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Abstract FeVO4@TiO2 nanocomposite was fabricated
via a simple and cost-effective approach. The FeVO4

nanorods were synthesized by a hydrothermal method
combined with calcination route without using any tem-
plate and then coated with TiO2 through an annealing
process of dihydroxybis titanium. The FeVO4 nanocom-
posite has a significantly enhanced electrochemical per-
formance by coating with TiO2. The FeVO4@TiO2 de-
livered a specific capacity of 1147 mAh g−1, the dis-
charge capacity remaining at 596 mAh g−1 after 100
cycles (at 200 mA g−1), which is higher than that of pure
FeVO4. The discharge capacity of FeVO4@TiO2 could
be as high as 337 mAh g−1 (at a high load current density
of 10,000 mA g−1). Compared with pure FeVO4,
FeVO4@TiO2 shows a better rate performance. The
amorphous TiO2 coating on a layer of FeVO4 created
efficient improved stability of the structure during the
charge/discharge process. The excellent rate capability
and cyclic stability of the sample proved that
FeVO4@TiO2 could be used as a new anode for lithium
ion battery application. The synthesis method can also be
applied to synthesize other related materials with typical
morphologies and properties.

Keywords FeVO4
. Surfacemodification . Anode

material . Electrochemical properties . Energy storage

Introduction

In modern times, rechargeable Li-ion batteries (LIBs)
have been universally used in plug-in electric vehicles
and portable electronics owing to the advantages of its
high-energy density and long life (Cheng and Chen 2011).
As the traditional commercial anode material, graphite
with the low theoretical capacity (372 mAh g−1) cannot
meet the gradually increasing requirement for energy in
modern times (Sun et al. 2013; Peng et al. 2005). Thus,
novel anode materials with a much higher reversible
capacity should be developed.

Recently, transitional metal vanadates showing the ad-
vantages of high theoretical capacity and rate performance
based on the unique conversionmechanism have attracted
much attention as electrode materials (Wang and Cao
2008; Huang et al. 2010; Yang et al. 2016; Lei et al.
2007; Pan et al. 2011). Awide variety of transition metal
vanadates (such as FeVO4, ZnV2O4, Zn3V2O8, ZnV2O6,
MoV2O8, CuV2O6, CoV2O6, and Ag2V4O11) has been
fabricated and their electrochemical performance was
studied (Xi and Ye 2010; Zhu et al. 2013; Sun et al.
2011; Shi et al. 2011; Li et al. 2013; Wang et al. 2014;
Zhang et al. 2015; Liang et al. 2015; Wang et al. 2012;
Xiao et al. 2009). For example, Yang et al. (2014) have
prepared Co3V2O8 nanosheets, which showed excellent
electrochemical performance. Ni et al. (2014) firstly re-
ported synthesized Li3VO4 through hydrothermal and
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annealed route method. The Li3VO4 delivered a good
initial discharge, 396 mAh g−1 at a rate of 0.25 C after
100 cycles. Gan and workers (2014) synthesized hexago-
nal Zn3V2O8 nanosheets, which displayed an excellent
reversible capacity of 1103 mAh g−1. The non-spherical
structures Co3V2O8·nH2O exhibited impressive electro-
chemical properties with superior lithium storage capabil-
ity (after 255 cycles, maintaining 847mAh g−1) (Wu et al.
2015). Yin et al. (2016) have first reported MoV2O8

nanorods were evaluated as an anodematerial and showed
excellent performance.

Among transition metal vanadates, FeVO4 (iron vana-
date), as a promising host for anode materials, has prom-
inent advantages due to its layered structure (short inter-
calated Li+ ion distance) (Ma et al. 2011). Some reports
have reported high specific capacities of the vanadates
(1300 mAh g−1 for FeVO4). Yan et al. (2016) reported the
synthesis of FeVO4 via a facile hydrothermal-sintering
method. The FeVO4 nanoparticles show initial capacities
of 527 mAh g−1, maintaining 430 mAh g−1 (after 100
cycles). A number of reports on two-dimensional (2D)
nanostructure materials used to develop high performance
are attributed to a large contact area and prompt Li+

diffusion paths. Sim et al. (2012) reported amorphous
FeVO4 nanosheet arrays by a CVD method. The FeVO4

