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Received: 26 September 2013 / Accepted: 25 October 2013 / Published online: 12 November 2013

� Springer Science+Business Media Dordrecht 2013

Abstract As a consequence of graphene oxides

(GOs) high chemical versatility, there is great interest

in functionalized as a nanocarrier for in vitro and

in vivo drug delivery. Within this review, the structure

and properties of GO that allow covalent and non-

covalent functionalization are discussed. In short,

toxicity investigations show functionalized GO is

biocompatible. Various works demonstrate the poten-

tial of GO derivatives as exciting nanocarriers for the

loading and delivery of therapeutic drugs.
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PEG Polyethylene glycol

DOX Doxorubicin
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AFM Atomic force microscopy
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XPS X-ray photoelectron spectroscopy
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CNMs Carbon nanomaterials

SN38 7-Ethyl-10-hydroxycamptothecin

L-929 Murine fibroblast cells

PC12 Neuroendocrine cells

OLC Oligodendroglia cells

OBS Osteoblasts

hESc Human embryonic stem cells

hFBc Human fibroblast cells

hMSCs Mesenchymal stem cells

LEc Lung epithelial cells

A549 Adenocarcinomic human alveolar

epithelial cells

FBS Fetal bovine serum

EMT6 Mouse breast cancer cell line

ROS Relative oxygen species

MTX Methotrexate

MWCNT Multiwall carbon nanotube

Introduction

Graphene has attracted significant interest in the areas

of materials science, fundamental physics, and engi-

neering since its discovery in 2004 (Novoselov et al.

2004, 2005). Owing to its unique two-dimensional

structure and attractive physiochemical properties,

graphene has been receiving exciting attention in many

fields and primarily in those of biology and medicine.

Graphene oxide (GO), a distinctive structure of sp2

carbon, oxygen, and hydrogen in variable ratios, can be

obtained by oxidizing graphite in an acidic medium

(Hummers and Offeman 1958; Marcano et al. 2010).

The presence of abundant functional groups (epoxy,

hydroxyl, carboxylic groups), conjugation system,

large surface area, low cytotoxic effect, and low cost

(Liu et al. 2008; Sun et al. 2008; Zhang et al. 2010a, c,

2011a; Akhavan and Ghaderi 2010; Yang et al. 2011a,

2012c; Lee et al. 2011; Chang et al. 2011; Bao et al.

2011; Liao et al. 2011; Xiao and Chen 2012; Wang

et al. 2012; Akhavan et al. 2012; Tang and Cao 2012;

Chng and Pumera 2013) have led to a surge of

important potential in drug loading and delivery. The

functional groups, decorated the basal planes and edges

of GO layers, significantly revise the van der Waals

interactions between graphene sheets (Bourlinos et al.

2003; Scholz and Boehm 2004) and impart desirable

dispersability in water and several organic solvents

(Titelman et al. 2005; Paredes et al. 2008; Moazzami

Gudarzi 2012). Moreover, these functional groups

allow GO conjugation with polymers and drugs

through both covalent and non-covalent modification

techniques (Kuila et al. 2012). Furthermore, the high

surface area and p-conjugated structure of GO enabled

it, as a platform, to immobilize with a number of

substances, including metallic nanoparticles, drugs,

and fluorescent molecules for different applications

(Lu et al. 2009; Zhang et al. 2010a; Liu et al. 2010; Loh

et al. 2010b; Bao et al. 2011; Jayakumar et al. 2012;

Kim et al. 2012; Wate et al. 2012). As a consequence of

this high chemical versatility, several research groups

have recently explored functionalized GO as a nano-

carrier for in vitro and in vivo drug delivery. The

continuously increasing research effort for GO-based

drug delivery in the last decade is shown in Fig. 1.

The building of versatile drug carrier systems is

considered a challenge on high capacity loading,

efficient delivery, and specific targeting (Vashist

et al. 2011; Liu et al. 2012; Sz}uts and Szabó-Révész

2012). Lui et al. focused on PEGylated nanographene

oxide (NGO) for drug delivery of hydrophobic anti-

cancer drug molecules via p–p stacking. Their results

showed that NGO-functionalized polyethylene glycol

(PEG) is biocompatible without evident toxicity (Liu

et al. 2008). Zhang et al. synthesized GO-based folic

acid-conjugated, in order to control co-loading of

doxorubicin (DOX) and camptothecin (CPT). Their

system shows specific cytotoxicity and targeting the

breast cancer cell line Michigan Cancer Foundation-7

(MCF-7) (Zhang et al. 2010a). In addition, pristine

Fig. 1 Number of published articles in the last decade

pertaining to GO-based drug delivery applications (based on

data taken from www.sciencedirect.com on April 15, 2013)
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graphene and GO have been investigated in vitro and

in vivo in different cell types (Liao et al. 2011; Zhang

et al. 2011b, 2012; Qin et al. 2012).

This review discusses and highlights the recent

investigations of GO’s applications in the field of drug

delivery. The structure and properties of GO, covalent

and non-covalent functionalization, characterization

techniques, cytotoxicity of GO, and cytotoxicity of

functionalized GO are also discussed. Later, GO-

based drug delivery systems based on in vitro cellular

uptake and in vivo cancer therapy are presented.

Finally, a comparative study between carbon nanom-

aterials, such as carbon nanotube (CNTs), nanodia-

mond (ND), fullerene (C60), and GO-based drug

delivery systems is produced.

Graphene oxide

The structure and chemistry of GO have been discussed

extensively in other reviews (Park and Ruoff 2009;

Dreyer et al. 2010). The specific atomic structure of GO is

not openly understood due to its random oxygen groups

and irregular layer stacking. To this end substantial

methods (models and experiments) have been developed

toward understanding the GO structure. Hofman–Holst

(2006), Ruess (Ruess 1946), and Nakajima–Matsuo (He

et al. 1996) introduced model structures for GO. Lerf–

Klinowski (Lerf et al. 1998) and Dekany (Buchsteiner

et al. 2006) are the most well-known models using NMR

to study the GO structure. Cai et al. (2008) used synthetic
13C-labeled graphite for GO preparation. Their results

revealed that the Lerf–Klinowski and Dekany models as

the preferable structures for GO. Figure 2 illustrates

different model structures of GO, showing the oxygen

groups localized at the edges of graphene sheet as well as

above and below the basal plane.

