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Abstract Our previous study presented up to 20%
power conversion efficiency (PCE) enhancement of
poly(3-hexylthiophene):phenyl-C61-butyric acid met-
hyl ester (P3HT:PCBM) solar cells under the Fe3O4

nanoparticles (NPs) self-assembly (SA) effect by spin
coating. Fe3O4 NPs (about 11 nm hydrodynamic
diameter) form a thin layer at the top interface of the
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light absorbing active layer, which results in the gen-
eration of PCBM rich region improving the charge
transport (Zhang et al. Sol Energ Mat Sol C 160:126–
133, 2017). In order to investigate the feasibility of
this Fe3O4 NPs SA effect under large-scale production
condition, a smooth rod was implemented to mimic
roll-to-roll coating technique and yield active layers
having about the same thickness as the spin-coated
ones. Small angle neutron scattering and grazing inci-
dence X-ray diffraction were employed finding out
similar morphologies of the active layers by these two
coating techniques. However, rod-coated solar cell’s
PCE decreases with the addition of Fe3O4 NPs com-
pared with the one without them. This is because
PCBM rich region is not created at the top interface
of the active layer due to the absence of Fe3O4 NPs,
which is attributed to the weak convective flow and
low diffusion rate. Moreover, in the rod-coated solar
cells, the presence of Fe3O4 NPs causes decrease in
P3HT crystallinity, thus the charge transport and the
device performance. Our study confirms the role of
spin coating in the Fe3O4 NPs SA effect and enables
researchers to explore this finding in other polymer
nanocomposite systems.
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Introduction

During the past two decades, great interests have
been attracted in the field of organic photovoltaics
(OPV), especially for polymer solar cells, because of
their potential low cost manufacturing process, flex-
ible substrates, and environmental friendliness (Treat
and Chabinyc 2014; Krebs et al. 2014; Youn et al.
2015; Li et al. 2017). The light absorbing active
layer of a polymer solar cell is, commonly, a blend
of semiconducting polymer (electron donor, such as
poly(3-hexyl thiophene), i.e., P3HT) and fullerene
derivative molecules (electron acceptor, such as [6,6]-
phenyl-C61-butyric acid methyl ester, i.e., PCBM).
In a representative P3HT:PCBM polymer solar cell,
a Coulomb-bound electron-hole pair, i.e., exciton, is
created when a photon is absorbed by P3HT. The
exciton then transports to the interface of P3HT and
PCBM for separation to generate charge carriers.
Due to the relatively short diffusion length (approx-
imately 10 nm) of the exciton, an interpenetrating
mixture of polymer and fullerene derivative molecules
is proposed as so-called bulk-heterojunction (BHJ) to
optimize the device performance (Dang et al. 2013).
A vertical comb-like interdigitated structure of elec-
tron donor and acceptor materials is believed to be
the ideal BHJ morphology for a polymer solar cell
(Coakley and McGehee 2004). Hence, how to achieve
such a delicate nanostructure in order to obtain high
power conversion efficiency (PCE) has been exten-
sively studied (Germack et al. 2010; Rogers et al.
2011; Hong et al. 2014; Huang et al. 2014; Heeger
2014).

Recently, we reported up to 20% PCE enhancement
of P3HT:PCBM solar cells by mixing 4 vol% Fe3O4

nanoparticles (NPs) in the light absorbing active lay-
ers. Since Fe3O4 NPs do not scatter light and are
insulators, so optical effect and electronic proper-
ties from these NPs can be excluded to simplify the
morphological study on this system. Having the solu-
tion blend of P3HT, PCBM, and Fe3O4 NPs, all the
materials transport to the air interface of the active
layer, i.e., cathode side, by convective flow and sol-
vent evaporation in the spin coating process. These
three components form a pseudo-layered structure fol-
lowing their surface energy ordering. Thus, a thin
layer of Fe3O4 NPs is formed to develop polymer
depletion zone repelling P3HT away from the cath-
ode interface. As a result, PCBM molecules fill up the

