceptional capacity
retention of 90% over 10,000 cycles (Li et al. 2015b).
Such high capacity retention demonstrates the critical
role of the solid electrolyte in supporting high-voltage
batteries.

Fe- and Mn-based polyanion compounds as LIB
cathodes

Represented by LiFePO4, polyanion cathode materials
are typically 3D structured compounds constructed by
corner- and/or edge-shared M-O and X-O (X = P, S, As,
Mo, orW) polyhedrons. These frameworks afford much
better structural stability toward lithium (de)insertion
compared with layered oxides, and the covalently bond-
ed oxygen atoms prevent the oxygen loss that haunts
lithium metal oxides. Also, the strong X-O bond can
pull some charge density out of M–O bonds, and as a
result, the M-O bond exhibits increased ionicity, leading
to higher redox potential as a result of the inductive
effect (Gong and Yang 2011; Masquelier and
Croguennec 2013).

Fe- and Mn-based phosphates

Olivine LiFePO4 (LFP) is the most successful
polyanion cathode material, attributing to its low-
cost and non-toxic constitution, appreciable capacity
(ca. 170 mAh g−1) and excellent thermal and
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structural stability. The key drawbacks of LiFePO4

are inferior electric conductivity (ca. 10−9 S cm−1),
the selective one-dimensional (1D) lithium pathway
(Fig. 7a), and low gravimetric and volumetric ener-
gy densities. Intensive studies in the last 20 years
have effectively addressed the kinetic issues by size
tailoring, crystal facet controlling, bulk doping, and
surface conducting modification. In light of the 1D
lithium ion pathway along [010], constructing nano-
structures, especially 2D nanosheets with exposed
(010) facets and shortened diffusion length, is an
effective solution (Zhao et al. 2014). Surface modi-
fication with conductive layers, mainly carbona-
ceous materials, is widely used to improve the con-
ductivity. However, common procedures easily re-
sult in uneven and/or incompact coating layers due
to the lack of affinity between the two substances.
Constructing high-quality coating layers requires

new feasible strategies. For example, Paolella et al.
reported the use of LiPF6 treatment to make LFP
nanocrystals hydrophilic, thereby enabling carbon
coating uniformly (Paolella et al. 2014). Compared
with surface modification, the improvement made
by tuning fundamental crystal chemistry is more
appealing, as it is a uniform melioration of the
lattice electronic and/or ionic conductivity without
the penalty of energy densities from inactive addi-
tives. For example, Chung et al. combined cation
non-stoichiometry with solid-solution doping to dra-
matically improve the electronic conductivity of
LFP to > 10−2 S cm−1, resulting in markedly im-
proved rate capability (Chung et al. 2002). As
shown in Fig. 7b, Kang et al. also reported enhanced
fast charging capability by an off-stoichiometric
LiFe0.9P0.95O4-δ (Kang and Ceder 2009). Recently,
Naoi et al. achieved ultrafast charge/discharge of up to

Fig. 6 a Comparison of the two structural configurations in
LNMO. Reproduced from ref. (Liu et al. 2012a) with permission.
b Typical charge/discharge curves of LNMO with the two phases.
Reproduced from ref. (Wang et al. 2011b) with permission. c, d

Structural characteristics and electrochemical properties on the
basis of our prepared samples. e, f Outstanding capacity retention
achieved by using lithium phosphorus oxynitride solid electrolyte.
Reproduced from ref. (Li et al. 2015b) with permission
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Fig. 7 a Crystal structure of
spinel LiMn2O4. Reproduced
from ref. (Chen et al. 2016) with
permission. b High-rate discharge
capability of LiFe0.9P0.95O4-δ.
Reproduced from ref. (Kang and
Ceder 2009) with permission. c
Structural and electrochemical
properties of a core-shell LFP
nanocomposites. Reproduced
from ref. (Naoi et al. 2016) with
permission. d Morphology and
discharge curves of LMO
nanoparticles. Reproduced with
permission (Hong et al. 2015). e
Phase transformation diagram of
LiMn0.6Fe0.4PO4 over the
extraction/insertion of Li ions.
Reproduced from ref. (Ravnsbæk
et al. 2014) with permission. f
Phase transformation strain as a
function of the Mn content in
LFMP, and a special case of
LiMn0.2Fe0.8PO4 with no misfit
strain. Reproduced from ref.
(Ravnsbæk et al. 2016) with
permission. g LiMn0.5Fe0.5PO4

nanocrystals with different Fe-Li
antisite defects showing distinct
rate performance. Reproduced
from ref. (Hu et al. 2017) with
permission
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480 °C by developing ultra-small core-shell nanocom-
posites (Naoi et al. 2016). The charge/discharge curves
are dominated by the sloping pseudocapacitive behavior
(Fig. 7c), and the rate capability is generated at the large
expense of energy density.

The gravimetric and volumetric energy densities are
restricted from the essential redox reaction and atom
density in the crystal structure. Even though the induc-
tive effect from the PO4

3− elevates the Fe2+/Fe3+ redox
to 3.4 V, much higher than that in LiFeO2, it is still
considerably lower than 4 V-class LiCoO2 and
LiMn2O4. In the pursuit of high energy density, there
is motivation to replace Fe with other transition metals,
mainly Mn, Co, Ni to attain higher potentials. Among
them, Co and Ni are not abundant elements, and the very
high potentials of LiCoPO4 and LiNiPO4 at 4.8 and
5.1 V inhibit the research due to severe side reactions
with commonly used electrolytes. LiMnPO4 (LMP), on
the other hand, is environmentally friendly and operates
at a moderately high potential of 4.1 V, which enables a
theoretical energy density of 697 W h kg−1, 20% higher
than that of LFP. However, the pathway for switching
from Fe to Mn is unsatisfactory due to the sluggish
kinetics of LMP (Delacourt et al. 2004). The origin of
the depressed kinetics is ascribed to the small polaronic
conductivity of Jahn–Teller active Mn3+ (Martha et al.
2009b). It not only leads to extremely low electronic (<
10−10 S cm−1) and lithium ion conductivities (<
10−16 cm2 s−1), but also triggers the large lattice misfit
between the delithiated and lithiated phases (6.5% vol-
ume misfit for LFP, 11.6% for LMP), resulting in infe-
rior boundary mobility (Chen et al. 2011; Delacourt
et al. 2005; Li et al. 2002; Meethong et al. 2008; Nie
et al. 2010; Norberg and Kostecki 2012; Ong et al. 2011;
Zhou et al. 2004). In search of better kinetics, many
attempts have been reported on confining particle size
and/or conductive modification (Barpanda et al. 2011;
Guo et al. 2014a; Hong et al. 2015; Oh et al. 2010; Pivko
et al. 2012; Qin et al. 2012; Wang et al. 2017; Yoo et al.
2011). As shown in Fig. 7d, Hong et al. prepared
carbon-coated LMP nanorods, which showcased a high
reversible capacity of 168 and 110 mAh g−1 at 0.05 and
10 °C, respectively, and capacity retention of 94.5%
after 100 cycles at 0.5 °C (Hong et al. 2015).

Another effective approach to boost the kinetics of
LMP is Fe-substitution. The as-formed LiFe1-xMnxPO4

solid solutions (LFMP) combines the dynamics of LFP
and high energy density of LMP, and they are consid-
ered as the second-generation olivine cathode materials,

which have received much attention from investigators
(Kim et al. 2016b; Li et al. 2013; Martha et al. 2009a;
Wang et al. 2011a; Yan et al. 2015; Yang et al. 2015c).
Yamada et al. (Yamada et al. 2001) and Ravnsbæk et al.
(Ravnsbæk et al. 2014) disclosed a different phase
transformation mechanism of LiMn0.6Fe0.4PO4 over
the extraction/insertion of Li ions, which possesses an
extended solid-solution region, different from the two-
phase mechanism of LFP (Fig. 7e). Ravnsbæk et al.
further investigated the phase transformation strain as
a function of the Mn content in LFMP, and disclosed a
direct negative influence of volume misfit toward elec-
trode kinet ics . Figure 7f demonstrates that
LiMn0.2Fe0.8PO4 with no misfit strain showed the best
rate capability (Ravnsbæk et al. 2016). A range of in-situ
electrochemical and material analyses conducted on
Mn-rich LFMP (LiMn0.8Fe0.2PO4) revealed that the
Mn redox reaction is the kinetic bottleneck of LFMP,
which triggers the poor apparent Li+ diffusivity (Wi
et al. 2017a, b). However, current studies on achieving
the appreciable performance of LFMP still focused on
nanostructuring and carbon modification, which raise
the concern of low volumetric density and increased
costs. For example, Kim et al. synthesized reduced
graphene oxide (rGO)-modified LiMn0.75Fe0.25PO4 mi-
crospheres, which showed 161 and 90 mAh g−1 at 0.05
and 60 °C, respectively. The claimed Bhigh^ tap density
(1.1 g cm−3), far lower than the practical standard of ca.
3 g cm−3. Pan et al. reported LiMn0.5Fe0.5PO4

nanocrystals with tuned Fe-Li antisite defects which
also showed impressive rate capacities (Fig. 7g) (Hu
et al. 2017). Therefore, the future successes of LMP
and LFMP still await the achievements of reasonable
kinetics without the compromise of volumetric energy
density and processing cost.