Structure and properties of GO

The chemical structure of graphene and GO is shown

in Fig. 3. Over the years, considerable effort went

toward understanding the structure of GO. In GO, the

carbon atoms covalently bonded to oxygen containing

groups are sp3 hybrids and can disrupt the sp2

Fig. 2 Different model

structures of GO:

a Hofmann–Holst, b Ruess,

c Nakajima–Matsuo, and d,

e Lerf–Klinowski [deduced

from Refs. (Lerf et al. 1998;

Josepovits et al. 2006)]
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conjugated system of graphene lattice structure

(Gómez-Navarro et al. 2007; Eda et al. 2009). sp3

hybridized regions are randomly distributed either in

or out of the basal plane of graphene sheets or at the

edges (Schniepp et al. 2006).

The properties of GO are unreliable and depend on

its synthesis methods, processing, and experimental

conditions. Electrically, GO is considered an insulat-

ing material due to its widespread saturated sp3 bonds,

vacancies (missing carbon atoms), and negatively

charged density species bound to carbon. For these

reasons, the energy gap increases and makes GO non-

conducting (Boukhvalov and Katsnelson 2008; Jung

et al. 2008b; Yan and Chou 2010). Nevertheless, the

structural and electronic properties of GO can be

modified via chemical and thermal treatments (Gilje

et al. 2007; Becerril et al. 2008; Eda et al. 2008). The

optical properties also depend on the oxidation level of

GO (Jung et al. 2007, 2008c). The multiple layers of

GO change considerably the corresponding optical

properties, for instance, the refractive index of ther-

mally reduced GO is higher than that in stacked GO.

GO is highly soluble and disperses well in water and

physiological media, making it attractive for medical

purposes after numerous modifications.

Recently, in order to delve into the GO structure in

more detail, several microscopic and spectroscopic

methods have been employed to investigate the

structure of GO and its chemical compositions, as will

be shown later. Such methods include atomic force

microscopy (AFM), scanning transmission electron

microscopy (STEM) combined with electron energy

loss spectroscopy (EELS), scanning tunneling micros-

copy (STM), high-resolution transmission electron

microscopy (HRTEM), Raman spectroscopy, Fourier

transform infrared spectroscopy (FTIR), and X-ray

photoelectron spectroscopy (XPS).

In addition, theoretical studies have been considered

for GO structural exploration, thus providing signifi-

cant insight in its workable kinetic and thermodynamic

structure. Depending on the first-principle calcula-

tions, the building blocks in GO (atomic energy

configurations) have been identified as containing

epoxy and hydroxyl groups close to each other (Yan

and Chou 2010; Wang et al. 2010b; Lu et al. 2011;

Yuan et al. 2011). Different arrangements of the

building blocks have been found to yield a local density

approximation band gap in the range of a few electron

volts. This principle implies the possibility of opening

and tuning the band gap of the GO depending on the

degree of oxidation (Yan and Chou 2010; Yuan et al.

2011). Density functional theory (DFT) calculations

revealed that the epoxy group is formed between the

oxygen atom and two adjacent carbon atoms on the

graphene network, while the hydroxyl group is formed

on the opposite side (Lahaye et al. 2009). Furthermore,

theoretical calculations have been used to study the

atomic structure of reduced GO as well as the chemical

changes of oxygen containing groups during reduction

processes (Paci et al. 2007; Bagri et al. 2010; Acik et al.

2011; Larciprete et al. 2011).

Preparation protocols

The most common chemical routes for GO preparation

begin from expandable graphite by chemical exfolia-

tion using various oxidizing agents such as potassium

permanganate (KMnO4) and potassium chlorate

(KClO3). These routes were comprehensively covered

in previous reviews (Park and Ruoff 2009; Dreyer et al.

Fig. 3 Chemical structure of graphene and GO
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2010) and are summarized in Table 1. The first

procedures for GO were developed by Brodie (1859),

Staudenmeier (1898), and Hummers and Offeman

(1958). Brodie (1859) treated graphite with KClO3 and

fuming nitric acid (HNO3). Staudenmaier (1898)

improved Brodie’s approach by slowly adding KClO3

over 1 week to a solution containing concentrated

sulfuric acid (H2SO4), concentrated HNO3 (63 %), and

graphite. The mass ratio of graphite to KClO3 was 1:10.

The possibility of explosion and length of time

required are the main drawbacks of this approach.

Hummers and Offeman (1958) reported an alternative

method, which is safer and also not time consuming. In

this protocol, a water-free mixture of concentrated

H2SO4, sodium nitrate (NaNO3), and KMnO4 are

involved; the reaction was performed at 45 �C and

continued for approximately 2 h. Minor modifications

to the Hummers method were developed and still

remain in use (Kovtyukhova et al. 1999; Hirata et al.

2004).

Functionalization of graphene oxide

It is well known that carbon nanomaterials aggregate

in cell culture media (buffers) caused by the charge

screen effect. Therefore, surface modification is the

key to render the solubility and the biocompatibility of

carbon nanomaterials for biological systems. Depend-

ing on application purposes, two surface coating

regimes are developed, including covalent and non-

covalent approaches, allowing GO to be used in

biological systems (Kitano et al. 2007; Bai et al. 2009;

Veca et al. 2009; Yang et al. 2009c, 2012c; Choi et al.

2010; Widenkvist 2010; Englert et al. 2011). Before

surface functionalization, the size distribution and

individual separation of GO are essential for in vitro

and in vivo drug delivery.

