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Abstract The integration of rapid assays, large

datasets, informatics, and modeling can overcome

current barriers in understanding nanomaterial struc-

ture–toxicity relationships by providing a weight-of-

the-evidence mechanism to generate hazard rankings

for nanomaterials. Here, we present the use of a rapid,

low-cost assay to perform screening-level toxicity

evaluations of nanomaterials in vivo. Calculated EZ

Metric scores, a combined measure of morbidity and

mortality in developing embryonic zebrafish, were

established at realistic exposure levels and used to

develop a hazard ranking of diverse nanomaterial

toxicity. Hazard ranking and clustering analysis of 68

diverse nanomaterials revealed distinct patterns of

toxicity related to both the core composition and

outermost surface chemistry of nanomaterials. The

resulting clusters guided the development of a surface

chemistry-based model of gold nanoparticle toxicity.

Our findings suggest that risk assessments based on the

size and core composition of nanomaterials alone may

be wholly inappropriate, especially when considering

complex engineered nanomaterials. Research should

continue to focus on methodologies for determining

nanomaterial hazard based on multiple sub-lethal

responses following realistic, low-dose exposures,

thus increasing the availability of quantitative mea-

sures of nanomaterial hazard to support the develop-

ment of nanoparticle structure–activity relationships.

Keywords Nanoparticle � Zebrafish � Toxicity �
Surface chemistry � Informatics

Introduction

Scientists and engineers, whether in industry, govern-

ment, or academia, have a common need to understand

how nanomaterials interact with biological systems to

mitigate potential risks and to define structure–activity

relationships (SARs) that can be used to predict

nanomaterial fate and hazard in lieu of empirical data

(Fourches et al. 2010; Hristozov et al. 2014; Rallo

et al. 2011; Zhang et al. 2012). In consideration of
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nanomaterial complexity, ‘structure’ needs to be

descriptive of inherent nanomaterial features such as

the number of atoms, surface charge, crystallinity,

surface area, etc.; whereas, ‘activity’ would represent

the conditional behaviors of those nanomaterials such

as zeta potential, biological activity, and size distri-

bution, among others (Sayes 2014). Engineered

nanomaterials pose a tremendous analytical challenge

as they encompass all we know about the complexities

of biochemistry, coupled with new characteristics

associated with their biologically relevant size and

increased relative surface area for interacting with

biological systems (Gajewicz et al. 2012). Further-

more, simple changes in the nanoparticle (NP) expo-

sure media can significantly alter the uptake and toxic

responses elicited by the same nanomaterial (Kim

et al. 2013; Truong et al. 2011). As a result, developing

predictive methods of understanding engineered NP

risks requires analysis of a range of NP compositions

and conditions, thus demanding rapid, cost-effective

testing strategies that can keep pace with innovation

(Nel et al. 2012; Vecchio et al. 2014).

Current toxicological methods are costly and time

consuming, not always applicable to nanomaterials in

suspension, and often require large quantities of

materials (Rushton et al. 2010). These methods often

struggle not only with understanding appropriate dose

metrics for nanomaterials, but too often rely on costly

LC50 data in the absence of a thorough understanding

of low-dose, sub-lethal effects (Maynard et al. 2011;

Oberdörster 2010). Novel toxicological methods need

to look at realistic exposure levels during first-pass

hazard identification studies to minimize the time and

materials required for testing and rapidly identify

materials of high concern (Oomen et al. 2014). The EZ

Metric assay presented here utilizes developing

zebrafish embryos (Danio rerio) as an integrated

sensing and amplification system that is easy to

evaluate non-invasively, providing the power of

whole-animal investigations with the convenience of

cell culture (Harper et al. 2008a; Usenko et al. 2007).

Exposures are conducted in 96-well plates using intact

organisms that have functional homeostatic feedback

mechanisms and intercellular signaling (Harper et al.

2010, 2011; Truong et al. 2011).The endpoints eval-

uated in the EZ Metric assay require minimal equip-

ment to assess and involve no experimental treatments

such as dyes or other indicators that could alter the

impacts of the nanomaterials (Harper et al. 2008a;

Truong et al. 2011). All endpoints are observed under

low-power magnification using dissecting scopes

(Fig. 1), methods that lend themselves to potential

automated visual analyses (Hans et al. 2013). Given

these unique advantages, embryonic zebrafish are

becoming widely used to screen chemicals and

nanomaterials through automated robotic testing plat-

forms coupled with various types of automated optical

analysis (Mandrell et al. 2012; Nel et al. 2012; Truong

and Reif 2014; Truong et al. 2012).

