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Abstract Metal assembly to a dendrimer can provide
various functionalities based on the branched structure.
Here, we researched assembly phenomena of bismuth
salts in the phenylazomethine dendrimer and achieved
enhancement of emission intensity per metal unit by
using Bi(OTf)3. This enhancement suggested increasing
of Bi–N coordination bonds derived from the bismuth
units in the dendrimer.
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Introduction

The precise arrangement of metals in organic poly-
mers or macromolecules is an important objective
considering natural materials, such as photosynthe-
sis that control the direction and ratio of electron
transfer. Various polymer-metal complexes have
been reported, but the fine control of the nano-
sized structure and the metal position is not avail-
able in conventional polymer-metal complexes due
to the length distribution of the polymers (Ciardelli
et al. 1995; Pittman et al. 1996).

Dendrimers, uniform three-dimensional branched
polymers, are some of the most advantageous materials
for fabricating controlled polymer-metal complexes
(Tomalia et al. 1985; Newkome et al. 1985; Bosman
et al. 1999; Grayson and Frechet 2001; Astruc and
Chardac 2001). Various functional derivatives which
contain metal complexes in the core and/or branches
have been investigated (Newkome et al. 1995; Balzani
et al. 1998). For example, introduction of metal ions or
complexes in the core was utilized for organic light-
emitting materials (Kawa and Frechet 1998; Hwang
et al. 2008; Vicinelli et al. 2002; McClenaghan et al.
2003; Baudin et al. 2002). Catalytic and redox active
metal complexes were also adopted for the functionali-
ties (Bhyrappa et al. 1996; Knapen et al. 1994; Twyman
et al. 2002; Nlate et al. 2000; Wang et al. 2014; Nijhuis
et al. 2004; Suzuki et al. 2006). In addition, metal
complexes at the periphery of the branches can be used
for dendritic networks leading to the fabrication of mac-
romolecules (Newkome et al. 1995, 1998).
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Themetal units of these metallodendrimers described
above are incorporated into the skeletons. They have a
merit of the high stability and can be novel building
blocks for supramolecular structures. On the other hand,
the assembly of the metal units into the dendrimer is
another attractive strategy for metallodendrimers.
Polyamidoamine (PAMAM) dendrimers can be metal
complex dendrimers by the coordination of metal salts
(Tomalia et al. 1985; 25 Esfand and Tomalia 2001; Lee
et al. 2005; Tomalia et al. 2007; Lee et al. 2003). Such
metal assembled dendrimers have been used as a nano-
sized flask for the fabrication of size-controlled metal
nanoparticles (Crooks et al. 2001; Zhao et al. 1998;
Zhao and Crooks 1999). In this case, the shell-effect
works for protection of the fabricated nanoparticles from
the outer environment.

Among these dendrimers, we focused on dendritic
polyphenylazomethines (DPAs) as a platform for met-
al assembly (Higuchi et al. 2001; Yamamoto et al.
2002; Takanashi et al. 2004; Enoki et al. 2006;
Imaoka et al. 2013). The DPAs have imine-based
coordination ligands in their branches. In addition,
the π-conjugated skeleton produces an electronic po-
tential gradient from the core to the periphery sites. It
creates a different basicity of the imine sites and en-
ables the stepwise controlled assembly of Lewis acid-
ic units (e.g., metal salts, boron units, and organic
mo lecu l e s ) (Yamamoto and Imaoka 2014 ;
Yamamoto et al. 2005, 2009; Nakajima et al. 2004;
Imaoka et al. 2005, 2006; Takanashi et al. 2007;
Kambe et al. 2016a, b; Albrecht et al. 2013, 2016).
The DPAs are also used for fabrication of metal parti-
cles and clusters (Yamamoto and Imaoka 2014;
Yamamoto et al. 2009; Takahashi et al. 2017; Kambe
et al. 2017; Inomata et al. 2018; Satoh et al. 2008).