Covalent functionalization

The covalent functionalization of nanoscaled carbon

nanomaterials (CNMs) is preceded by an oxidation of

the graphite in acidic media with strong oxidizing

agents, resulting in oxygen-rich groups. As described

above, the GO is highly oxidized by oxygen groups

with C/O ratio of 2:1. The presence of these functional

groups allows various chemical routes already known

in chemistry to functionalize GO (Fig. 4) (Loh et al. T
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2010a). The acylation reactions are the most common

routes used for binding molecular moieties onto

oxygen-rich groups at the edges of GO. Carboxylic

acid groups at the edges have the ability to bind with

octadecylamine to modify GO by long alkyl chains

(reaction VI in Fig. 4) that can be tethered to amine-

functionalized molecules (Xu et al. 2009). Depending

on this covalent functionalization, NGO-functional-

ized PEG is used to obtain a biocompatible conjuga-

tion system which can be performed as a platform for

drug delivery (Sun et al. 2008). It is known that

aromatic drug molecule 7-ethyl-10-hydroxycamp-

tothecin (SN38) is water insoluble and hard to be

used for the treatment of diseases. The resulting NGO–

PEG/SN38 conjugation exhibits high water solubility

while retaining a high cancer cell therapy similar to

that of the free drug in organic solvents. The water

soluble SN38 prodrug has been investigated in colon

cancer treatment (Liu et al. 2008). The epoxy groups

can undergo nucleophilic ring-opening reaction with

amine-terminated molecules (reaction VIII in Fig. 4).

For instance, octadecylamine (Wang et al. 2008), 1-(3-

aminopropyl)-3-methylimidazolium bromide (Yang

et al. 2009c), and 3-aminopropyltriethoxysilane (Lin

et al. 2011; Wang et al. 2011) have been reacted with

epoxy groups on the GO surface and afforded colloidal

suspensions of GO in various polar solvents, such as

water, DMF, and DMSO (Wang et al. 2008; Sun et al.

2010). The resultant amine-functionalized GO has

been used in various applications, such as

Fig. 4 Schematic illustration showing various covalent func-

tionalizations of graphene or GO: I Reduction of GO [1 NaBH4,

2 KOH/H2O, 3 N2H4]. II Covalent functionalization of reduced

graphene via diazonium reaction (Si and Samulski 2008;

Lomeda et al. 2008). III Functionalization of GO by

the sodium azide. IV Reduction of azide-functionalized GO with

LiAlH4 producing amino-functionalized GO. V Functionalization

of azide–GO through (R–ChCH/CuSO4). VI Modification of GO

with the acylation reaction. VII Esterification of GO by activation

of the COOH groups (1 DCC/DMAP or SOCl2, 2 ROH). VIII

Nucleophilic ring-opening reaction. IX Covalent functionaliza-

tion of graphene oxide via organic isocyanates. Reproduced with

permission from Marques et al. (2011)
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optoelectronic (Xu et al. 2009), biodevices (Mohanty

and Berry 2008), polymer composite (Veca et al.

2009), and drug delivery (Liu et al. 2008).

Non-covalent functionalization

Non-covalent functionalization with different chemi-

cal substances is essential and considered to have less

impact on the structure and properties of graphene.

The attachment of functional groups to GO occurs via

p–p, electrostatic binding, H-bonding, van der Waals,

H–p, cation–p, and anion–p interactions (Tarakesh-

war et al. 2001; Grimme 2004; Yi et al. 2006, 2009;

Lee et al. 2007; Singh et al. 2009; Riley et al. 2010; Ma

and Dougherty 2012). The p–p interaction is one of the

most interesting non-covalent interactions; the diffuse

electron clouds in the p systems exhibit attractive

forces. For sufficient stability in aqueous solutions,

graphene and GO via non-covalent interaction usually

occur with surfactant molecules or amphiphilic poly-

mers. However, biocompatible polymers for RGO

surface coating are more useful than small surfactant

molecules (Park et al. 2010). For the first time, via

non-covalent functionalization, PEGylated NGO were

employed as a nanocarrier to load therapeutic anti-

cancer drugs and its cellular uptake was studied (Liu

et al. 2008; Sun et al. 2008). Hu et al. developed

graphene–pluronic F127 (PF 127) nanohybrid, the

hydrophobic moieties of PF 127 attached to graphene

surface via hydrophobic binding and the hydrophilic

chains of PF 127 remained free to move in solution

(Hu et al. 2012). PEG-grafted poly(maleic anhydride-

alt-1-octadecene) via non-covalent produced suffi-

cient physiological stability and increases blood

circulation half-life in photothermal cancer therapy

(Yang et al. 2012a, b). GO sheets possessed high

negative charge; positively charged molecules could

bind via electrostatic interactions. Liu et al. used

polyethyleneimine (PEI) as cationic polymer to non-

covalent coat GO and the results showed that the

obtained GO-PEI has improved stability in culture

media, high gene transfection efficiency, as well as

reduced toxicity against treated cells (Feng et al.

2011). Tan et al. introduced L-proline/GO hybrid

through hydrogen bonding interaction; the result

revealed that the loading of L-proline onto GO

(Fig. 7d) is highly efficient in hybrid catalysts com-

pared with unloaded L-proline for the direct asymmet-

ric aldol reaction (Tan et al. 2013a).

In a nanocarrier system, Depan et al. used positively

charged polymer to encapsulate DOX-loaded GO,

obtaining DOX–GO–chitosan–folate nanocarrier sys-

tem that exhibited a pH response drug release profile

(Depan et al. 2011). Protein-coated GO, demonstrated

in many reports (Liu et al. 2011; Hu et al. 2011; Shen

et al. 2012; Tan et al. 2013b), sonication of fetal

bovine serum non-covalent-functionalized GO exhib-

its low cytotoxicity compared with uncoated GO (Hu

et al. 2011). Owing to their high conjugation system

(p–p delocalization regime), pristine graphene and

GO possess the ability to bind with aromatic com-

pounds through p–p stacking, including cancer drugs,

fluorescence molecule (fluorescein), catalytic hybrid,

and combinations of molecules.

Characterization techniques

A variety of characterization techniques have been used

to utilize the structure and properties of GO. These

techniques are classified into spectroscopic and micro-

scopic approaches. The spectroscopic approaches are

used to identify the chemical structure of GO, and include

Raman, FTIR, and XPS. Microscopic tools are used to

map out the structure of GO at various heights and lateral

dimensions. For instance, AFM, SEM, TEM, and STM

(Kovtyukhova et al. 1999; Sun et al. 2008; 2010; Lomeda

et al. 2008; Loh et al. 2010b; Englert et al. 2011; Han et al.

