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Abstract BaWO4 nanoparticleswere successfully used as
the photocatalysts in the degradation of methylthioninium
chloride (MTC) dye at different pH levels of aqueous
solution. Pure phase of barium tungstate (BaWO4) nano-
particles was synthesized by modified molten salt process
at 500 °C for 6 h. Structural and morphological character-
izations of BaWO4 nanoparticles (average particle size of
~40 nm) were studied in details using powder x-ray dif-
fraction (XRD), FTIR, Raman, energy-dispersive, electron
microscopic, and x-ray photoelectron spectroscopy (XPS)
techniques. Direct band gap energy of BaWO4 nanoparti-
cles was found to be ~3.06 eV from the UV–visible
absorption spectroscopy followed by Tauc’s model. Photo-
catalytic properties of the nanoparticles were also investi-
gated systematically for the degradation of MTC dye solu-
tion in various mediums. BaWO4 nanoparticles claim the
significant enhancement of the photocatalytic degradation
of aqueous MTC dye to non-hazardous inorganic consti-
tutes under alkaline, neutral, and acidic mediums.

Keywords Nanoparticles . XPS . Degradation .
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Introduction

Wastewater treatment is an important concern to control
the water pollution and health risks, worldwide, by the
destruction of organic pollutants like organic dyes (e.g.,
methylthioninium chloride, rhodamine B, methyl or-
ange) from water. One slice of the most hazardous
substances in wastewater is organic dyes because these
are widely used in many industrial applications includ-
ing plastics, cosmetics, drugs, textiles, paper, leather,
etc. Numerous methods like solvent extraction (El-
Ashtoukhy and Fouad 2015; Lee et al. 2000), adsorption
(Alqadami et al. 2016; Naushad et al. 2016; Zhu et al.
2012), chemical precipitation, and coagulation (Bowie
and Bond 1977) were employed in the removal of
hazardous substances from water. The biggest challenge
to the researchers is to develop the efficient and cost-
effective procedures for wastewater treatment.
Photocatalysis is an effective, eco-friendly, economical,
and simple process for the purification of wastewater by
the removal of organic and inorganic pollutants from
aqueous. Several semiconducting nanostructured mate-
rials including TiO2 (Das et al. 2012; Huang et al. 2013;
Liu et al. 2011; Qamar et al. 2009; Seftel et al. 2015;
Zhang et al. 2017), MWCNT/TiO2 (Zouzelka et al.
2016), GO/TiO2 (Jin et al. 2014; Radich et al. 2014;
Yang et al. 2016b), heteroatom-doped graphene–TiO2

(Tian et al. 2017), Fe2O3/TiO2 (Ahmed et al. 2013), GO/
TiO2/Au (Yang et al. 2016a), Ag/ZnO (Arab
Chamjangali et al. 2015), ZnO (Shen et al. 2008), CdS
(Ahmed et al. 2016), GO/CdS (Wang et al. 2012), ZnO/
CdS (Khanchandani et al. 2012), CdS/SiO2, SnO2 (Kim
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et al. 2016), Mn3O4 (Larbi et al. 2016), NiMn2O4 (Larbi
et al. 2016), WO3 (Visa et al. 2015), Pt/WO3 (Fujii et al.
2015), TiO2/WO3 (Anandan et al. 2014), WO3/ZnWO4

(Keereeta et al. 2015), Co-BiVO4 (Zhou et al. 2010),
BaMoO4 (Bazarganipour 2016), etc. were extensively
used as the photocatalysts in the degradation of aqueous
organic dyes. BaWO4 is a semiconducting material and
has a band gap in the range from 3.2 to 5.6 eV
(Khademolhoseini and Ali Zarkar 2016; Mohamed
Jaffer Sadiq and Samson Nesaraj 2015; Pontes et al.
2003; Tyagi et al. 2010; Vidya et al. 2013). Recently,
BaWO4 nanoparticles were used as the photocatalysts in
the removal of organic pollutants (e.g., rhodamine B and
methyl orange) from water (Khademolhoseini and Ali
Zarkar 2016; Mohamed Jaffer Sadiq and Samson
Nesaraj 2015). Manganese oxide pyrolusites were used
as the photocatalysts for the degradation of methylene
blue at various pH levels (acidic and basic mediums) of
the solution (Kuan and Chan 2012). In this paper, we
present that the BaWO4 nanoparticles were used as the
photocatalysts in the degradation of organic pollutants
(e.g., methylthioninium chloride dye) from water at
different pH levels. Methylthioninium chloride (MTC)
is a basic aniline dye (general formula: C16H18ClN3S)
which is also known as methylene blue (MB) dye. MTC
also leads to a number of health complications including
affected central nervous system, breast cancer, and gas-
trointestinal disturbances in human being (Kida et al.
2003; Piscatelli et al. 2009; Vutskits et al. 2008).

