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One step to synthesize the nanocomposites of graphene
nanosheets and N-doped titania nanoplates with exposed
{001} facets for enhanced visible-light photocatalytic activity
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Abstract Due to large particle size, low specific

surface area, and the high recombination rate of the

photo-generated electron–hole pairs, micrometer-

sized N-doped TiO2 plates (NTP) with {001} facets

generally present lower visible-light photocatalytic

activity. In order to solve these problems, the

nanocomposite photocatalysts consisted of graphene

nanosheets (GR) and N-doped TiO2 nanoplates

(NTNP) with exposed {001} facets were synthesized

by a sol–gel process for the first time. The physical and

chemical properties of the resultant nanocomposites

(NTNP/GR) were studied in detail, and their photo-

catalytic activities were investigated by the photocat-

alytic decoloration of methylene blue solution under

visible-light irradiation (k[ 420 nm). Owing to

smaller particle size (about 25 nm) and higher specific

surface area in comparison with micrometer-sized

NTP, the photocatalytic activity of NTNP was

improved effectively. Due to the effective charge

anti-recombination of graphene, the photocatalytic

activity of nanocomposite NTNP/GR was further

improved. Due to the competition for light absorption

between graphene and NTNP, there was an optimal

ratio (1.0 %, the weight percentage of graphene to

TiO2) between graphene and NTNP for the maximum

of visible-light photocatalytic activity.

Keywords Photocatalysis � TiO2 � Graphene �
Nanocomposite � Visible light

Introduction

Controllable growth of metal oxides or semiconduc-

tors with high reactive facets has aroused great interest

in the recent years owing to their superior intrinsic

shape-independent properties in large numbers of

applications, such as photocatalysis (Grabowska et al.

2014), photoelectrocatalysis (Zhang et al. 2011),

hydrogen production (Li et al. 2013), solar cell (Sun

et al. 2014), and lithium ion battery (Chen et al. 2010).

As a dominant semiconductor photocatalyst, anatase
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TiO2 crystals with high reactive {001} facets have

been investigated since the pioneering work (Yang

et al. 2008), and many research results have proved

that the photocatalytic activity of anatase TiO2 crystals

could be enhanced significantly owing to the exposure

of high reactive {001} facets (Yang et al. 2009b; Han

et al. 2009; Zhang et al. 2009; Liu et al. 2010b).

However, the photocatalytic activity of anatase TiO2

with high reactive {001} facets is still limited by

narrow light absorption (only UV with wavelength

below 387 nm can be used) (Hoffmann et al. 1995;

Diebold 2003; Fujishima et al. 2008; Jing et al. 2013).

For utilizing solar light, visible-light responsive TiO2

crystals with exposed {001} facets are highly desired.

On the other hand, ion doping, especially nonmetal

doping has been considered as an effective means to

promote the visible-light response of TiO2 (Chen and

Mao 2007; Yu et al. 2009). For example, Asahi et al.

found that N-doped TiO2 displayed visible-light

photocatalytic activity (wavelength, 500 nm) for the

photocatalytic degradation of methylene blue (Asahi

et al. 2001). Khan et al. found that C-doped TiO2 could

respond visible light with wavelength of 535 nm

(Khan et al. 2002). Therefore, incorporating dopants

into anatase TiO2 crystals with exposed {001} facets

may be a promising attempt to explore new photo-

catalysts with high activity under visible-light irra-

diation. In this regard, a series of progress has been

made, and nonmetal-doped TiO2 plates (e.g., N, S, C)

with exposed {001} facets have been successfully

prepared (Liu et al. 2009, 2010a; Yu et al. 2010), and

their photocatalytic activities under visible light have

been confirmed. However, these nonmetal-doped

TiO2 plates with exposed {001} facets are micrometer

in size, which inevitably results in its low specific

surface areas, and then hampers the improvement of

photocatalytic ability. In our previous work (Shi et al.

2014a), we prepared micrometer-sized N-doped TiO2

plates (NTP) with exposed {001} facets, and demon-

strated that the obtained NTP presented photocatalytic

active for methylene blue (MB) decomposition under

visible light. Unfortunately, their visible-light photo-

catalytic activity was low; only about 55 % MB was

decomposed after 120 min reaction owing to large

particle size (2.5 lm), low specific surface area

(1.76 m2 g-1), and the high recombination rate of

the photo-excited electrons and holes. Nanoparticles

have smaller particle size and larger specific surface

area in comparison with micrometer-sized particles.