Apart from the olivine-type structure, the lithium
metal phosphates can also exist as NASICON, anti-
NASICON, alluaudite, pyrophosphate, tavorite, and
even amorphous phases with varied composition
(Masquelier and Croguennec 2013). However, these
phases largely eclipsed by LiMnxFe1-xPO4 regarding
practical energy (capacity and potential) density and
power density.

Fe- and Mn-based silicates

Encouraged by the success of phosphate, other
polyanion compounds are successively explored to func-
tion as cathode materials for LIBs. Particularly, lithium
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silicates Li2MSiO4 are very attractive as they potentially
afford a two-electron reaction with a theoretical capacity
of 332 mAh g−1. The structures are composed of tetrag-
onally packed oxygen ions (a distorted form of hcp), in
which the cations (Li+, M2+ and Si4+) occupy half of the
tetrahedral sites (Nytén et al. 2005). The various cationic
arrangements and structural distortions create a rich
polymorphism, including monoclinic and orthorhombic
structures (Islam et al. 2011). Li2FeSiO4 was introduced
as a LIB cathode by Nytén et al. in 2005 (Nytén et al.
2005). At that time, it was regarded as a one-electron
reaction electrode, given the difficulties of Fe3+/Fe4+. It
was then found that even Fe4+ can be stable in tetrahedral
coordination, which is difficult for Mn4+ and Co4+ (Ar-
royo-de Dompablo et al. 2006).

The slow Li reaction kinetics are due to the frustrated
ion migration in the complex lattices as well as the sepa-
ratedM redox centers, resulting in extremely low electron-
ic conductivity (∼ 5 × 10−16 S cm−1 for Li2MnSiO4 and ∼
6 × 10−14 S cm−1 for Li2FeSiO4 ) (Dominko 2008). Also,
the Li conductivity is very low due to high diffusion
activation energy, which is approximately 1.0 eV deter-
mined by theoretical calculations and experimental studies
(Armstrong et al. 2011; Fisher et al. 2013; Kokalj et al.
2007), much higher concerning that of LFP (0.3 eV) (Sun
et al. 2012). Although the accurate understanding of the
ion transfer mechanism remains an ongoing task, re-
searchers have made considerable efforts in advancing
the synthesis of these promising cathode materials with
satisfactory performance (Ding et al. 2016; He and
Manthiram 2014; Li et al. 2016; Muraliganth et al. 2010;
Pei et al. 2016; Ramar and Balaya 2016; Rangappa et al.
2012;Yang et al. 2015b; Zhang et al. 2015b). Similar to the
cases of phosphates, the strategy is focused on tunning the
size, shape, and electronic structure by varying the syn-
thetic approach and experimental conditions, summarised
by two recent reviews (Cheng et al. 2017; Ni et al. 2017).
For example, Pan et al. reported the achievement of better
performing Li2FeSiO4 nanocrystals by Ti(IV) doping
(Yang et al. 2016). However, the realization of reversible
two-electron reactions in silicates is still difficult, and the
average potential is quite low (below 3 V) within a large
window, which is therefore not suitable for the application.

Fe- and Mn-based borates

Lithium metal borates entered into researchers’ sight in
2001, because the polyanion group BO3

3− is the lightest
one, ensuring a high theoretical capacity of ~

220 mAh g−1 (Legagneur et al. 2001). However, the
early practice only realized the reversible capacity of ~
8 mAh g−1 at C/250, suggesting deficient electrochem-
ical activity. Until 2010, Yamada et al. obtained an
attractive capacity of 200 mAh g−1 by introducing
Ketjen black and vapor grown carbon fibers to increase
its electrical conductivity (Yamada et al. 2010). They
also pointed out the moisture sensitivity of this material,
of which the surface degradation happens after exposure
to air. Considering the appreciable electrical conductiv-
ity of LiFeBO3 (reported to be 3.9 × 10−7 S cm−1) to-
gether with the negligible volume change of ~ 2%, the
inferior performance may be due to the constricted Li+

mobility in the lattice. LiMBO3 is most commonly
reported to crystallize in the monoclinic space group
C2/c (LiMnBO3 also exists as a hexagonal form) (Bo
et al. 2014; Kim et al. 2011; Tao et al. 2014). The
structure is composed of chains of edge-sharing FeO5

trigonal bipyramids along [−101] direction, which are
linked byBO3 groups to form a 3D network. Also, edge-
sharing LiO4 tetrahedrons along [001] direction result in
zigzag one-dimensional (1D) Li diffusion tunnels, but as
disclosed by first-principles calculations, the easily
formed Li-M antisite can block the 1D Li diffusion path
(Kim et al. 2015c; Seo et al. 2011). The prospect of
borates is largely compromised by problematic kinetics,
sample preservation, and low operating potential, which
cannot be simply alleviated by common modifications
(Fig. 8e) (Chen et al. 2015; Dong et al. 2017).

Fe- and Mn-based oxides as SIB cathodes

Sodium metal oxides have been intensively studied as
SIB cathodes, which mimic the lithium metal oxides,
but the considerably different physico-chemical proper-
ties (e.g., ionic size, electron configuration) renders
some disparities on the crystal chemistry. First, the vast
Na+ can hardly be hosted in tetrahedral sites. Therefore,
there are no isostructural spinel cathodes for SIBs. Sec-
ond, layered sodium metal oxides (NaxMO2) have a
richer polymorphism due to the varied Na-O coordina-
tion and oxygen stacking rules. Figure 9a shows the
crystal structures of the most common polymorphs, O3
and P2, which are present in layered NaxMO2 (Yabuuchi
et al. 2012a). The notions were introduced by Delmas
et al. (Delmas et al. 1980), where the O or P stands for
the octahedral (O) or a prismatic (P) sites accommodat-
ing Na+ ions. The number n (n = 1, 2, 3, etc.) represents
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the Na ion octahedral or prismatic layers contained in
each unit cell, and a prime symbol (′) is added to indicate
a monoclinic distortion. In the synthesis of layered
oxides, the resultant structure is decided by many fac-
tors, especially the sintering temperature and composi-
tion (Lei et al. 2014). In general, sodium-rich oxides
with x approaching 1 are inclined to crystallize into the
O3 structure, whereas P2 phase forms in the broader
range of Na-deficient composition.

Though sodium ions are low-cost charge carriers,
many layered oxides still rely on redox centers that are
scarce and/or may be toxic transition metal elements
such as cobalt (Berthelot et al. 2010), nickel (Han
et al. 2014), and chromium (Komaba et al. 2010). The
advantage of SIBs is therefore largely compromised
regarding cost and sustainability. In this context, Fe
and Mn-based oxides are of more research interest.

