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Abstract Dispersion of high loading of carbon

nanotubes (CNTs) in epoxy resin is a challenging task

for the development of efficient and thin electromag-

netic interference (EMI) shielding materials. Up to

20 wt% of multiwalled carbon nanotubes (MWCNTs)

loading in the composite was achieved by forming

CNT prepreg in the epoxy resin as a first step. These

prepreg laminates were then compression molded to

form composites which resulted in EMI shielding

effectiveness of -19 dB for 0.35 mm thick film and

-60 dB at for 1.75 mm thick composites in the

X-band (8.2–12.4 GHz). One of the reasons for such

high shielding is attributed to the high electrical

conductivity of the order of 9 S cm-1 achieved in

these composites which is at least an order of

magnitude higher than previously reported results at

this loading. In addition, an improvement of 40 % in

the tensile strength over the neat resin value is

observed. Thermal conductivity of the MWCNTs–

epoxy composite reached 2.18 W/mK as compared to

only 0.14 W/mK for cured epoxy.
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Introduction

Electromagnetic interference (EMI) shielding of radio

frequency radiation continues to be a serious concern

in modern society due to increasing use of commer-

cial, military and electronic devices. In order to protect

the society from these harmful radiations, various

shielding materials have been used in past. Conven-

tional metals were the first choice for researchers and

industrialists till the last few decades. Compared to

conventional metal-based EMI shielding materials,

electrically conducting polymer composites have

gained popularity recently because of their light

weight, resistance to corrosion, flexibility, and pro-

cessing advantages (Liu et al. 2007). The EMI

shielding effectiveness (SE) of a composite material
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depends mainly on the filler’s intrinsic conductivity,

dielectric constant and aspect ratio (Li et al. 2006).

The high conductivity, small diameter, high aspect

ratio and superior mechanical properties of carbon

nanotubes (CNTs) make them an excellent choice to

be used as conductive composites for high perfor-

mance EMI shielding materials. EMI shielding in the

range of 8.2–12.4 GHz (X-band) is very important for

military and commercial applications. Doppler,

weather radar, TV picture transmission, and telephone

microwave relay systems lie in this frequency range

(Huang et al. 2007). Recently, several studies have

been reported on CNTs reinforced thermoplastic

polymer composites as effective and light weight

EMI shielding materials in X-band. These include

poly(methyl methacrylate) (PMMA) (Kim et al. 2004;

Mathur et al. 2008b; Pande et al. 2009; Yuen et al.

2008), polystyrene(PS) (Mathur et al. 2008b; Yang &

Gupta, 2005) polypropylene (PP) (Al-Saleh and

Sundararaj 2009), polyurethane (PU) (Liu et al.

2007), polyvinylidene fluoride (PVDF) (Eswaraiah

et al. 2011), poly(trimethyene terephthalate) (Gupta

and Choudhary 2011), polyacrylate (Li et al. 2008),

styrene acrylic emulsion (Li et al. 2010), cellulose

triacetate (Basavaraja et al. 2011), ethylene vinyl

acetate (EVA) (Das and Maiti 2008), reactive ethylene

terepolymer (RET) (Park et al. 2010), and polycar-

bonate (PC) (Arjmand et al. 2011).

Epoxy resins are well established as thermosetting

matrices for advanced structural composites, display-

ing a series of promising characteristics for a wide

range of applications owing to their excellent mechan-

ical properties, low cost, ease of processing, good

adhesion to many substrates, and good chemical

resistance (Garg et al. 2011). Several fibrous rein-

forcements e.g., carbon fibers, glass fibers, and aramid

fiber (Kevlar fibers) etc. (Morais and Godfroid 2003)

have been used with epoxy resin as matrix in

producing structurally strong composite materials for

commercial applications such as in aerospace industry.

It suggests that CNT reinforced epoxy composites can

also be a structurally strong EMI shielding material.

Few studies have been reported on CNT–epoxy

composites as EMI shielding material. Huang et al.