nanosheet arrays presented high specific capacities. Liu
and coworkers (2017) reported FeVO4/graphene nano-
composites were synthesized via a hydrothermal and
heat-treatment method. The FeVO4/graphene nanocom-
posites delivered a good specific capacity, 1046 mAh g−1

after 100 cycles. An abundance of anode materials with
graphene oxide nanocomposite and carbon coating com-
posite with outstanding electrochemical performance has
been reported. Titanium dioxide (TiO2) with a protective
layer is ideal for modified material, which is widely used
to improve cyclic stability for the cathode material. Com-
pared with anode materials, a few works have been con-
ducted on anode materials coated with TiO2. Chen et al.
(2015) synthesized porous cubic Mn2O3@TiO2 through
precipitation-calcination route. The porous cubic
Mn2O3@TiO2 delivered a superior specific capacity of
936mAh g−1 at a rate of 200mAg−1 after 100 cycles. The
highly stable TiO2 provides protection for Mn2O3 from
structural destruction due to the volume change during
charge/discharge processes, and a new scheme is provided
to solve the problem on capacity loss for transition metal
oxides.

In this work, we reported the synthesis of nanostruc-
tures of FeVO4 nanorods without any additives and

template under hydrothermal conditions followed by
calcination, using ammonium lactate titanium (IV) as
modified material. The synthesis method is simple and
cost effective. Compared with pure FeVO4,
FeVO4@TiO2 shows better electrochemical perfor-
mance. The amorphous TiO2 coating layer on FeVO4

created an improvement in the stability of the structure,
rate capability, and cyclic stability through the charge/
discharge process. FeVO4@TiO2 synthesized by a suit-
able method could be used as a promising anode mate-
rial for lithium-ion battery application.

Experimental

Synthesis and characterization of the samples

In the experiment, all of the chemicals were of analytical
grade. One millimole of FeCl3·6H2O and 1 mmol
NH4VO3 were added into 10 ml of deionized water at
room temperature and stirred for 20min, respectively. In
the stirring, the NH4VO3 solution was added dropwise
into the FeCl3 solution, and after 0.5 h, the mixed
solution into a 50-ml autoclave and heated at 180 °C
for 2 h. The expected samples were cleaned with H2O
and ethanol, dried at 80 °C for 8 h, and calcined at
500 °C for 2 h. The FeVO4 nanorods were obtained.

0.2 g of the FeVO4 nanorods was added into 10 ml of
NaOH solution (0.1 mmol) under stirring for 90 min,
then 100 μl of ammonium lactate titanium (IV) was
added under stirring for 180 min. The followed steps
for synthesis of FeVO4were the same as those described
above. The FeVO4@TiO2 nanostructures were
obtained.

X-ray diffraction (XRD) was characterized using Cu
Kα radiation by Bruker AXS (D8 diffractometer). The
sizes of the samples were detected by SEM (JEOLJSM-
7400F, Japan), X-ray (EDX) detector (Oxford Instru-
ments, INCA), and TEM/HRTEM (Tecnai G2 F30, FEI
company). X-ray photoelectronic spectrometer (XPS,
VGESCA-LABMK II) was used to determine the va-
lence states of the elements in the metal oxide.

Electrochemical measurements

The electrodes were prepared by pressing a mixture of
polytetrafluoroethylene (PTFE) (10%), acetylene black
(20%), and active material (70%) onto a nickel net. The
electrodes were dried at 110 °C in a vacuum drying oven
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for 12 h. Electrochemical experiments were performed
using CR2032-type cells with Li foil as the counter
electrode and composite electrodes of expected com-
pounds. The typical mass of active material was about

1.0–1.2 mg cm−2. The electrolyte was a solution of l M
LiPF6 in diethyl carbonate (DEC) and ethylene carbon-
ate (EC) (1:1 by volume). The battery was assembled in
a glove box filled with argon gas. The voltage range of
0.01 to 3.00 V and different current densities were
controlled during battery tests. The cyclic voltammetry
(CV) and electrochemical impedance spectroscopy
(EIS) experiments were conducted by a CHI 660A
electrochemical workstation.

