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Abstract The hierarchical flower-like β-In2S3 catalyst
assembled from 2D nanosheets was prepared using an
organic-component depletion method utilizing inorganic-
organic hybrids indium diethyldithiocarbamate (In-
DDTC) as a single-source precursor. The crystallization,
morphology and composition of the as-synthesized β-
In2S3 were characterized by XRD, SEM, TEM, EDS and
XPS, respectively. The β-In2S3 possessed high specific
surface area of 134.1 m2 g-1, adsorption capacity of
195.5 mg g-1 for methylene blue, and extreme
photodecolorization speed under visible light irradiation
for the complete removal of methyl orange (MO) dye
within 15 min and tetracycline within 60 min. Although
methyl orange concentration decreased quickly, the total

organic carbon (TOC) decreased slowly. UV-vis and mass
spectrometry (MS) were applied to analyze the intermedi-
ates coming from the photodecolorization of MO. In order
to estimate the roles of active species during the decolor-
ization of MO, trapping experiments were conducted to
determine themain active species during the decolorization
process. The results indicated that .O2

− radicals and e-1

were the key intermediates. This enhanced activity was
attributed to its unique structures assembled from 2D
nanosheets with thickness of ca. 5-7 nm, leading to high
specific surface area, wide range of pore size distribution
and great efficiency in absorbing light and electron/hole
separation. The hierarchical flower-like β-In2S3 demon-
strated great advantages in the treatment of various waste-
water pollutants including textile dyes and antibiotics.
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Introduction

The photocatalytic performance is strongly dependent
on the catalyst architectures including geometry, mor-
phology and hierarchical structures (Xiao et al. 2004).
Recently, two-dimensional (2D) nanomaterials with
characteristics of intrinsic quantum confined electrons
and more specific surface areas have gained more and
more attention in catalysis (Guo et al. 2015). For
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example, ultrathin C3N4/Bi2O5I2 layered nanojunctions
display great photocatalytic activities (Xia et al. 2016).
However, these 2D nanomaterials share the common
limitations of high tendency to aggregate and restack
due to the lack of intrinsic driving force for 2D aniso-
tropic growth (Zhang and Xie 2013). The development
of three-dimensional (3D) architectures assembled from
2D nanomaterials is an efficient strategy to cope with
this challenge (Wang et al. 2014, 2015). Three-
dimensional (3D) structured materials assembled from
2D nanomaterials can combine the advantages of the
individual properties of their building blocks as well as
the novel characteristics and properties of the secondary
architectures (Li et al. 2016; Wu et al. 2013b). For
example, they possess porous structuresmade from their
adjacent nano-units, large specific surface area to supply
abundant active sites (Liu et al. 2015), cavity-mirror
effect to improve optical irradiation and the easy solid/
liquid separation (Wu et al. 2013a; Wei et al. 2014), all
of which lead to enhanced light-harvesting capacity. For
instance, 3D Ni3S4 frames have both high free volume
and high compressive strength compared to flat Ni3S4
sheets (Wang et al. 2015). Graphene sheets crumple into
paper ball-like structures to make them aggregation-
resistant even after mechanical compression (Luo et al.
2013). To date, metal chalcogenide materials have
attracted significant attention in the photocatalysis field
due to their low cost and specific optical, acoustic,
electronic properties (Liu et al. 2015; Meng et al.
2016). Therefore, the preparation of 3D architectures
from the assembly of 2D metal chalcogenide
nanomaterials may lead to the formation of high perfor-
mance photocatalyst (Sun et al. 2016).

As an important class of transition metal chalco-
genides, Indium sulfide (In2S3) is of great interest
due to its simple synthetic procedure, low toxicity,
and potential applications in photocatalysis (Nayak
et al. 2014). Typically, β-In2S3 is n-type semicon-
ductor with defected spinel structure and a band gap
of 1.9-2.3 eV (Zhou et al. 2014), making it a great
candidate for photocatalytic applications (Nayak
et al. 2014). Many efforts have been devoted to
synthesize β-In2S3 with various architectures: 3D
hierarchical-like β-In2S3 hollow microspheres
(Rengaraj et al. 2011), walnut-like In2S3 micro-
spheres (Chai et al. 2012) and β-In2S3 nanotubes
(Liu et al. 2011) using microwave irradiation (Patra
et al. 2006), solvothermal (Chai et al. 2012) and
sonochemical (Gorai and Chaudhuri 2005) methods.