(2007) have reported EMI-SE of 18 dB for composite

with 15 wt% small single-walled carbon nanotubes

(SWCNTs) and 23–28 dB for composite with 15 wt%

long SWCNTs in the frequency band of 8–12.4 GHz.

Li et al. (2006) observed the SE of 49.2 dB at 10 MHz

for composite with 15 wt% long CNTs. It was reported

that at higher frequencies (1 GHz), composites exhib-

ited SE of 20 dB for both composites with 10 and

15 wt% SWCNT loadings. There are very few reports

on CNT–epoxy composites for EMI shielding in

X-band. Thus, there is a need to explore structurally

strong MWCNT–epoxy composites for EMI shielding

effectiveness in X-band. The reason behind fewer

reports in CNT–epoxy composites is the need for high

loading of CNTs required for high conductivity and

EMI shielding. To improve the electrical conductivity

and mechanical properties, higher loading of CNTs in

EMI shielding composites is required (Park et al.

2009). But dispersion of high loading of CNTs in

epoxy resin is difficult due to formation of agglomer-

ates by the conventional techniques. However, epoxy

composites synthesized using the conventional meth-

ods generally have low CNT contents. It has been

reported that beyond 0.6 wt% of MWCNT, CNT tend

to agglomerate (Yang et al. 2009) resulting in poor

bending strength and modulus of the composites.

It is therefore important to develop a technique to

incorporate higher CNT loading in epoxy resin

without sacrificing their mechanical properties.

Recently, several methods have been developed for

fabricating CNT/polymer composites with high CNT

loadings. One such technique is mechanical densifi-

cation technique where vertically aligned CNTs were

densified by the capillary-induced wetting with epoxy

resin (Wardle et al. 2008).This technique is limited by

the sample size. In another technique, a filtration

system was used to impregnate the epoxy resin into

CNT bucky paper (Gou 2006; Wang et al. 2004).

However, it was very difficult to completely impreg-

nate the bucky paper with epoxy resin. Recently, Feng

et al. (2010) has reported a mixed curing-assisted

layer-by-layer method to synthesize MWCNT/epoxy

composite film with high CNT loading from *15 to

*36 wt%. The electrical conductivity of the compos-

ites showed a value of 0.12 S/cm. However, the

mechanical properties of the composites were not

reported. In another study by Feng et al (2011), up to

*39.1 wt% SWCNT–epoxy composites were fabri-

cated having enhanced mechanical properties. How-

ever, in all the above studies, EMI shielding

effectiveness of these composites has not been

reported. In one of our previous study, we observe

that it was not possible to disperse more than 0.5 % by

weight of MWCNT in the epoxy resin due to
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agglomeration of the tubes at higher loadings (Garg

et al. 2011). These small loadings did not contribute

significantly toward EMI shielding despite having

high electrical conductivity of these tubes. Therefore,

a new technique was used to increase the loading of

MWCNT by coating the individual nanotube with

epoxy resin in the form of prepreg. We report here the

electrical, mechanical, thermal, and EMI shielding of

such composites. Scanning electron microscope

(SEM) and high resolution transmission electron

microscope (HRTEM) are used to investigate mor-

phological and microstructural properties to establish

a correlation between microstructure and mechanical/

electrical properties of the composites.

Experimental

Materials

Di-glycidyl ether of bisphenol A (DGEBA) type

epoxy resin (LY-556, Huntsman Co. Inc.) was used as

the matrix material. Aradur (HY5200, Huntsman Co.

Inc.) was used as a curing agent. MWCNTs were

synthesized using toluene as a carbon source and

ferrocene as catalyst precursor in a CVD set-up

established in the laboratory (Mathur et al. 2008a).

The MWCNTs produced were 10–70 nm in diameter

and *200-lm in length (Singh et al. 2011). These

were 90 % pure with 10 wt% of Fe catalyst.