BaWO4 nanostructured materials have also shown
the potential in various applications including low-
temperature cofired ceramics (LTCC) (Vidya et al.
2013), nitrogen oxide sensors (Tamaki et al. 1995),
non-enzymatic glucose biosensors (Mani et al. 2016),
optical (Ge et al. 2005; Nikl et al. 2000; Tyagi et al.
2010; Vidya et al. 2013), photoluminescence (Anicete-
Santos et al. 2011; Cavalcante et al. 2009a; Cavalcante
et al. 2009b; Yin et al. 2010; Zhang et al. 2013), light-
emitting diodes (Yang et al. 2009), microwave dielec-
trics (Wang and Bian 2014), etc. Metal oxide nanostruc-
tured materials (with different shape and size) have been
synthesized from the various chemical methods includ-
ing reverse micelle (Ahmed et al. 2012; Kwan et al.
2001; Shi et al. 2002; Shi et al. 2003), solvothermal
(Zhang et al. 2006), hydrothermal (Cavalcante et al.
2009a; Zhang et al. 2013), surfactant-assisted hydrother-
ma l ( L i u a n d Chu 2005 ) , s o n o c h em i c a l
(Khademolhoseini and Ali Zarkar 2016; Thongtem
et al. 2008), coprecipitation (Mohamed Jaffer Sadiq

and Samson Nesaraj 2015; Phuruangrat et al. 2012),
microwave heating (Shen et al. 2011), combustion
(Vidya et al. 2013), etc. Microcrystals of BaWO4 mate-
rials were also prepared by the molten fluxmethod using
alkali metal nitrates with 12-fold in excess at 400–
500 °C for 12 h (Afanasiev 2007). Pure phase of
BaWO4 nanoparticles in tetragonal unit cell structure
was synthesized from the modified molten salt method
using sodium nitrate and potassium nitrate as the reac-
tion mediums at 500 °C for 6 h. X-ray diffraction
(XRD), FTIR, Raman, XPS, EDS, and electron micro-
scopic studies were carried out for structural and mor-
phological characterizations of BaWO4 nanoparticles.
Optical and photocatalytic properties of BaWO4 nano-
particles were investigated in details. UV–vis spectro-
photometer and electrospray ionization mass spectrom-
eter (ESI-MS) techniques were employed to study the
photocatalytic degradation of MTC dye over the surface
of BaWO4 nanoparticles.

Materials and methods

Ba(NO3)2 (BDH, 98%), Na2WO4·2H2O (BDH, 96%),
NaNO3 (Alfa Aesar, 98+%), and KNO3 (Alfa Aesar,
99%) reagents were used in the synthesis of BaWO4

nanoparticles by the molten salt method. The molten
salts were taken with the molar ratio of 1:1:40:40 of
Ba(NO3)2/Na2WO4·2H2O/NaNO3/KNO3 and mixed to-
gether in an agate mortar pestle for 30 min to make the
homogenous mixture. Subsequently, the resulting ho-
mogenous mixture of the molten salts was transferred to
the covered ceramic crucible and kept at 500 °C for 6 h
in temperature-controlled furnace with the heating and
cooling rate of 10 °C per minute. The white-colored
product was washed several times by de-ionized water
and then dried at 50 °C in an oven. Previously, micron-
sized particles of BaWO4 were prepared by the molten
flux method using BaCl2, alkali metal tungstate, and
either NaNO3 or KNO3 in the molar ratio of 1:1:12 in
the temperature range from 400 to 600 °C for 12 h
(Afanasiev 2007).

