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Abstract White-light-controlled resistance switch-

ing in TiO2/a-Fe2O3 composite nanorods array grown

on fluorine-doped tin oxide substrate by hydrothermal

process is investigated. The average length of TiO2/a-

Fe2O3 nanorods is about 3.5 lm, and the average

diameter is about 250 nm. The sizes of the a-Fe2O3

particles are in the range of 30 * 70 nm. The current–

voltage characteristics of the composite nanorods array

show a good rectifying property and bipolar resistive-

switching behavior, and the resistive-switching behav-

ior can be regulated by white-light illumination at room

temperature. This study is helpful for exploring the

multifunctional materials and their applications in

nonvolatile multistate memory devices.
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Introduction

It is undeniable that resistance switching is one of the

most promising candidates for the next generation of

nonvolatile computer memories, which has high

operational speed, high storage density, and low

power consumption (Meijer 2008). Currently, a large

variety of solid-state materials exhibit the resistance

switching effect, including organic materials (Stewart

et al. 2004; Ma et al. 2003), binary oxides (Liu et al.

2009; Schindler et al. 2009), amorphous Si (Jo et al.

2009), carbon-based materials (Li et al. 2008; Zhuge

et al. 2010; He et al. 2009), and complex perovskite

oxides such as Pr1 - xCaxMnO3 (Liu et al. 2000),

La1 - xCaxMnO3 (Hasan et al. 2008), and

La2CuO4 ? x (Hamaguchi et al. 2006). Recently, a

light-controlled resistance switching was observed in

Pd/Al2O3/SiO2 film and ZnO nanorod (Ungureanu

et al. 2012; Park et al. 2012, 2013; Bera et al. 2013),

which are added to the light as extra control parameter

for the resistance switching. The light-controlled

resistance switching provides the potential for non-

volatile light-controlled memory applications.

In recent years, a-Fe2O3 has received increasing

attention due to their extensive applications as mag-

netic materials, catalysts, pigments, gas sensors,

optical and electromagnetic devices, drug delivery,

tissue repairing engineering, and electromagnetic

devices. a-Fe2O3 nanostructures with various mor-

phologies have been successfully synthesized (Bean

and Livingston 1959; Faust et al. 1989; Hyeon 2003;
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Chen et al. 2005), and among these structures, one-

dimensional a-Fe2O3 possesses interesting physical

properties, such as good light-harvesting and charge

transport properties, and a-Fe2O3 with band gap of

1.9–2.2 eV, which could absorb most of visible light,

is a semiconductor material (Khan and Akikusa 1999;

Beermann et al. 2002). At the same time, semicon-

ductor-based photocatalysis has attracted extensive

interest for basic and applied chemical utilization of

solar energy (Burschka et al. 2013; Crossland Edward

et al. 2013; Hodes 2013; Mitchinson 2008; Gratzel

2003), and one of the most commonly used materials

is anatase TiO2 (band gap 3.1–3.2 eV) (Adachi et al.

2012; Wu et al. 2011; Cao et al. 2011). Rutile TiO2 has

been proven to be comparable to anatase TiO2 in dye-

sensitized solar cells (DSSCs) with additional advan-

tages in visible light including better chemical stabil-

ity, photochemical activity, and higher refractive

index (Liu and Aydil 2009; Diwald et al. 2004; Wang

et al. 2007), and the rutile TiO2 is a key material for

water dissociation (Schaub et al. 2001). In addition, for

the one-dimensional nature of a-Fe2O3 and TiO2,

abundant availability, and the inexpensive and non-

toxic nature of both the oxides make this composite

material an exciting one for various applications (Liu

and Gao 2006).

To the best of our knowledge, although the

photocatalytic properties of individual TiO2 have

been intensively investigated (Jang et al. 2001;

Beydoun and Amal 1999; Watson et al. 2004; Chu

et al. 2008), the resistance switching characteristics of

TiO2/Fe2O3 composite materials have not yet been

reported. In this paper, we present a white-light-

controlled resistance switching behavior in TiO2/a-

Fe2O3 composite nanorods array at room temperature.