Smaller particle size is helpful to the transfer photo-

excited carriers to the surface of photocatalyst, and

larger specific surface area is advantageous to pre-

adsorption of reactants on the surface of photocatalyst.

Both of them are helpful to restrain the recombination

of photo-excited electrons and holes. Therefore, it can

be deduced that nanometer-sized nonmetal-doped

TiO2 plates with exposed {001} facets may be a

promising approach to develop new photocatalysts

with higher visible-light activity. In our recent work

(Ai et al. 2014), we successfully prepared N-doped

TiO2 nanoplates (NTNP) with exposed {001} facets

by a sol–gel method. Compared with micrometer-

sized N-doped TiO2 plates, the visible-light photocat-

alytic activity of NTNP was impressively improved;

more than 90 % MB was removed after 120 min

visible-light irradiation (k[ 420 nm). However, there

is still room for further enhancement in the visible-

light photocatalytic activity of NTNP if suitable

measures are taken to more effectively inhibit the

recombination of photo-excited electrons and holes.

Due to excellent mobility of charge carriers

(200,000 cm2 V-1 s-1), large specific surface area

(calculated value *2630 m2 g-1), and good me-

chanical stability (Lee et al. 2008; Allen et al. 2010),

graphene (GR) has attracted great interest in the recent

years. Considering its excellent mobility of charge

carriers, graphene could be a superior candidate to

combine with TiO2 for the effective charge anti-

recombination. Up to now, a large number of publi-

cations have reported that the recombination of photo-

generated electron–hole pairs can be effectively

restrained due to the fact that graphene acts the

transporter of electrons in TiO2/GR composites

(Xiang et al. 2012; Zhang et al. 2012). In our previous

work (Shi et al. 2014b), we synthesized the composite

photocatalysts consisted of graphene nanosheets and

micrometer-sized N-doped TiO2 plates with exposed

{001} facets by a one-pot hydrothermal process, and

we found that graphene nanosheets acted as trans-

porter of photo-excited electrons to prevent the

recombination of photo-generated electrons and holes,

which significantly improved the visible-light photo-

catalytic activity of the composite photocatalysts.

Based on these previous results (Ai et al. 2014; Shi

et al. 2014a, b), in present work, we explored a path to

further improve the visible-light photocatalytic ac-

tivity of TiO2 by incorporating graphene nanosheets

and NTNP with exposed {001} facets to synthesize
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nanocomposite photocatalysts. The structural proper-

ties of the prepared samples were characterized by

XRD, TEM, XPS, DRS, and BET, and their photo-

catalytic performances were tested by the photocat-

alytic decoloration of MB under visible-light

irradiation. As expected, the visible-light photocat-

alytic activity of nanocomposite photocatalysts

NTNP/GR was significantly enhanced. To our knowl-

edge, this is the first time to synthesize the nanocom-

posite photocatalysts consisted of NTNP with exposed

{001} facets and graphene nanosheets.

Experimental

Synthesis of NTNP

NTNP with exposed {001} facets were synthesized by

a sol–gel method. First, 6.85 ml of tetrabutyl titanate

was dispersed in 15.5 ml of absolute ethanol under

vigorous stirring for 30 min in a conical flask with

cover (solution A). Second, 0.37 g of NH4F, 7.75 ml

of absolute ethanol, 8 ml of acetic acid, and 2.88 ml of

pure water were mixed in a beaker (solution B). Then,

solution B was dropwise added into solution A with

vigorous magnetic agitation. Subsequently, the ob-

tained mixture (sol) was kept in incubator chamber at

90 �C for 12 h to get gel. Then, the obtained gel was

dried at 80 �C in an oven, porphyrized into powders,

and then calcined at 500 �C in air for 2 h, resulting

NTNP sample.

Synthesis of NTNP/GR composites

Graphene oxide (GO) was synthesized by the modified

Hummers’ method, and the detailed process can be

found in our previous publication (Shi et al. 2014b).

Similar to the synthesis of NTNP, NTNP/GR com-

posites were synthesized by one step sol–gel method.