2011; Du et al. 2011; Chang et al. 2011; Xiao and Chen

2012; Cheng et al. 2013).

Spectroscopic approaches

Raman spectroscopy

Raman spectroscopy, introduced by Krishna and

Raman in 1981 (Rousseau et al. 1981), is a spectro-

scopic technique that provides information about

molecular vibrations and can be used for sample

identification and quantification. It is based on Raman

scattering when monochromatic light hits a sample.

The Raman effect occurs when light impinges upon a

molecule and interacts with the electrons that bond to

that molecule. As a result, a photon excites the

molecule from the ground state to a virtual energy

state. Later, the molecule returns back to a differ-

ent rotational or vibrational state emitting a photon in

the process. A detector detects the energy of the

J Nanopart Res (2013) 15:2099 Page 7 of 26
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released photon which equals to the energy difference

between the original state and the new molecule state.

This energy difference leads to an up or down shift in

the emitted photon’s frequency away from the exci-

tation wavelength frequency. Raman shifts can pro-

vide information about vibrational, rotational, and

other low frequency changes in the samples (Dressel-

haus et al. 2004; Ferrari and Robertson 2004; Reich

and Thomsen 2004).

Raman scattering is a powerful characterization

technique used as a probe of order and disorder in the

carbon skeleton of sp2 and sp3 hybridized carbon-based

materials. Graphite material (multiple graphene sheets)

has three dominant Raman features at *1,580 cm-1 (G

bank), *1,350 cm-1 (D band), and *2,700 cm-1 (2D

band) as shown in a of Fig. 5. The G mode corresponds to

planar vibrations of carbon atoms and is present in most

graphite-like materials. The D mode is related to the

structural defects and is present in all graphite-like carbon

materials. A weak band at *3,248 cm-1 (2D0 band)

corresponds to an overtone of D0 (1,620 cm-1) mode

(Das et al. 2008). One layer of highly crystalline graphene

sheet has a 2D mode at lower frequency in comparison

with graphite, the width of this band being around

24 cm-1 for monolayer graphene and varies for graphite

from 45 to 60 cm-1. Moreover, the relative intensity of

2D and G bands—I2D/IG in monolayer graphene sheet is

higher than in graphite (Pimenta et al. 2007; Cançado

et al. 2008; Malard et al. 2009). In GO, the G band is wider

and shifted to a lower frequency region ca. 1,590 cm-1,

the D mode intensity increases and probably becomes

higher than the G mode due to the structural disorder in

the sp2 pattern induced by oxygen containing groups on

the carbon basal plane or at the edges. On the other hand,

the 2D mode reduces and becomes wider with respect to

the D and G bands (Kudin et al. 2008; Yang et al. 2009a;

Wilson et al. 2009). Typical Raman spectra of GO are

shown in Fig. 5a. Raman spectroscopy bands D, G, and

2D might give insight after graphene or GO functional-

ization; Zhong et al. functionalized graphene with Aryne

molecules, the results showing the ID/IG ratio of the

functionalized graphene increasing for all Arynes after

covalent functionalization (Zhong et al. 2010). Further

functionalization of GO shows no significant changes

when characterizing with Raman spectroscopy (Pasricha

et al. 2009; Zhang and Zhang 2011).

Fourier transform infrared spectroscopy (FTIR)

Another spectroscopy technique yielding complemen-

tary information to those provided by Raman spec-

troscopy is infrared spectroscopy (IR). It excites a

sample under observation with light in the infra-

red region of the electromagnetic spectrum. The

infrared portion of the electromagnetic spectrum is

divided into three regions: the near-, the mid- and the

far-infrared. The mid-infrared is usually used to study

the fundamental vibrations and associated rotational–

vibrational structure, and the most related to the study

of GO, as it contains the most useful vibrational

frequencies of various oxygen groups. IR is based on

the fact that the molecules absorb specific frequencies

which match the frequency of the bond or group that

vibrates. Radiation in the IR range is passed through

the sample under investigation while the absorption

coefficient of each wavelength is measured. The

absorption of the radiation depends on the vibrational

modes in the sample structure. Hence, each structure,

Fig. 5 Typical spectra for the GO as gathered by a Raman spectroscopy (Makharza et al. 2013), b FTIR (Marques et al. 2011), and

c XPS (Xue et al. 2012)
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depending on the existing vibrational modes, has its

characteristic absorption spectrum (fingerprints). Con-

sequently, the IR spectrum is frequently used in order

to identify the presence or absence of specific func-

tional groups in a molecule. In the case of GO, the

most characteristic peaks are the broad peak of

hydroxyl group (–OH) at 3,430 cm-1, the peak at

1,720 cm-1 corresponding to carbonyl group (C=O),

1,570 cm-1 representing the skeletal vibrations of sp2

carbon atoms, 1,225 cm-1 and ca. 1,100 cm-1 refer-

ring to stretching vibrations of COOH and C–O–C,

respectively (Fig. 5b) (Stankovich et al. 2006; Xu

et al. 2009; Yang et al. 2011b; Acik et al. 2011).

X-ray photoelectron spectroscopy (XPS)

XPS, also called electron spectroscopy for chemical

analysis (ESCA), is a quantitative spectroscopic

technique that utilizes photo-ionization and analysis

of the kinetic energy distribution of the emitted

photoelectrons in order to study the elemental com-

position, empirical formula, chemical state, and elec-

tronic state of the elements that exist within a material.

XPS spectra are created by irradiating a material with

a beam of X-rays in ultra-high vacuum (UHV)

conditions, forcing the core electrons to be excited

into unoccupied atomic/molecular orbitals above the

Fermi level. Simultaneously, the kinetic energy in

addition to the number of electrons that escape from

the top few nanometer of the material being analyzed

is measured.

