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Abstract The localized surface plasmon resonance
arising from plasmonic materials is beneficial in
solution-based and thin-film sensing applications,
which increase the sensitivity of the analyte being tested.
Silver nanoparticles from 35 to 65 nm in diameter were
synthesized using a low-temperature method and depos-
ited in a monolayer on a (3-aminopropyl)triethoxysilane
(APTES)-functionalized glass slide. The effect of parti-
cle size on monolayer structure, optical behavior, and
surface-enhanced Raman scattering (SERS) is studied.
While increasing particle size decreases particle cover-
age, it also changes the localized surface plasmon reso-
nance and thus the SERS activity of individual nano-
particles. Using a laser excitation wavelength of
633 nm, the stronger localized surface plasmon reso-
nance coupling to this excitation wavelength at larger

particle sizes trumps the loss in surface coverage, and
greater SERS signals are observed. The SERS signal
enhancement accounts for the higher SERS signal,
which was verified using a finite element model of a
silver nanoparticle dimer with various nanoparticle sizes
and separation distances.

Keywords Surface-enhanced Raman spectroscopy.
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Introduction

Silver nanoparticles (Ag NPs) have been the focus of
extensive research within the past two decades and have
a wide range of practical applications (Chimentão et al.
2004; Aroca 2006; Ricco 2006; Le Ru et al. 2009;
Alarifi et al. 2011; Dong et al. 2015; Rao et al. 2015;
Shahid-ul-Islam et al. 2016). Metal NPs in general ex-
hibit the localized surface plasmon resonance (LSPR)
phenomenon at visible wavelengths, which refers to the
driven oscillation of conduction electrons around the
bulk of the NP by electromagnetic radiation. For this
property, Ag NPs are primarily used in biochemical
sensing as a detection label (Wang et al. 2003; Schrand
et al. 2008), in metal-enhanced fluorescence (Aslan
et al. 2005), or in surface-enhanced Raman spectrosco-
py (SERS) (Stiles et al. 2008; Oćwieja et al. 2015).
Other plasmonic applications include Ag NP decoration
to improve the visible light performance of UV
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photocatalytic TiO2 (Yu et al. 2009) or to act as light-
trapping centers in thin-film solar cells (Tan et al. 2012).

A large body of work describes the application of Ag
NPs immobilized on solid substrates, primarily as a low-
cost and scalable approach to SERS substrates capable of
producing nanostructures much smaller than lithographi-
cally possible (Bright et al. 1998; Goulet et al. 2005; Fan
and Brolo 2009; Zhu et al. 2013; Lin et al. 2015; Wang
et al. 2015). Gold NP-based SERS substrates are already
commercially available, but due to their higher reactivity
(Bright et al. 1998) and storage complications arising from
oxidation (Han et al. 2011), Ag substrates are mainly
synthesized in the lab as needed. A fundamental under-
standing of the Ag NP monolayer formation kinetics is
starting to take form as the popularity of these substrates in
research grows. Recently, Oćwieja et al. (2015) published
a review consolidating much of the experimental literature
on monolayer formation kinetics and proposed a hybrid
theoretical model to describe monolayer formation and
characteristics based on bulk solution properties like NP
concentration, pH, ionic strength, NP size, and tempera-
ture. In general, in colloidal self-assembly, these properties
govern the electrostatic interactions between the substrate
and suspended and deposited NPs which ultimately deter-
mines final coverage and structure. These findings are
useful for engineering Ag NP monolayers, particularly
for tuning LSPR properties or optimizing SERS for differ-
ent analytes and excitation sources as LSPR activity is
directly related to the SERS enhancement factor (EF)
(Haynes and Van 2003).