The white-colored nanopowders were characterized
by powder XRD on an x-ray diffractometer (Rigaku
MiniFlex) using Ni-filtered Cu-Kα radiation. XRD data
was recorded with a step size and a scan speed of 0.02°
and 1 s, respectively. FTIR studies were investigated on
a Bruker TENSOR 27 spectrometer in the range of wave
number from 400 to 4000 cm–1. Raman spectroscopic
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measurements were done on a Renishaw instrument
with an Ar laser source of 488 nm. Field emission
scanning electron microscopic (FESEM) studies
were done on a JEOL JSM-7600F electron micro-
scope operated at 5 kV. High-resolution transmission
electron microscopic (HRTEM) analyses were ac-
complished on a JEOL JSM-2100F electron micro-
scope (Tokyo, Japan) operated at 200 kV. X-ray
photoelectron spectroscopy (XPS) was acquired on
a Kratos Axis Ultra DLD (Chestnut Ridge, NY) to
confirm the chemical composition of the nanoparti-
cles. BET surface area of the BaWO4 nanoparticles
was measured on a V-Sorb 2800 Porosimetry ana-
lyzer (Gold APP Instruments, China). The absorp-
tion spectroscopic studies of the BaWO4 nanoparti-
cles were performed on a UV–vis spectrophotometer
(Shimadzu, UV-1650) with a single-beam diode ar-
ray spectrometer in a wavelength range from 200 to
800 nm using a slit width of 1 nm. Deuterium (D)
and tungsten (W) lamps were used to afford the
illumination across the UV and visible electromag-
netic spectrum. Absorption spectrum was typically
collected from 1 mL of sample dispersion using a
standard quartz cuvette with the path of 1 cm. The
photocatalytic activities of BaWO4 nanoparticles
were investigated against the organic dye (MTC as
a pollutant) in water under the irradiation of sunlight
at different pH levels. The degradation studies of
MTC dye solutions were carried out at room tem-
perature at pH 4, 7, and 10 using a UV–vis spectro-
photometer at λmax of 662.5 nm with the photocat-
alytic reaction intervals. All the samples were taken
in sample cuvette with high transparency to measure
the absorption spectra of photodegradation of dye
solution. Note that the photocatalytic experiments
were repeated twice to check the reproducibility of
the present results. The degradation rate constants of
MTC dye using BaWO4 nanoparticles as the
photocatalysts were calculated using the following
equation (i.e., first-order reaction kinetic): ln(C/
C0) = −kt, where C, C0, k, and t are the concentra-
tions of MTC dye after time (t), initial concentration
of MTC dye, rate of degradation constant, and time,
respectively. An electrospray ionization mass spec-
trometer (ESI-MS, Agilent Triple Quadrupole) was
used to investigate the quantitative analysis of the
photodegraded MTC dye. The ESI-MS spectral data
was obtained with 34 scans (0.3 s each) at the
fragmented voltage of 100 V.

Results and discussions

Figure 1a shows the XRD pattern of BaWO4 nanoparti-
cles obtained from the molten salt method at 500 °C.
XRD pattern clearly shows the formation of pure
BaWO4 phase with zero impurity phases. All the diffrac-
tion peaks [(101), (112), (004), (202), (211), (204),
(220), (116), (215), (132), (224), and (008)] are perfectly
indexed on the basis of tetragonal unit cell structure of
BaWO4 (JCPDS 72-0746). Figure 1b shows the FTIR
spectrum of BaWO4 nanoparticles in the range of wave
number from 400 to 4000 cm−1. The bands at ∼1380 and
∼3414 cm−1 correspond to the bending vibration and
stretching vibration of –CH2 and –OH groups, respec-
tively. A strong band at ~824 corresponds to the anti-
symmetric stretching vibration of W–O in [WO4]

2− tet-
rahedron as also reported previously (Mohamed Jaffer
Sadiq and Samson Nesaraj 2015) that confirms the for-
mation of barium tungstate. Figure 1c represents the
Raman spectrum ofBaWO4 nanoparticles. Raman bands
of BaWO4 nanoparticles at ~926 and ~334 cm

–1 belong
to the non-degenerate symmetric stretching vibration,
and the bands at ~797 and 832 cm–1 resemble to degen-
erate asymmetric stretching vibration ofW–O in [WO4]

2

− tetrahedron while the Raman mode at 274 cm–1 could
be assigned on the basis of symmetric stretching vibra-
tion of BaO6 octahedron. Raman modes of tetragonal
BaWO4 nanoparticles were also reported elsewhere and
the present work also supports to the previous reports
(Hardcastle and Wachs 1995; M Zawawi et al. 2013).