This technique is particularly useful for identifica-

tion of carbon nanomaterials, in which the chemical

composition greatly influences their properties. High-

resolution XPS survey scan provides information not

only about the identity of elements, but also the ratios

of these elements detected. In addition, it provides

insight into the identity of the functional groups

distributed onto the surface which modulate the

carbon nanomaterial’s properties. For instance, XPS

spectra of graphite have a strong peak, corresponding

to C–C sp2 at 284.5 eV, and small one at 289 eV from

plasmons (Briggs and Seah 1990; Vickerman 1997),

which represent collective behavior of the delocalized

electrons. In GO, XPS further unambiguously exhibits

the carbon and oxygen bonds in their various forms;

C–C (sp2 or sp3), C–OH, C–O–C, C=O, and C=OOH.

The C1’s signal of these functional groups reveals at

284.5, 285.8, 286.5, 287.5, and 289.2 eV, respectively

(Yang et al. 2009a; Mattevi et al. 2009; Lee et al. 2009;

Akhavan 2010; Ganguly et al. 2011), as shown in c of

Fig. 5. O1s provide complementary information to

those in the C1s spectra, the deconvolution of O1s

produces three main peaks around 531.1, 532.4, and

533.4 eV which are ascribed to C=O (oxygen atom

connected to aromatic carbon), C–O (oxygen atom

connected to aliphatic carbon), and C–OH (oxygen

atom connected to aromatic carbon to form phenolic

groups), respectively (Schniepp et al. 2006; Stanko-

vich et al. 2007; Mattevi et al. 2009; Bagri et al. 2010).

Intercalated adsorbed water molecules appeared at

higher binding energy (534.7 eV) (Akhavan 2010).

Moreover, XPS provides information about the iden-

tity of different kinds of metal ions like K, Na, Cu, Ni,

Co, Cu, Ag, Mg, Pt, etc., as well as information on the

valences and the ratio of these metals (Marcus and

Maurice 2006; Stankovich et al. 2007; Altavilla and

Ciliberto 2010).

Microscopic approaches

Microscopes have been important instruments for

nano-structured materials. Various techniques are

being used to understand the surface features of

nanomaterials, such as optical microscopy, AFM,

scanning electron microscopy, and high-resolution

transmission electron spectroscopy.

Optical microscopy

For general evaluation of graphene and GO sheets,

optical microscopy remains essential, a high through-

put, and low cost imaging tool. Relatively, single-

graphene sheet absorbs 2.3 % of the visible light (Nair

et al. 2008; Duong et al. 2012). Reflected light

microscope can provide high contrast images of

graphene and GO (Novoselov et al. 2005). This allows

researchers to scan the surfaces rapidly and measure

the distribution and the shape of the GO flakes

(Novoselov et al. 2004), as shown by the typical

representative optical image in Fig. 6a.

Atomic force microscopy (AFM)

AFM is a high-resolution type of scanning probe

microscopy. It is a method to visualize the surface

topology of materials in three-dimensional (3D) detail

down to the nanometer scale (Haugstad 2012). AFM
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reveals the thickness of graphene and GO sheets, as

well as the number of layers (Stankovich et al. 2007;

Gómez-Navarro et al. 2007; Cote et al. 2009; Paredes

et al. 2009; Cheng et al. 2013). Moreover, it can show

the distance between two graphene or GO layers

which is essential to distinguish between them. The

topological information of the surface is gathered by

‘‘feeling’’ the surface with a mechanical probe (tip)

fixed on a cantilever. This mechanical probe (tip)

scans the measured surface in a raster scan manner,

while the van der Waals forces determine the deflec-

tion of the cantilever. Piezoelectric elements that

facilitate tiny, accurate, and precise movements con-

trol the probe motion. AFM uses a laser beam

detection system in order to control the piezoelec-

tric element movements, where the laser is reflected

from the back of the deflected cantilever onto a

position-sensitive detector. AFM works in three main

modes: tapping mode, contact mode, and non-contact

mode AFM (Warner et al. 2012). Tapping mode is

frequently used in characterizing GO as it allows high-

resolution imaging without inducing destructive fric-

tional forces onto the sample under investigation

(Zhong et al. 1993).

In GO, due to the presence of oxygen groups, the

interlayer distance between GO sheets increased to

0.7 nm, which is roughly twice the distance found in

bilayer graphene sheets (Fig. 6b). Thus, the expected

height measurements by AFM might exceed that of

graphene. Shen et al. (2009) investigated the thickness

of individual GO and reduced GO nanoplatelets. The

results showed the average thickness of an exfoliated

GO nanoplatelets is ca. 1.3 nm while the reduced GO

sheets exhibited a bumpy structure with flat areas

showing heights of 0.2–0.4 nm and some high areas

manifested an average height of 1.5 nm. The bumpy

regions attributed to the dead space due to vast edge

functionalization (Dideykin et al. 2011). GO-based

polymer functionalization showed an increase in the

height more than that of pristine GO (Layek et al.

2010). The average thickness of graphene-functional-

ized polymer (methyl methacrylate—MMA) is 3 nm

(Fang et al. 2009). Two different sites of functional-

ization (edge and graphene basal planes) are mostly

responsible for height distributions. NGO–PEG/DOX

drug loading produced an obvious increase in thick-

ness compared with the precursor NGO (Sun et al.

2008). The same results deduced after loading of CPT

Fig. 6 Representative

microscopy characterization

of GO with a optical

microscopy (Zhao et al.

2010), b AFM (Zhang et al.

2011c), and c SEM (Zhao

et al. 2010)
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and SN38 onto NGO–PEG as a nanocarrier for drug

delivery systems (Liu et al. 2008).

Scanning electron microscopy (SEM)

SEM is one of the most frequently used techniques in

sample characterization, due to its good resolution, ease

of applicability, large depth of focus, and high magni-

fication. It is a type of electron microscope which

images a sample by raster scanning it with a focussed

beam of high-energy electrons. In a typical setup, an

electron gun emits a high-energy electron beam in a high

vacuum chamber, which later passes through a series of

focussing and accelerating magnetic lenses. The high

kinetic energy, carried by the accelerated electrons, is

dissipated as a variety of signals produced by electron–

sample interactions when the incident electrons are

decelerated in the solid sample, including, in addition to

many, the secondary electrons. The generated signals

are then drawn to the secondary electron detector which

is highly positively charged and guided through the

Faraday cage to the collection target. Finally, they are

converted into 2D grayscale images.