Fabrication of MWCNT–epoxy composites

Fabrication process of MWCNTs–epoxy composites

is depicted schematically in Fig. 1. The different

amounts of as-grown MWCNTs (a) was dispersed in

acetone for 2 h in ultrasonic bath for opening the

bundles (b).The epoxy resin (c) was diluted with

acetone to reduce the viscosity of the resin (d).The

dispersed MWCNTs were added in diluted epoxy resin

and magnetically stirred for 24 h to obtain a uniform

dispersion (e).The curing agent was added in the ratio

of 100 (epoxy) : 23 (hardener) by weight in the

dispersed material and magnetically stirred for 30 min

(f). The dispersed MWCNTs in epoxy resin were

filtered in a specially designed filtration unit (g) to

form a film of epoxy impregnated MWCNT and dried

at 80 �C for 2 h to form MWCNT–epoxy prepreg (h).

The prepreg was compression molded in hydraulic

press between two plates at 80 �C followed by curing

under press at 150 �C for 4 h. The resultant composite

paper containing different percentage of CNTs were

obtained in the form of a uniform circular disk of

10 cm dia. This compression molded cured film was

cut into the desired shape (i) for further testing. For the

preparation of composite block (k) from these prepreg,

the prepreg papers were cut into the shape of

60 9 20 mm2 size (j) and placed in a three piece

mold for compression molding in hydraulic press.

Characterization

The fractured surface of MWCNT–epoxy composite

samples was analyzed by SEM (Leo model: S-440).

HRTEM studies of MWCNTs were carried out

using Technai G20-stwin, 300 kV instrument. The

MWCNT content in epoxy matrix was determined

using a thermogravimetric analyzer (TGA) (Mettler

Toledo TGA/SDTA 851 e). The test was performed

between 30 and 600 �C at a heating rate of 10 �C/min

under nitrogen with a flow rate of 50 cc/min. Thermal

diffusivity of the composite samples was measured

using a Nflash Line 3000 (Anter make) system using a

standard test method for thermal diffusivity by flash

technique. The thermal conductivity of the samples

was determined by measuring the specific heat of the

sample on the same instrument. The measurement is

based on ASTM-E-1461. The tensile strength and

Young’s modulus of pure epoxy and MWCNT–epoxy

composite film was measured using an Instron

machine model 4411. The composite films were cut

into standard dog bone shape (Mathur et al. 2008b;

Allaoui et al. 2002) using ASTM D638. A special die-

punch was used for the purpose. The gauge length and

width of the test sample were 30 and 6 mm, respec-

tively. The cross–head speed was maintained at

0.5 mm/min. The electrical conductivity of composite

films (60 mm 9 20 mm 9 0.35 mm) was measured

by d.c four probe contact method (Singh et al. 2011;

Singh et al. 2008) using a Keithley 224 programmable

current source for providing current using ASTM

C611-98. The voltage drop was measured by Keithley

197 autoranging digital microvoltmeter. The values

reported in the text were averaged over five readings of

voltage drops at different positions of the samples.

EMI-SE was measured by placing the composite film

(0.35 mm ± 0.05 thick) inside X-band waveguides
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using a vector network analyzer (VNA) (E8263B

Agilent Technologies). Magnetic measurements were

performed using the vibrating sample magnetometer

(VSM) model 7304 Lakeshore Cryotronics Inc., USA.

Results and discussion

Determination of weight percentage of MWCNT

in composite

The weight fraction of CNT in each composite was

evaluated using TGA. The TGA curves of epoxy, CNT,

and composites are presented in Fig. 2. The weight loss

was measured at 600 �C because thermal decomposi-

tion of MWCNT starts slightly above 600 �C. The

percentages of CNTs in the epoxy obtained were 4.2,

15.1, and 20.4 wt%. The calculations were made using

the method developed by Ogasawara et al. (Ogasawara

et al. 2011). These were designated as CMP1, CMP2,

and CMP3, respectively. Compression molded prepreg

papers of CMP3 were designated as CMP4.