In this work, spherical Ag NPs were synthesized and
deposited in amonolayer on a (3-aminopropyl)triethoxysilane
(APTES)-functionalized glass slide, and the structure,
LSPR, and SERS performance were evaluated. The
behavior of the LSPR has been studied extensively
(Kelly et al. 2003; Behnajady et al. 2009; Cobley
et al. 2009; Qin et al. 2010) and experimentally
(Cobley et al. 2009; Qin et al. 2010; Bastús et al.
2014). However, a discussion of the effect of particle
size and its effect on SERS continues to be of interest
(Tian et al. 2013). The largest SERS enhancement sites
are situated in the nanoscale gaps between NP dimers,
and analytes adsorbed in these Bhot spots^ are thought
to be responsible for the majority of the SERS signal
(Etchegoin et al. 2006). Increasing particle size de-
creases the final particle coverage (Oćwieja et al.
2015), which diminishes the number of hot spots situ-
ated in the SERS excitation area and thus decreases the
signal. However, it has been demonstrated that EF is

greatest when LSPR is correctly correlated with the
chosen excitation wavelength (Haynes and Van 2003).
This experiment studies the effect of increasing the
particle size on the monolayer number density and
SERS signal. Finite element modeling is used to study
the particle size effect on plasmon strength and to
explain the experimental results.

Experimental

Materials

Silver nitrate (AgNO3) (Premion™ 99.9995%), trisodium
citrate (TSC) (>99%), and ascorbic acid (AA, >99%) were
obtained from Alfa Aesar. Polyvinylpyrrolidone (PVP)
(Mw = 55K), (3-aminopropyl)triethoxysilane (APTES)
(>99%), and rhodamine 6G (R6G) (>99%) were obtained
from Sigma-Aldrich. Ammonium hydroxide (ACS), hy-
drogen peroxide (30%), sulfuric acid (ACS), and glass
slides were obtained from Fisher. Ultra-pure water obtain-
ed from aDurpro filtration system (ρ> 18.2MΩ) was used
throughout the experiments.

Synthesis of silver nanoparticle solutions

Ag NPs from 34.9 to 64.6 nm in diameter were synthe-
sized by a two-step reaction starting with the synthesis of
Ag seeds, followed by seed growth by ascorbic acid
reduction of AgNO3. Seeds were synthesized by preparing
a 100-mL solution of 0.3 mM TSC and 0.25 mMAgNO3

in an ice bath. The solution was left to cool with stirring for
over 10 min; then, 3 mL 10 mM NaBH4 was added
dropwise every 5 s. The solution was stirred for an addi-
tional 30 min in the ice bath then stored in a household
refrigerator at 4 °C for up to 1 month prior to use. The
resultant solution consisted of 4-nm-diameter seeds at a
concentration of 1.1 × 10−7 M. Ag NPs of different sizes
were synthesized by preparing a 100-mL solution contain-
ing Ag seeds, TSC, PVP, and 46 μmol [Ag(NH3)2]

+ under
stirring. A solution of 0.1MAAwas then added dropwise,
waiting for the solution to complete any color changes
prior to adding the next drop (about 30 s) until no more
color changes were observed. Five solutions were used in
this study, herein referred to as NP1 → 5. Amounts of
reagents were calculated based on keeping the PVP and
TSC content per available Ag surface area constant and are
summarized in Table 1.
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Fabrication of silver nanoparticle monolayer substrates

Glass slides were cleaned in boiling piranha etch
(1H2O2:4H2SO4 stock solution by volume) diluted to
10% inwater at 90 °C for 1 h.A solution of 1%vol.APTES
was prepared during this time and allowed to hydrolyze for
>15min. The slideswere removed from the piranha, rinsed
with water, and immersed in the APTES solution upright
for 1 h to functionalize the surface. The substrates were
then rinsed with water and dried in a convection oven at
80 °C for 2 h. Ag NP monolayers were formed by NP
immobilization on the functionalized slides by immersion
in Ag NP solution upright for 48 h. The substrates were
then removed, rinsed with water, and then drawn out of the
water bath by a dip coater at 1 mm/min lifting speed to
ensure even drying. The silver monolayer immobilization
process is depicted in Fig. 1. The substrates were used

immediately after drying for the study to avoid oxidative
effects from atmospheric exposure (Han et al. 2011).