Recently, we reported a luminous dendrimer based
on the stepwise 1:1 complexation of BiCl3 into the 4th
generation DPA (DPAG4). This bismuth-assembled
dendrimer showed orange-colored luminescence
(broad emission peak centered around 600 nm). The
stepwise 1:1 assembly enabled the fine intensity
tuning of the photoluminescence. In addition, the
photoluminescence was maintained even in the solid
state whereas the corresponding mononuclear com-
plex was quenched under the same condition. These
specific features demonstrated effective shell protec-
tion of the DPAG4. Such a shell effect was also uti-
lized for optical switching based on the reversible
complexation (Kambe et al. 2016a). In this study, we

used bismuth salts different from BiCl3 considering
the effect of the coordination mode and achieved an
increasing emission intensity per the assembled
metal unit using the complexation behavior of
Bi(OTf)3 (OTf: trifluoromethanesulfonate). The
OTf ligand has excellent leaving group properties
(Dixon et al. 1990). Therefore, it dissociates from
the bismuth atom in a solvent and enables increas-
ing coordination bonds between the Bi(III) and
phenylazomethine units. We demonstrated the util-
ity of this multiple coordination behavior for de-
creasing of the amount of the metal units which
generated photoluminescence through an assembly
process.

Experimental section

Materials

Bi(OTf)3, (Strem Chemicals), BiCl3 ultra dry (Alfa
Aesar), and bismuth 2-ethylhexanoate (Alfa Aesar)
were purchased and used without any further purifica-
tion. Dehydrated acetonitrile and triethylamine were
obtained from Kanto Chemicals. Chloroform was ob-
tained from Wako Pure Chemical Industries, Ltd. The
DPAG4 was synthesized according to the literature
(Enoki et al. 2006).

Characterization

The UV-vis spectra were recorded using Shimadzu UV-
3600 and UV-3100PC spectrometer with a quartz cell
having a 1-cm optical length at 20 °C. The
photoluminescence spectra were obtained by a Jasco
FP-8300 at room temperature.

Complexation between bismuth salts and DPAG4

In an Ar-filled glove box, an acetonitrile solution of
Bi(OTf)3 (3.19 mM), or BiCl3 (2.21 mM), and an
acetonitrile/chloroform (1/1) mixed solution of the
DPAG4 (0.64 μM) were prepared. Then, the appro-
priate amount of the bismuth salt solution was
added to the DPAG4 solution (3.0 mL) and the
solution was vigorously stirred. The reactions were
monitored by using UV-vis absorption and
photoluminescence spectroscopy.
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Fig. 2 a Excitation (dotted line; λem = 600 nm) and emission
(bold line; λex = 450 nm) spectra of 4Bi(OTf)3-DPAG4. The sol-
vent is a 1:1 mixed solution of acetonitrile and chloroform. b

Emission spectral change during the addition of Bi(OTf)3. Dotted
and bold black lines correspond to the DPAG4 with 4 and 20
equivalents of Bi(OTf)3, respectively

Fig. 1 Schematic illustration of assembly process of bismuth units
into the DPAG4. BiCl3 has a 1:1 coordination with the
phenylazomethine part. On the other hand, bismuth
trifluoromethanesulfonate shows increasing metal-imine com-
plexes, while bismuth 2-ethylhexanoate does not react. Graphs

show the UV-vis titration results. The complexation of Bi(OTf)3
demonstrated saturation of the spectral change at the point of 20
equivalent bismuth units (middle up). No spectral change was
observed in the case of bismuth 2-ethylhexanoate (right up)
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In the case of bismuth 2-ethylhexanoate, an acetoni-
trile solution of bismuth 2-ethylhexanoate (2.56 mM),
and an acetonitrile/chloroform (1:1) mixed solution of
the DPAG4 (0.47 μM) were used.

Removal of Bi(OTf)3 from the DPAG4

This experiment was conducted by reference to the
method in the case of BiCl3 described in the previous
literature (Kambe et al. 2016a). Trietylamine (1.0 μL)
was added to the DPAG4 with Bi(OTf)3 solution
(0.64 μM, 3.0 mL; acetonitrile/chloroform = 1/1).

Results and discussion

Assembly of bismuth salts

A certain amount of the acetonitrile solution of
Bi(OTf)3 (3.19 mM) was stepwisely added to the
mixed solution (acetonitrile/chloroform) of the

DPAG4 (0.64 μM). The spectral change was moni-
tored by UV-vis spectroscopy. The absorption band
around 410 nm increased during the addition of the
Bi(OTf)3 (from 1 to 20 equivalents). The peak shape
and position were almost the same in the case of
other metal units including BiCl3 (Yamamoto and
Imaoka 2014; Kambe et al. 2016a), suggesting sim-
ilar coordination interaction between metals and the
DPAG4. On the other hand, the amount of the
absorption change was different. This spectral
change was saturated around 20 equivalents of
Bi(OTf)3 whereas the DPAG4 possessed 60
phenylazomethine sites. After the saturation, the
absorption peak shifted to the longer wavelength
region when the Bi(OTf)3 was continuously added
to the solution containing the DPAG4 with
20Bi(OTf)3 (Fig. S1). This spectral change is con-
sidered to be derived from decomposition of the
azomethine parts in the DPAG4. These results sug-
gest that the complexation between Bi(OTf)3 and
the phenylazomethine ligands in the DPAG4 was