spaces left by P3HT creating PCBM rich region which
benefits the electron transport and collection at the
cathode interface. In the utilization of this Fe3O4 NPs
self-assembly (SA) effect, spin coating creates strong
convective flow and fast solvent evaporation (Zhang
et al. 2017). This coating technique is usually applied
to produce small area thin films, such as bio-sensors
and organic electronic devices due to its good control-
lability and versatility (Hou et al. 2011; van Franeker
et al. 2015; Wu et al. 1601). However, considerable
amount of solution is wasted in the substrate spinning
step and it is not compatible with the roll-to-roll (R2R)
coating, which is commonly used to fabricate flexible
solar cell modules in large volume (Chou et al. 2013;
Xiong et al. 2015; Andersen et al. 2011; Apilo et al.
2015).

Due to the differences between these two tech-
niques, when R2R coating is in use to produce solar
cell devices, the Fe3O4 NPs SA effect comes under
question. Hence, the objective of this study is to inves-
tigate the feasibility of this NPs SA effect under
R2R coating condition and compare the results with
the spin-coated ones. In laboratories, smooth rod can
be used to mimic R2R coating without the imple-
mentation of a large facility, which provides conve-
nience to this work (Hu et al. 2010). Device perfor-
mance data were presented through current-density–
voltage (J–V ) characterization. Morphological dif-
ferences between spin- and rod-coated active layers
were studied by various characterization techniques.
Transmission electron microscopy (TEM) was used to
observe the cross-sections of active layers and investi-
gate the influence of the two coating methods on the
distribution of Fe3O4 NPs.

Experimental section

Sample preparation and characterization are similar
as stated in previous report (Zhang et al. 2017). A
smooth rod was applied to mimic the R2R coating
technique. Here, we provide a brief description as
follows. Indium tin oxide (ITO)-coated one inch
square glasses (resistance of 8–12 �/�, from Delta
technologies, LTD) were treated by ultrasonic cleaner
in acetone and isoproponal sequentially for 10 min.
Ultraviolet ozone plasma was applied on all the
substrates for 15 min. A 33-nm thick layer of poly(3,4-
ethylenedioxythio-phene):poly(styrenesulfonate)
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(PEDOT:PSS, from H.C. Starck, Al 4083) was spin
coated on the substrate, which was then annealed
for 20 min at about 130 ◦C. All the substrates
were transferred to a nitrogen-filled glove box. In
it, P3HT (from Luminescence Technology Corp.,
Mn = 55, 000 g/mol, polymer dispersity index (PDI)
= 1.4) and PCBM (from Nano-C) were dissolved
in di-ortho-chlorobenzene with 1:1 weight ratio in
a total 40 mg/ml concentration. 4 vol% of Fe3O4

NPs (EMG1300, hydrodynamic diameter 11 nm,
density 2.85 g/cm3, from Ferrotec), with respect
to the P3HT:PCBM solid content, was mixed into
the P3HT:PCBM solution. The solution was stirred
24 h at 40 ◦C in order to have complete dissolution.
Then, it was filtered through a 0.45-μm Teflon filter
before the coating step. For spin-coated active layers,
600 rpm and 60 s were used to obtain approximately
230 nm thickness. To achieve about the same thick-
ness from rod coating, the substrate was placed on
a polytetrafluoroethylene (PTFE) plate and fixed
between two glass slides. A drop of solution was
deposited on it, then the smooth rod swept back and
forth five times to make the film (see Fig. S1). All
the samples were thermal annealed at 110 ◦C for
10 min yielding high degree of P3HT polycrystalline.
LiF (0.8 nm) and Al (80 nm) were sequentially ther-
mal evaporated on the active layers obtaining about
0.1 cm2 device area. J–V tests were performed using
a Keithley 2400 source meter, under illumination
of 100 mW/cm2 from 150 W solar simulator with
AM1.5G filters. Eight data were collected for each
sample from eight different devices under the same

condition. 95% confidence interval was used to aver-
age the collected data and yield the uncertainty value.
All materials were used as received.