However, most of the aforementioned processes de-
pend on poisonous organic solvents as the reaction
media, various surfactants as templates and highly
toxic sulfur sources to control the ions activity (Lee
et al. 2005; Du et al. 2008; Abdelhady et al. 2013).
For example, the most commonly used sulfur
sources for the synthesis of β-In2S3 are sulfur pow-
der (Park et al. 2006), sodium sulphide (Chai et al.
2012), and lauryl mercaptan (Liu et al. 2011). There-
fore, the development of alternative simple and
green method is highly desired. Recently, novel
inorganic functional materials are prepared using
inorganic-organic hybrids as single-source precur-
sors. This method can combine the superior perfor-
mance of both inorganic building blocks and organic
components. Most importantly, inorganic-organic
hybrids can serve as handy and effective precursors
to prepare novel materials with good control of
different components and the retention of macro-
morphology (Wu et al. 2015). This single-source
precursor route has several appealing features. First
of all, it offers the potential advantages of mildness
and simplified fabrication procedure and does not
need exact control over starting material stoichiom-
etry. Moreover, unusual crystal growth selectivity or
metastable phase formation may be achieved, which
are sometimes unattainable with the conventional
synthetic technique (Zhang et al. 2005). For in-
stance, inorganic hollow CdχZn1-χSe nanoframe
(Wu et al. 2012), and porous MoS2 nanotubes
(Zhuo et al. 2013b) have been synthesized through
an ion-exchange and component stripping strategy
using inorganic-organic hybrids.

Herein, we reported a facile hydrothermal strategy to
synthesize hierarchical flower-like β-In2S3 assembled
by 2D thin nanosheets. This is a green synthetic method
which distilled water as the only solvent, and does not
require post-treatment procedure. The flower-like hier-
archical structures were prepared by decomposition of
single-source precursor indium diethyldithiocarbamate
(In-DDTC). The prepared hierarchical flower-like β-
In2S3 possessed large surface area, good adsorption
performance for cationic dye of methylene blue (MB)
and great catalytic properties for the decolorization of
methyl orange (MO) and tetracycline (TC). To the best
of our knowledge, there have been very few reports on
the application of In2S3 material as efficient
photocatalyst for the removal of antibiotics in
wastewater.
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Experimental procedure

Materials

Indium nitrate hydrate (In(NO3)3
.xH2O) was purchased

from Aladdin Industrial Corporation. Sodium
diethyldithiocarbamate trihydrate (C5H10NNaS2

.3H2O)
and ethyl alcohol were purchased from Sinopharm
Chemical Reagent Co. Ltd., and all the analytical re-
agents were used without further purification.

Synthesis of hierarchical flower-like β-In2S3

Synthesis of indium diethyldithiocarbamate complex

In a typical procedure, 0.002 mol In(NO3)3
.xH2O and

0.006 mol sodium diethyldithiocarbamate were dis-
solved in 40 mL deionized water with agitation. The
mixed solution was formed a stable white suspension
and stirred for 2 h. The white product was collected by
filtration, washed with deionized water and dried in air
at 60°C.

Synthesis of hierarchical flower-like β-In2S3

Subsequently, a certain amount of the as-prepared sin-
gle-source precursors were added into a 50 mL PTFE-
lined stainless steel autoclave containing 40 mL deion-
ized water, and the pH of the solution was adjusted to
3.0 by adding diluted nitric acid. The autoclave was
sealed, maintained at 180°C for 12 h. After cooling to
room temperature naturally, the obtained yellow precip-
itate was centrifuged at 8000 rpm for 5 min, washed
with ethanol and deionized water for several times and
dried overnight at 60°C. The control experiments were
conducted by following similar procedure.