X-ray photoelectron spectroscopy (XPS) measure-
ments were carried out to obtain the oxidation state of
cations and the surface chemical composition of
BaWO4. The XPS spectrum of BaWO4 (Fig. 3a) reveals
the presence of Ba, W, and O elements in the nanopar-
ticles with no impurities. The high-resolution Ba 3d
spectrum is shown in Fig. 2b that consists of two spec-
tral lines at 780.30 and 795.69 eV, corresponding to the
Ba 3d5/2 and Ba 3d3/2 lines, respectively (Shi et al.
2003). Figure 2c shows the high-resolution W 4f spec-
trum that also consists of two more spectral lines at
35.42 and 37.6 eV, which correspond to the W 4f7/2
andW 4f5/2 lines, respectively (He et al. 2015). The O 1s
spectrum is shown in Fig. 2d. The component at
531.07 eV was assigned to the oxygen in BaWO4.

FESEM studies of BaWO4 nanoparticles are shown in
Fig. 3. FESEM micrographs show the formation of
uniform and monodispersed nanoparticles of BaWO4.
A careful visualization of size and shape analysis of
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BaWO4 nanoparticles is shown in Fig. 3b, c. Excerpt of
FESEM micrograph shows that the nanoparticles are
spherical in shape with uniform particle size distributions
and the average particle size was found to be ~40 nm.
The significance of uniform and monodispersed
nanoparticles could be ascribed to the uniform
physicochemical properties of distinct particles in the
dispersion medium. Therefore, monodispersed
nanoparticles with uniform size could be more effective
in their respective applications like sensing, energy
conversion and conservation, adsorption, photocatalytic
wastewater treatments, etc. Previously, Afanasiev (2007)
reported the molten salt synthesis of microcrystalline
polyhedral-shaped barium tungstate particles with an

average size of ~10 μm. The major differences between
the previous and present procedures are the nature of
molten salts and the molar ratio of precursor materials
and molten salts used in the chemical reactions. In this
procedure, molten salts function as the solvent like water
and excess of molten salts plays the fundamental role in
terms of transferring of the sufficient amount of energy to
the precursor materials to control the size of the final
product materials in nanometric region. This is notewor-
thy that the molten salt procedure is one of the most
favorable, simple, eco-friendly, and less expensive meth-
od to synthesize the pure phase nanostructured materials
with uniform particles size. Figure 3b shows the energy-
dispersive x-ray spectroscopic (EDS) studies (equipped
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Fig. 1 a XRD pattern, b FTIR, and c Raman spectra of BaWO4 nanoparticles
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with FESEM machine) of BaWO4 nanoparticles for the
elemental analysis. The atomic weight percent of the
elements in the nanoparticles was found to be 10.30
and 9.64% of Ba and W, respectively, which matches

with the initial loaded composition. TEM studies support
the FESEM results and confirm the shape and size of
BaWO4 nanoparticles. Figure 4a shows the formation of
spherical-shaped nanoparticles with the particle size
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range from 30 to 40 nm as also observed in FESEM
studies. High-resolution transmission electron micro-
scopic (HRTEM) studies showed that the BaWO4 nano-
particles are very crystalline in nature (Fig. 4b). The
lattice d-spacing value of BaWO4 nanoparticles was
found to be ~3.37 Å from HRTEM studies, which is a
good agreement with highly intense plane (112) of te-
tragonal crystal structure of BaWO4 nanoparticles. Spe-
cific BET (Brunauer–Emmett–Teller) surface area (SBET)
of BaWO4 nanoparticles was studied using the N2 ad-
sorption–desorption isotherm. SBET of BaWO4 nanopar-
ticles was found to be ~4.46 m2/g that is larger (more
than two times) than the earlier reported SBET of BaWO4

nanoparticles (~2.30 m2/g) (M Zawawi et al. 2013). The
pore size distribution (1.75 nm) of the resulting BaWO4

nanoparticles was found to be smaller than that of the
previously reported pore size distribution (1.92 nm) of
the BaWO4 nanoparticles (M Zawawi et al. 2013).