Fig. 3 a Chemical scheme of ligand exchange reaction using triethylamine (NEt3). Spectral change in the b photoluminescence intensity
and c absorbance
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mult identate , and the number of bismuth-
coordinating phenylazomethine ligands per bismuth
unit is greater than that in the case of BiCl3 which
behave in a 1:1 coordinating fashion (Kambe et al.
2016a). In contrast, bismuth 2-ethylhexanoate that

has carboxylate ligands was found not to be coordi-
nated by the phenylazomethine ligands because the
absorption spectra did not change. This means that
the assembly feature could be changed by choice of
the initial ligands on the bismuth atom (Fig. 1).

Fig. 4 a The complexation of
Bi(OTf)3 can increase number of
the emissive bismuth complexes.
b Photoluminescence spectra of
the DPAG4 with 4 equivalents of
Bi(OTf)3 (blue bold line) and
BiCl3 (black dotted line). The
excitation wavelength is 450 nm.
c Change in photoluminescence
intensity during addition of the
bismuth salts normalized by the
peak area of BiCl3-DPAG4. The
blue squares and black circles
correspond to Bi(OTf)3 and
BiCl3, respectively
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Photoluminescence properties

Assembly of Bi(OTf)3 into the DPAG4 induced
photoluminescence, and the emission intensity in-
creased with the addition of the Bi(OTf)3. The observed
emission and excitation peaks were found to be similar
to those of BiCl3 (Fig. 2a). This suggested that the
photoluminescence properties were maintained versus
the change in the coordinating ligands. However, the
emission peak was shifted to the shorter wavelength
region after 4 equivalents of Bi(OTf)3 (Fig. 2b). The
reason is considered to be a multiple complexation
among the dendrimers.

Reversible complexation

The complexation between Bi(OTf)3 and the
phenylazomethines is labile. Therefore, dissociation
of the coordination bond using a base reagent is
expected (Fig. 3a). Figure 3b and c shows the ab-
sorption and emission spectral change of the
20Bi(OTf)3-DPAG4 solution with the addition of
triethylamine which is a stronger base, respectively.
We observed that the increased photoluminescence
and absorption by the complexation with Bi(OTf)3
was completely back to the initial state. The optical
and chemical features that show the reversible com-
plexation with photoluminescence are characteristic
of the optical dendrimer based on the DPAG4.

Photoluminescence intensities

The use of Bi(OTf)3 units enabled enhancement of
the photoluminescence per bismuth unit (Fig. 4a).
Figure 4b shows the emission spectra of 4Bi(OTf)3-
DPAG4 and 4BiCl3-DPAG4 at the same concentra-
tion (0.64 μM). The higher intensity was clearly
observed in the case of Bi(OTf)3. Figure 4c shows
the intensity change during the addition of the

bismuth units. The intensity was normalized by the peak
area from BiCl3-DPAG4. We found that the
photoluminescence intensity was enhanced in the case
of Bi(OTf)3 at the low equivalents of the bismuth units.
This result showed successful cut-down of the metal
units that trigger the optical emission from the dendri-
mer. Table 1 shows a comparison of the parameters
corresponding to the photoluminescence intensity (F)
and quantum yield (F/A) (F: area of the emission spec-
tra, and A: absorption at the excitation wavelength).
Though 4Bi(OTf)3-DPAG4 has high photoluminescence
intensity, the F/A is smaller than that of 4BiCl3-DPAG4.
These results suggest that the increasing absorption af-
fects the enhancement of the photoluminescence.

Conclusions

In conclusion, we revealed the coordination reactions of
various kinds of bismuth units to the DPAG4 and
a ch i ev ed su c c e s s f u l e nh an cemen t o f t h e
photoluminescence from the bismuth-coordinating
dendrimers by utilizing the coordination fashion of
Bi(OTf)3. This complexation was revealed by the UV-
vis absorption and photoluminescence spectra including
the monitoring of the bond formation and dissociation
reaction, suggesting multiple coordination bonds. We
also revealed that this photoluminescence enhancement
was affected by the increasing absorption from the metal-
imine complexes in the DPAG4. These results demon-
strate a certain application of this coordination behavior
for the enhancement of the complex properties in the
dendrimer.
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