In order to consider multiple endpoints measured in

the zebrafish as an integrated measure of toxicity

valuable for developing predictive models, we

assessed individual endpoints and weighted those

responses relative to their theoretical biological

impacts. The weighted responses were used to calcu-

late an EZ Metric score representative of the inte-

grated biological response at each exposure

concentration. Data are available through the Nano-

material-Biological Interactions (NBI) knowledge-

base (nbi.oregonstate.edu). Median effect levels

(EC50) estimated from the weighted EZ Metric scores

of 68 different nanomaterials were used to determine a

hazard ranking. We were interested in testing the

hypothesis that groups of NPs with similar toxicity

have similar chemical/structural characteristics such

as size, surface chemistry, or core composition.

Conversely, NPs that are not functionally similar

should have varying toxicity. Thus, the identification

of NPs with similar EZ Metric-concentration profiles

should be indicative of NP features that serve as

drivers of nanomaterial–biological interactions lead-

ing to toxicity.

The goals of this study were (1) to provide a hazard

ranking of the diverse nanomaterials housed on the

NBI Knowledgebase, (2) to identify inherent charac-

teristics of nanomaterials useful in the development of

predictive models of toxicity, and (3) to highlight the

importance of realistic dosing scenarios and analysis

of sub-lethal effects in the development of models

designed to identify NP hazard. Herein, we present

data supporting both the utility of the assay in

achieving the above-stated goals and a surface chem-

istry-based model of NP toxicity to developing

zebrafish.
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Methods

Nanomaterials

Nanomaterials were acquired from a variety of

commercial sources including Sigma Aldrich (St.

Louis, MO, USA), Nanocomposix (San Diego, CA,

USA), Dendritic Technologies (San Francisco, CA

USA), and non-commercial research labs. Details of

nanomaterial manufacturers and material composition

are available in Online Resource 1, online at nbi.ore-

gonstate.edu and in previous publications on selected

materials (Harper et al. 2007, 2008a; Pryor et al. 2014;

Usenko et al. 2007, 2008).

Embryonic zebrafish care and preparation

Zebrafish (Danio rerio) embryos were collected

from group spawns of wild-type D5 fish housed at

the Sinnhuber Aquatic Research Laboratory (Oregon

State University, Corvallis Oregon). The chorion

surrounding the embryo was removed enzymatically

at 6 h post fertilization (hpf) (Usenko et al. 2007) to

ensure that nanomaterials were in contact with the

developing embryos. Dechorionation was performed

by exposing groups of 200–400 embryos to 1.5 ml

of 50 mg/ml protease from Streptomyces griseus

(Sigma Aldrich cat#81750) in a 60-mm glass petri

dish for approximately 6 min until the chorions

begin to detach, then gently rinsing the embryos

several times with fishwater to complete the

removal. Fishwater was prepared by diluting

0.26 g/L Instant Ocean salts (Aquatic Ecosystems,

Apopka, FL) into reverse osmosis (RO) water and

adjusting the pH to 7.2 ± 0.2 with sodium bicar-

bonate. Embryos at 8 hpf were exposed in clear,

96-well exposure plates, one animal per well, to

various concentrations of exposure solutions as

Fig. 1 Overview of

morphological endpoints

assessed during the EZ

Metric assay including

a image of control zebrafish

embryo at 24 h post

fertilization (hpf), b image

of zebrafish embryo

exhibiting delayed

developmental progression,

c image of wavy notochord

malformation in 24-hpf

zebrafish embryo, d image

of control zebrafish at 120

hpf, e image of snout and

jaw malformations observed

in 120-hpf zebrafish, and

f image of brain and heart

malformations (pericardial

edema) in 120-hpf zebrafish
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previously described by Harper and colleagues

(2008b).

EZ Metric assay

Exposures’ concentrations were typically fivefold

serial dilutions of nanomaterials ranging from approx-

imately 250 parts per million (ppm) down to *16

parts per billion (ppb) prepared in fishwater. Control

exposures comprised fishwater alone (without NPs).