Results and discussion

Crystal structure and morphology

The hierarchical flower-like β-In2S3 assembled by 2D
nanosheets was yellow powder (inset of Fig. 1a). The
crystalline phase and morphology of the In2S3 were
characterized by XRD, SEM and TEM. The typical
XRD pattern of the nanostructures was shown in
Fig. 1a. The peaks related to the (440), (211), (311),
(400) planes could be indexed as cubicβ-In2S3 phase by

careful comparison with JCPDS card file no. 32-0456.
No other impurities such as In2O3 or In(OH)3 were
detected, indicating the high purity the sample, which
were consistent with description in the literature (Chen
et al. 2008). The powder had low crystallinity, which
might show unique physical and chemical properties
with more active sites and isotropic nature (Zhang
et al. 2015).

The morphology of the as-prepared In2S3 was inves-
tigated by SEM and TEM. As could be seen in Fig. 2(a-
b), the irregular flower-like spherical architectures of
In2S3 were constructed from many interconnected thin
nanosheets with thickness of ca. 5-7 nm. Notably, the
flower-like β-In2S3 architectures possessed a number of
mesoporous, which would help to increase the contact
area and accelerate the ion transfer. The more detailed
structural information of these hierarchical
submicrospheres was revealed via TEM and HRTEM.
Fig. 2(c-e) proved that the submicrospheres were built
from numerous small thin 2D nanosheets, supporting
the SEM analysis (Fig. 2b). The HRTEM image of a
single nanosheet (Fig. 2f) revealed that the lattice fringes
were perfectly aligned across the surface. The measured
interplanar spacing was 0.3101 nm, corresponding well
with the (400) plane of cubic In2S3.

To better understand the fabrication process for
the hierarchical flower-like β-In2S3 assembled by
2D thin nanosheets, and time-dependent evolution
of morphology at 180°C was elucidated by SEM
(Fig. 3a-f). After solvothermal treatment for 2 h, a
large amount of prisms appeared, with sizes ranging
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Fig. 1 XRD pattern, inset is the photograph of as-prepared the
hierarchical flower-like β-In2S3.
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from several hundred nanometers to a few
micrometres (Fig. 3a). There were also small
amounts of particles with curved surface (Fig. 3b).
After 4 h, more flower-like hierarchies were formed
few larger prisms were observed (Fig. 3c). The
surface of large prisms grew coarse, indicating the
beginning of the change of morphology. After 6 h,
prisms were all already transformed into flowery
hierarchies composed of mutual crisscross nano-
sheets (Fig. 3e). Meanwhile, a solid with folded
surface could be found, which might be the inter-
mediate in the process of morphological evolution
(Fig. 3f). After 12 h, the submicrospheres were
formed from numerous small thin 2D nanosheets,
along with some imperfect morphology (Fig. 2a-e).
C l e a r l y, t h i s wa s a g r adua l , t h r e e - s t a g e

morphological evolution process: pre-crystallized
nuclei and crystal growth of primary particles; ori-
ented attachment of prisms; and Ostwald-ripening of
flowery hierarchies (Fig. 3g). At high temperature
and vapor pressure, the precursor decomposed and
quickly formed pre-crystallized nuclei and crystal
growth into prisms. Due to the anisotropic structure
of crystal, the prisms further grew into 2D nano-
sheets through oriented attachment. Furthermore,
under longer hydrothermal treatment, large flowery
hierarchies might collapse and generate some rup-
ture parts of small flowers. These kinds of flowery
hierarchies provided a large active surface area and
higher efficiency of incident photons, and leading to
higher photocatalytic activity. The final stage for the
formation of flower-like structure could be due to

In2S3(400) 

0.3101 nm

(a) (b)

(c)         (d)        

(e) (f)     

4 μm 400nm

Fig. 2 (a-b) SEM images; (c-e)
TEM images; (f) HRTEM image
of as-prepared the hierarchical
flower-like β-In2S3.
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the Ostwald ripening. The more accurate formation
mechanism is currently under investigation.