Mechanical properties of the composite film

Figure 3a, b show the variation in Young’s modulus

and tensile strength with MWCNT loading in epoxy

composites. Young’s modulus increased with

MWCNT loading and reached up to a value of

3203 MPa (CMP3) from 1990 MPa (neat epoxy).

This is due to the addition of stiffer material (CNT)

into epoxy resin. The tensile strength also increased

with increase in MWCNT from 42 MPa (neat epoxy)

to 59 MPa (CMP3), an improvement of *40 % over

the neat polymer. The SEM micrograph of fractured

surfaces of the MWCNT–epoxy composite films after

Fig. 1 Schematic diagram

for preparation of high

loading MWCNT–epoxy

composites by filtration

followed by compression

molding
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Fig. 2 Thermogravimetric analysis results of CNT, epoxy, and

CNT/epoxy composites
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tensile testing (Fig. 4b–d) reveal that CNTs are

uniformly dispersed without any visible aggregation.

Aggregation can reduce the reinforcing effect of CNTs

leading to a reduction in the strength of composites. A

uniform dispersion of CNTs results in good load

transfer from matrix to the CNTs resulting in

improved mechanical properties at high loading of

CNTs. This technique of formation of CNT-dispersed

epoxy composites is more effective than conventional

techniques of dispersion. This technique is also

different than other epoxy impregnated bucky paper

based technique where epoxy resin is impregnated into

bucky paper. In those techniques, proper impregnation

of epoxy is very difficult due to availability of very

small pores between the CNTs. In the present

technique, epoxy impregnated prepreg paper is

prepared by dispersing long MWCNT into epoxy

resin where proper adhesion takes place between the

matrix and CNTs.

Electrical conductivity of the composites

Figure 5a shows the variation of room temperature

electrical conductivity with the change in MWCNT

loadings. Pure epoxy is electrical insulator with d.c.

electrical conductivity value of *10-15 S/cm (Barrau

et al. 2003). However, conductivity of MWCNT–

epoxy composites displays a systematic increase with

the increase in MWCNT content from 4.2 to

20.4 wt%. The above enhancement can be attributed

to the formation of extensive 3D networks of

MWCNTs within epoxy matrix. In particular, the

electrical conductivity is dramatically enhanced by 15

orders of magnitude for CMP1 compared to that of

pristine epoxy. This can be attributed to combined

effect of high aspect ratio of MWCNTs, prefect

graphitic structure (interlayer spacing 0.342 nm, see

HRTEM image, Fig. 5b) and its effective dispersion

(Fig. 4b–d) within epoxy matrix. When the CNT

loading is further increased to 20.4 wt% (CMP3), the

electrical conductivity increased to 9 S/cm. The

achieved conductivity value was near the prescribed

range for microwave shielding. Therefore, good EMI

shielding response is expected (Saini et al. 2012; Saini

and Arora 2012).

Magnetization studies

Figure 6a shows the vibrating sample magnetometer

(VSM) plot of CMP2, CMP3 and pure polymer

whereas inset of Fig. 6a shows that VSM of MWCNTs

and the magnetization data are presented in Table 1. It

can be seen that MWCNT displays moderate ferro-

magnetic properties with saturation magnetization

(Ms), retentivity (Mr) and coercivity (Hc) values of

*7 emu/g, *2.2 emu/g, and 577 G, respectively.

The observed hysteresis loop can be attributed to the

presence of iron particles inside the cavity of

MWCNTs as shown in the HRTEM image (Fig. 6b).

It is also seen that incorporation of above MWCNTs

inside non-magnetic epoxy matrix results in introduc-

tion of magnetic properties. Therefore, the Ms, Mr, and

Hc values were found to be 0.79 emu/g, 0.21 emu/g,

and 480 G, respectively for CMP2 and 1.33 emu/g,

0.46 emu/g, and 570 G, respectively, for CMP3. These

results are of specific interest as good magnetic

properties are important in modulating the shielding

response (Saini et al. 2012).

EMI shielding performance

The EMI shielding is a direct consequence of reflec-

tion, absorption, and multiple internal reflection

losses at the existing interfaces, suffered by incident

Fig. 3 Variation in

a tensile strength and

b Young’s modulus with

MWCNT loading
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electromagnetic (EM) waves. The total shielding

effectiveness (SET) can be expressed as (Saini et al.