In a typical synthesis route, a given amount of GO

powder was added into solution A under vigorous

agitation to form well-distributed solution. Then,

solution B was added into solution A drop-by-drop

under vigorous stirring. Subsequently, the obtained

mixture was kept in incubator chamber at 90 �C for

12 h to get gel. Then, the obtained gel was dried at

80 �C in an oven. Subsequently, the dry gel was

porphyrized into powders, and then was calcined at

500 �C in nitrogen atmosphere for 2 h. In the process

of heat-treatment, GO was reduced into GR, resulting

in NTNP/GR sample. In order to investigate the effect

of graphene content on the photocatalytic activity of

NTNP/GR composites, the percentages of graphene to

TiO2 were designed as 0.5, 1.0, 1.5, and 2 % by

adjusting the added weight of GO powder, and the

resulting samples were marked as NTNP/GR-x, where

x = 0.5, 1.0, 1.5, and 2.0, respectively.

Characterization

X-ray diffraction (XRD) was carried out at room

temperature with an X’ pert PROMPD diffractometer

(PANalytical, Holland) with copper Ka1 radiation.

Transmission electron microscope (TEM) was per-

formed on JEM 2100 (JEOL, Japan). X-ray photo-

electron spectroscopy (XPS) was done on an

ESCALAB250 (Thermo Scientific, USA) with alu-

minum Ka radiation. UV–vis diffuse reflectance

spectra were recorded with a UV-2450 spectropho-

tometer (Shimadzu, Japan) equipped with an integrat-

ing sphere, and the baseline correction was verified by

using a calibrated barium sulfate. The nitrogen

adsorption was performed at 77 K by using an ASAP

2010 analyzer (Micromeritics, USA), and the Barrett–

Joyner–Halenda (BJH) pore diameter distribution

curves were obtained from the desorption branch and

specific surface areas were obtained according to the

Brunauer–Emmett–Teller (BET) model. Photolumi-

nescence (PL) spectra were recorded at room tem-

perature by using a fluorescence spectrophotometer

(Hitachi, F-4600) with an excitation wavelength of

300 nm.

Experimental procedures of photocatalytic

decoloration

The photocatalytic experiment was carried out in a

photo reaction system [as illustrated in our previous

publication (Shi et al. 2012c)], and MB was used as a

model pollutant. Visible-light was provided by a

1000 W Xe lamp (the UV irradiation below 420 nm

wavelength was cut-off by a glass filter). The Xe lamp

was placed in the center of a water-cooled quartz

jacket. At the side of quartz jacket with a distance of

40 mm, a cylindrical vessel with a volume of 50 ml

was utilized as the reactive bottle to load reaction

solution. In the bottom of the reactive bottle, a

magnetic stirrer was equipped to realize efficient
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dispersion. At every experiment, 50 mg of photo-

catalyst was added into 50 ml of MB solution with the

concentration of 10 mg l-1 to form suspension under

stirring. After achieving adsorption equilibrium, Xe

lamp was turned on to irradiate the suspension. During

the whole experiment, the suspension was agitated

continuously. At given interval, 3 ml of suspension

was taken out and immediately centrifuged to

eliminate the solid particles. The absorbance of the

filtrate was measured by a spectrophotometer at the

maximum absorbance peak of MB (665 nm).

Results and discussion

Crystal phase

The results of XRD test of all samples including

NTNP and NTNP/GR are displayed in Fig. 1. The

peaks at 2h = 25.28�, 37.80�, 48.05�, 53.89�, 55.06�,
and 62.69� (JCPDS: 00-021-1272), which can be

assigned to (101), (004), (200), (105), (211), and (204)

planes of anatase TiO2, respectively, appear in all

XRD patterns, indicating that anatase TiO2 has formed

in all samples. The characteristic peak of GO at

2h = 9.8� [as shown in Fig. 2 in our previous

publication (Shi et al. 2014b)] cannot be observed in

the XRD patterns of all NTNP/GR samples, implying

that GO has been reduced into GR in the process of

heat-treatment. Furthermore, there are no typical

diffraction peaks of the separate graphene in the

XRD patterns of all NTNP/GR samples, which can be

ascribed to the facts that both the amount of graphene

in samples and the diffraction intensity of graphene are

relatively low (Zhang et al. 2010a). However, by

careful comparing, a slight shift of the diffraction peak

at 2h = 25.28� to higher angle with the increase of GR
in the composite can be detected (as shown in the inset

in Fig. 1), which can be ascribed to the fact that the

main peak of graphene at 26.1� has been shielded by

the main peak of anatase TiO2 at 25.28� (Xu et al.