Instrumentation

Raman spectra were acquired by a Renishaw Raman
Dual System 1000. The Raman excitation source was a
HeNe laser with a wavelength of 632.8 nm focused on
the sample through a ×50 objective lens. Laser power
was measured to be 4.53 mW, and acquisition time was
always 10 s per individual spectrum. UV/vis absorption
spectra were acquired by a Shimadzu UV-2501PC.
Scanning electron microscopy was performed on a
ZEISS LEO 1550 FE-SEM.

Results and discussion

Particle size effect on substrate microstructure

SEM imaging was used to characterize the distribution of
the silver nanoparticles on the substrate (Fig. 2). The
particles immobilized on glass substrate are quasi-
spherical and found either alone or in clusters in a mono-
layer. As the particle size increases, the solutions become
more polydisperse, with the standard deviation in size
increasing from 7% for NP1 up to 23% for NP4. While
the amounts of TSC and PVP added were scaled with final
surface coverage, they affect the initial solution conditions
during the nucleation and early growth stages, which are
the same for all batches. Thus, the ratio of surfactant to
seed surface area is much higher for the NP5 batch, com-
pared to the NP1 since the amount of seed was reduced
while the amount of surfactant was increased. This dra-
matically altered the solution ionic strength during the
initial stages of growth and resulted in a polydisperse
solution.Nonetheless,wewere still able to achieve increas-
ing average particle sizes which could be used to elucidate
the size-dependent properties of SERS.

A common barrier for self-assembly-based metal NP
SERS substrates for achieving quantitative detection is
spot-spot signal reproducibility (Stiles et al. 2008). Since
the beamdiameter used for SERS excitation is about 1μm,
short-range variance in the substrate coverage is smoothed
across this relatively large area. Generally, final particle
coverage decreases as the diameter increases. One study
showed that solution concentration mainly affected the
initial uptake rate of Ag NPs on a polyelectrolyte surface,
while maximum coverage depended on solution ionic

Table 1 Synthesized silver nanoparticles of various sizes

Identifier Seed
(mL)

PVP
(μmol)

TSC
(μmol)

Measured diametera

(nm)

NP1 1.69 14.8 133 34.9

NP2 0.21 7.36 65.9 39.5

NP3 0.06 4.90 43.9 47.2

NP4 0.03 3.68 32.9 56.4

NP5 0.01 2.94 26.3 64.6

a Size characterization based on NPs immobilized on substrate

Fig. 1 Schematic of self-assembly strategy for the fabrication of
Ag NP monolayer substrates. First, the glass surface is function-
alized with a silence molecule providing a high density of
positively-charged NH2 groups. Then, the negatively charged Ag
NPs are immobilized by electrostatic attraction
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Fig. 2 a–e SEM micrographs of
substrates from NP1 to NP5,
respectively. f–j Particle size
distribution on substrates
NP1 → NP5, respectively, with a
Gaussian fit. <d> denotes average
diameter, and σ is the standard
deviation. The scale bar (black) is
set at 200 nm
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strength by addition of NaCl (Oćwieja et al. 2012). An-
other study looked at the effect of monovalent and divalent
chloride salt electrolytes on the aggregation kinetics and
found that attachment efficiency increases with ionic
strength (Huynh and Chen 2011). These agree with the
finding that while initial uptake is based on electrostatic
attraction between the positively charged substrate and the
negatively charged NPs, particle agglomeration induced
by particle-particle collisions (Grabar et al. 1996) deter-
mines the final NP coverage. The result is a substrate
characterized by lone and clustered NPs in a uniform
surface density at the micron scale.