NaFeO2

NaFeO2 has been reported to have two polymorphs:
hexagonal α-NaFeO2 and orthorhombic β-NaFeO2

(Kikkawa et al. 1985). The former one is the proto-
type of layered oxides, opening the era of LIB

chemistry. An early study only realized removal of
0.1 Na using chemical oxidizer (Kikkawa et al.
1985). By coupling with Li foil into a battery, Takeda
et al. reported the electrochemical desodiation of α-
NaFeO2 into monoclinic Na0.5FeO2, suggesting its
possibility to function as a cathode for SIBs
(Takeda et al. 1994). The first demonstration of α-
NaFeO2 working as a SIB cathode was in 2006 by
Okada et al., where α-NaFeO2 showed a flat plateau
at 3.3 V with a capacity of 80 mAh g−1 (Okada et al.
2006). Differing from LiFeO2, reversible Fe3+/Fe4+

redox couple has been realized in the electrochemical
cycling of α-NaFeO2. Later studies revealed the crit-
ical role of the cut-off voltage in the electrode per-
formance of α-NaFeO2 in the sodium cells. When a
cut-off voltage was raised over 3.5 V, the cathode
experienced irreversible structural transition coupled
with significant capacity decay (Yabuuchi et al.
2012b). The fade of the electrode after heavy removal
of Na+ should also be related to increasing amount of
highly active Fe4+. A recent study disclosed the
chemical instability of Fe4+ in batteries which spon-
taneously oxidized the electrolyte to reduce back to
Fe3+ at charged state (Lee et al. 2015). α-NaFeO2

Fig. 8 a, b Crystal structures of P21/n Li2FeSiO4 (a), which
transforms into Pmn21 Li2FeSiO4 (b). c Typical charge/discharge
curves of Li2FeSiO4. Reproduced from ref. (Armstrong et al.
2011) with permission. d Structural transformation routes of

LiFeBO3 during delithiation and degradation. Reproduced from
ref. (Bo et al. 2014) with permission. e Charge/discharge profiles
of mesoporous LiFeBO3/C hollow spheres. Reproduced from ref.
(Chen et al. 2015) with permission
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was also found to show an additional advantage of
good thermal stability. As reported by Zhao et al.
(Zhao et al. 2013), the highly charged Na0.58FeO2

powder decomposed thermally at a temperature
higher than 300 °C, and NaFeO2 showed better ther-
mal stability in the electrolyte than LCO in LIBs. The
development of NaFeO2 is restricted by the low re-
versible capacity of 80–100 mAh g−1 and the inferior
cycling performance (Fig. 10).

NaxMnO2

NaxMnO2 has a variety of polymorphs, which can be
divided into two large groups: 2D layered structures
consisting of slabs of edge-sharing MO6 octahedra at
high x (e.g., Na2/3MnO2, NaMnO2) and 3D tunnel-like
structures at low x (e.g., Na0.2MnO2, Na0.4MnO2,
Na0.44MnO2) (Clément et al. 2015; Parant et al. 1971).
For NaMnO2, monoclinic α-NaMnO2 (O′3 structure)
and orthorhombic β-NaMnO2 (consisting of zig-zag
layers) show high specific capacities. However, similar
to the case of its lithium counterpart, NaxMnO2 is sub-
jected to severe capacity decay when cycled in SIBs. As

reported by Ceder et al. (Ma et al. 2011), α-NaMnO2

delivered a reversible capacity of 185 mAh g−1 at 0.1 °C
within in the potential window of 2.0–3.8 V, but only
maintained 132 mAh g−1 after 20 cycles. In comparison,
NaMnO2 consisting of intergrown regions of α-
NaMnO2 and β-NaMnO2 domains was found to show
a high capacity of ~ 190 and 142 mAh g−1 at C/20 and
2 °C, respectively, maintaining 70% after 100 cycles at
2 °C (Billaud et al. 2014a) (Fig. 11).

With the Na/Mn ratio of around 2/3, the distortion of
the ideal P2 structure is dependent on the synthesis
conditions. Lowering the sintering temperature below
600 °C with a more oxidizing atmosphere stabilizes a
higher average Mn oxidation state, producing α-
Na0.7MnO2+z (0.05 ≤ z ≤ 0.25) with a slightly distorted
P2 structure. Otherwise, β-Na0.7MnO2+y (y ≤ 0.05)
formed at high temperature with an orthorhombically
distorted P′2 structure coexisted with α-NaMnO2

(Parant et al. 1971). Paulsen et al. confirmed the substi-
tution of low-valance metals (Co, Li, and Ni) favors the
formation of the ideal P2 structure by elevating the
oxidation state of Mn and also extends its stable tem-
perature range (Paulsen and Dahn 1999). Later, by using

Fig. 9 a Structural comparison of
P2-type and O3-type NaxMO2.
Reproduced from ref. (Yabuuchi
et al. 2012a) with permission. b
Synthesis phase diagram of
NaxCoO2 as a function of the Na/
Co ratio from precursors and
heating temperature. Reproduced
from ref. (Lei et al. 2014) with
permission
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Fig. 10 a Initial charge/discharge curves of NaFeO2 on the de-
pendence of different cut-off potentials. Reprinted from ref.
(Okada et al. 2006) with permission. b Voltage profiles along

cycling. c A diagram illustrating the electrochemical active Fe3+/
Fe4+ redox couple. Reproduced from ref. (Lee et al. 2015) with
permission

Fig. 11 a Stability domain of the
different structural types observed
for as-synthesized NaxMnO2

compounds. Reproduced from
ref. (Clément et al. 2015) with
permission. b Schematic
representations of β-NaMnO2

and an intergrowth model
between α- and β-NaMnO2.
Reproduced from ref. (Billaud
et al. 2014a) with permission. c, d
Voltage profiles of α-NaMnO2

and the complex structure.
Reproduced from ref. (Ma et al.
2011), (Billaud et al. 2014a) with
permissions
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a sol-gel method, Caballero et al. reported the synthesis
of an undistorted P2-Na0.6MnO2 phase at a high tem-
perature of 800 °C. They further tested the material in
SIBs, which delivered ca. 140 mAh g−1, but only with-
stood for 8 cycles. Correspondingly, the active material
became amorphous after cycling (Clément et al. 2015).
The inferior cycling stability of NaxMnO2 is associated
with the complex phase transitions caused by the intense
Jahn–Teller effect of Mn3+, which reflect as multiple
voltage steps during charge and discharge. Therefore, it
is a viable strategy to partially substitute the Mn ions by
low valency ions to minimize the Jahn–Teller active
Mn3+. For example, Billaud et al. introduced a series
of Mg-substituted Na2/3Mn1-xMgxO2 (x = 0.05, 0.1, 0.2)
compounds that gave a smoother voltage profile and
smaller cell polarisation, leading to enhanced capacity
retention (Billaud et al. 2014b). Their further studies
unveiled that those achievements are attributed to the
more gradual structural changes upon charge and dis-
charge (Clement et al. 2016; Sharma et al. 2015). Sim-
ilar improvements have also been realized by doping
with other cations (de la Llave et al. 2016; Kumakura
et al. 2017; Kwon et al. 2017; Luo et al. 2017; Wu et al.
2015; Yabuuchi et al. 2014a). Interestingly, contrary to
most efforts made by elevating the Mn valance to sup-
press the Mn3+, a recent study from Komaba’s group
showed the high energy density and excellent cycling
stability on distorted Mn3+-rich P′2-Na0.7MnO2 (o-
NMO) (Fig. 12), which exhibited broader P′2 regions
when compared with P2-Na0.7MnO2 (h-NMO)
(Kumakura et al. 2016). These conflicting findings also
call for the elucidation of the role of Jahn–Teller distor-
tion and Na/Mn stoichiometry, which may direct the
design of future electrodes.

Tunnel Na0.44MnO2 with an orthorhombic structure is
another widely studied cathode material for SIBs. As
shown in Fig. 13a (He et al. 2016), an open 3D framework
is constructed by sheets of edge-sharing MnO6 and col-
umns of MnO5 square-pyramids. Three types of Na ion
sites exist in the structure, but only Na ions in the large S-
shaped tunnels (Na1, Na2) are movable, constituting two
kinds of tunnels along [001] for Na diffusion. Full occu-
pation of the Na1 and Na2 sites leads to a formula of
Na0.66MnO2. Correspondingly, it has a theoretical capacity
of 121 mAh g−1. An early study of the properties of
sodium storage based on Na0.44MnO2 prepared by solid-
state reaction showed a reversible capacity of only
80 mAh g−1 at 0.1 °C and lost 50% of the capacity over
50 cycles with a noticeable cell polarisation increase

Fig. 12 a, b Charge-discharge curves of o-NMO (a) and h-NMO
(b). c, d Operando XRD patterns of o-NMO (c) and h-NMO (d)
over initial charge/discharge curves. Reproduced from ref.
(Kumakura et al. 2016) with permission
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(Sauvage et al. 2007). The optimization of preparation
method and morphology control contribute to much im-
proved electrochemical performance. For example, single
crystalline Na0.44MnO2 nanowires prepared by Cao et al.
delivered a capacity of 84.2 mAh g−1, corresponding to
77% capacity retention after 1000 cycles at 0.5 °C (Cao
et al. 2011). Dai et al. reported Na0.44MnO2 produced by
polyvinylpyrrolidone (PVP)-combustion delivered
99 mAh g−1 at a discharging rate of 20 °C and maintained
82.9% of its initial capacity even after 700 cycles at 10 °C
(Dai et al. 2015). He et al. prepared Na0.44MnO2

nanoplates by a template-assisted sol-gel method, which
discharged 96 mAh g−1 at 10 °C and maintains 97.8%
capacity after 100 cycles at 0.5 °C (Fig. 13b–d) (He et al.
2016). It is rational to believe that the 3D tunnel is capable
of fast and durable sodium extraction and insertion even
for thousands of cycles (Liu et al. 2017a). However, its
practical application awaits a feasible method to compen-
sate the initial Na deficiency providing that the low energy
density is accepted. There are some other emerging sodium
manganese oxides, such as the Bpost-spinel^ NaMn2O4

(tunnel-structure) (Liu et al. 2014), layered NaMn3O5

(Guo et al. 2014b), and Na2Mn3O7 (Adamczyk and
Pralong 2017; Zhang et al. 2017).