Embryos were incubated at 26 �C under 14/10 light

cycle and were evaluated visually at 24 hpf for

viability, developmental progression, and spontaneous

movement (earliest behavior in zebrafish). At 120 hpf,

behavioral endpoints (motility, tactile response) were

thoroughly evaluated in vivo and larval morphology

(body axis, eye, snout, jaw, otic vesicle, notochord,

heart, brain, somite, fin, yolk sac, trunk, circulation,

pigment, swim bladder) was evaluated visually and

scored in a binary fashion (present or absent) (Harper

et al. 2008a, b; Truong et al. 2011).

Weighted EZ Metric score

To summarize the 21 measured toxicity endpoints for

each dose applied to the embryonic zebrafish, we

define the EZ Metric score to provide a relative

comparison of nanomaterial-elicited effects. In a

previous publication, we compared the predictive

ability of an additive approach to summarizing the 21

endpoints and found that weighting the biological

impacts of each individual endpoint provided better

predictability of nanomaterial toxicity (Liu et al.

2013). As such, for this analysis, a weighted EZ Metric

score was calculated for each exposure concentration

by multiplying the frequency of an individual endpoint

occurrence at a given concentration by the endpoint

weighting factor found in Table 1 and normalizing for

the number of viable embryos displaying that effect.

Weighting factors were based on consensus ranking of

the severity of each sub-lethal endpoint, such that

embryos surviving until 120 hpf with developmental

abnormalities have scores reflecting the severity of

those combined sub-lethal effects as follows:

Weighted EZ Metric ¼
Xn

i¼0

wi � ðEiÞ; ð1Þ

where wi is the weight from Table 1 for the ith

biological effect Ei.

Statistical analysis and modeling

Spearman rank correlations were conducted using

SigmaPlot Version 12.0 (Systat Software Inc.). Esti-

mation of the median effect level (EC50) based on EZ

Metric score was achieved through linear interpolation

as many nanomaterials tested did not elicit significant

toxicological effects at the highest concentrations

tested, precluding an accurate determination of the

EC50 values through traditional logistic or sigmoidal

regression models. MATLAB hierarchical clustering

algorithm with Euclidean distance measure and Ward

Table 1 Ranking of endpoints assessed in zebrafish embryos

and their associated weighting used for calculation of the

overall EZ Metric score

EZ Metric Endpoint Weighting factor

24 hpf mortality 1.0

120 hpf mortality 0.95

Heart malformation 0.12

Brain malformation 0.12

Yolk sac edema 0.1

Notochord malformation 0.08

Curved axis 0.08

Trunk malformation 0.06

Delayed developmental progression 0.06

Occluded circulation 0.04

Eye malformation 0.04

Jaw malformation 0.04

Lack of spontaneous movement 0.04

Somite malformation 0.02

Motility 0.02

Lack of touch response 0.02

Snout malformation 0.02

Otic malformation 0.02

Caudal/pectoral fin malformation 0.02

Atypical pigmentation 0.02

Atypical swim bladder inflation 0.02

EZ Metric data are made publically available through the

Nanomaterial-Biological Interactions knowledgebase at http://

nbi.oregonstate.edu
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linkage rule was used to identify groups of nanopar-

ticles that were functionally similar with respect to

their EZ Metric values across the entire concentration

range. Following clustering analysis, classification

analysis was performed using the open source Weka

software (v. 3.6.3) implementing the C4.5 decision

tree algorithm with tenfold cross-validation. Super-

vised learning of identified target classes was used to

identify the features common to the samples in each

cluster. In order to compare the distribution of EZ

Metric values across exposure concentrations within

the identified clusters, we defined a quantity called

sumEZ, such that,

sumEZ ¼
X8

i¼1

EZmetrici; ð2Þ

where EZMetrici is the EZ Metric value at the ith

concentration of the nanoparticle.

For the surface chemistry-based toxicological

model of NP toxicity, a subset of gold nanoparticles

with differing surface chemistries and otherwise

similar structures were isolated and the surface

functional group chemical characteristics were built

using the extensible computational chemistry envi-

ronmental program (Black et al. 2003). The com-

pounds were geometry optimized at the Hartree–Fock/

6-31G* level of theory using the NWChem 5.1

program (Bylaska et al. 2007; Kendall et al. 2000)

and the band gaps calculated. The remaining topo-

graphical and physicochemical molecular descriptors

were calculated using the Cerius2/Discovery Studio

program (Accelrys 2006). Physicochemical parameter

estimates and chemical attributes used in model

development are provided in Table 2.