Soda-lime glasses were used instead of ITO-coated
ones for characterizations other than J–V tests. For
SANS measurements, the active layer was floated
off on the surface of deionized water and picked up
by a 1-in. diameter (100) double side polished sili-
con wafer. Repeat five times for each wafer to have
a stack of 3 wafers, i.e., 15 active layers under the
same condition. By doing this, the scattering signal
from the active layers can be increased significantly
without considering the background noise from sili-
con, since (100) silicon wafer is virtually transparent
to neutrons. The NG3 instrument in National Insti-
tute of Standards and Technology (NIST) center for
neutron research was employed in this work. Two
detector distances and two neutron wavelengths were
used, including 4 m with a wavelength of 6 Å and
13.2 m with 8.4 Å. Rigaku Ultimate IV multipurpose
XRD system was implemented to perform grazing
incidence X-ray diffraction (GIXRD) measurements,
incident angle of 0.5◦ was used. X-ray photoelectron
spectroscopy (XPS) measurements were performed on
a Surface Science machine using monochromated Al
k-alpha radiation (1486.6 eV).

In order to obtain TEM cross-section images of
an active layer, the film was floated off on the sur-
face of deionized water and then picked up by a
piece of dried epoxy resin (Spurr’s kit from Electron
Microscopy Sciences). After it was completely dried,
a 20-nm layer of gold was sputtered on the surface

Fig. 1 a Absolute scattering intensity I (q) as a function of wave vector q fitted by polydispersed sphere model following Schulz
distribution (Schulz spheres model). b Kratky plots of q2I (q)vs.q. for spin- and rod-coated samples
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of the film as a marker layer in TEM images. Then,
a drop of fresh epoxy resin was deposited on it fol-
lowing a 24-h curing treatment at 40 ◦C. Reichert
Jung Microtome was applied for ultramicrotomy to
obtain a film about 70–80 nm thickness ready for
the TEM imaging. Transmission electron microscope
JEM-2010F operated at 200 kV was used to obtain all
the images.

Results and discussion

Small angle neutron scattering (SANS) curves from
spin- and rod-coated active layers are presented in
Fig. 1a to show the morphological properties of spin-
and rod-coated active layers in detail. The absolute
intensity I (q) as a function of wave vector q is plot-
ted in log-log scale. The scattering patterns from all
the samples exhibit overlapped curves which indi-
cates similar structures formed at the length scale
of 1 to 7.9 nm (2π/q, q is in the range of 0.08 to

0.6 Å
−1

) caused by PCBM agglomerates (Kiel et al.
2010). This is confirmed by the Kratky plots pre-
sented as q2I (q)vs.q in Fig. 1b. The peak displayed
in low-q regime is an indicative of particle-like fea-
ture (Mackay et al. 2003; Tuteja et al. 2005). The
peak position is affected by the particle size alone
and the maxima of the peak is influenced by both
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Fig. 2 Liquid film drying time under various coating condi-
tions. Each data is collected from six samples under the same
condition. The uncertainty value was calculated from 95% con-
fidence interval setting. The drying time of rod-coated samples
is about 1000 s, and the 600 rpm spin-coated ones is much
lower, about 580 s, while 1800 rpm spin coating only yielded a
15-s drying time

the volume fraction of particles and neutron scattering
length density (nSLD) contrast between the particles
and surrounding matrix. Since all the peaks centered

at almost the same position of 0.022 Å
−1

(length
scale of 28.5 nm), one can tell that the rod coat-
ing method does not affect the PCBM agglomerate
size. However, for rod-coated samples, longer liquid
film drying time, compared with the spin-coated ones
(see Fig. 2), allows more PCBM molecules agglom-
erate before they reach equilibrium status resulting in
higher peak maxima. The addition of 4 vol% Fe3O4

NPs does not have significant impact on the scat-
tering pattern, which is consistent with our previous
report (Zhang et al. 2017). A quantitative analysis