2010; Zhang et al. 2010b).

Morphology

Figure 2 shows the TEM images of typical sample

NTNP/GR-1.0 with different magnifications. A large

number of particles are anchored on a large piece of

satin-like GO nanosheet (Fig. 2a). These particles are

well faceted nanocrystals with uniform particle size

(Fig. 2b, the partial enlarged image from the region

marked with white square in Fig. 2a), and the square,

hexagon, and rhombus shapes can be found by

viewing from different directions (as marked in

Fig. 2b), which are owing to highly truncated octahe-

dral structure, implying that titania nanoplates with

exposed {001} facets have formed. As shown in the

inset in Fig. 2b, these nanoplates present a square

outline, and the two square surfaces are {001} facets

and the eight isosceles trapezoidal surfaces are {101}

facets of anatase TiO2 crystal (Yang et al. 2008). The

side length of TiO2 plates is approximately 25 nm and

the percentage of {001} facets is about 40 %. The HR-

TEM of one typical plate (the inset in Fig. 2a) clearly

shows the continuous atomic planes with a spacing of

0.20 nm, which is corresponding to the {200} planes

of anatase TiO2 crystals, demonstrating that the two

square surfaces are {001} facets.

Surface element composition

Figure 3a shows the XPS full survey spectrum of

typical sample NTNP/GR-1.0. These elements of Ti,

O, N, C, and F have been detected. The peak of F1s can

be ascribed to the grafted F ions (Liu et al. 2009; Shi

et al. 2014a), and the appearance of N1s peak indicates

that N-doping has been realized (Liu et al. 2009; Shi

et al. 2014a) [the peak of N1s has been analyzed in our
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Fig. 1 The XRD patterns of samples (A anatase): a NTNP,

b NTNP/GR-0.5, c NTNP/GR-1.0, d NTNP/GR-1.5, e NTNP/

GR-2.0. (Color figure online)
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early work (Ai et al. 2014)]. Figure 3b displays the

C1s high-resolution XPS spectrum of NTNP/GR-1.0.

Four peaks at binding energies of 283.5, 285.0, 287.6,

and 288.6 eV can be fitted, respectively. The peak at

285.0 eV can be attributed to the C–C, C=C, and C–H

bonds (sp2) of graphene. The peak located at 287.6 eV

can be attributed to the oxygen-containing carbona-

ceous bonds (containing C–OH and C=O bonds)

(Yumitori 2000; Chiang and Seitz 2001; Akhavan and

Ghaderi 2009; Yang et al. 2009a), which depresses

significantly in comparison with the C1s high-resolu-

tion XPS spectrum of GO (Fig. 5 in our previous work

(Shi et al. 2014b). The reason can be ascribed to the

reduction of GO to GR due to the heat-treatment (Park

and Ruoff 2009; Akhavan 2010). The peak at

283.5 eV is very close to the C1s peak of TiC

(283.0 eV) (Park et al. 2006; Yin et al. 2007; Huang

et al. 2008), which can be ascribed to the formation of

O–Ti–C bonds by the substituting of carbon atoms to

oxygen atoms in the lattice of TiO2 (Park et al. 2006;

Yin et al. 2007; Huang et al. 2008; Dong et al. 2009).

The peak centered at 288.6 eV can be assigned to C–O

bonds, which implies that Ti–O–C structure has

formed via the replacing of carbon atoms to titanium

atom in the lattice of TiO2 (Gu et al. 2008; Wang et al.

2009). The Ti–O–C bonds formed in the interface

between graphene and TiO2 are similar to C-doping in

TiO2 lattices, which can arouse the red-shift of light

absorption edge and the improvement of light absorp-

tion intensity.