Results

Nanoparticle toxicity

To compare the toxicity of the diverse nanomaterials,

weighted EZ Metric values were plotted against log-

transformed nanoparticle exposure concentrations to

estimate the median effect level (EZ Metric

Score = 0.5 or EC50). Hazard ranking based on

weighted EZ Metric EC50 values is shown in Fig. 2,

and NP descriptors associated with each value are

detailed in Table 3. For nanomaterials where the

toxicity did not result in a 50 % effect in EZ Metric

score at the highest dose tested (*250 ppm), we

ranked those materials based on the exposure concen-

tration resulting in a weighted EZ Metric score equal

to 0.1 (values listed in Online Resource 2).

Analysis of the hazard ranking shown in Fig. 2

reveals distinct patterns of toxicity related to the

outermost surface chemistry of the nanomaterials.

Four of the seven core compositions spanned the range

of observed toxicity depending on their surface

chemistry (Fig. 2). Both dendrimer and gold samples

show dramatic differences in toxicity associated with

changes in the surface chemistry of otherwise similar

particles. Positively charged amine-functionalized

dendrimers and N,N,N-trimethylammoni-

umethanethiol (TMAT)-functionalized gold nanopar-

ticles were significantly more toxic than their neutral

or negatively charged counterparts with other surface

chemistries. Pure metal oxide nanoparticles were

found to vary in their overall hazard ranking with

core composition; however, surface chemical modifi-

cations did affect metal oxide NP toxicity as illustrated

by the ranking of a series of zinc oxide nanoparticles

Table 2 Values for the molecular descriptor variables for each surface modification used in model development

Variable, units MEE MEEE TMAT MES

SASA, Å2 344.15 438.46 286.83 314.97

SASA/Polara 5.04 5.66 7.39 3.02

Refractivity (m3/mol) 31.78 42.82 48.38 28.01

Band Gap (kcal/mol) -211.8 -211.7 -215.8 -195.3

Polar Surface (Å2) is the surface area formed by all the polar atoms of a molecule, Solvent-Accessible Surface Area (SASA, Å2) is

the surface area of a molecule available to a spherical solvent molecule, Molar Refractivity (Refractivity, m3/mol) is a measure of the

volume occupied by an atom or functional group, and Band Gap (kcal/mol) is the energy difference between the highest occupied

molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO)
a Unitless quantity
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with varying surface chemistries and similar core sizes

and composition (Online Resource 2). Spearman rank

correlation analysis of NP core composition and

outermost surface chemistry showed that both factors

have significant correlation with EC50 values, with

surface chemistry having a higher correlation coeffi-

cient (0.75, p\ 0.001, n = 28) than core composition

(0.54, p = 0.003, n = 28).

Clustering analysis

Cluster analysis was performed on the overall dataset

to identify inherent nanoparticle features that serve as

good predictors of nanoparticle toxicity. Nanoparti-

cles can be grouped into different clusters based on

similarity/dissimilarity in their EZ Metric-concentra-

tion profile. Hierarchical clustering methods based on

Ward linkage rule with Euclidian distance measure

gave well-separated clusters for EZ Metric scores

when data were assessed on the chemical constituents,

primary particle size, and surface chemistry of the

nanomaterials (Fig. 3). Other linkage rules (e.g.,

single linkage) and distance measures (e.g., Manhattan

distance measure) did not yield clusters that were as

well separated from each other (data not shown).

Clustering analysis of these nanomaterials based on

the weighted EZ Metric score revealed two clusters,

indicating that the outermost surface chemistry of the

nanomaterial was a stronger predictor of toxicity than

any other independent feature (Fig. 3). A rough

comparison of the distribution of EZ Metric values

of cluster A with that of cluster B was conducted using

a consolidation estimate, sumEZ (Eq. 2). This analysis

revealed that the toxicity of cluster B nanoparticles

was higher than that of cluster A based on their

respective weighted EZ Metric scores (Fig. 3, insert).