Optical properties of BaWO4 nanoparticles were also
investigated at room temperature from the UV–vis ab-
sorption spectroscopic studies. Optical absorption spec-
troscopy is one of the strong techniques to examine the
optical properties of nanocrystalline materials. The

optical absorbance spectrum for BaWO4 nanoparticles
was recorded in the region of ultraviolet A (i.e., UV
region from 315 to 400 nm) with the peak value of
344 nm (Fig. 5a). UV–vis absorption spectroscopy
works with some factors in order to find the bands in
ultraviolet and visible reasons, i.e., (1) dispersed light
due to scattering counted as absorbed light by the UV–
vis spectrophotometer and (2) optical absorption due to
electronic transitions of the sample. The fundamental
absorption studies (visible and near UV spectral range)
led to the generation of electron-hole pair as a result of
optical excitation of electrons from the valence band to
the conduction band. The minimum quantum energy
sufficient to electron excitation from the valence band
to the conduction band is equal to the band gap of the
semiconductor. The optical band gap energy of BaWO4

nanoparticles was experimentally calculated through the
UV–vis absorption spectrum studies using Tauc’s model
(Tauc 1968). Figure 5b shows a plot of band gap energy
(i.e., photon energy) versus (αhν)2 for BaWO4 nanopar-
ticles, where α, h, and ν are represented as the absor-
bance (obtained from absorption spectrum), Planck’s
constant, and frequency of incident beam, respectively.
The optical band gap energy, extrapolation of the
straight line, of BaWO4 nanoparticles was found to be
~3.06 eV, which is lower than that of other reports
(Khademolhoseini and Ali Zarkar 2016; Mohamed
Jaffer Sadiq and Samson Nesaraj 2015; Pontes et al.
2003; Tyagi et al. 2010; Vidya et al. 2013). Lower value
of band gap energy could be possible due to the
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following key parameters: changes in symmetry of lat-
tice, electronic states, electronegativity of tungsten ions,
deviation in bonds (i.e., O–W–O bonds), distortion of
the [WO4]

2− tetrahedrons, oxygen vacancy, etc. (Vidya
et al. 2013). The band gap energy is the energy differ-
ence between the valance and the conduction band of
the materials. BaWO4 nanoparticles retain the wide
band gap in the visible region that could be an appro-
priate material in the transparent conducting oxide films
for the solar cells and photocatalytic applications.

The photocatalytic efficiency of BaWO4 nanoparticles
was examined in the degradation of methylthioninium
chloride (MTC) dye under the sunlight irradiation at
different pH values, i.e., 4, 7, and 10. Figure 6 represents
the photocatalytic mechanism for the degradation of or-
ganic dye to inorganic constituents with BaWO4 nano-
particles. Photocatalytic degradation of MTC dye on the
surface of nanoparticles could be described in terms of the
generation of oxidizing agents, i.e., hydroxyl free radicals
(OH·). Photocatalytic activity of BaWO4 nanoparticles
arises due to the recombination of electron (e−)–hole
(h+) pairs. The electrons (e−) are excited from the valence
band to the conduction band, and the holes (h+) are
formed on the valence band of BaWO4 nanoparticles after
the irradiation of solar light. Note that the photonic energy
is larger than the band gap energy of BaWO4 nanoparti-
cles (3.06 eV), which is estimated experimentally from
the UV–vis absorption studies as discussed above. The e−

and h+ pairs were produced the superoxide radical anion
(O2

−·) and hydroxyl radicals (ȮH·), respectively, in aque-
ous medium at the atmospheric condition (i.e., in pres-
ence of oxygen). The hydroxyl radicals (OH·) attack on
theMTC dyemolecule to give the oxidized products. The
photocatalytic reactions could be summarized in the fol-
lowing steps as given below (note that BWO resembles as
BaWO4 nanoparticles in the following steps):