Experimental

Preparation of TiO2/a-Fe2O3 composite nanorods

array

TiO2/a-Fe2O3 composite nanorods array grown on the

FTO substrate was prepared by hydrothermal process

(Fig. 1a). All chemicals used in this work were of

analytic reagent grade and commercially available,

and used without further purification. We introduce

the synthesis steps of the most preferred one in our

experiments, and the detailed experimental procedures

are as follows: deionized water (7 mL) was mixed

with hydrochloric acid (6.5 mL, 36.5–38 wt%) and

stirred for 5 min; then, 0.2 mL titanium(IV) isoprop-

oxide (TIP; 97 %, Sigma) (the TIP is liquid reagent)

and 1.35 g FeCl3�6H2O (Sigma) were dissolved into

the above solution and stirred for a few minutes; and

then the mixture solution was transferred to a 50 mL

Teflon-lined stainless steel autoclave. In addition,

Fluorine-doped tin oxide (FTO)-coated glass sub-

strates (NSG, 14 X per square) were cleaned prior to

ultrasonic using acetone, ethanol, and deionized water,

and subsequently dried in air. Then, the clean FTO

substrate was put into the above mixture solution, and

the conductive surface was down. The autoclave was

put in an oven at a temperature of 180 �C for 4 h. After

the autoclave was cooled to room temperature, the

FTO substrate was rinsed with deionized water and

subsequently annealed at 450 �C for 2.5 h in air.

Characterization

Microstructure of TiO2/a-Fe2O3 composite nanorods

was characterized by X-ray diffraction (XRD, Shima-

dzu XRD-7000 X-ray diffractometer) with Cu Ka
radiation. Surface morphology of TiO2/a-Fe2O3 com-

posite nanorods grown on FTO substrate was charac-

terized using scanning electron microscopy (SEM,

JSM-6510). The size, morphology, and the energy

dispersive X-ray (EDX) analysis of the TiO2/a-Fe2O3

composite nanorods were observed by transmission

Fig. 1 a The preparation process of TiO2/a-Fe2O3 composite

nanorods grown on FTO substrate, b the experimental test

circuit
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electron microscopy (JEM-2100) at an acceleration

voltage of 200 kV.

Figure 1b shows the schematic diagram of the test

circuit. We used ordinary filament lamp with various

power densities as light source, and the wavelength

white-light is in the range of 400 * 760 nm. Ag and

FTO are top electrode and bottom electrode, respec-

tively. The Ag electrodes with area about 4 mm2 were

prepared by silver glue. Electric characterizations

were tested using the electrochemical workstation

CHI-660D. The resistance switching properties of the

samples were examined in the dark and under white-

light illumination.

Results and discussion

The crystalline compositions of the samples were

characterized by XRD patterns. According to previous

reports in the literature (Liu and Aydil 2009), the peak of

FTO substrate is obvious. Therefore, in order to make

diffraction peaks of TiO2/a-Fe2O3 clearer, we also

present the XRD pattern of the pure FTO substrate

without TiO2/a-Fe2O3 composite nanorods

(Fig. 2a(A)). Figure 2a(B) shows the XRD pattern of

TiO2/a-Fe2O3/FTO. We can see that the crystallizations

of TiO2 and a-Fe2O3 are vary sufficiently without any

other impurity phase. TiO2 exhibits rutile phase. So, we

can obtain a conclusion that the sample is TiO2/a-Fe2O3

composite nanorods. The composition of TiO2/a-Fe2O3

is further confirmed by elemental analysis carried out

and observed from energy-dispersive X-ray spectra

(EDS). The EDX data in Fig. 2b confirm that the

elements of composition nanowire are Ti, Fe and O

without any other impurities. The Fe/Ti ratio in the

nanorod is about 30 %. We also prepared the TiO2/a-

Fe2O3 nanorods array with other Fe/Ti ratio. But the

white-light-regulated resistance switching for the TiO2/

a-Fe2O3 nanorods array with other Fe/Ti ratio is not

obvious. Therefore, we just report the results of the

TiO2/a-Fe2O3 nanorods array with Fe/Ti ratio 30 %.

Figure 3a, b shows the SEM image of TiO2/a-

Fe2O3 composite nanorods array grown on FTO

substrate. We can see that the as-prepared sample

consists of vertically and uniform nanorods (Fig. 3a).