Composition and chemical states

EDX analysis was performed on the as-prepared
hierarchical flower-like β-In2S3 to identify the ele-
ments present and measure their composition. The
EDX spectrum (Fig. 4a) confirmed that there was no
element other than In and S presented in the sample.
The chemical state of the as-synthesized sample was
further characterized by XPS analysis. The typical
survey spectrum of the hierarchical flower-like β-

In2S3 was shown in Fig. 4b. It revealed that no
peaks of other elements except In, S, O, and C were
observed. The peaks of C and O came from the
reference sample and adsorbed oxygen (Zhou et al.
2014). The atomic ratio of [S] : [In] was estimated to
be 1.43 from the survey spectrum confirming In2S3.
The result was little smaller than the theoretical
value of 1.5, which indicated the existence of sulfur
vacancies or oxidation on the as-synthesized In2S3
sample surfaces (Tian et al. 2013). Fig. 4(c-d)
showed In 3d and S 2p high-resolution region spec-
tra, respectively. The peaks at the binding energy
value of 444.8 and 452.4 eV were related to In 3d5/2

(a) 

(c) (d)

(e) (f)

(b)

5 μm 3 μm

3 μm 1 μm

2 μm 1 μm

Fig. 3 SEM images of the
samples collected at different time
period: (a)-(b) 2h; (c)-(d) 4h; (e)-
(f) 6h; (g) Schematic illustration
of the formation mechanism of
the flower-like structure.
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and In 3d3/2, while the peaks at 161.4 and 162.4 eV
could be attributed to S 2p3/2 and S 2p1/2 transitions
(Nayak et al. 2014; Gao et al. 2015b), respectively.
The observed binding energy values of In 3d and S
2p agreed well with the reported data for In2S3 (Chai
et al. 2012). To further study the O state on the
surface of the In2S3, the high resolution O 1s XPS
spectrum was analyzed and exhibited in Fig. 5. As
shown in Fig. 5, the O 1s peak of In2S3 could be
deconvoluted into three peaks. The peak located at
around 530.8 eV, which was indexed to the oxygen
from the crystal lattice (O2−). The other two peaks at
531.6 eV and 532.8 eV were referred to surface
hydroxyl oxygen of adsorbed water and adsorbed
oxygen from the ambient atmosphere, respectively
(Du et al. 2009).

Porous structure determination by N2 adsorption /
desorption

The specific surface area and porosity of the flower-
like β-In2S3 hierarchical structures assembled by 2D
thin nanosheets were further investigated by the

nitrogen adsorption-desorption method. Fig. 6a
showed the typical sorption isotherms and the cor-
responding pore size distribution (inset of Fig. 6a) of
the flower-like β-In2S3. The type-IV isotherm with a
hysteresis loop was obtained which could be identi-
fied as characteristic of mesoporous materials. These
mesopores arose from the spaces among the nano-
sheets, consistent with the result of the HRTEM
measurement. Accordingly, the pore size distribution
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curve depicted a wide range of pore size distribution
from 2 to 150 nm with a unimodal shape at 32 nm.
The BET surface area of as-prepared the hierarchical
flower-like β-In2S3 was calculated to be 134.1 m2 g-
1. The as-prepared hierarchical flower-like β-In2S3
showed the higher surface area among various pre-
viously reported In2S3 nanomaterials (Table 1). The
large surface area would facilitate the surface ad-
sorption of reactants and promote interfacial charge
transfer (Zhou et al. 2013), and improve the photo-
catalytic properties.