Fig. 3 a J–V characteristic for samples from spin and rod
coating. b GIXRD patterns of spin- and rod-coated samples
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can be made by numerical model fitting on these
scattering patterns. PCBM agglomerates were treated
as polydispersed hard sphere following Schulz size
distribution surrounded by a matrix of P3HT and sol-
ubilized PCBM (Kotlarchyk and Chen 1983; Kline
2006; Chen et al. 2014; Zhang et al. 2016). The fitting
results agree well with the qualitative analysis above.
PCBM agglomerates have a radius about 7 nm, which
is not affected by either the addition of Fe3O4 NPs
or the coating methods. A bit more PCBM agglomer-
ates are obtained from rod-coated samples. The model
description and detailed fitting results are presented in
supporting information.

J–V curves for samples from the spin and rod coat-
ing methods are presented in Fig. 3a. The device per-
formance of the rod-coated samples is generally lower
than the spin-coated ones because of the scratches
on active layers generated during the coating process
(shown in Fig. S3 and Table S1). In previous study,
the addition of 4 vol% Fe3O4 NPs improve PCE of
90-nm thick active layer samples by 20%, while did
little to 230-nm thick ones (Zhang et al. 2017). How-
ever, in this work, the addition of 4 vol% Fe3O4 NPs
decreased the rod-coated sample’s current density (J )

from 8.4 to 6.7 mA/cm2 causing the PCE lowered
to 1.4 from 1.9%, which is contrary to our previous
findings. To unravel its reason, P3HT polycrystalline
property was first studied by GIXRD.

The GIXRD patterns presented in Fig. 3b show

(100) peaks at 0.38 Å
−1

rendering a d-spacing of
16.5 Å (2π/q). The height and full half width max-
imum (FWHM) of the peak enable one’s ability to
compare P3HT crystallinity qualitatively among sam-
ples (Kiel et al. 2010; Chen et al. 2011; Rivnay et al.
2012). So, one can tell that the rod-coated samples
have higher degree of P3HT crystallinity because of
their relatively higher peak maxima compared with the
spin-coated ones. In the spin coating process, 90% sol-
vent on the substrate is lost in the first 5 s and the
amount of residual solvent is not much, if any (Chou
et al. 2013). While in the rod coating process, the
large amount of residual solvent left on the substrate
results in much longer liquid drying time, as shown in
Fig. 2. Thus, much denser solvent vapor is generated
around the substrate, equivalent to solvent annealing,
creating higher degree of P3HT crystallinity compared
with the spin-coated ones (Li et al. 2007). However,
this high degree of P3HT crystallinity did not lead to

Fig. 4 Cross-section TEM
images of a the spin- and b
the rod-coated samples
containing 4 vol% Fe3O4
NPs in the active layers. c
C/S atomic ratios of the top
surfaces from pure P3HT,
spin- and rod-coated active
layers
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any device performance improvement suggesting that
the PCE was dominated by the defects of active lay-
ers brought by the scratches in the rod coating process
(see Fig. S3). The addition of Fe3O4 NPs disrupts the
formation of P3HT polycrystalline further lowering
the current density as shown in J–V curves.

TEM cross-section images shown in Fig. 4a and b
present the vertical distribution of Fe3O4 NPs within
the active layers. Fe3O4 NPs in the spin-coated sam-
ple form a thin layer at the air interface. While in the
rod-coated sample, these NPs are randomly distributed
and large clusters are generated at the substrate inter-
face. As reported in the previous study, the magnetic
and depletion attraction cause clustering of NPs, and
Fe3O4 NP’s density (2.85 g/cm3) is much higher than
the blend of P3HT:PCBM (about 1.2 g/cm3), so it is
possible that the Fe3O4 NP clusters aggregate at the
substrate due to their gravitational impact. Since the
coating method is the only difference during the sam-
ple preparation step, it suggests that the convective
flow from spin coating is the key factor to move NPs
upward to the air interface which cannot be provided
by rod coating method.