SEM is a versatile method used to gain information

on the graphene and GO domains like size, shape, and

nucleation density (Fig. 6c). It has also, recently, been

used to study monolayer graphene onto different

surfaces (Kim et al. 2009; Wood et al. 2011; Takahashi

et al. 2012).

Cytotoxicity of graphene oxide

Graphene paper has been developed to be a biocom-

patible platform for adhesion and proliferation of

murine fibroblast cells (L-929) (Chen et al. 2008),

neuroendocrine cells (PC12), oligodendroglia cells

(OLC), and osteoblasts (OBS) (Agarwal et al. 2010).

Recently, in vivo cancer treatment using graphene as

nanocarrier has been performed in animal experiments

(Yang et al. 2010, 2011a). Various cytotoxicity

investigations have been evaluated on graphene, GO,

and functionalized GO in different cell lines (Zhang

et al. 2010c, 2012; Wang et al. 2010a; Chang et al.

2011; Hu et al. 2011; Liao et al. 2011; Yang et al.

2012c). GO is a highly biocompatible material, thus, it

inspirits the proliferation and adhesion of kidney cells,

OBS, and human embryonic stem cells (hESc)

(Agarwal et al. 2010; Park et al. 2010). On the

contrary, other studies showed GO nanosheets mixed

to cell culture media at 20 lg/mL can produce 20 %

reduction in cell viability, whereas 50 lg/mL GO

induce 50 % loss in cell viability. This result was

attributed to inhibitory effect due to the GO suspen-

sion (Hu et al. 2010). Wang et al. examined human

fibroblast cells (hFBc) with GO at different concen-

trations and found that concentration dependent on

cytotoxicity when the concentration exceed 50 lg/mL

(Wang et al. 2010a). For the first time, the cyto- and

geno-toxic effect of reduced GO nanoparticles were

investigated with mesenchymal stem cells (hMSCs)

(Akhavan et al. 2012), with the study showing that the

size and the concentration of GO are effective

parameters on the hMSCs cytotoxicity.

Among these contradictory findings, there is no

consensus on the cellular toxicity of GO, with different

studies showing different biocompatibility of GO. For

this inconsistency, Pumera and Chng reported the

toxicity of GO depending on the oxidative methods

used. They prepared GO by four different preparation

methods (Staudenmaier—ST, Hofmann—HO, Hum-

mers—HU, and Tour—TO), and investigated GO in

adherent lung epithelial cells (LEc) by using in vitro

MTT and WST-8 viability assays. The results revealed

that different oxidizing methods exhibited different

toxicological behavior of GOs as they contain different

oxygen-based groups. All four GO nanomaterials’,

GO-ST, GO-HO, GO-HU, and GO-TO, exposure with

adenocarcinomic human alveolar epithelial cells

(A549) media are dose-dependent cytotoxic responses.

Varieties of oxygen groups and (C/O ratio) play an

important role in the toxicity of GO nanoplatelets

(Chng and Pumera 2013). It is generally agreed that the

oxygen groups, preparation methods of GO, size,

charge, and the structural defects of graphene might

disturb its in vivo and in vitro behavior and its toxicity

in biological applications.

Cytotoxicity of functionalized GO

As previously discussed, GO needs to be functional-

ized in order to perfectly disperse in culture media, as

well as being compatible with tissue organisms.

Indeed, GO revealed two types of functionalization

(covalent and/or non-covalent) with small molecules

or macromolecules, depending on the chemical struc-

ture of materials used for GO modification. The
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toxicity of pristine graphene and GO to mice are dose-

dependent (Wang et al. 2010a; Yan et al. 2011; Zhang

et al. 2011c). Functionalized NGO with biocompatible

materials such as PEG (Sun et al. 2008; Yang et al.

2011a), dextran (Zhang et al. 2011a), chitosan (Fan

et al. 2010; Liao et al. 2011), pluronic (Duch et al.

2011), tween (Park et al. 2010), low generation

polyamidoamide (PAMAM) (G0) dendrimer (refer-

ence—our previous work), polyvinylpyrrolidone

(PVP) (Qin et al. 2012), gelatin (An et al. 2013),

sulfonic acid groups (Zhang et al. 2010a), and protein

(fetal bovine serum—FBS) (Hu et al. 2011), show high

reduction in vitro and in vivo toxicity. In the same

context, Zhang et al. measured the cell viability

percent of NGO–PEG vehicles as a function of

concentration (Zhang et al. 2011b), and the data

showed that above 95 % of mouse breast cancer

cell line (EMT6) remained viable even at high con-

centration up to 100 lg/mL, which revealed that

NGO–PEG has no cytotoxic effect to EMT6 cells after

24 h incubation. In other studies, gelatin-functional-

ized graphene nanosheets exhibited very low cyto-

toxic effect against A549, even at high concentration

(300 lg/mL).

Surface modification of GO with appropriate bio-

compatible materials increases the uptake impact on

various cell lines and retorts on the negative perfor-

mance of pristine graphene and GO via a number of

mechanisms such as relative oxygen species (ROS)

and cell wall membrane damage.