In this study, PVP is included as a surfactant. PVP has
been shown to shield Ag NPs from chloride, sulfate, and
nitrate environmental changes where trisodium citrate and
polyethylene glycol failed (Tejamaya et al. 2012). It more
strongly adsorbs onto the Ag surface than TSC, and steric
repulsion of the polymer chains prevents agglomeration in
solution (Huynh and Chen 2011). By using APTES as a
polyelectrolyte supporting layer with 48 h deposition time,
maximum coverage is attained on all substrates. However,
ionic strength of the solution was not controlled for. TSC
concentration ranged from 26 μM to 1.3 mM for NP5 to
NP1, which is relatively low and does not significantly
affect attachment efficiency (Huynh and Chen 2011).
Combined with the charge screening effect of PVP, for
which the amount was scaled with the total NP surface
area, the interaction range of all the NP solutions remains
roughly constant. Under this assumption, the interaction
range, h, can be obtained by fitting to the random sequen-
tial adsorption (RSA) model for particles interacting via a
screened Coulomb potential, which predicts the maximum
particle coverage for NPmonolayers (Oćwieja et al. 2015).
For spherical particles, maximum coverage θM can be
approximated by Oćwieja et al. (2015).

θM ¼ θ0

1þ 2h
d

� �2
where θ0 is the maximum coverage for non-
interacting particles (0.547 for spheres), and d is
the particle diameter. The predicted surface density
at saturation is given as

N s ¼ 4θ0
π d2 þ 2h
� � :

Figure 3 plots the surface density vs. diameter and
shows a fit of θM in the RSA model. Using a least-
squares fitting algorithm, h is predicted to be 17.2 nm,

withR2 = 0.86. This value is slightly lower than reported
for hydrodynamic diameters for various Ag NPs in
solution (El Badawy et al. 2010; Oćwieja et al. 2013;
Morga et al. 2014), which can be explained by the fact
that NPs immobilize in clusters. In fact, since particle
agglomeration is the main mechanism of particle immo-
bilization near saturation, the RSA model is insufficient
to describe the final coverage as complex interactions
involving surfactants and agents in the liquid medium
may take place. In this case, there is a deviation from the
RSA model, where NPs immobilize in higher densities
below 40 nm and lower densities above 40 nm.

Particle size effect on optical properties

UV/vis absorption spectroscopy was used to character-
ize the optical properties of both the NP solutions and
substrates, shown in Fig. 4. This method reveals the
LSPR profile of the substrates and can be used to
estimate particle size with peak position and
monodispersity with peak width (Haiss et al. 2007).
The solutions show a primary LSPR peak characteristic
of individual NP absorption from 400 to 440 nm. The
peak heights steadily decrease, consistent with the de-
creasing concentration of NPs. By keeping the number
of Ag+ ions constant while decreasing the number of
seeds, larger particles were obtained at lower concentra-
tion. A redshift and broadening occur with increasing
particle size, in accordance with the increase in size and
polydispersity. An exception to the redshift trend occurs

Fig. 3 Dependence of the NP surface density on diameter. Error
bars indicate standard deviation. The surface density refers to the
average number of NPs from three SEM images of dimensions
1.2 μm × 0.8 μm. The red curve was generated by a fit to the RSA
model for NP adsorption on polyelectrolyte substrates
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with NP1, which is thought to be explained by plasmon
coupling to surrounding NPs due to the higher concen-
tration of NPs (Zhao et al. 2003). A blueshift of the
primary peak occurs from solution to substrate, attribut-
ed to the refractive index of water, which blueshifts the
light apparent to the particles in solution (Paul J. G.
Goulet et al. 2005). The substrates show an increase in
absorptionwith increasing size despite the lower particle
coverage, and while the long wavelength end of the
double bump feature at ~375 nm becomes more pro-
nounced, no significant redshift occurs. An absorption
feature at 600 to 700 nm appears, which is characteristic
of LSPR coupling for dimers and higher-order aggre-
gates (Park et al. 1999; Goulet et al. 2005), and redshifts
with increasing particle size.