NaxFeyMn1-yO2

Considering the distinct features of the two single metal
oxides, it is promising to develop Fe and Mn-mixed

Nax(FeyMn1-y)O2 which is expected to combine the high
potential of NaFeO2 and high capacity of NaMnO2 to
target high-energy and cost-effective electrodes. Komaba’s
group made a critical step by reporting the unprecedented
high-performance of P2-Na2/3Fe1/2Mn1/2O2, which deliv-
ered a capacity of 190 mAh g−1 at 0.05 °C (13 mA g−1).
Attributing to the contribution of the reversible high-
energy Fe3+/Fe4+ redox at above 3.2 V, the energy density
of this cathode reached over 500Wh kg−1. However, only
a 30 cycling profile was presented (~ 79% capacity reten-
tion) together with poor rate capability. Also, they also
presented the O3-Na2/3Fe1/2Mn1/2O2, only receiving an
initial capacity of 125 mAh g−1 with more serious
polarisation (Yabuuchi et al. 2012a). After that, Thorne
et al. investigated a serious of NaxFexMn1-xO2 (0.5 ≤ x ≤
1.0), confirming that the existence of Fe reduced the
voltage hysteresis and increased capacity retention over
cycling. By restricting the potential window below 4.0 V,
more than 90% capacity retention was achieved after
20 cycles (Thorne et al. 2013). They further studied the
sodium (de)intercalation behavior of P2-NaxMn1/2Fe1/2O2

by using operando in situ X-ray powder diffraction, which
revealed a larger solid-solution region (0.35 < x < 0.82),
and an orthorhombic P′2-type structure formed when
charged over 4.0 V (Mortemard de Boisse et al. 2014).
Recently, Rojo’s group carried out a series of studies on
Fe-rich Na2/3Fe2/3Mn1/3O2. First, they decoupled the influ-
ence from Na/Mn stoichiometry and the structure by pre-
paring P2 and O3 structured oxides on the basis of the

Fig. 13 a Schematic
representation of the tunnel
Na0.44MnO2. bVoltage profiles of
the monocrystal Na0.44MnO2

nanoplates. c Cyclic
voltammograms (CVs) of the
Na0.44MnO2 electrode between
2.0 and 4.0 Vat a scanning rate of
0.1 mV s−1. d Corresponding in-
situ XRD patterns over the
voltage scanning. Reproduced
from ref. (He et al. 2016) with
permission
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same formula of Na2/3Fe2/3Mn1/3O2. As a result, the O3
structure demonstrated similar electrochemical perfor-
mance (Gonzalo et al. 2014) or even slightly higher re-
versible capacity (Han et al. 2015) compared with its P2
counterpart. They further made a direct comparison of
phase transitions for two electrodes during charge/
discharge by in-situ synchrotron X-ray diffraction, and
they showed distinct and rate-dependent structural evolu-
tion. Phase change in the P2 phase was limited at 0.4 °C,
but amplified at 1 °C. Whereas the O3 electrode behaved
inversely. Interestingly, theO3 structure converted partially
into a P2-like phase after cycling (Sharma et al. 2016).
These results offer new understandings about the Na/Mn
stoichiometry-crystal structure-electrochemistry relations.

As the Fe- and Mn-based oxides suffer from the signif-
icant capacity drop as well as unsatisfactory rate capability,
continuous efforts have been made to mitigate the issues.
Low-valance metal substitution is still deemed as an effec-
tive strategy. Kim et al. reported the heavily Ni-substituted
NaNi1/3Fe1/3Mn1/3O2 as a stable cathode in a SIB full cell
with hard carbon, which maintained 100 mAh g−1 after
150 cycles at a 0.5 °C rate (75 mA g−1) (Kim et al. 2012a).
After that, a range of Ni- (Hasa et al. 2014; Talaie et al.
2015), Co- (Liu et al. 2015a), and Cu-substituted (Li et al.
2015c) oxides have been investigated. These ions not only
suppress the ratio of Mn3+ but also partially replaced the
redox reactions. The deleterious high voltage transition is
mitigated by substitution of Fe3+ byMn4+/Ni2+, permitting
better cycling performance. (Fig. 14).

Fe- and Mn-based polyanion compounds as SIB
cathodes

As discussed above, polyanion compounds feature ro-
bust crystal framework with the oxygen atoms covalent-
ly bonded by counterions (S, P, Si, etc.), affording
favorable structural stabili ty toward li thium

(de)insertion. Such merit is more demanded in SIB
chemistry, as the movement of the larger Na ions puts
forward higher requirement for structural stability. Giv-
en the poor cycling stability haunting most of the lay-
ered oxides, much interest has shifted to develop
polyanion compounds as long-life cathodes for SIBs.

Fe-and Mn-based phosphates

Olivine LFP is the most successful polyanion cath-
ode for LIBs. Unfortunately, its sodium counterpart
NaFePO4 (NFP) simply cannot duplicate its success,
as the thermodynamically stable phase of NFP is a
maricite structure (Bridson et al. 1998), in which
Na+ and Fe2+ ions occupy the opposite sites of those
in olivine LiFePO4. Due to the absence of Na+

channels in such atomic configurations (Fig. 11),
the maricite structure is therefore electrochemically
inactive (Moreau et al. 2010; Zaghib et al. 2011).
Metastable olivine NFP is usually synthesized
through electrochemical displacement from olivine
LFP (Ali et al. 2016; Fang et al. 2015; Moreau et al.
2010; Oh et al. 2012; Zaghib et al. 2011; Zhu et al.
2013). Though the prepared NFP electrodes preserve
the microstructures and conductive modifications
from the LFPs, their performances are much lower
than the original LFP in LIBs, receiving capacities
of only around 120 mAh g−1 together with deterio-
rated rate capability. Atomistic simulations conduct-
ed in Nazar’s group showed the low formation of
Na/M antisite defects in the Na-olivine and signifi-
cant volume change of 15% during the removal of
Na+, which possibly answered the poor perfor-
mances (Tripathi et al. 2013). Moreover, their costs
are even significantly higher than LFP, which are
against the purpose of developing SIBs. Therefore,
research interest has been shifted to explore other
crystal chemistries of NFP. Amorphous α-FePO4,

Fig. 14 Phase evolution in
Na0.67Mn0.5Fe0.5O2 and Ni-
substituted
Na0.67Mn0.65Ni0.15Fe0.2O2 over
the first cycle, and schematic
illustration of Mn/Fe migration
into tetrahedral sites in the Na
space at high potential.
Reproduced from ref. (Talaie et al.
2015) with permission
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which is electrochemically active for (de)lithiation,
is reinvestigated as a cathode material for SIBs
(Fang et al. 2014; Liu et al. 2015b; Liu et al.
2012b). With the nanosized particle and high con-
tent of conductive carbon, they can deliver a capac-
ity of up to 160 mAh g−1. The concern of the initial
desodiated state was further addressed by Li et al. by
the direct preparation of amorphous NFP nano-
spheres, which showed a capacity of 152 mAh g−1

and retained 144.3 mAh g−1 after 300 cycles (Li
et al. 2015a). Recently, Kang et al. reported an
alternative route toward amorphous NaFePO4,
which was converted from nanosized maricite after
long charging, after that, a reversible capacity of
142 mAh g−1 in a potential window of 1.5–4.5 V
was achieved (Kim et al. 2015b).