Fig. 2 Hazard ranking of nanomaterials based on EC50 dose for

EZ Metric score

Table 3 Median weighted EZ Metric exposure concentrations

(EC50) determined in embryonic zebrafish following 5-day

exposure to the various types of nanoparticles

Material EC50

Gold-TMAT (2 nm)-as synthesized 0.2

Gold-TMAT (0.8 nm) 1.3

G3 PAMAM dendrimer—amine 1.7

Gold-TMAT (2 nm)-pure 1.9

G5 PAMAM dendrimer—amine 4.3

Gold—phosphatidylcholine (14 nm) 6.2

G4 PAMAM dendrimer—amine 6.2

Silver—citrate (10 nm) 7.4

Gold-TMAT (2 nm)-ultrapure 8.1

Gold—phosphatidylcholine (14 nm) 9.0

Gold—phosphatidylcholine (22 nm) 11.6

Silver/Gold—phosphate (68 nm) 12.2

G6 PAMAM dendrimer—amine 16.5

Gold-TMAT (2 nm)-ultrapure 16.7

Erbium Oxide (25 nm) 23.2

Silver/Gold—phosphate (92 nm) 23.7

Lead Sulfide—monothiol, oxidized (3 nm) 30.4

Gold—phosphatidylcholine (7 nm) 38.9

Samarium Oxide (25 nm) 41.7

Gold-MHA (10 nm) 48.2

Lead Sulfide—monothiol, unoxidized (3 nm) 51.9

Gold—phosphatidylcholine (7 nm) 53.7

Silver/Gold—phosphate (61 nm) 54.6

Silver/Gold—phosphate (70 nm) 56.6

Holmium oxide (25 nm) 61.3

Silver/Gold—phosphate (101 nm) 99.7

Silver/Gold—phosphate (122 nm) 103.5

Dysprosium oxide (25 nm) 158.5

Nanoparticles are listed from most to least toxic as is

represented in Fig. 2
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Identifying nanoparticle features distinguishing

cluster A nanoparticles from cluster B nanoparticles

was performed to identify those features useful for

predicting nanoparticle hazard. To this end, we

constructed a decision tree model based on nanopar-

ticle surface components using the WEKA J48

algorithm. As shown in the dendrogram in Fig. 4,

nanoparticles were grouped into clusters A and B

based on the presence/absence of four surface func-

tional groups, namely TMAT, phosphate, phos-

phatidylcholine, and amine. Based on these four

features with leave-one-out cross-validation, the J48

classifier was able to classify the nanoparticles into the

two clusters with 94 % accuracy. Four nanoparticles

were misclassified using this approach: gold-TMAT

(10 nm) and Nanocomposix BioPure (silver over gold

-30 nm) were misclassified into cluster A’; gold-

MES (1.5 nm)-ultrapure and erbium oxide (III)

nanoparticles were misclassified into cluster B’.

Group analysis of nanoparticles that are function-

ally similar with respect to toxicity showed that the

membership of each group can differ slightly

Fig. 3 Dendrogram plot

showing the hierarchical

clustering of 68 nanoparticle

samples based on their

weighted EZ Metric scores.

Clustering analysis is done

using MATLAB. The

clustering method uses the

Ward linkage rule with

Euclidean distance measure.

Clusters A (Blue) and B

(Red) are the top-level

clusters identified in the

plot. Insert—Box plots of

sumEZ values for clusters A

and B. The red-colored solid

diamond symbol represents

the mean of sumEZ values in

each cluster. (Color figure

online)
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depending on which of the 21 individual endpoint

variables is used as the characteristic measure of

nanoparticle toxicity; however, in all cases, clustering

analysis defined two groups of nanoparticles. The

analysis further revealed that nanoparticles that have

any of the four surface components including TMAT,

phosphate, phosphatidylcholine, and amine are mostly

similar with respect to their toxicity, irrespective of

which characteristic of the EZ Metric was used for

clustering. Some minor misclassifications based on the

presence/absence of these surface components were

identified and attributed to variation in other features

(e.g., size or concentration of surface components) that

were not included in the current analysis.

Toxicological response modeling

Clusters identified in this work were used as a basis for

identifying regions in predictor feature space where

linear predictive models of nanoparticle toxicity could

be developed (Silva et al. 2014). To investigate the

relationship between weighted EZ Metric scores and

the inherent nanoparticle features, we focused on a

subset of four gold nanoparticles that varied in surface

chemistry and size. Physicochemical properties and

chemical attributes shown in Table 2 were calculated

from atomic models and used as independent variables,

along with the natural logarithm of concentration and

primary particle size, to build a model for predicting

the EZ Metric response. The logarithmic transforma-

tion of the values of an experimental factor like

concentration is useful when the variable has a large

range (Finney 1947; Myers et al. 2001). Thus, original

EZ Metric responses were transformed by multiplying

the score by 100 and adding 0.1 to avoid the

discontinuity resulting from taking the natural loga-

rithm of zero scores (denoted as Mod EZ Metric in

Eq. 3). Studying the diagnostics of the model, the

presence of two outliers became evident. Outliers were

removed and a model was fit to the resulting dataset.