BWOþ hυ →BWO e– þ hþð Þ

BWO hþð Þ þ H2O→BWOþ OH • þ Hþ

BWO hþð Þ þ HO−→BWOþ OH •

In the conduction band, the electrons (e−) of BWO
reduce the molecular O2 to the protonated form of
superoxide (O2

•−):

BWOþ O2 þ e– →BWOþ O2
•–

O2
•– þ Hþ →HO2

•

Formation of hydrogen peroxide followed by further
reduction of molecular O2

2HO2
•−→H2O2 þ O2

H2O2 þ e‐→OH− þ OH•

The degradation of the adsorbed complexes (i.e.,
MTC dye) via direct oxidation process on the surface
of BWO photocatalysts gives the oxidized products as
shown below:

OH � þMTC→MTC � þH2O

MTCþ hþ→MTCþ � degraded products; i:e:;CO2ð Þ
The resulting oxidized products could be ap-

peared in the form of H2O, CO2, NO3
−, and SO4

2−

after the complete degradation of MTC dye over the
surface of photocatalysts, as also reported previously
(Houas et al. 2001).

The photocatalytic degradation of MTC dye in aque-
ous at pH 7 is shown in Fig. 7. The characteristic peak of
organic dye (i.e., MTC) was detected at the absorbance
of 662.5 nm in the UV–vis absorption spectra. We
observed that the absorption band intensities were di-
minished with time (t) in the presence of BaWO4 nano-
particles under the sunlight irradiations (Fig. 7a). Re-
duction in the absorption band intensities of aqueous
MTC dye solution indicates the degradation of dye by
the irradiation of light on the surface of BaWO4 nano-
particles. Figure 7b shows the linear plot (i.e., kinetic
plot) of degradation efficiencies of MTC dye with time
versus ln(C0/Ct), which provides the kinetic behavior of
the photocatalytic reactions. The rate constant of reac-
tion was observed from the slope of curve fitting line.
The photocatalytic degradation of MTC dye over the
surface of BaWO4 nanoparticles follows the first-order
decay kinetics, and the rate constant (k) was estimated
from the kinetic equation (i.e., ln(C0/Ct) = kt, where C0,
Ct, t, and k are the initial concentrations of MTC, con-
centration of MTC at various time intervals, time, and
rate constant, respectively). The kinetic linear plots of
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ln(C0/Ct) vs Bt^ suggested the pseudo-first-order reac-
tion with the rate constants and R2 value of (slope) of
0.2861 h−1 and ~0.9945, respectively (Fig. 7b). This is
noteworthy that the maximal value of absorption wave-
length (i.e., 662.5 nm) was not changed during the
degradation of organic dye over the surface of BaWO4

photocatalysts. Figure 7c shows the variation of the
photocatalytic activity of BaWO4 nanoparticles at the
maximal value with time (t) of irradiation of sunlight.
The rate of photocatalytic degradation was obtained
from the equation containing primary concentration
and the concentration after the irradiation time (t) of
the dye solution, i.e., (Ct/C0) × 100%. BaWO4 nanopar-
ticles degraded the MTC dye solution up to 97% in the
presence of sunlight for 7 h. Figure 7d shows the ab-
sorption spectra of MTC dye in the dark with BaWO4

nanoparticles at pH 7. It is notable that no catalytic
degradation of MTC dye occurred in the presence of