Results and discussion

Both FeVO4 nanorods and FeVO4@TiO2 nanoparticles
were characterized by XRD analysis, as presented in
Fig. 1. The XRD indicated that the two samples had the
same single-phase structure, and the diffraction peaks of
two samples are in agreement with the ordered triclinic
FeVO4 structure (JCPDS No. 071-1592), without any
impurity phase. There are no TiO2 diffraction peaks in
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Fig. 1 XRD patterns of the FeVO4 and FeVO4@TiO2 samples
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Fig. 2 XPS spectrum of a FeVO4@TiO2, b Fe2p, c V2p and O1S, and d Ti2p
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the FeVO4@TiO2 sample, which might be due to the
low content and amorphous state of TiO2. However,
compared with porous FeVO4 nanorods, the main dif-
fraction peaks of FeVO4@TiO2 were weak in Fig. 1b.

As shown in Fig. 2, the X-ray photoelectron spectros-
copy measurements were used to confirm the oxidation
states of Fe, V, O, and Ti in FeVO4@TiO2. The peaks
located at 711.3 and 724.5 eV identified with the binding
energy of Fe 2p3/2 and 2p1/2. The peaks appearing at
516.8, 524.6, and 529.8 eVare attributable to the binding
energy of V2p3/2, V2p1/2, and O1s. The weaker peaks at
458.6 and 464.2 eV correspond to the binding energy of
Ti 2p3/2 and 2p1/2 (Fig. 2d), meaning the presence of Ti4+

in TiO2. The combined results demonstrated that the
FeVO4@TiO2 composite was obtained.

The particle morphologies of the as-prepared FeVO4

and FeVO4@TiO2 were examined by SEM and TEM.
As shown in Fig. 3a and b, uniform FeVO4 nanorods

were successfully obtained. Figure 3c and d show that
the FeVO4@TiO2 composites retain the nanorods’
structure, which would not be destroyed by TiO2 encap-
sulation and thermal treatment. The EDX analyses show
that Fe, V, and O are presented in the FeVO4 samples, as
shown in Fig. 3g; the uniform elemental Ti was distrib-
uted on the surface of FeVO4@TiO2 which is shown in
Fig. 3f and Ti atom content in the composite was about
5%. The TEM images of the as-prepared FeVO4 and
FeVO4@TiO2 are shown in Fig. 4; these nanorods have
widths of 100 nm and lengths of 0.3–2.0 μm, respec-
tively. From Fig. 4b, it clearly shows that FeVO4 nano-
rods have a hollow cavity structure (diameters of 5–
25 nm). Upon TiO2 encapsulation and calcination at
450 °C, the surfaces of the FeVO4 nanorods (Fig. 4c)
become relatively smooth and the HRTEM image in
Fig. 2f showed apparent lattice fringes. The HRTEM
image taken from the edge of the FeVO4@TiO2 samples

Fig. 3 SEM images of the
samples: a, b FeVO4; c, d
FeVO4@TiO2. EDX spectra of g
FeVO4 and f FeVO4@TiO2
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showed the lattice fringe spacings of 0.62 and 0.51 nm
(conforming to the interplanar spacings of the (100) and
(011) lattice planes) of triclinic FeVO4, respectively. A
gray amorphous border is observed on the wall, which
refers to TiO2 layers (~5.6 nm).

Figure 5 presents the CV curves of the FeVO4@TiO2

samples. The CV curves were collected in a potential
range of 0.01 to 3.0 Vat a sweep rate of 0.3 mV s−1. In
the first curve, two reduction peaks at around 2.6–1.8
and 0.63 V, and the two obvious cathodic peaks ob-
served at ~0.19 and ~0.46 V, can be assigned to the