These results have several implications for the design
of NP monolayer-based optical plasmonic devices.
Firstly, the increase in absorption and scattering cross
section due to increasing particle size trumps the de-
crease in surface number density, as evident by the taller
peak for the NP5 substrate vs. the NP1 substrate.

However, the solution spectra show opposite behavior,
where the Beer-Lambert law holds for increasing con-
centration. Optical applications which rely on the ab-
sorptive strength of monolayers, such as light-trapping
layers in thin-film solar cells, may increase absorption
by increasing particle size rather than surface density.
Also, within this size range, the primary peak at
~375 nm does not shift significantly with particle size,
but the plasmon-coupled feature at ~600 nm does. The
EF in SERS is largest when the LSPR maximum corre-
sponds to the molecular resonance condition (Haynes
and Van 2003), so SERS-based sensors may be opti-
mized for specific analytes by tuning particle size for a
specific resonance condition. It will be seen in the next
section that the drop in particle surface density does not
cause significant signal loss.

Particle size effect on SERS

Raman spectra of the substrates were taken by dropping
3 μL of analyte on the substrate and flattening the droplet
with a 5 mm × 5 mm glass coverslip. The substrates were
used within 3 h of fabrication and drying. R6G at a
concentration of 10−5 M (4.4 ppm) was used for SERS
measurements. Concentrations of less than 10−6 M were
not stable and results fluctuated. Figure 5 shows the Ra-
man spectrum of the NP1 substrate with pure water

Fig. 4 UV/vis absorbance spectra of a NP solutions diluted 1:20
and b NP substrates. The direction of the arrow indicates an
increase in size

Fig. 5 Raman spectrum of (bottom) bare NP1 substrate and (top)
SERS of a droplet of R6G 10−5M on the NP1 substrate smeared by
a glass cover slip. Curves shown are the average of three acquisi-
tions in different spots across the substrate. Because of the statis-
tical uniformity of the NP monolayer within the beam spot
(~30 μm), the spot-to-spot signal variation was less than 15%.
Spectra were acquired with 4.5 mW laser power at 663 nm exci-
tation with 10 s acquisition time

267 Page 6 of 10 J Nanopart Res (2017) 19: 267



(bottom) and R6G (top). Two broad peaks occur on the
bare substrate, 933 and 1380 cm−1, attributed to the sur-
factants PVP and TSC left in SERS hotspots from the
aggregation stage of monolayer growth. Upon addition
of the aqueous R6G, a suppression of the elevated spectral
region around the two background peaks is observed, and
the characteristic R6G peaks appear. The peak at 608 cm−1

corresponds to C-C-C in-plane bending modes, the peaks
at 768 and 1183 cm−1 are C–H out-of-plane dihedral
modes, and the rest of the labeled peaks at a higher
wavenumber are associated with C–C aromatic stretch
modes (Hildebrandt and Stockburger 1984; Pristinski
et al. 2006).

To evaluate the effect of particle size on SERS signal,
the peaks at 608, 1183, and 1647 cm−1 are chosen for
analysis because they are in a relatively flat region of the
spectral background. Figure 6 plots the heights of these
peaks against the average NP diameter. By using a
concentration several orders of magnitude above the
single molecule regime, surface adsorption of R6G on
silver reaches saturation. This is evident by the lack of

notable signal increase at a concentration of 10−4 M. To
elucidate the effect of particle size, peak heights were
then normalized with surface density. A clear increasing
trend is seen, consistent with the increasing strength of
the substrate LSPR. Interestingly, the increase in signal
strength was evident prior to normalization for NP sur-
face density. Due to the highly localized nature and
extremely large signal enhancement of SERS hot spots,
it is believed a small fraction of analyte molecules
adsorbed into hot spots is responsible for the majority
of the total SERS signal (Etchegoin et al. 2006). None-
theless, a signal still increases with size despite the drop
in the surface number density. This may be attributed to
larger particle size distributions, which may produce
various hot spot configurations (Moskovits and Jeong
2004).