DRS property

The optical absorption properties of a semiconductor
were relevant to the electronic features, and recognized
as a key factor in determining it photocatalytic activity.
Fig. 6b showed the UV-vis diffuse reflectance spectra
(DRS) of the hierarchical flower-like β-In2S3. The band
gap (Eg) of In2S3 was reported to vary between 2.0 and
2.2 eV, which corresponded to 620-550 nm (Rengaraj
et al. 2011). The absorption edge about 580 nm was
evidently seen, demonstrating that the band gap of the
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Fig. 6 As-prepared hierarchical
flower-like β-In2S3: (a) N2

adsorption/desorption isotherm
curves (inset: BJH pore size dis-
tribution plot); (b) UV-vis DRS
spectrum.

Table 1 the summary of reported BET surface area of various In2S3 materials

Catalyst BET surface area/m2 g-1 Reference

3D fowerlike In2S3 microspheres 72.9 (Wei et al. 2014)

Hierarchical-like β-In2S3 hollow microspheres 108 (Rengaraj et al. 2011)

In2S3 nanoparticles 31.1 (Liu et al. 2011)

In2S3 nanotubes 72.0 (Liu et al. 2011)

3D hierarchical porous In2S3 microspheres 90.09 (Wu et al. 2015)

Nanocrystal In2S3 130.7 (He et al. 2009)

In2S3 microspheres 103.05 (Nayak et al. 2014)

In2S3 nanoparticles 110 (Yang et al. 2013)

In2S3 nanoparticles 70.74 (Gao et al. 2015b)

Porous 3D flower-like β-In2S3 structures 78 (Chen et al. 2008)

Flower-like β-In2S3 117 (Xue et al. 2010)

Walnut-like In2S3 microspheres 18.8 (Chai et al. 2012)

Mesoporous β-In2S3 microspheres 15.2 (Li and Liu 2011a)

Mesoporous β-In2S3@C microspheres 31.3 (Li and Liu 2011)

In2S3 microspheres 158.2 (Chen et al. 2016)

Flower-like In2S3 hierarchical structures assembled by 2D nanosheets 134.08 Present work

J Nanopart Res (2017) 19: 166 Page 7 of 15 166



product was about 2.14 eV. Moreover, the hierarchical
flower-like β-In2S3 had strong absorption ranging from
the visible to UV region, suggesting great effect of light
absorption.

Adsorption performance

To investigate the surface charge of as-prepared sample,
zeta potential measurement was carried out. The hierar-
chical flower-like β-In2S3 had a low overall charge with
a zeta potential of about -24.2 mV, which could be due
to the adsorption of -OH on the In2S3 surface in aqueous
solution. This could promote efficient adsorption
through providing adsorption sites for interaction with
the cationic groups of MB.

Adsorption kinetics studies were explored at dif-
ferent time interval of MB (35 mg L-1) and adsor-
bent (10 mg) interaction. Fig. 7a showed adsorption

kinetic of MB on In2S3 at 298 K. Both pseudo-first-
order and pseudo-second-order kinetics were tested
using the experimental data of MB removal from
aqueous solutions. The pseudo-first-order rate equa-
tion is given by the following equation (Mittal et al.
2009):

ln Qe−Qtð Þ ¼ ln Qe1ð Þ−k1t ð1Þ

where Qe and Qt are the amounts of dye adsorbed at
equilibrium (mg g−1) and at contact time t (min),
respectively. Qe1 and k1 show the theoretical equi-
librium adsorption and rate constant of pseudo-first-
order kinetic, respectively. The values k1 and Qe1

could be determined from the slope and the intercept
of the plot of ln(Qe −Qt) against t and presented in
Fig. 7b. The rate of pseudo-second-order model
depend on the amount and the quantity of dye
adsorbed on the surface of adsorbent (Gucek et al.
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Fig. 7 (a) Adsorption kinetic (T = 298 K; C0 = 35mg L-1; amount
of adsorbent = 10 mg; volume of solution = 50 mL); (b) Pseudo-
first-order kinetics; (c) Pseudo-second-order kinetics; (d)