Loading and delivery of drugs

In vitro tests

The large surface area of graphene makes it a strong

candidate for drug loading other than commonly used

carbon nanomaterials. It has a significant capability to

interact with aromatic anticancer drugs and water

insoluble drug molecules via strong p–p interaction

(Sun et al. 2008; Liu et al. 2008). Doxorubicin (DOX)

and water insoluble SN38 are the first two drug

molecules loaded on PEGylated (PEG) nanographene

oxide (NGO–PEG) (Fig. 7a). DOX loading onto

NGO–PEG achieved by simple mixing of 0.5 mmol/L

with NGO–PEG solution (*0.2 mg/mL) at pH 8

overnight via physisorption p stacking. NGO–PEG–

Rituxan/DOX with Raji B—cells investigated in vitro

(Fig. 7b), the result revealed that DOX delivery into

Raji B—cells enhanced in NGO–PEG–Rituxan/DOX

comparing with free DOX, NGO–PEG/DOX. Thio-

lated Rituxan (CD20 ? antibody) conjugated to the

amine groups onto NGO–PEG is used for selective

killing of cancer cells (Sun et al. 2008). Also in this

study, approximately 40 % of DOX released after

24 h in acidic solution (pH 5.5), this value of pH

ascribed to increase the solubility and hydrophilicity

of DOX for drug delivery analog, as well as accelerate

the drug releasing (Fig. 7c). Zhang et al. found over

68 % of DOX released after 7 days at pH 5.5 (Zhang

et al. 2011b). The pH of the medium is crucial in

controlled drug delivery applications, for instance,

extracellular tissues of cancer cells. In addition to the

intracellular lysosomes and endosomes are acidic

(Gillies and Fréchet 2005), which will drive the drug

to be released from NGO–PEG structure. The loading

quantity of DOX onto NGO–PEG was calculated to be

142.5 wt%, this amount of loading is higher than that

in common drug delivery materials (Murakami et al.

2004; Liu et al. 2007b) which is always less than

100 %.

The drug model (methotrexate—MTX) loaded on

gelatin–GNP showed that pH-dependent release at low

pH was better than in neutral conditions (An et al.

2013). MTX@gelatin–GNP showed lower cytotoxic

effect with A549 cells in comparison with free MTX at

the same concentration. Water insoluble molecule

SN38 loaded NGO–PEG via p–p stacking revealed

excellent solubility in the biological environment (Liu

et al. 2008), NGO–PEG/SN38 exhibited high influ-

ence to kill cancer cells in vitro, with a human colon

cancer cell line (HCT-16). Folic acid-loaded NGO

with the two anticancer therapeutic drugs (DOX and

CPT-11) showed specific targeting to MCF-7 human

breast cancer cells, as well as high cytotoxicity

compared to unmodified NGO loaded with DOX or

CPT.

In vivo tests

The in vivo therapeutic efficacy of NGO–PEG/DOX

was demonstrated through combination of photother-

mal treatment and chemotherapy (Zhang et al. 2011b).

As shown in Fig. 8a, four mice groups were treated

with PBS (200 lL), DOX (10 mg/kg, 200 lL), NGO–
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PEG (7 mg/kg, 200 lL), and NGO–PEG/DOX

(10 mg/kg, 200 lL). The tumor region of NGO–

PEG and NGO–PEG/DOX irradiated by NIR light

(2 W/cm2, 5 min) after 24 h of injection.

The time dependence of tumor volume is presented

in Fig. 8b (the tumor volume normalized with respect

to its initial size). Free DOX exposed rapid growth of

tumor volume as a result of insufficient dosage to

reduce it. NGO–PEG group showed reduction in the

tumor volume after a few days of injection, and then

follows its growth to reach the size of DOX group.

NGO–PEG/DOX showed considerable trend with size

reduction of tumor volume along a period of 30 days,

this group demonstrated as a powerful vehicle for

combined chemo-photothermal therapy of cancer

in vivo. Figure 8c showed the weight loss of mice

for the four groups as a function of time during the

treatment. The result revealed that no weight loss was

perceived, indicating that the toxicity of materials was

not severed. On the other hand, Yang et al. reported for

the first time the behavior of nanographene sheets

in vivo by using PEG coating via a fluorescent labeling

method, PEG-functionalized GO was labeled with the

fluorescent dye Cy7 for in vivo investigations, the

Fig. 7 a A schematic illustration of a 6-arm branched PEG

covalently bound to GO and SN 38 loading onto NGO–PEG via

p–p stacking. b Relative cell viability of free and conjugated

DOX at 2 and 10 lM concentrations via MTS assay.

c Percentage of DOX retained versus time onto NGO–PEG in

PBS solution at pH 5.5 and 7.4 [a, b, c were deduced from Ref.

(Liu et al. 2008; Sun et al. 2008)]. d Non-covalent H-bonding of

L-proline/GO hybrid (Tan et al. 2013a)
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majority of Cy7 dye molecules are covalently bonded

to NGO–PEG via an amide bond formation. Three

tumor models (4T1 tumor bearing Balb/c mice, KB,

and U87MG tumor bearing nude mice) were demon-

strated with different time points after intravenously

injected by NGO–PEG–Cy7 (200 lL of 2 mg/mL

solution for each mouse; a dose of 20 mg/kg) and

subsequently imaged.

The concentration of NGO–PEG–Cy7 versus time

was measured and the blood circulation half-life was

observed approximately at 1.5 h (Fig. 9a). As shown

in Fig. 9b, NGO–PEG–Cy7 existed in different tumor

models over time, NGO–PEG exhibiting an excellent

in vivo tumor near-infrared (NIR) photothermal

therapy without obvious toxicity to the treated mice.

Neither death nor noteworthy body weight drop was

observed in the NGO–PEG plus laser-treated materi-

als, as shown in c of Fig. 9. After 40 days of

photothermal therapy, the major organs of treated

mice were collected for histology analysis. The results

exhibited no noticeable signal of organ distortion

(Fig. 9d), suggesting the assure of using PEGylated

NGS for in vivo applications (Yang et al. 2010).

Table 2 summarizes the cytotoxicity and the cellular

uptake in vitro and in vivo for various therapeutic

systems.

Cytotoxicity of other carbon-based nanomaterials

Several studies emphasized that numerous factors

such as chemical composition, size, shape, contami-

nants, concentration, and cell types will influence the

cellular uptake and the cytotoxicity of carbon-based

materials (Lam et al. 2004; Warheit et al. 2004; Sayes

et al. 2005; Tsai et al. 2006; Schrand et al. 2007b; Liu

et al. 2008; Casey et al. 2008; Shinohara et al. 2009;

Yuan et al. 2010; Arlt et al. 2010; Zhang et al. 2010b;

Chang et al. 2011; Liao et al. 2011; Yang et al. 2013;

Chng and Pumera 2013). To the best of our knowl-

edge, there are few experimental reports that compare

the cytotoxicity of carbon nanomaterials (Schrand

Fig. 8 a Photographs of

mice groups after various

treatments. b Tumor growth

curves of different mice

groups after treatment.

c Body weights of mice

groups after treatment.