transformation of FeVO4 into LixV2O5 and the reduc-
tion of Fe3+ to Fe0, respectively. In this process, the
electrochemical reactions can be described as: xLi++
xe− + FeVO4 → Fe + LixV2O5 (Sim et al. 2012; Liu
et al. 2017). From the following cycle, the peak of
~0.19 V disappeared, which implied an irreversible
reaction occurring in this potential. The observation of
phase transition of FeVO4 in cycling is similar to that
reported in literature (Ma et al. 2015; Ni et al. 2015).
Due to the generated SEI layer and dissolution of the
electrolyte solvent between the electrolyte and elec-
trode, the electrode materials presented irreversible per-
formance in the first cycle. The reduction peak at 0.46 V
shifted to a positive direction at 0.54 V. The two obvious
oxidation peaks at 1.3 and 2.04 V, a weak oxidation
peak at ~2.5 V, are not changed from the initial cycle.
Additionally, peaks at 1.7 V, which are attributed to the
reduction peaks of anatase TiO2 (Chen et al. 2015),
suggest that the TiO2 coating is active for lithium-ion
intercalation. Except for the first cycle, the followed
curves are nearly overlapped, indicating good revers-
ibility for lithium ions to be intercalated and
deintercalated in the FeVO4@TiO2 samples.

The electrochemical performances of FeVO4 and
FeVO4@TiO2 have been evaluated utilizing the coin-
type cell. The cycling performance of the FeVO4 and
FeVO4@TiO2 electrodes for 100 cycles at 200 mA g−1 in
the range from 0.01 to 3.0 V (vs. Li/Li+) is shown in Fig.

Fig. 4 a, b TEM images of the
FeVO4 samples. c TEM and d
HRTEM images of FeVO4@TiO2

samples
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Fig. 5 First five cycles of CVs for the FeVO4@TiO2 electrode at a
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6. The first discharge capacities of FeVO4 and
FeVO4@TiO2 were 1032 and 1147 mAh g−1, respective-
ly. The initial charge specific capacities of the FeVO4 and
FeVO4@TiO2 electrodes were 714 and 829mAh g−1; the

first coulombic efficiencies were 69.2 and 72.3%, respec-
tively. The cycle performance in Fig. 6c shows that
FeVO4@TiO2 retains a capacity of 597 mA g−1 after
100 cycles. In contrast, the discharge capacity of FeVO4

decreased to 470mA g−1 at the same cycles. It is apparent
that FeVO4@TiO2 has a better cyclic stability than
FeVO4. The highly stable amorphous TiO2 provides
protection for FeVO4 from structural destruction through
the charge/discharge processes.

In addition, the rate performance of the FeVO4 and
FeVO4@TiO2 is shown in Fig. 6d, in which the current
density varied from 200 to 10,000 mA g−1. The dis-
charge capacities were obtained as 819, 536, 439, 436,
387, and 337 mAh g−1, respectively, at discharge current
densities of 200, 500, 1000, 2000, 5000, and
10,000 mA g−1. The capacity was increased to 562
mAh g−1 when the current density was reverted to
100 mA g−1, these results further implied that the
FeVO4@TiO2 electrode behaved at a better cycle and
rate performance than the bare FeVO4 electrode (espe-
cially, 285 and 176 mAh g−1 at high current densities of
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2000 and 5000mA g−1). The better rate capability of the
FeVO4@TiO2 electrode can be ascribed to the coating
of TiO2 on the surface of FeVO4.

To reveal the superior electrochemical performance of
FeVO4@TiO2 compared with FeVO4 for lithium energy
storage, the charge-transfer resistance was tested by EIS
over the frequency domain from 0.01Hz to 100 kHz (Fig.
7). The result showed that the resistance of the
FeVO4@TiO2 electrode was 97 Ω, which is lower than
that of pure FeVO4 (236 Ω). So, FeVO4@TiO2 shows
better conductivity than FeVO4, that is, the FeVO4@TiO2

electrode has accommodated the high current density
during the cycles. It is why FeVO4@TiO2 has a better
cycling stability than FeVO4.

Conclusions

In summary, a facile route to prepare porous FeVO4

nanorods without any additives and template under
hydrothermal conditions followed by calcinations was
reported. To improve structural stability and cycle life,
TiO2 is used to coat the porous FeVO4 nanorods. The
FeVO4@TiO2 delivered a specific capacity of
1147 mAh g−1 at 200 mA g−1. The discharge capacity
remained at 596 mAh g−1 after 100 cycles, higher than
that of pure FeVO4. Compared with pure FeVO4,
FeVO4@TiO2 showed better electrochemical perfor-
mances. The amorphous TiO2 coating layer on FeVO4

efficiently enhanced stability during the charging and
discharging process, and this interesting synthesis meth-
od can also be applied to synthesize other materials with
typical morphologies and properties.
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