In the rod-coated active layers, to achieve the same
NP SA effect without strong convective flow, Fe3O4

NPs have to rapidly diffuse toward the air inter-
face and form layered structure following the surface
energy ordering of the film’s components as they do
in the spin-coated ones (Zhang et al. 2017). If we set
x is the distance of particle’s vertical diffusion and t

is diffusion time, then we have x = (2Dt)1/2 (Dee-
gan et al. 1997; Rabani et al. 2003; Bigioni et al.
2006). D is diffusion coefficient and estimated from
the Stokes–Einstein relation D = kBT /6πη, where
kB is Boltzmann’s constant, T is absolute tempera-
ture, η is dynamic viscosity, r radius of the particle.
Since η = 3.38 cp for the P3HT:PCBM solution
(value presented in Table S4), kBT = 4.11 × 10−21J
at room temperature (T = 298K), and Fe3O4 NP
radius r = 5.5 nm, so D = 11.7 μm2s−1. Thus,
for 1000-s liquid drying time (see Fig. 2), x is about
0.153 mm, which is much shorter than the height of
solution left on the substrate (around 1 mm). There-
fore, the liquid film drying rate is much faster than the
NP diffusion rate. The Fe3O4 NPs are immobilized
in the matrix of P3HT:PCBM in random distribution
when the liquid film interface is descending. Hence,
the polymer depletion zone cannot be generated due

to the absence of a thin layer of Fe3O4 NPs at the air
interface. As a result, the PCBM rich region cannot
be obtained to improve charge transport and collec-
tion at cathode. This result was confirmed by the C/S
atomic ratio shown in Fig. 4c. Since sulfur atoms are
only from thiophene S of P3HT, and almost all the car-
bon atoms are from blend of P3HT and PCBM, so one
can compare the C/S atomic ratio to know the change
of PCBM composition at the top surfaces of the pure
P3HT, spin- and rod-coated active layers (Zhang et al.
2017). For the rod-coated sample, with the addition
of Fe3O4 NPs, its composition is almost the same as
pure P3HT meaning very little PCBM found at the air
interface, which agrees well with the TEM images and
justifies our argument.

Previously, a group of researchers claimed that the
spin-orbit coupling effect caused the device perfor-
mance improvement with the addition of Fe3O4 NPs
(González et al. 2015). This proposed mechanism
argued that the improvement relied on the proper con-
centration of Fe3O4 NPs doped in the active layer
without taking account of the NPs’ vertical distri-
bution in the active layer. Based on this proposed
mechanism, device performance improvement should
be obtained in the rod-coated samples with the addi-
tion of 4 vol% Fe3O4 NPs, which is contrary to our
findings in this study, which put this spin-orbit cou-
pling effect under question requiring further proof for
justification.

Conclusion

Although the rod coating technique is simple and
fast for large-scale fabrication of organic solar cell
devices, the morphology control method effective for
spin-coated solar cells may not function properly for
rod coating process. Without strong convective flow
and solvent evaporation from the rapid initial dry-
ing of the liquid film, Fe3O4 NPs cannot diffuse to
the cathode interface because of the viscous resist-
ing force and low solvent evaporation rate resulting in
a low NP diffusion rate. In order to obtain high NP
diffusion rate, a solvent with low viscosity or boil-
ing point could be considered as a replacement of
di-chlorobenzene. Heating the liquid films could also
be an option since it can increase the solvent evap-
oration rate thus NP diffusion. However, the liquid
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film drying rate is also increased, which complicates
the morphology control process. After all, this study
shows that the P3HT:PCBM morphology at nanome-
ter length scale remains more or less unchanged by
using the rod coating technique and there is poten-
tial for scalable manufacturing if we could transfer
the morphology control methods in the laboratory to
the industrial level. It also paves the way for further
research on the NP SA effect leading to clever design
and functionalization concepts in electronic devices
made of nanocomposite materials.
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