Deduced from Ref. (Zhang

et al. 2011b)
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et al. 2007a; Zhang et al. 2012). Table 3 highlights the

cytotoxicity evaluation of carbon nanomaterials con-

cerning the size, concentration, and biological sys-

tems. Compared with CNTs, PEGylated NGO

exhibited distinctive in vivo behaviors such as reduced

reticuloendothelial systems (RES) accumulation and

particularly improved tumor passive targeting effect

(Liu et al. 2007a). The unique 2D structure, small size

(10–50 nm), and biocompatibility played an important

role to enhance permeability and the retention effect of

NGS for high tumor passive uptake. Compared with

nanoparticles, such as gold nanorods (AuNRs) signif-

icantly explored as photothermal agents, the result

showed that PEGylated NGS emerged as comparable

with PEGylated AuNRs in terms of administration

routes (intravenous), injected doses (20 mg/kg), NIR

laser densities (2 W/cm2), and irradiation durations

(5 min) (von Maltzahn et al. 2009).

Fullerene is the first carbon nanomaterial investi-

gated toward biomedical applications due to it being

the first to be discovered, in 1985 (Krotto et al. 1985),

and classified as an inorganic nanoparticle with wide

availability due to its small size (*1 nm). Innate

fullerene particles have very low dispersibility in

water and form negative charge aggregates with an

average size of 160 nm. Hence, OH groups and other

Fig. 9 a The blood circulation profile of NGS–PEG–Cy7

measured by Cy7 fluorescence in the blood at different time

points post-injection. b In vivo fluorescence images of mice

models at different time points post-injection of NGS–PEG–

Cy7. Mouse autofluorescence was subtracted and high tumor

uptake of NGS–PEG–Cy7 was observed for all the three tumor

models. Hairs on Balb/c mice were removed before fluorescence

imaging. c Body weight curves after diverse treatments. d H&E

stained images of major organs. No noticeable change was

observed in major organs including kidney, liver, spleen, heart,

intestine, and lung [reproduced with permission from Ref.

(Yang et al. 2010)]
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organic molecules are induced in fullerene in order to

activate its surface for better dispersibility in water and

physiological media (Bosi et al. 2004; Han and Karim

2008) high dosages of fullerene particles, more than

70 mg/L lead to cell death after 24-h incubation, as the

fullerene concentration and incubation time increases,

the cell mortality increases (Han and Karim 2008).

Numerous reports focused on in vitro and in vivo

cellular uptake and toxicity evaluation of fullerene and

its derivatives (Sayes et al. 2004, 2005; Bosi et al.

2004; Jia et al. 2005; Yamawaki and Iwai 2006; Porter

et al. 2006; Han and Karim 2008; Kim et al. 2010; Cha

et al. 2012). Jia et al. reported that unmodified C60

showed lower cytotoxicity than single- and multi-wall

carbon nanotube to macrophages (Jia et al. 2005). The

cellular uptake of human macrophages by C60 was

very low, as low as that of treated SWCNTs, and their

cytotoxicity was lower than that of graphite (Fiorito

et al. 2006). Fullerene toxicity was evaluated in vivo

on rats and fishes. Chem et al. demonstrated poly-

alkylsulfonated C60 dispersion orally, intraperitone-

ally, and intravenously, the results revealed no lethal

damage was observed by oral administration and the

median lethal dose (LD50) was approximated as

600 mg/kg in intraperitoneal administration.

Nephropathy was induced after accumulation of

materials in kidney by intraperitoneal and intravenous

administration. The toxicological studies using fishes

(Zhu et al. 2007; Usenko et al. 2008) showed C60 can

act as a pro-oxidant and educe a toxic response via

oxidative stress, considerable oxidative damage to

brain lipids was reported and decrease in the hatching

rate of zebra fish embryo and fin distortion. In

summary, the toxicity parameters (shape, size, and

oxygen species) of fullerene nanoparticles are still

being evaluated. Major drawbacks are lipid peroxida-

tion with functional groups mediating the toxicity and

their accumulation in organs mainly in liver, due to

massive binding with plasma protein and hindering

their response for drug delivery applications. Further-

more, fullerene toxicity could be ascribed to their

interaction with light (Prylutska et al. 2006), therefore,

high controlled toxicity analysis of fullerene nanopar-

ticles protected from light exposure, can evaluate the

true toxic nature of fullerenes for medical applica-

tions. Carbon nanotubes in both forms, single- and

multi-wall CNT, are widely considered to be as

speculate materials for biomedical applications. The

large length-to-diameter aspect ratio (more than 106;T
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1 mm length and 1 nm diameter) with high surface

area makes it amenable for high molecular detection

and recognition. Pristine CNTs are intrinsically insol-

uble in water and biological media, i.e., they cannot be

explored directly in drug and bimolecular fields. Thus,

CNTs should be functionalized to render them soluble

and compatible in cell culture media. The toxicity of

single- and multi-wall CNTs is attributed to numerous

factors, for instance, length to diameter ratio, assay

methods, functionalization, concentration, time of

exposure, and nature of cells investigated. Wörle-

Knirsch et al. found that the toxicity of SWCNTs

depends on the preparation assay; the results showed

that the viability of A549 decreased up to 40 % via

MTT assay after addition of SWCNTs, but no changes

on viability by using WST-1 assay method (Wörle-

Knirsch et al. 2006).

Conclusion and perspectives

There is growing interest in GO as a material for

biomedical application, in particular as a platform for

drug delivery. This is due to the rich functional groups

on the surface of the material which allow further

facile functionalization to improve biocompatibility,

dispersion, and of course drug loading. Within the

review, the structure and properties of GO that allow

covalent and non-covalent functionalization have

been discussed. Toxicity investigations show func-

tionalized GO to be biocompatible. Various works

demonstrate GO derivatives are exciting nanocarriers

for the loading and delivery of therapeutic drugs.
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