(b)

d200=0.20 nm

(a)

Fig. 2 TEM images of typical sample NTNP/GR-1.0 with low magnification (a) and high magnification (b). (Color figure online)
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Optical response property

The UV–vis diffuse reflectance spectra (DRS) of

NTNP and NTNP/GR-1.0 are shown in Fig. 4. As

confirmed in our previous publication (Ai et al. 2014),

NTNP presents a light absorption platform in the

region of 400–500 nm due to N-doping. Compared

with NTNP, the NTNP/GR presents two prominent

features: (i) the light absorption edge of NTNP/GR-1.0

shifts to longer wavelength, and (ii) the overall light

absorption intensity is enhanced, which are highly

consistent with the results deduced from the analysis of

the high-resolution C1s. These features indicate that

NTNP/GR can utilize the solar spectrum more effi-

ciently in comparison with NTNP (Yu and Yu 2009).

Nitrogen adsorption–desorption analysis

The nitrogen adsorption–desorption and the corre-

sponding pore-size distribution curves (inset in Fig. 5)

of NTNP and NTNP/GR-1.0 are presented in Fig. 5. It

can be observed that the two samples present similar

isotherms with hysteresis loops, which implies the

presence of mesopores in their structures. According

to IUPAC classification, the hysteresis loops can be

classified as type IV with type H3 (Kruk and Jaroniec

2001). Isotherms with type H3 loops have been

ascribed to slitlike pores formed due to the aggregate

of platelike particles (Kruk and Jaroniec 2001), which

is in agreement with our results that nanoplates

accumulate together (as revealed by TEM). The

pore-size distributions demonstrate the existence of

large numbers of mesopores. The specific surface area

of the NTNP/GR-1.0 is 53.54 m2 g-1, which is higher

than that of NTNP (51.50 m2 g-1). The reason can be

attributed to the introduction of graphene with an

extremely high surface area (2600 m2 g-1 theoretical-

ly). It is well known that the high surface area is very

helpful to the improvement of photocatalytic activity

as sample with higher surface area can provide more

possibility for the diffusion and transportation of

target molecules and intermediates during the photo-

catalysis process.

Photoluminescence spectra

To study the charge anti-recombination effect resulted

from of graphene, the photoluminescence (PL) spectra

of NTNP and NTNP/GR-1.0 were carried out. As

shown in Fig. 6, the PL spectrum of NTNP presents a

strong emission peak at approximately 605 nm, and

the peak intensity of NTNP/GR-1.0 is decreased

obviously after the introduction of graphene, which

indicates that the recombination of photo-excited

electrons and holes has been restrained highly due to

the excellent mobility of charge carriers resulted from

graphene (Hou et al. 2013).

Photocatalytic activity

The photocatalytic decoloration of MB solution was

used to evaluate the photocatalytic activities of all

samples. For comparison, micrometer-sized N-doped

TiO2 plates with exposed {001} facets [NTP, the
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sample with the highest visible-light photocatalytic

activity and labeled as S20 in our previous work (Shi

et al. 2014a)] and the composite photocatalyst of NTP

and graphene [NTP/GR, the sample with the highest

visible-light photocatalytic activity and labeled as

NTS/G-6 in our previous work (Shi et al. 2014b)] were

also tested under the same conditions. Before photo-

catalysis, the solution including MB and catalyst was

stirred in dark for 1 h to achieve the adsorption

equilibrium. The results of the photocatalytic decol-

oration of MB solution under visible-light irradiation

(k[ 420 nm) are displayed in Fig. 7. Due to the

micrometer size and the low specific surface area,

NTP presents the worst adsorption property among all

samples, only 23 % of MB is removed from water in

1 h. Compared with NTP, the adsorption property

NTP/GR is improved due to the introduction of

graphene, and 35 % of MB is removed from water in

1 h. In contrast, NTNP and NTNP/GR samples present

more excellent adsorption property, and more than

70 % of MB is removed from water in the same

adsorption time (1 h). However, it is difficult to

compare their photocatalytic activities due to the

effect of strong adsorption.

In order to eliminate the effect of adsorption on the

evaluation of photocatalytic activity, we designed a

cyclic adsorption experiment to let these samples

achieve adsorption saturation in dark. The cyclic

adsorption experiment was performed as following

steps (Shi et al. 2012a): first, 50 mg of samples was put

in a 50-ml tube. Then, 50 ml of MB solution

(10 mg l-1) was transferred into the tube to begin

the adsorption experiment. Throughout the adsorption

experiment, the suspension was agitated continuously.