The final model has the form shown in Eq. 3.

Mod EZ Metric¼ exp b0þb1 logðConcÞþb2Sizeð
þb3SASA/Polarþb4Refractivityþb5Band Gap

þb13 logðConcÞ �SASA/Polar

þb25Size �Band Gapþb11½logðConcÞ�2þb22Size2
�
;

ð3Þ
where bi are model parameters estimated using

nonlinear least squares and log(Conc) represents the

natural logarithm of the NP concentration used in the

tests (modified as described in the previous para-

graph). Size is the primary NP diameter in nanometers,

SASA is the Solvent-Accessible Surface Area (Å2),

Polar represents the surface area formed by all the

polar atoms of a molecule (Å2), Refractivity is the

Fig. 4 Prediction surface

plots of EZ Metric values (z-

axes) obtained with the

model in Eq. 3 as a function

of particle size (x-axes) and

concentration (y-axes).

Results for gold

nanoparticles with a TMAT,

b MEE, c MEEE, and

d MES surface ligands are

shown on the top left, top

right, bottom left, and

bottom right panels,

respectively
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molar refractivity, a measure of the volume occupied

by an atom or functional group (m3/mol), and Band

Gap is the energy difference between the highest

occupied molecular orbital (HOMO) and the lowest

occupied molecular orbital (LUMO). Model parame-

ter estimates, bi, for each of the terms in Eq. 3, and

their respective standard errors and p-values are shown

in Table 4. The subscripts in the model parameter

estimates (bi) do not have any particular meaning and

are simply used to distinguish the parameter that

corresponds to each term in the equation. Other NP

inherent features that did not significantly alter

toxicological predictability include the distribution

coefficient (logD) and partitioning coefficient (logP)

for the chemicals in octanol and water, the polariz-

ability of the compound, and the van der Waals surface

area (data not shown).

A plot of predicted against measured EZ Metric

values obtained using the model shown in Eq. 3

illustrates that the model fits the observed EZ Metric

responses relatively well (R2 = 0.88) and that the

model is able to follow the general trend of the

response, despite the large variability in the observed

responses (Online Resource 3). Response surface plots

of the model in Eq. 3 as a function of particle size and

concentration indicate how surface functional groups

dramatically alter the predicted toxicity of each of the

four surface-modified gold nanoparticles (Fig. 4).

Highest toxic responses were modeled for Au-TMAT

NPs, especially at low concentrations with small

particle sizes (Fig. 4a); meanwhile, Au-MES model

results indicate an opposite response, with increasing

toxicity as particle size increases (Fig. 4d). Based on

the model, Au-MEE is predicted to have similar

toxicity across particle sizes as responses were only

affected by particle concentration (Fig. 4b), while Au-

MEEE response plots suggest some role of size in

toxicity despite these AuNPs being overwhelmingly

low in toxicity (Fig. 4c).

Discussion

The studies presented here show that the rapid,

reliable, and cost-effective EZ Metric assay can be

used to assess integrated living system responses at

realistic exposure concentrations and provide the

information necessary for predictive modeling and

determination of hazard, all while providing insights

into potential mechanisms of toxicity. Through this

study, we have gained insight into the important

nanomaterial features that govern their interactions

with biological systems. Based on analysis across

multiple material types, the assay has revealed that the

outermost surface chemistry of nanomaterials is a

strong determinant in their overall in vivo toxicity.

The use of large datasets and modeling approaches

across a wide range of data, all collected using the same

experimental methodologies, overcomes some of the

previous barriers noted in the development of nano-

material structure–toxicity relationships (Cohen et al.

2012; Rallo et al. 2011; Zhang et al. 2012). We are

unaware of any previous analyses that studied this

quantity of diverse nanomaterials simultaneously,

using the same vertebrate assay, with the goal of

identifying the inherent NP features predictive of

hazard. The weighted ranking of EZ Metric assay

endpoints allows for all measurable sub-lethal effects

to be taken into account, an approach applicable to

modeling of biological interactions at realistic expo-

sure levels. Mechanistic hypothesis generation is often

difficult following first-pass hazard identification

studies that rely on mortality alone or are not conducted

at realistic doses, difficulties that are overcome with

our approach. The time and cost associated with the EZ

Metric approach is significantly less than traditional

in vivo methods, yet it provides data on numerous sub-

lethal endpoints valuable for mechanistic hypothesis

generation related to the mode of toxicity.