Adsorption isotherm (T=298 K; adsorbent dose =10 mg; dye
concentration = 30-60 mg L-1; solution volume = 50 mL); (e)
Langmuir isotherm; (f) Freundlich isotherm.
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2005). The pseudo-second-order rate can be
expressed as follows (Gupta et al. 2010):

t=Qt ¼ 1=k2 Qe2ð Þ2 þ t=Qe2 ð2Þ
where k2 (g mg−1 min−1) is the pseudo-second-order rate
constant, and Qe2 is the theoretical adsorbed dye (mg
g−1). In this case, the slope and the intercept of the plot
of t/Qe vs t gave k2 and Qe2 values as presented in
Fig. 7c. As it could be seen from Table 2, the high R2

value suggested that the pseudo-second-order kinetic
model was more suitable than pseudo-first-order kinetic
model for the MB removal. Moreover, the Qe2 value for
the second-order kinetic was close to the experiment
(Qe,exp). This behavior could be explained with the
existence of chemisorptions (Saha et al. 2012), which
was in accordance with literature result (Madaeni et al.
2011).

To further investigate the adsorption mechanism,
Langmuir and Freundlich models were used to describe
the equilibrium of adsorption. Fig. 7d showed adsorp-
tion isotherm of MB on In2S3 at 298 K. It is known that
the Langmuir model predicts the formation of a mono-
layer of the adsorbate on the adsorbent surface, while
the Freundlich isotherm is an empirical equation for the
description of equilibrium on heterogeneous surfaces.
The isotherm linear forms of Langmuir and Freundlich
are expressed by Eqs. (3) and (4), respectively:

Ce=Qe ¼ Ce=Qm þ 1= KLQmð Þ ð3Þ

logQe ¼ logKF þ 1

n
logCe ð4Þ

Where Qe is the amounts of dye adsorbed at equilib-
rium (mg g−1), Ce is the final concentration in solution
of dye adsorbed at equilibrium (mg L-1), KL is the
Langmuir constant (L mg−1), depending upon the ad-
sorption energy, and Qm is the maximum adsorption
capacity (mg g−1). KF (mg g−1) is the adsorption capac-
ity of the adsorbent and n (L mg−1) is the Freundlich
constant. Ce/Qe against Ce and logQe against logCe were
plotted shown in Fig. 7e and f. And the data were

analyzed by linear regression, the values of Qm and
KL, n and KF calculated from the slope and intercept,
respectively.

As it can be seen from Table 3, the Langmuir model
showed the best fit (R2 = 0.9999) with a saturated
coverage of 195.3 mg g-1, which was close to the
experimental data (195.5 mg g-1). Therefore, monolayer
adsorption was concluded and the adsorption sites were
homogeneous.

Photodecolorization performance

To evaluate the photoactivity of catalysts, methyl orange
(MO), a very stable azo dye, was used as a model
pollutant (An et al. 2013). UV-vis absorption measure-
ment was a very simple and direct method to study small
molecule substances with subtle changes in molecule
structure.Without In2S3, almost no color removed of the
MO after 4 h of irradiation (Fig. 8a). Before the irradi-
ation, minimum decrease in MO concentration was
observed after stirring the mixture of MO and In2S3
for 30 min in the dark condition (Fig. 8b). As could be
observed from these spectra, the maximum absorption
located at 465 nm and 270 nm. The peak at 465 nm was
originated from an extended chromophore___ azo link-
age and the peak at 270 nmwas associated with benzene
ring in the molecule, respectively (Zhang et al. 2006).
After irradiation, the intensity of the two peaks disap-
peared after 15min of irradiation, indicating the destruc-
tion of its chromophoric structure (Fig. 8c). The photo-
catalytic decolorization kinetics of MO were shown in
Fig. 8d, although the ratio of C/C0 decreased with the
illumination time was quickly, the ratio of TOC/TOC0

decreased with the illumination time was slowly. These
results indicated that MO was successfully decolorized
to a colorless state by In2S3, but the MO molecules
could not be fully photomineralized. As reported in
several literatures, the intermediates were stable in the
system which required a longer time for further oxida-
tion (Nur Farhana et al. 2012; Yu et al. 2016). The MS

Table 2 Summary of the kinetic constants obtained from linear regression of the two models