2009; Singh et al. 2012):

SET dBð Þ ¼ 10 log10ðPT=PIÞ ¼ 20 log10 ET=EIð Þ
¼ log10 HT=20HIð Þ ð1Þ

where PI (EI or HI) and PT (ET or HT) are the power

(electric or magnetic field intensity) of incident and

transmitted EM waves, respectively. The scattering

parameters S11 (S22) and S12 (S21) of VNA are related

to reflectance (R) and transmittance (T), respectively,

i.e., T = |ET/EI|
2 = |S12|2 (=|S12|2), R = |ER/EI|

2 =

|S11|2 (=|S22|2). Therefore, attenuations due to reflec-

tion (SER) and absorption (SEA) can be conveniently

expressed as:

SER¼ 10 log10 1� Rð Þ ð2Þ

Fig. 4 Fracture surface of a pure epoxy, b 4.2 wt% MWCNT–epoxy, c 15.13 wt% MWCNT–epoxy and d 20.4 wt% MWCNT–epoxy

composite film

Fig. 5 a Variation of electrical conductivity of MWCNT–epoxy nanocomposites as a function of MWCNT content, b HRTEM image

of individual MWCNT showing multiwall structure and well-defined lattice fringes with interplanar spacing of 0.342 nm
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SEA ¼ 10 log 1� Aeffð Þ ¼ 10 log10 T= 1� Rð Þ½ � ð3Þ
Further, the angular frequency (x) dependence of

reflection and absorption losses can be expressed in

the terms of total conductivity (rT ), real permeability

(l0), skin depth (d and thickness (t) of the shield

material as (Singh et al. 2011):

SER dBð Þ ¼ �10 log10

rT

16xeol0

� �
ð4Þ

SEA dBð Þ ¼ �20
t

d
log10 e ¼ �8:68

t

d

� �

¼ �8:68t
rTxl0

2

� �1
2

ð5Þ

The above equations reveals that both conductivity

as well as magnetic properties are useful for enhancing

the absorption and hence total shielding. Therefore,

use of MWCNT as conducting filler with additional

magnetic properties (due to entrapped iron particles) is

expected to enhance shielding effectiveness.

The shielding effectiveness value as well as elec-

tromagnetic attributes (permittivity and loss tangent)

of samples is shown in Fig. 7. The results reveal that

pure epoxy sample gives negligible attenuation (not

shown) with (SET & -0.3 dB). However, with the

addition of MWCNT, both reflection (SER) as well as

absorption (SEA) loss component increases resulting

in the enhancement of total shielding (SET) i.e., from

-10 (for CMP1) to -19 dB (CMP3) as shown in

Fig. 7a. Further, the careful analysis of underly-

ing reflection and absorption components show that

SEA/SER ratio (Fig. 7b) increases with incorporation

of higher amount of CNTs. These results demonstrate

that SET is dominated by absorption component,

contribution of which increases with increasing

MWCNT content.

The permittivity spectra of these samples show that

real permittivity (dielectric constant) value decreases

with increase of frequency. This can be ascribed to the

inability of polarization vector to maintain in-phase

movement with incident high frequency electromag-

netic radiation. Further, the dielectric constant

increases with loading of higher amount of CNTs

which may be ascribed to the Maxwell–Wegner

interfacial polarization. The large difference in the

electrical conductivity of MWCNT (*104 S/cm)

filler and epoxy matrix (10-15 S/cm) resulted in

charge localization at the interfaces leading to polar-

ization and related losses. In order to explore the

reason behind the enhanced absorption loss (SEA), the

dielectric loss tangent values (i.e., tan de = e00=e0) have

also been calculated which reflect the ability of a

material to convert applied energy into heat. There-

fore, materials with high tan de value are useful for

making microwave absorbing materials in stealth

technology. The results have shown that tan de

increases from CMP1 to for CMP3 which is respon-

sible for enhanced shielding response.

Figure 8a shows the magnetic permeability of the

composites which shows weak frequency dependence.