Also, Fe-based phosphates crystalized in other struc-
tures have also been investigated as SIB cathodes. Trad
et al. reported the electrochemical performance of a
Blayered^ Na3Fe3(PO4)4, where only ~ 80 mAh g−1

was discharged at 0.02 °C (Trad et al. 2010b). Huang
et al. prepared alluaudite Na2Fe3(PO4)3/CNT compos-
ites, deliveringa discharge capacityof up to143mAhg−1

after 50 cycles (Huang et al. 2015b). Very recently, Liu
et al. tested the NASICON-type Na3Fe2(PO4)3, which
showed a low capacity of 61mAh g−1 and low plateau at
2.5 V, but the capacity retention was excellent, main-
taining 93% capacity after 500 cycles at 1 °C (Liu et al.
2017b). Those phases including the amorphous NFP are
not competitive compared with olivine LFP in LIB
system regarding energy density, power densities, and
cycling stability. Considering the abundant polymor-
phism in the Na-Fe-P-O system, the future success of
sodium iron phosphate may rely on the exploration of
new structures.

Like NFP, NaMnPO4 (NMP) also crystalized favor-
ably in the maricite phase. However, the olivine phase of
NMP is still more stable than olivine NFP. Lee et al.
(Lee et al. 2011) and Boyadzhieva et al. (Boyadzhieva
et al. 2015) have developed ion-exchange reactions to
prepare olivine NMP from NH4MnPO4·H2O and
KMnPO4·H2O, respectively. The olivine-to-maricite
conversion temperatures are respectively 450, 500, and
550 °C for NFP, NaFe0.5Mn0.5PO4, and NMP. To our
knowledge, there are no reports on the electrochemical
properties of pure NMP up to now, indicating deterio-
rating reactive activity. Lee et al. showed discharge
profile of NaFe0.5Mn0.5PO4 over 3 cycles at C/40, in
which a discharge capacity around 90 mAh g−1 is

obtained (Lee et al. 2011). Besides, Fe- and Mn-mixed
alluaudite-type phosphates have been investigated as
SIB cathodes (Huang et al. 2015a; Trad et al. 2010a),
where the existence of Mn further lowers the limited
specific capacity (Fig. 15).

Fe- and Mn-based pyrophosphates

Though pyrophosphates have been eclipsed by LFP in
the LIB system due to the large gap of capacities, the
pyrophosphates show intrinsically better kinetics when
compared to other polyanion materials, including LFP
(Furuta et al. 2012; Nishimura et al. 2010). Their sodium
analogs, therefore, attract much interest. Barpanda et al.
first reported the preparation and electrochemical prop-
erties of Na2FeP2O7. Na2FeP2O7 was preferably
crystalized into a triclinic structure (P-1), consisting of
interconnected FeO6 octahedral and PO4 tetrahedral
building blocks. Attributing to the large channels within
the 3D structure, the unmodified sample showed a re-
versible capacity of 82 mAh g−1 with an impressive rate
capability (Barpanda et al. 2012). The ex-situ XRD test
conducted by Kim et al. revealed that Na2FeP2O7 expe-
rienced a single-phase reaction at ~ 2.5 V and consecu-
tive two-phase reactions in the higher potential range of
3.0–3.25 V (Kim et al. 2013b). Both Na2FeP2O7 and
charged NaFeP2O7 phases exhibited impressive thermal
stability up to 500 °C, adding its feasibility to practical
applications (Barpanda et al. 2013a; Kim et al. 2013b).
The electrochemical performance has been further en-
hanced by some recent efforts made on the optimization
of morphology and conductive modification, such as
Na2FeP2O7 decorated by carbon nanotubes, reduced
graphene oxide-supported Na3.12Fe2.44(P2O7)2/C (Song
et al. 2017b), and Na2FeP2O7 nanoparticles embedded
in carbon (Song et al. 2017a).

Along with the success of Na2FeP2O7, its Mn analog
Na2MnP2O7 has also been investigated. Unlike most
Mn-based cathode materials suffering from sluggish
kinetics, Park et al. found the unexpected high activity
of micron-sized Na2MnP2O7, which exhibited a revers-
ible capacity of 90 mAh g−1 with an elevated plateau at
∼ 3.8 V. First-principles calculations revealed that the
impressive kinetics were attributed mainly to the corner-
sharing crystal structure in triclinic Na2MnP2O7, permit-
ting locally flexible accommodation of Jahn–Teller dis-
tortions of Mn3+ (Park et al. 2013). After that, Barpanda
et al. reported the new polymorph of β-Na2MnP2O7

(triclinic P1), which was also electrochemically active
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Fig. 15 a–e Crystal structures of
olivine NFP, maricite NFP,
NASICON-type Na3Fe2(PO4)3,
layered Na3Fe3(PO4)4, alluaudite-
type Na2Fe3(PO4)3. Reproduced
from ref. (Naoaki and Shinichi
2014) with permission. Their
typical charge/discharge curves
are shown on the right side.
Reproduced from ref. (Ali et al.
2016), (Kim et al. 2015b), (Trad
et al. 2010b), (Huang et al.
2015b), and (Liu et al. 2017b)
with permissions
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and thermodynamically feasible (Barpanda et al.
2013b). Their further atomistic simulations disclosed
low barriers for long-range Na+ diffusion in all direc-
tions in Na2(Fe, Mn)P2O7, theoretically proving the 3D
Na+ pathway (Clark et al. 2014) (Fig. 16).

Fe- and Mn-based sulfates and oxalates

The stronger inductive effect of the SO4
2- group can

elevate the redox potential when compared with common
PO4

3. In 2014, Barpanda et al. reported the use of a new
Na2Fe2(SO4)3 with the alluaudite-type as a cathode mate-
rial for SIB. The sulfate showed the highest-ever Fe3+/Fe2+

redox potential at 3.8 Vand delivered a reversible capacity
of 100 mAh g−1 coupled with good kinetics (Barpanda
et al. 2014b). Further experimental and computational
studies revealed the alluaudite sulfate witnesses a revers-
ible single-phase reaction with a small volume change (ca.
3.5%) after the initial charge (Oyama et al. 2016). The
sulfate also possessed four and two orders of magnitude
higher intrinsic ionic and electronic conductivity than LFP,
underpinning the high kinetics (Lu and Yamada 2016).
With the intrinsic merits, the cathode can undergoes 40 °C
charge/discharge by constructing the additional conductive
network (Meng et al. 2016; Yu et al. 2016).

Apart from alluaudite-type sulfates, Kröhnkite-type
Na2Fe(SO4)2·2H2O was also explored as a 3.25 V in-
sertion compound for SIBs, showing a reversible capac-
ity of around 70 mAh g−1 (Barpanda et al. 2014a).
Besides, eldfellite NaFe(SO4)2 was validated to be elec-
trochemically active by Singh et al., with a discharge
capacity of ~ 80 mAh g−1 at 0.1 °C with a plateau of
3.0 V (Singh et al. 2015). Density functional theory
calculations suggested the low kinetics of eldfellite is
due to high activation energies over 1 eV for the Na+ ion
hop (Banerjee et al. 2016).

Mn-based sulfates progressed much slower.
Barpanda et al. continued to explore the sulfate-based
cathode family by reporting the isostructural alluaudite-
type Na2+2xMn2−x(SO4)3, but no electrochemical data
was presented, as they claimed that the predicted high-
potential (ca. 4.4 V) requires the advent of suitable
electrolytes (Dwibedi et al. 2015). After that, Yamada’s
group reported a series of Mn-substituted alluaudite
solid solutions Na2.5(Fe1−yMny)1.75(SO4)3 (y = 0, 0.25,
0.5, 0.75, and 1.0). However, there were no Mn2+/Mn3+

redox reactions that had taken place. The material sim-
ply showed continuous capacity decrease along with the
increasing Mn content (Wei et al. 2016).