Pseudo-first-order Pseudo-second-order

k1
(min-1)

Qe1

(mg g-1)
R2 k2

(g mg−1min−1)
Qe2

(mg g-1)
R2

0.01 75.3 0.907 0.0008 159.2 0.999
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analysis was performed for MO decolorization, and the
formation of intermediates during the decolorization
process was identified by this technique. The sample
before the MO decolorization showed one big peak at
m/z 304. In contrast, the sample after 15 min of decol-
orization showed onemainm/z peak at 172, correspond-
ing to 4-aminosulfonic acid (Han et al. 2016). The
results suggested that decolorization proceeds through
the cleavage of azo group—N=N— connecting the two

aromatic rings to amines, which agreed with literature
results (Parshetti et al. 2010). Clearly, the decoloration
of MO was attributed to the photocatalytic decoloriza-
tion instead of adsorption.

We further studied the durability and the recyclability
of the hierarchical flower-like β-In2S3 for the decolori-
zation of MO. The decolorization efficiency was main-
tained at 98.8% after the sixteenth cycle (Fig. 9c), indi-
cating a negligible change in decolorization perfor-
mance and high stability of the catalyst. After the six-
teenth cycle of the decolorization experiment, the cata-
lyst powder was collected by centrifugation and dried at
60 °C for 4 h. The phase of used catalyst was remained
unchanged (Fig. 9d).

Different pathways were reported for the visble-
light-driven photodecolorization of MO, which could
be classified according to the active species (An et al.
2013; Gao et al. 2015a). Trapping experiments were
conducted to determine the main active species dur-
ing the photodecolorization process. Benzoquinone
(BQ), isopropyl alcohol (IPA), EDTA-2Na, and

Table 3 Correlation coefficients and isotherm rate constants for
Langmuir and Freundlich models

Model Parameters Values

Langmuir Qm(mg g-1) 195.3

KL(L mg-1) 0.0031

R2 0.9999

Freundlich KF (mg g−1) 184

n 41.49

R2 0.3113
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Fig. 8 Time-dependent UV-vis absorption spectra ofMO: (a)Withoutβ-In2S3, (b)Withβ-In2S3 under dark condition, and (c)Withβ-In2S3
under visible light; (d) Photocatalytic degradation kinetics of MO.
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K2Cr2O7 were used as scavengers of superoxide rad-
ical (.O2

-), hydroxyl radical (.OH), h+ and e-1 (Song
et al. 2016). As shown in Fig. 9a, the decolorization
of MO molecules was attributed to the predominant
action of oxidation action of the generated .O2

− rad-
icals and subordinate e-1 reduction process. Hydroxyl
radical was confirmed to be insignificant for the
decolorization of MO (Li et al. 2011). The CB and
VB potentials (ECB and EVB) of the β-In2S3 can be
calculated by the empirical equations of ECB = χ − Ee

− 0.5Eg and EVB = ECB + Eg, where Eg = 2.14 eV, χ is
the electronegativity of the In2S3 (4.69 eV), Ee is the
energy of free electrons on the hydrogen scale (about

4.5 eV) (Chen et al. 2016). Therefore,the value of
ECB and EVB are -0.88 and 1.06 eV for the β-In2S3.
The valance band of In2S3 was more negative than E
(.OH/OH−) (2.38 V vs. NHE) and E (.OH/H2O)
(2.27 V vs. NHE), hence the photoinduced holes
could not oxidize OH− and H2O to produce .OH.
Instead, they could oxidize the dye macromolecules
into directly micromolecules and final products
(Cheng et al. 2010). While the conduction band of
In2S3 was more negative than E (O2/