BaWO4 nanoparticles in the dark. The stability of
photocatalysts is also an important concern for the in-
dustrialization. Therefore, BaWO4 nanoparticles were
also optimized for the recyclable process in the
photodegradation of MTC dye. These nanoparticles
as the photocatalysts show recyclable efficiency
with excellent activity for the degradation of MTC
dye solution under the irradiation of sunlight. Note
that the nanoparticles have been washed from the
distilled water followed by drying at 50 °C after the
completion of each cycle. The photocatalytic stability
of BaWO4 nanoparticles was observed using the several
consecutive cycles to evaluate the photocatalytic reactiv-
ity of the nanoparticles after the exposure to UV irradi-
ations. It is clearly observed that the BaWO4

photocatalysts hold high reactivity (i.e., up to ~70%)
and stability after the six consecutive cycles against the
UV irradiations in neutral medium.
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Furthermore, the catalytic degradation of MTC dye
solution using the BaWO4 photocatalysts has also been
investigated in alkaline medium (i.e., pH = 10).
Figure 8a shows the absorption spectra of MTC dye
solution at the wavelength of 662.5 nm. Absorption
studies reveal that the photocatalytic degradation process
of the organic pollutant (i.e., MTC dye) into inorganic
substances was conceded to be very fast in alkaline
medium compared to the neutral medium without alter-
ation of the absorption wavelength of MTC dye
(662.5 nm) with the time (t). The kinetic linear plot of
ln(C0/Ct) vs time has been shown in Fig. 8b. Pseudo-
first-order kinetic reaction was clearly observed experi-
entially with the rate constants and R2 values of
0.0464 min−1 and ~0.97905, respectively. Figure 8c, d
shows the photocatalytic activity of BaWO4 nanoparti-
cles for the degradation of MTC dye in alkaline medium
(at pH = 10) in the presence of solar light irradiation.
This is noteworthy that the photodegradation process of
MTC dye in alkaline medium was found to be faster

(~93% degraded within 40 min) compared to the neural
medium under the irradiation of solar light. Earlier,
nanocrystalline BaWO4 particles were used as the
photocatalysts for the degradation of organic dye (rho-
damine B and methyl orange) in the presence of light.
BaWO4 nanoparticles degraded themethyl orange ~70%
within 70 min and rhodamine B ~90%within 180 min in
water under the light irradiations (Khademolhoseini and
Ali Zarkar 2016; Mohamed Jaffer Sadiq and Samson
Nesaraj 2015). The rate of photodegradation process of
organic dye over the surface of nanoparticles depends on
the formation of hydroxyl radicals. In alkaline medium,
more numbers of hydroxyl radicals (attacking species)
are formed, which lead to the faster rate of reaction. The
catalytic degradation of MTC dye on to the surface of
nanoparticles was also inspected in the dark at pH 10,
and we found that no degradation of organic dye (MTC)
was detected with time (Fig. 8d). BaWO4 nanoparticles
are recyclable, stable, and efficient photocatalysts for the
photodegradation of organic dye in alkaline medium.
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BaWO4 photocatalysts claim the reactivity up to 60%
after eight successive cycles against the UV irradiations
in alkaline medium (i.e., pH = 10). Before using for each
cycle, the nanoparticles were washed appropriately with
distilled water and dried properly at 50 °C in an oven.

Additionally, the photocatalytic degradation of or-
ganic pollutant (i.e., MTC dye) was also investigated
in acidic medium (i.e., pH = 4). The absorption spectra
of MTC dye under sunlight irradiations at 662.5 nm are
shown in Fig. 9a. This study exposed that the photocat-
alytic degradation process of MTC dye with the time
was found to be very slow in acidic medium as com-
pared to neutral and alkaline mediums. The kinetic plot
(ln(C0/Ct) vs time) showed pseudo-first-order reaction
with the rate constants and R2 values of 0.0772 h−1 and
~0.99077, respectively (Fig. 9b). Figure 9c shows the
photocatalytic activity of BaWO4 nanoparticles for the
degradation of dye at pH 4 in the presence of sunlight.

The comparative photocatalytic studies of the degrada-
tion of organic dye for 30 min in different aqueous me-
diums (acidic, neutral, and alkaline mediums) are shown
in Fig. 9d. The results show that the dye has been degraded
75, 43, and 18% within 30 min at pH of 10, 7, and 4,
respectively. Therefore, the present results reveal that the
photocatalytic degradations ofMTC dye solution on to the
surface of nanoparticles significantly depend on the nature
of aqueous solution of organic dye. The rate of photocat-
alytic degradation of dye with time was found to be higher
in alkaline medium compared to the neutral and acidic
mediums, which also supports the previous work reported
on the photodegradation of MB with manganese oxide
pyrolusites (Kuan and Chan 2012). The reason behind the
enhancement of photocatalytic degradation in alkaline
medium is the formation of hydroxyl radicals (i.e., highly
reactive species) in larger amount compared to acidic or
neutral medium during the irradiation of sunlight by the
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Fig. 11 a ESI-MS spectrum of MTC dye after photocatalytic degradation at pH 10. b ESI-MS spectrum of pure MTC dye