Oxalates have also been investigated as Na+ host
materials. According to the electronegativity order of

Fig. 16 a–c Triclinic structure (P-1) of Na2FeP2O7 and corre-
sponding electrochemical properties. Reproduced from ref.
(Barpanda et al. 2012) with permission. d Voltage profiles of P-1
Na2MnP2O7. Reproduced from ref. (Park et al. 2013) with

permission. e, f Crystal structure of β-Na2MnP2O7 (triclinic P1)
and its voltage profiles. Reproduced from ref. (Barpanda et al.
2013b) with permission
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Fig. 17 Crystal structures of alluaudite-type Na2Fe2(SO4)3 (a),
eldfellite NaFe(SO4)2 (b), Na2Fe2(C2O4)3·2H2O (c), and
Na2Fe(C2O4)F2 with their voltage profiles are shown on the right

side. Reproduced from ref. (Barpanda et al. 2014b), (Singh et al.
2015), (Yao et al. 2017b), and (Yao et al. 2017a) with permissions
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Fig. 18 a–d Crystal structures of
Na2FePO4F (a), Na2MnPO4F (b),
Na4Fe3(PO4)2(P2O7) (c), and
Na3MnPO4CO3 (d). Reproduced
from ref. (Naoaki and Shinichi
2014) with permission. Their
representative voltage profiles are
shown on the right side.
Reproduced from ref. (Law et al.
2015), (Lin et al. 2014), (Wu et al.
2016), and (Huang et al. 2014)
with permissions. e High-
performance
Na4Mn3(PO4)2(P2O7), which was
ascribed to the cooperative Jahn-
Teller effect ofMn3+. Reproduced
from ref. (Kim et al. 2015a) with
permission
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SO4
2– > C2O4

2– > PO4
3–, metal oxalates can display

competitive redox potentials. In 2014, Yamada’s group
prepared K4Na2[Fe(C2O4)2]3·2 H2O and studied its Na
storage capability (Wang et al. 2015b). The material
initially discharged 54.5 mAh g−1 at C/50 with an aver-
age potential of 2.7 V in the subsequent 9 cycles. Yao
et al. investigated the electrochemical properties of
Na2Fe2(C2O4)3·2H2O(Yao et al . 2017b) and
Na2Fe(C2O4)F2 (Yao et al. 2017a) as SIB cathodes.
The former one was suggested to be electrochemically
inactive in LIBs, but they found a reversible capacity of
ca. 100 mAh g−1 (10 mA g−1 current) with three redox
plateaus at 2.9, 3.3, and 3.6 V (Yao et al. 2017b). The
fluoro-oxalate showed a reversible capacity of
70 mAh g−1 at 10 mA g−1 for 50 cycles (Yao et al.
2017a). Although electrochemical activities have been
demonstrated in these polyanion compounds, especially
the alluaudite-type sulfates, it is worth noting that some

critical issues should be addressed before their practical
application, including the air (water, oxygen) sensitivity
and thermal instability (decomposition) (Fig. 17).

Fe- and Mn-based mixed anion compounds
(fluorophosphates and mixed polyanions)

The combination of different anion groups (F−, PO4
3−,

P2O7
4−, CO3

2−, etc.) offers new opportunities toward
desirable electrode materials. The induction of highly
electronegative F− ions enables higher redox potentials
due to the stronger inductive effect. Na2FePO4F is a
representative Fe-based fluorophosphate, which was
first introduced by Nazar’s group in 2007 (Ellis et al.
2007). As shown in Fig. 18a, the structure is assigned to
the orthorhombic Pbcn space group, in which the
bioctahedral Fe2O7F2 chains are connected by PO4 tet-
rahedra to constitute 2D [FePO4F] layers. In this way,

Fig. 19 a Crystal structure of PBAs with a face-centered cubic
phase. b Charge and discharge curves of Na2MnMn(CN)6. c, d
The schematic illustrations of the step-wise structural evolution
over the extraction/insertion of Na+ ions. Reproduced from ref.

(Lee et al. 2014) with permission. e, f Voltage profile and cycling
performance of a Prussian blue@C composite. Reproduced from
ref. (Jiang et al. 2016) with permission

J Nanopart Res (2018) 20: 160 Page 25 of 40 160



Na ions can transport between the layers. The structure
also favors a small volume change (3.7%) after extrac-
tion of one Na+ ion, corresponding to a theoretical
capacity of around 124 mAh g−1 as a cathode for SIBs.
The atomistic simulations also suggested low activation
energy for the Na+ diffusion between the layers (Tripathi
et al. 2013). However, the strong iconicity of fluorine
reduced the inherent electrical conductivity. Unlike the
pyrophosphates, iron fluorophosphates are unlikely to
perform well in micron particles. With the aid of carbon
coating and nanosizing (Kawabe et al. 2011; Ko et al.
2017; Law et al. 2015), the electrochemical performance
experienced some improvements.

Different from the 2D-layered Na2FePO4F,
Na2MnPO4F adopts a 3D tunnel structure (space group:
P21/n) (Fig. 19b) (Yakubovich et al. 1997). By investigat-
ing theMn-substituted Na2Fe1−xMnxPO4F, the presence of
0.25 Mn is enough to trigger the 2D-3D phase transition.
The Mn substitution resulted in a substantial decay of the
electrochemical performances (Wu et al. 2011). In the
quest of activeMn2+/Mn3+, Yong’s group prepared a series
of Na2Fe1−xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) nanostruc-
tured composites.When operating at a high temperature of
60 °C, all these electrodes showed electrochemical activity.
Na2FePO4F can even perform 1.46 electron reactionwith a
capacity of 182 mAh g−1. The partial substitution of Fe by
Mn enables higher redox potentials with limited loss of
capacity. However, entirely substituted Na2MnPO4F was
much less active (Wu et al. 2011). After that, they opti-
mized electrode materials by utilizing spray-drying precur-
sor, the resultant Na2MnPO4F/C delivered 140mAh g−1 at
6.2 mA g−1, when operating at 30 °C. However, the
capacity retention was only around 50% after 50 cycles
(Lin et al. 2014). The very lowNa+ diffusion coefficient of
10−17 cm2 s−1 given by the GITT test suggests the formi-
dable challenge in the use of this material.

Kim et al. first introduced the Fe-based mixed phos-
phate compound Na4Fe3(PO4)2(P2O7) to SIBs. As
shown in Fig. 18c, the structure belongs to the ortho-
rhombic Pbcn space group, which is constructed by
[Fe3P2O13] layers and P2O7 pillars. First-principles cal-
culations identified feasible 3D Na+ paths. The theoret-
ical capacity based on one-electron reaction is
129 mAh g−1. Their result showed that 88% of the
theoretical value can be achieved at an extreme rate of
C/40 (Kim et al. 2012b). Furthermore, they employed
ex-situ XRD to disclose a single-phase reaction mecha-
nism coupled with a small volumetric change of less
t han 4% du r i ng t h e ( de ) s od i a t i on o f t h e

NaxFe3(PO4)2(P2O7) (Kim et al. 2013a). Wood et al.
simulated molecular dynamics for Na4M3(PO4)2P2O7

(M = Fe, Mn, Co, Ni), with the results showed a small
activation barrier of 0.20–0.24 eV for 3D Na+ migration
and diffusion coefficients of 10–10–10–11 cm2 s–1 at
325 K (Wood et al. 2015). Impressive electrochemical
performance was realized by Na4Fe3(PO4)2(P2O7)/C
nanocomposites synthesized by a sol-gel method, which
showed capacities of 105 and 78 at 0.2 and 10 °C,
respectively (Wu et al. 2016). Unexpectedly,
Na4Mn3(PO4)2(P2O7) (Kim et al. 2015a) and
Na4MnxFe3–x(PO4)2(P2O7) (x = 1, 2) (Kim et al.
2016a) reported by Kim et al. showed better perfor-
mance. Na4Mn3(PO4)2(P2O7) had a redox potential of
3.8 Vand a reversible capacity of 109 mAh g−1 at C/20,
and maintained 55 mAh g−1 at 20 °C (Fig. 18e). The
Na4MnFe2(PO4)(P2O7) showed capacity retention of
83% after 3000 cycles at 1 °C.

Carbonophosphates are an emerging class of mixed
polyanion compounds in SIB system. The idea of engag-
ing carbonophosphates was proposed by Ceder’s group
using ab initio computations (Hautier et al. 2011). They
successfully synthesized a series of carbonophosphates
Na3M(PO4)(CO3) (M =Mg, Mn, Fe, Co, Ni, Cu, Sr) with
a sidorenkite phase (space group: P21/m, Fig. 18d). Chem-
ical desodiation performed on the Na3Fe(CO3)(PO4) sug-
gested the possibility of serving as a SIB cathode (Chen
et al. 2012). Then they reported the first use of
Na3MnPO4CO3 as a cathode material for SIBs (Chen
et al. 2013). The electrode displayed a high discharge
capacity of 125 mAh g−1, indicating a two-electron inter-
calation reaction, which was further evidenced by 23Na
NMR spectroscopy. In-situ XRD suggested a single-phase
reaction upon electrochemical cycling. Until now, there are
only limited reports on this type of material, and the rate
capability still seems unsatisfactory after nanosizing and
carbon modification (Hassanzadeh et al. 2016a, b; Huang
et al. 2014). Additionally, carbonophosphates show appre-
ciable thermal stability that can withstand a temperature of
500 °C.