In addition to the research-driven benefits of

informatics approaches that integrate large amounts of

diverse data, predictive models developed from

Table 4 Model parameter estimates and their corresponding

standard errors and p-values

Model term Estimate Standard error p value

Intercept 67.2828 5.4948 \0.0001

Log concentration 0.8128 0.0545 \0.0001

Size 14.7335 1.9790 \0.0001

SASA/Polara 4.1535 0.2880 \0.0001

Refractivity, m3/mol -0.2974 0.0367 \0.0001

Band gap, kcal/mol 0.3715 0.0279 \0.0001

LogC 9 (SASA/Polar) -0.0547 0.0070 \0.0001

Size 9 Band Gap 0.0682 0.0093 \0.0001

(Log Conc)2 -0.0343 0.0039 \0.0001

Size2 -0.0255 0.0092 0.0057

a Unitless quantity
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structured datasets also inform safer design rules for

nanomaterial engineering (Harper et al. 2013). When

combined with informatics approaches, the EZ Metric

assay and scoring technique can be used to develop

safer design rules and to provide insight into structure–

property relationships that exist across nanomaterials.

Informatics can provide a data integration platform for

consolidating the weight-of-the-evidence, thus sup-

porting research into novel applications and at the

same time informing safe design rules for nanoengi-

neering. Incorporating toxicological evaluations early

in research and development schemes will allow us to

close the testing–redesign loop and favor the devel-

opment of nanomaterials with minimal toxicity

(Harper et al. 2008b, 2010). Given the immense need

to quickly and cost-effectively screen chemicals and

nanomaterials for their toxicity, data-rich assays like

the EZ Metric that are (i) rapid, (ii) readily amenable

to inter-laboratory standardization, (iii) biologically

representative, and (iv) cost effective, are of signifi-

cant value to the scientific community.

Our previous analysis of EZ Metric predictive

performance revealed that the weighting scheme for

the varying zebrafish responses used here has a

beneficial influence on the performance of predictive

models (Liu et al. 2013); thus, despite the subjective

nature of the weighting scheme used to rank the

observed biological effects, we feel confident that the

weighted EZ Metric is a better predictor than can be

achieved using purely additive approach for assessing

the sub-lethal endpoints in the assay. The weighted

rankings used here may evolve as our understanding of

embryonic zebrafish toxicity broadens, but in such an

event the EZ Metric score can quickly and easily be

recalculated. Combined metrics conducted in vivo that

include not only mortality but morphological, devel-

opmental, and behavioral endpoints can increase the

understanding gained in first-pass screening assays

and provide data necessary to improve the develop-

ment of predictive models. The methods used for the

clustering and classification analyses of the NBI

dataset are general and may be applied and tested as

more data become available; however, as the volume

of data and the diversity of the nanoparticles increase,

it will be necessary to develop more continuous and

mechanistic features that characterize the surface

chemistry of the nanoparticles. Models should evolve

to incorporate conditional NP features, such as

dissolution and zeta potential in a given experimental

medium, for building classification models that can

predict toxic potential for developing vertebrates.

Conclusions

Our findings are similar to other studies in embryonic

zebrafish which have also suggested that the toxicity of

nanomaterials often differs from the toxicity of the core

constituents alone (Griffitt et al. 2009; King Heiden

2007; Powers et al. 2010). Yet information gained

through these types of rapid assays will need to be

considered concomitantly with results in other model

systems in order to support applicable risk assessments.

Additional high-throughput assays representative of

real-world biological diversity should be developed in

conjunction with cohesive informatics frameworks, so

that the data are sharable and methods and materials are

replicable. Our results further suggest that the consid-

eration should be given to the way in which we

anticipate regulating nanomaterials. Risk assessments

based on nanoparticle core composition alone may be

applicable for simple nanoparticles such as metal

oxides; however, complex engineered nanoparticle risk

assessments may require consideration of their surface

constituents, and potentially other conditional physico-

chemical features like dissolution and zeta potential in a

given environment, that are not currently considered.
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