1 2 3 4 5 6
10

20

30

40

50

60

70

80

90

100
R

eg
en

er
at

in
g 

ef
fic

ie
nc

y 
 (%

)

Number of cycles

pH = 7
Time for one cycle = 7h

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

pH = 10
Time for one cycle = 40 minutes

Number of cycles

R
eg

en
er

at
in

g 
ef

fic
ie

nc
y 

 (%
)a b

Fig. 10 Photocatalytic regeneration efficiency of BaWO4 nanoparticles against the UV irradiations at a pH = 7 and b pH = 10

J Nanopart Res (2017) 19: 289 Page 11 of 14 289



dissociation of H2O2 molecules. Therefore, the rate of
photocatalytic degradation of organic dye in alkaline me-
dium over the surface of BaWO4 nanoparticles was found
to be very high than the other mediums (acidic or neutral).

BaWO4 nanoparticles are recyclable, stable, and effi-
cient photocatalysts for the photodegradation of organic
dye solutions in alkaline medium and neutral medium.
The photocatalytic stability of BaWO4 nanoparticles was
observed using the several consecutive cycles to evaluate
the photocatalytic reactivity of the nanoparticles after the
exposure to UVirradiations at pH 7 and 10 (Fig. 10). It is
clearly observed that the BaWO4 photocatalysts hold
high reactivity (i.e., up to ~70%) and stability after the
six consecutive cycles against the UV irradiations at pH
of 7 (Fig. 10a) while BaWO4 photocatalysts claim the
reactivity up to 60% after eight successive cycles against
the UV irradiations in alkaline medium (i.e., pH = 10) as
also shown in Fig. 10b. Before using for each cycle, the
nanoparticles were washed appropriately with distilled
water and dried properly at 50 °C in an oven.

ESI-MS studies confirm the photodegradation of dye
molecules at pH 10 within 40 min of irradiation, and no
peak of pure MTC dye was observed (i.e., atm/z of 284)
in Fig. 11a. The ESI-MS signals at m/z of 279.1093
(C13H15N2O3S

+), 226.9535 (C13H11N2S
+), and

90.9812 (C6H6N
+) could be indexed on the basis of

the fragmentations of the dye molecules by the attack
of hydroxyl and superoxide free radicals. The most
active bonds of MTC dye are C–N and C–S, which
were broken by the attack of free radicals. Thereafter,
the resulting oxidizedmolecules could be converted into
inorganic constituents like CO2, NH3, H2O, etc. The
present results were also supported by the previous
reports on degradation of MB dye (Amini et al. 2014;
Oliveira et al. 2015). Figure 11b shows ESI-MS spectral
studies of the pure MTC dye where the signal at m/z of
284 was clearly observed. Note that the single at m/z of
284 is missing in Fig. 11a, which indicates that the
organic dye is almost degraded and the resulting signals
correspond to the fragmentation of the dye molecules.

Conclusions

BaWO4 nanoparticles were synthesized from the molten
salt method at 500 °C for 6 h. The optical properties of
BaWO4 nanoparticles were studied using UV–visible ab-
sorption spectroscopy, and the direct band gap energy of
BaWO4 nanoparticles was found to be ~3.06 eV. BaWO4

nanoparticles were used as the photocatalysts for the
degradation of MTC dye at various pH levels with time.
BaWO4 nanoparticles show enhanced photodegradation
of MTC dye solution in alkaline medium compared to the
neutral and acidic mediums. BaWO4 nanoparticles are
stable and significantly recyclable photocatalysts for the
degradation of organic dye in neutral and alkaline me-
diums. This study could be useful in the industrial waste-
water treatment plants by the deprivation of hazardous
dyes into inorganic substances like H2O, CO2, etc.
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