Fe- and Mn-based hexacyanometalates

Metal hexacyanometalates, also known as Prussian
blue analogs (PBAs), have a general formula of
AxP[R(CN)6]1-y□y·nH2O (A: removable cations, P:
N-coordinated metal ion; R: C-coordinated metal
ion; □: [R(CN)6] vacancy; 0 ≤ x ≤ 2; 0 ≤ y < 1).
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They are crystallized into a cubic structure with
the space group of Fm-3m. The cyanide ligands
link the coordinated metal ions together to form
elementary cubes that can host various cations due
to the large channels and interstitial sites, and each
unit cell contains eight elementary cubes (Lee
et al. 2014). Goodenough’s group first investigated
the use of metal hexacyanometalates as cathodes
for non-aqueous SIBs. Among a range of
hexacyanometalates, KFe2(CN)6 exhibited a revers-
ible capacity near 100 mAh g−1 at 0.05 °C. How-
ever, they showed quite a low efficiency, which
was ascribed to the crystal water contained in
MHCs (Lu et al. 2012). Moving forward, they
reported a high-performance Na1.72MnFe(CN)6,
where the Na displacement at higher Na concen-
trations reduces the crystal symmetry to a rhom-
bohedral phase. The initial rhombohedral structure
demonstrated a capacity of 134 mAh g−1 at
0.05 °C, and retained 45 mAh g−1 at 40 °C
(Wang et al. 2013). In search of high-capacity
PBAs, Cui et al. prepared Na-rich monoclinic
Na2MnMn(CN)6, which can even host additional
Na+, resulting in a high discharge capacity of
209 mAh g−1 at C/5 (40 mA g−1). The three-step
Na+ insertion corresponds to three plateaus with an
average potential of 2.65 V (Lee et al. 2014). As
the water residue and [R(CN)6] vacancies are con-
sidered to be detrimental to the coulombic efficien-
cy, cyclic stability, and kinetics, many efforts have
been to prepare high-quality PBAs for enhanced
overall performance. Guo et al. developed a slow
crystal growth process from Na4Fe(CN)6, with the
resultant Prussian blue containing less zeolite wa-
ter and [Fe(CN)6] vacancies, and showing a capac-
ity of 170 mAh g−1 with no capacity loss for
150 cycles (You et al. 2014). Goodenough’s
(Song et al. 2015) and Ma’s (Yang et al. 2015a)
groups respectively reported the removal of Inter-
stitial water by different methods, leading to much
improved electrochemical performance. Recently, a
Prussian blue@C composite was reported for ex-
cellent rate and cycling performance (Jiang et al.
2016), which maintained 77.5 mAh g−1 at 90 °C,
and received 90% capacity retention after 2000 cy-
cles at 20 °C, indicating a promising future for
this type of material. It is worth mentioning that
metal hexacyanometalates are subject to thermal decom-
position at temperatures over 300 °C (Zhang et al. 2012). T

ab
le
1

E
le
ct
ro
ch
em

ic
al
pr
op
er
tie
s
of

re
pr
es
en
ta
tiv
e
F
e-

an
d
M
n-
ba
se
d
ca
th
od
e
m
at
er
ia
ls
fo
r
L
IB
s

E
le
ct
ro
de

m
at
er
ia
l

(c
od
e
in

Fi
g.
20
)

A
ve
ra
ge

po
te
nt
ia
l

(V
vs
.L

i+
/L
i)

D
is
ch
ar
ge

ca
pa
ci
ty

(c
ur
re
nt

de
ns
ity

)
D
is
ch
ar
ge

ca
pa
ci
ty

at
hi
gh

cu
rr
en
td

en
si
tie
s

(c
ur
re
nt

de
ns
ity

)

C
ap
ac
ity

re
te
nt
io
n

(c
yc
le
s,
cu
rr
en
td

en
si
ty
)

R
ef
.

α
-L
iF
eO

2
(1
)

~
2

28
7
(1
41

m
A
g−

1
)

15
3
(8
46

m
A
g−

1
)

80
%

(1
00
,1
41

m
A
g−

1
)

R
ah
m
an

et
al
.2
01
1

L
iM

nO
2
(o
rt
ho
rh
om

bi
c)

(2
)

~
3

23
5
(1
0
m
A
g−

1
)

–
81
%

(2
0,
10

m
A
g−

1
)

H
e
et
al
.2
01
0

L
iM

n 2
O
4
(3
)

4.
05

12
0
(6
0
m
A
g−

1
)

93
(6
0,
00
0
m
A
g−

1
)

84
.5
%

(2
00
,3
60
0
m
A
g−

1
)

L
ee

et
al
.2
01
7

L
iN
i 0
.5
M
n 1

.5
O
4
(4
)

4.
7

14
0
(1
47

m
A
g−

1
)

10
9
(2
94
0
m
A
g−

1
)

91
%

(5
00
,7
30

m
A
g−

1
)

Z
ha
ng

et
al
.2
01
3a

L
i 1
.2
M
n 0

.5
2
N
i 0
.2
C
o 0

.0
8
O
2
(5
)

3.
5

30
3
(2
5
m
A
g−

1
)

18
0
(1
25
0
m
A
g−

1
)

92
%

(2
00
,2
50

m
A
g−

1
)

X
u
et
al
.2
01
7a

L
iF
eP
O
4
(6
)

3.
4

15
5
(3
4
m
A
g−

1
)

78
(1
7,
00
0
m
A
g−

1
)

89
%

(1
00
0,
17
00

m
A
g−

1
)

W
an
g
et
al
.2
01
5a

L
iM

nP
O
4
(7
)

4.
1

16
8
(8
.5
m
A
g−

1
)

11
0
(1
70
0
m
A
g−

1
)

94
%

(1
00
,8
5
m
A
g−

1
)

H
on
g
et
al
.2
01
5

L
iM

n 0
.7
5
F
e 0

.2
5
PO

4
(8
)

3.
75

15
5
(8
5
m
A
g−

1
)

65
(1
7,
00
0
m
A
g−

1
)

~
90
%

(1
00
,8
5
m
A
g−

1
)

W
an
g
et
al
.2
01
1a

L
i 2
F
eS
iO

4
(9
)

~
3

31
7
(1
6.
6
m
A
g−

1
)

~
12
5
(1
66
0
m
A
g−

1
)

75
%

(2
00
0,
16
00

m
A
g−

1
)

Y
an
g
et
al
.2
01
6

L
i 2
M
nS

iO
4
(1
0)

~
3

20
0
(1
60

m
A
g−

1
)

11
9
(1
60

m
A
g−

1
)

78
%

(1
00
,1
60

m
A
g−

1
)

H
e
an
d
M
an
th
ir
am

20
14

L
iF
eB

O
3
(1
1)

2.
7

19
0
(1
0
m
A
g−

1
)

70
(1
60
0
m
A
g−

1
)

77
%

(1
00
,1
0
m
A
g−

1
)

C
he
n
et
al
.2
01
5

J Nanopart Res (2018) 20: 160 Page 27 of 40 160



T
ab

le
2

E
le
ct
ro
ch
em

ic
al
pr
op
er
tie
s
of

re
pr
es
en
ta
tiv

e
Fe
-
an
d
M
n-
ba
se
d
ca
th
od
e
m
at
er
ia
ls
fo
r
SI
B
s

E
le
ct
ro
de

m
at
er
ia
l

(c
od
e
in

F
ig
.2
0)

A
ve
ra
ge

po
te
nt
ia
l

(V
vs
.N

a+
/N
a)

D
is
ch
ar
ge

ca
pa
ci
ty

[m
A
h
g−

1
(c
ur
re
nt

de
ns
ity

)]
R
at
e
ca
pa
ci
ty

[m
A
h
g−

1

(c
ur
re
nt

de
ns
ity

)]
C
ap
ac
ity

re
te
nt
io
n

(c
yc
le
s,
cu
rr
en
td

en
si
ty
)

R
ef
.