In order to verify our results, finite element modeling
using COMSOLMultiPhysics (Version 5.0) was used to
compute the size dependence of the LSPR in a single
particle, and dimer configuration. An incident Gaussian
beam excitation is plugged into Maxwell’s equations,
and the scattered field is solved for. To visualize the
LSPR, the electric field norm is computed according to
the equation

Ej j ¼ E
*

∙ E
*

 !1

.
2

Figure 7 plots a planar cross section of the electric
field norm in the case of 633 nm excitation and 50 nm
diameter particles. When in a dimer, a hot-spot forms in
the space between particles, and the electric field norm
is 15 times stronger than the incident power. Without the
dimer, the strongest site on the particle surface is only
3.5 times stronger. While this still represents an en-
hancement, the SERS EF can be approximated by |E/
E0|

4, since intensity is proportional to E2 and the en-
hancement occurs twice: on incidence and upon scatter-
ing (Le Ru et al. 2006). This fourth power is the source
of the dramatic scaling of EF with electric field strength
observed in SERS.

A parametric sweep of particle size, gap width, and
wavelength was performed, and the resulting EFs are
calculated according to |E/E0|

4 and plotted in Fig. 8a.
Electric field norms were taken at the center of the gap
along the dimer axis. For comparison, the maximum EF
on the surface of an individual nanoparticle is shown in
Fig. 8b. EFs for dimers are dramatically greater than

Fig. 6 Dependence of the intensity of selected Raman peaks on
the particle diameter awithout any manipulation and b normalized
for NP surface density. Peak heights are based on the average of
three acquisitions at different positions on the substrate, with error
bars indicating standard deviation
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individual particles, reaching values several orders of
magnitude greater. Generally, EFs increase to a peak as
particle size increases, and then drop by an order of
magnitude. EFs are greater overall with a smaller gap,
and peak earlier with shorter wavelength excitation, as
expected. A secondary peak occurs due to the emer-
gence of quadrupole resonance modes in larger particles
(Kelly et al. 2003). Within the range of particle sizes
used experimentally in this study, with a 633 nm exci-
tation, in all cases, the EF monotonically increases.
Additionally, the computed EFs are on the order of 105

to 108. Thus, the simulation-derived EFs are in good
agreement with the experimentally observed results,
which is also observed in gold NPs (Tian et al. 2013).

Conclusions

Silver nanoparticles from 35 to 65 nm were synthesized, and
monolayer substrates of these nanoparticles were fabricated
using self-assembly on APTES-functionalized glass slides.
The effect of particle size on the substrate, optical properties
were studied using UV/vis spectroscopy and SEM imaging,
and the SERS performance was studied using R6G as a target
analyte. The results indicate that the surface number density of
particles decreases as particle sizes increase. Increasing particle
size from 35 to 65 nm produces stronger LSPR for an

Fig. 8 Plots of simulated
enhancement factor (EF) vs.
particle diameter a for a dimer
configuration with various gaps
and b for a single particle. c
Schematic depiction of the dimer
setup showing where |E| is
sampled

Fig. 7 Visualization of the LSPR for a 50-nm silver nanoparticle
dimer with a 2-nm gap and (b) an isolated 50 nm particle. The
electric field norm is plotted on the z = 0 plane, giving a cross
section through the middle of the particles. Incident excitation is a
Gaussian beam of wavelength 633 nm, beam waist diameter
3 μms, and E0 = 1 V/m

267 Page 8 of 10 J Nanopart Res (2017) 19: 267



excitation of 633 nm and produces larger SERS signals due to
optical absorption and scattering of the substrates. This is
corroborated by simulation results, which indicate that SERS
EF monotonically increases when the separation distance
between particles in a dimer decreases and when the particle
size increases.
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