60 min later, 3 ml of suspension was removed out.

After the solid particles in the suspension were

eliminated by centrifugal separation, the filtrate was

tested via a spectrophotometer to obtain the ab-

sorbance data. After one cycle was finished, 50 ml

of MB solution (still 10 mg l-1) was used to begin the

next cycle. The adsorption experiment was repeated

until the adsorption capacities of all samples disap-

peared completely. As shown in Fig. 8, the columnar

value gradually enhances with the increasing cycle

time for all the seven samples, indicating the adsorp-

tion capacities are disappearing gradually due to the

absence of light irradiation. The columnar values are
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almost close to the 1.0 at the ninth cycle, which

implies that these samples have achieved adsorption

saturation.

These samples achieved adsorption saturation were

used as photocatalysts to decolorize MB solution

under visible light (k[ 420 nm). As displayed in

Fig. 9, NTP presents the worst photocatalytic activity

among all samples due to its large particle size, low

specific surface area, and the high recombination rate

of photo-excited carriers. Due to the effective charge

anti-recombination of graphene, NTP/GR presents

higher photocatalytic activity than NTP. Compared

with micrometer-sized NTP, the photocatalytic ac-

tivity of NTNP is improved significantly due to its

smaller particle size and higher specific surface area.

Furthermore, the photocatalytic activity of composite

photocatalysts (NTNP/GR-0.5 and NTNP/GR-1.0) is

further enhanced owing to the charge anti-recombi-

nation effect of graphene. Due to the competition for

light absorption between NTS and graphene, there is

an optimal ratio between graphene and NTNP (1.0 %

in present work) for the maximum of photocatalytic

activity.

Proposed photocatalytic mechanism

Figure 10 schematically illustrates the photocatalytic

mechanism of NTNP/GR under visible-light irra-

diation. Due to doping, a serial of localized impurity

states can be formed above valence band (VB) of

TiO2. The electrons located in the localized impurity

states can be excited to the conduction band (CB) of

TiO2 under visible-light irradiation, and correspond-

ingly left holes in the localized impurity states (Eq. 1).

Due to the excellent mobility of charge carriers, these

electrons can be transferred rapidly by graphene

(Eq. 2). Subsequently, these electrons will be scav-

enged by molecular oxygen (aAcceptor) to produce

the superoxide radical anion (Eq. 3) and hydrogen

peroxide (Eq. 4). Then, these new radical groups

interreact each other to yield hydroxyl radicals (OH�)
(Eq. 5). Meanwhile, the photo-excited holes in the

localized impurity states can react with hydroxyl

groups and water molecules (Donor) to yield OH�
groups (Eq. 6). Finally, MB molecules will be

oxidized by these oxidants step by step into final

products (Eq. 7) (Fan et al. 2012; Shi et al. 2012b).

TiO2 þ hc ! TiO2ðhþ þ e�Þ ð1Þ

TiO2ðe�Þ þ GR ! TiO2 þ GRðe�Þ ð2Þ

GRðe�Þ þ O2 ! GR + �O�
2 ð3Þ

GRðe�Þ þ O2 þ Hþ ! GRþ H2O2 ð4Þ

H2O2 þ �O�
2 ! OH� þ OH� þ O2 ð5Þ

TiO2ðhþÞ þ H2O ðor OH�Þ ! TiO2 þ OH� þ Hþ

ð6Þ

Dyeþ OH� ðor H2O2 or �O�
2 Þ !! Products: ð7Þ
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Fig. 9 Photocatalytic decoloration of MB solution over sam-

ples achieved adsorption saturation under visible light. (Color

figure online)

Fig. 10 Photocatalytic mechanism on the NTNP/GR under

visible-light irradiation. (Color figure online)
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Conclusions

Nanocomposites consisted of graphene nanosheets,

and nitrogen-doped anatase TiO2 nanoplates with

exposed {001} facets were successfully synthesized

by a sol–gel process. Compared with micrometer-

sized NTP and NTP/GR, the obtained nanocomposites

presented much high photocatalytic activity for the

decoloration ofMB under visible light, which could be

ascribed to three important factors: smaller particle

size and higher specific surface area of NTNP, the

charge anti-recombination effect of graphene, the red-

shift of light absorption edge, and the enhanced light

absorption intensity of nanocomposites.
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