N
aF
eO

2
(1
)

3.
3

90
(1
2
m
A
g−

1
)

–
50
%

(3
0,
12

m
A
g−

1
)

Y
ab
uu
ch
ie
ta
l.
20
12
b

N
aM

nO
2
(2
)

2.
6

19
0
(1
0
m
A
g−

1
)

90
(2
00
0
m
A
g−

1
)

ca
.6
8%

(5
0,
10

m
A
g−

1
)

B
ill
au
d
et
al
.2
01
4a

N
a 2

/3
M
n 0

.9
5
M
g 0

.0
5
O
2
(3
)

2.
7

17
0
(1
00

m
A
g−

1
)

10
6
(5
00
0
m
A
g−

1
)

84
%

(1
00
,1
00

m
A
g−

1
)

C
le
m
en
te
ta
l.
20
16

N
a 0

.4
4
M
nO

2
(4
)

2.
8

10
1.
3
(1
2
m
A
g−

1
)

54
.7
(1
20
0
m
A
g−

1
)

ca
.1
00
%

(2
00
0,
10
00

m
A
g−

1
)

L
iu

et
al
.2
01
7a

N
a 2

/3
F
e 1

/2
M
n 1

/2
O
2
(5
)

2.
75

19
0
(1
2
m
A
g−

1
)

60
(1
04
0
m
A
g−

1
)

ca
.8
2%

(3
0,
12

m
A
g−

1
)

Y
ab
uu
ch
ie
ta
l.
20
12
a

N
aF
eP
O
4
(a
m
or
ph
ou
s)
(6
)

2.
32

15
2
(1
5.
5
m
A
g−

1
)

67
.4
(1
55
0
m
A
g−

1
)

95
%

(3
00
,1
5.
5
m
A
g−

1
)

L
ie
ta
l.
20
15
a

N
a 2
F
eP

2
O
7
(7
)

3.
0

95
(9
.7
m
A
g−

1
)

55
(5
82
0
m
A
g−

1
)

83
%

(1
0,
00
0,
97
0
m
A
g−

1
)

(S
on
g
et
al
.2
01
7a
)

N
a 2
F
e 2
(S
O
4
) 3
(8
)

3.
8

10
2
(6

m
A
g−

1
)

71
(1
20
0
m
A
g−

1
)

B
ar
pa
nd
a
et
al
.2
01
4b

N
a 2
F
eP
O
4
F
(9
)

~
2.
75

11
0
(1
2.
4
m
A
g−

1
)

45
(2
48
0
m
A
g−

1
)

70
%

(5
00
0,
12
40

m
A
g−

1
)

K
o
et
al
.2
01
7

N
a 4
F
e 3
(P
O
4
) 2
(P

2
O
7
)
(1
0)

~
3

11
0
(6

m
A
g−

1
)

80
(1
29
0
m
A
g−

1
)

89
%

(3
00
,6
4.
5
m
A
g−

1
)

W
u
et
al
.2
01
6

N
a 4
M
n 3
(P
O
4
) 2
(P

2
O
7
)
(1
1)

3.
84

10
9
(6

m
A
g−

1
)

56
(1
29
0
m
A
g−

1
)

82
%

(1
00
,2
6
m
A
g−

1
)

K
im

et
al
.2
01
5a

N
a 4
M
nF

e 2
(P
O
4
)(
P
2
O
7
)
(1
2)

~
3.
3

11
0
(6

m
A
g−

1
)

77
(1
29
0
m
A
g−

1
)

83
%

(3
00
0,
12
9
m
A
g−

1
)

K
im

et
al
.2
01
6a

N
a 2
M
nM

n(
C
N
) 6
(1
3)

2.
65

20
9
(4
0
m
A
g−

1
)

16
0
(1
00
0
m
A
g−

1
)

75
%

(1
00
,4
00

m
A
g−

1
)

L
ee

et
al
.2
01
4

N
a 0

.6
4
7
F
e[
F
e(
C
N
) 6
] 0
.9
3
(1
4)

~
3.
0

11
6
(5
0
m
A
g−

1
)

77
.5
(9
00
0
m
A
g−

1
)

90
%

(2
00
0,
20
00

m
A
g−

1
)

Ji
an
g
et
al
.2
01
6

160 Page 28 of 40 J Nanopart Res (2018) 20: 160



Therefore, the practical difficulties regarding sulfates also
exist here.

Summary and outlook

Considering the technology advances achieved on ener-
gy conversion and storage and the pressing concerns of
carbon emission and environmental pollution, the tran-
sitions to clean, green, and sustainable development are
practically logical and urgent. LIBs, as the state-of-the-
art energy storage system, are starting to support green
vehicles and residential energy storage. To meet the
enlarging market, batteries themselves should adopt
green and low-cost chemistries. As the costliest sector
of a LIB, cathodematerials involve removable Li ions as
charge carriers, and transition metal ions serving as
redox centers, which account for most of the cost. Given
their elemental abundance, Mn- and Fe-based cathode
materials are therefore preferable choices, and their so-
dium analogs are also attracting much attention, as they
might enable the future of Li-free SIBs, which would be
ideal choices for large-scale applications.

This review involves the discussion of most of the Fe-
and Mn-based cathode materials for LIBs and SIBs, in-
cluding oxides, polyanion compounds, and
hexacyanometalates (for SIBs). We especially emphasize
their merits, drawbacks, and up-to-date advances. To gain
a direct view of the recently achieved electrochemical
properties of those materials, we list their average operat-
ing potentials, discharge capacities (at low and high rates),
and cycling performances in Table 1 (LIBs) and Table 2
(SIBs). The energy densities of those Fe- and Mn-based
cathode materials are plotted in Fig. 20. From the

straightforward comparison, it is easy to understand the
different development phases and goals of cathode mate-
rials for LIBs and SIBs. To meet the requirement of
practical applications, significant challenges in this field
remain in:

1) The extensively investigated strategies of constructing
conductive composites and tailoring particle size eas-
ily cause insufficient gravimetric and volumetric en-
ergy densities as well as additional materials and
processing costs.

2) Due to the large size of the Na ion, conventional
host structures do not favor efficient and repeatable
Na ion (de)intercalation. A critical step to realizing
large-scale SIB applications is to search stable and
kinetic SIB cathode materials.

3) Instead of emphasizing the electrode performance
of a cathode material in a half cell, the practical
performance should be demonstrated in full battery
level, which requires innovation in the design and
optimization of both the cathode and the anode
materials.

As discussed above, nanostructuring is used to boost
the reactivity for many electrode materials, given that it
reduce the diffusion lengths of mobile ions and electrons,
which also have been reviewed intensively (Armstrong
et al. 2014; Lu et al. 2016; Mahmood and Hou 2014;
Myung et al. 2015; Wang et al. 2016; Zhang et al.
2015a). In the case of cathodes for LIBs, many electrode
materials have been reported for outstanding rate capability
(over 50 °C) and cycling performance by forming conduc-
tive composites and tailoring particle shape and size.

Fig. 20 Illustration of the energy densities of those Fe- and Mn-based cathode materials for LIBs (a) and SIBs (b)
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However, to competewith the benchmark LCOandNMC,
efforts should be made to improving the gravimetric and
volumetric energy densities at reduced cost. In comparison
to the Bexternal^ modifications, governing the crystal and
electronic structures of the host materials can alter the
fundamental ionic and electronic conductivities, which
can be considered as a research focus toward more practi-
cal cathodematerials. Concerning SIB cathodes, which are
experiencing even quicker advances with a range of can-
didatures being proposed, instead of simply mimicking the
host structures of Li+ during synthesis, some new complex
structures have been introduced to cope with the chal-
lenges due to the distinct ionic size and electron configu-
ration of Na+. Although the kinetics are reduced when
compared with their LIB counterparts, there are some
exciting results identified during the investigation of SIB
cathodes. For example, the reversible high-energy Fe3+/
Fe4+ redox couple is observed in Fe-contained layered
oxides for SIBs, which is absent for LIBs. The Jahn–Teller
effect of Mn3+, which is always blamed for issues in LIB
cathodes, is found to be Bcooperative^ in some SIB cath-
odes. These phenomena are worthwhile to be further stud-
ied, and the outputs may, in turn, stimulate the advances of
LIBs. In addition, the development of a low-cost and high-
performance battery requires the advance of the anode part.
Current graphite anode suffers from poor ionic conductiv-
ity and poses safety concerns due to its low lithiation
potential. Zero-strain hosts and dendrite-free anodes are
promising candidates.We believe better understanding and
development of Fe- and Mn-based cathode materials will
help to make rechargeable Li-ion and Na-ion batteries
cheaper, greener, and better.
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