The typical cross-sectional SEM image of TiO2/a-

Fe2O3 composite nanorods array is shown in Fig. 3b,

which shows that the average length of TiO2/a-Fe2O3

nanorods is about 3.5 lm, and the diameter is about

250 nm (The inset to Fig. 3b). Figure 3c shows the

TEM image of an individual TiO2/a-Fe2O3 composite

nanorod, which shows that the nanorod is composed of

TiO2 and a-Fe2O3, and a-Fe2O3 is particle with

diameter in the range of 30–70 nm. Figure 3d shows

the high-resolution TEM (HRTEM) of TiO2/a-Fe2O3

composite nanorods. The fringes with a spacing of

0.33 nm correspond to (101) planes of TiO2, and the

fringes with a spacing of 0.3 nm correspond to (300)

planes of a-Fe2O3, and the inset shows the SAED

pattern of the region without a-Fe2O3 particles in

Fig. 3c, which shows that the TiO2 of TiO2/a-Fe2O3

composite nanorod is single-crystalline structure.

Figure 4a shows the current–voltage (I–V) curves

of Ag/[TiO2/a-Fe2O3]/FTO in the dark and under

Fig. 2 a A The XRD of the FTO substrate. B The XRD of TiO2/a-Fe2O3/FTO. b The EDX spectrum of TiO2/a-Fe2O3 composite

nanorods, which shows the Fe/Ti ratio in the nanorods as 30 % nearly
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white-light illumination with various power densities

at room temperature, which all exhibit asymmetric

behavior with significant hysteresis. The arrows in the

figure denote the sweeping direction of voltage. The

asymmetric behavior of I–V curve demonstrates that a

Schottky barrier is formed at the interface between

TiO2 and FTO, which was studied in previous work

(Yang et al. 2014). The obvious bipolar resistive-

switching behaviors are observed, which exhibit the

rapid conversion and good reproducibility. The bipo-

lar resistive-switching effect should result from the

trapped and detrapped charge in the Schottky-like

depletion layer (Ungureanu et al. 2012; Jang et al.

2006; Won et al. 2008; Jeong et al. 2007; Park et al.

2010). The inset of (Fig. 4a) shows a large resistance

switching effects. The resistive-switching phenome-

non becomes more obvious with the white-light power

density increasing from 50 to 200 mW/cm2.

Therefore, the resistive-switching effect can be con-

trolled by white-light with various power densities at

room temperature, which demonstrates that TiO2/a-

Fe2O3 nanorod array is a potential candidate for

multilevel light-controlled memory applications. It is

elucidated that the resistance switching behavior is

activated by the modulation of trapped electrons in the

active layer under illumination conditions, as the total

number of electrons is increased by joining the

photogenerated current (Ungureanu et al. 2012; Park

et al. 2012, 2013; Bera et al. 2013).

To evaluate the resistive-switching characteristics

of TiO2/a-Fe2O3 composite nanorods array, the resis-

tance–time curves in the dark and under white-light

illumination with a positive bias of 50 mV are tested

and shown in Fig. 4b. It is obvious that the resistance

is about 40 MX in the dark and 100 kX under white-

light illumination with power density of 50 mW/cm2,

Fig. 3 a, b Scanning electron microscopy (SEM) image of

TiO2/a-Fe2O3 composite nanorods grown on FTO substrate, the

inset shows a single nanorod. c TEM image of individual TiO2/

a-Fe2O3 composite nanorod. d The HRTEM image of TiO2/a-

Fe2O3 composite nanorods. The fringes with a spacing of

0.33 nm correspond to (101) planes of TiO2, and the fringes with

a spacing of 0.28 nm correspond to (300) planes of a-Fe2O3.

The inset is the corresponding SAED pattern
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and the resistive-switching ratio is up to approxi-

mately three orders of magnitude. This adequately

illustrates that the current density is greatly changed

by white-light illumination. According to the above

results, the steady light-controlled resistive-switching

behavior in TiO2/a-Fe2O3 composite nanorods pro-

vides the potential for nonvolatile light-controlled

memory applications.

Conclusion

In this article, TiO2/a-Fe2O3 composite nanorods array

with the resistance switching properties has been

fabricated. These composite nanorods exhibit white-

light-controlled resistance switching effect at room

temperature. This work will shed light on the applica-

tion of oxide composite materials in memory devices.
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