.O2
−) and the

photogenerated electrons of the In2S3 sample were
enough to generate .O2

− under visible irradiation. The
schematic demonstration of the excitation and charge
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Fig. 9 (a) In2S3 catalyst activity of capture agent; (b) Proposed
mechanisms of photocatalytic reaction in In2S3 system, the nets
structure is In2S3 nanosheet; (c) Photocatalytic decolorization

curves of MO under visible light irradiation the first and the
sixteenth cycles; (d) XRD patterns of as-prepared In2S3 before
and after 16 cycles.
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transfer processes of the hierarchical flower-like β-
In2S3 under visible light irradiation was shown in
Fig . 9b. The proposed mechanism for the

photocatalytic decomposition of MO by the flower-
like β-In2S3 assembled by 2D thin nanosheets can be
described as follows:

In2S3 þ hν→In2S3 e‐1þhþ
� �

O2þ2Hþþ2e‐1→H2O2 Εθ ¼ 0:6824 V
O2þe‐1→O2

:‐ Εθ ¼ ‐0:563 V
O2

:‐þH2Oþ e‐1→HO2
‐þOH‐ Εθ ¼ 0:413 V

HO2
‐þH2Oþ e‐1→:OHþ 2OH‐ Εθ ¼ 0:878 V

hþ=H2O2=
:OHþMO→degraded or mineralized products

The hierarchical flower-like β-In2S3 assembled by
2D nanosheets was also a highly effective photocatalyst
for antibiotics removal under visible light irradiation.
The catalytic degradation of antibiotics was of great
importance because they posed serious threats to the
ecosystem and human health even at small concentra-
tions in water system. As shown in Fig. 10, TC could
hardly be decolored without any photocatalyst
(Fig. 10a), while the flower-like β-In2S3 showed high
activity with decolorization rate of 90.1 % after visible
light irradiation for 60 min. The decolorization speed of
TC was much faster than previously reported systems
(Wang et al. 2016; Ai et al. 2015).

The as-synthesized hierarchical flower-like β-In2S3
occurred a rapid decolorization reaction that may be due
to the following several reasons for synergism. The first
reason was attributed to its cubic phase crystal structure.
Naik et al. (2008) reported that the cubic In2S3 showed
higher photoactivity for hydrogen production than of
tetragonal β-In2S3. Dai et al. (2010) proposed that cubic
In2S3 had not the three-dimensional defect structure

resulted from the ordering of indium vacancies, hence
the charges transportation efficiency of the pathway
would not be depressed. Meanwhile, sulfur vacancies
in the as-synthesized In2S3 surfaces might exhibit elec-
tron affinity and could act as electron traps which pro-
moting the separation of photogenerated charge carriers
(Gao et al. 2015b). Moreover, the sample contained
oxygen from the crystal lattice was more propitious to
form the defect band (Chen et al. 2016). Second, not
only the high surface area but also the wide range of
pore size distribution of the flower-like In2S3 led to
greater contact possibility with pollutants and provided
more active catalytic sites (Dai et al. 2010; Li et al.
2014). Third, the smaller size of the flower-like β-
In2S3 hierarchical structures than other flower-like β-
In2S3 microspheres (Wei et al. 2014; Liu et al. 2011) (> 2
μm) could effectively shorten the diffusion distance for
carriers (Maeda 2011; Mi et al. 2015). Finally, the
photoexcited carriers separated and migrated to the sur-
face with less recombination as a result of the ultrathin
sheet (Mi et al. 2015).
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Fig. 10 (a) Time-dependent UV-
vis absorption spectra; (b) Photo-
catalytic decolorization curves of
TC under visible light in the
presence of the hierarchical
flower-like β-In2S3.
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Conclusion

In summary, a simple and facile method was developed
to transform single-source precursor In-DDTC into
flower-like In2S3 hierarchical structures assembled by
2D thin nanosheets. The flower-like In2S3 material
showed high adsorption property for MB and great
decolorization property for MO and TC under the visi-
ble light irradiation. The decreased speed of the TOC
was slower than the MO concentration. Several factors
including its unique structures were proposed to be
responsible for the great properties. This facile and
promising synthetic strategy could be extended to pre-
pare a wide variety of functional materials for potential
applications including photocatalytic reactions, hydro-
gen production, solar cells and lithium-ion batteries.
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