Furthermore, the permeability was found to increase

with CNT loading which is due to the presence of iron

particles within the cavity of CNT. The magnetic

Fig. 6 a Magnetization

studies of pure epoxy,

CMP2 and CMP3 and inset
shows for pure MWCNTs

showing ferromagnetic

character and hysteresis

loop. b HRTEM image of

individual MWCNT

showing entrapped iron-

phase within internal cavity

of tubes, inset shows zoom-

in image of entrapped iron

Table 1 Magnetization data for various samples

Sample Ms (emu/g) Mr (emu/g) Hc (G)

MWCNTs 7 2.2 577

CMP2 0.79 0.21 480

CMP3 1.33 0.46 570

Pure epoxy 0.009 – –
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properties help in better matching of input impedance,

reduction of skin depth, and additional magnetic

losses. Therefore, they contribute toward improve-

ment of absorption loss.

The above dielectric and magnetic losses are

responsible for generation of heat due to molecular

friction. The safe and fast dissipation of this heat is

desirable for maintaining long term and stable perfor-

mance of the shield. Like other polymers, pure epoxy

matrix also has very low thermal conductivity

*0.14 W/mK (Cui et al. 2011) and displays poor

heat dissipation response. The addition of MWCNT

with high inherent thermal conductivity (k * 3000

W/mK) leads to thermal conductivity value (Fig. 8b)

of 2.175 W/mK for CMP4. Such an improvement

(*15 times higher than pure epoxy) in k gives direct

evidence of improvement of microwave heat dissipa-

tion characteristics of the shield. The variation in the

thermal conductivity with temperature is very small

(from 2.0 W/mK at 50 �C to 2.175 W/mK at 200 �C)

and increases slightly with temperature. Thermal

conductivity of any composite material depends

mainly on the filler conductivity, dispersion, orienta-

tion, and the interfacial thermal resistance between

filler and polymer. The change in thermal conductivity

with temperature depends mainly on the interfacial

thermal resistance which decreases with increase in

temperature (Jakubinek et al. 2010). This results in

Fig. 7 Frequency

dependence of a total

shielding effectiveness

(SET), b SEA/SER,

c real permittivity (e0) and

d loss tangent (tan de), for

MWCNT–epoxy

nanocomposites

Fig. 8 a Frequency

dependence of real magnetic

permeability (l0) and

b temperature dependence

of thermal conductivity

(k) of the MWCNT–epoxy

shield
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Table 2 Results of shielding effectiveness of CNT based various polymer composites reported by previous authors in X-band

Type of CNT%/CNT%/thickness Polymer Shielding

effectiveness (dB)

References

SWCNT/20 wt%/2 mm PU 17 Liu et al. (2007)

SWCNT/15 wt%/2 mm Epoxy 20–30 Huang et al. (2007)

MWCNT/10 vol%/0.3–2.1 mm PMMA 18–40 Pande et al. (2009)

MWCNT/40 w%/0.165 mm PMMA 27 Kim et al. (2004)

MWCNT/4.76 wt%/10 layers of 0.1 mm thick film PMMA Up to *42 Yuen et al. (2008)

MWCNT/7 wt%/a PS Foam 20 Yang and Gupta (2005)

MWCNT/5 vol%/a PP 24 Al-Saleh and Sundararaj

(2009)

MnO2 nanotubes &f-MWCNTs/5 wt% MnO2 & 1 wt%

f-MWCNT/1 mm

PVDF 20 Eswaraiah et al. (2011)

MWCNT/20 wt%/1.5 mm Styrene Acrylic

Emulsion

28 Li et al. (2010)

MWCNT/40 wt%/6 mm Cellulose Triacetate *30 Basavaraja et al. (2011)

SWCNT/15 wt%/a EVA 22–23 Das and Maiti (2008)

f-SWCNT/4.5 vol%/2 mm RET 30 Park et al. (2010)

MWCNT/5 wt%/1.85 mm PC 26 Arjmand et al. (2011)

a Thickness not mentioned

Fig. 9 Frequency dependence of a SET of CMP3 with no. of

layers. b SET, SEA, and SER of five layers of CMP3. c SET, SEA,

and SER of CMP4 of 1.75 mm thickness. d SEA/SER for layered

sample and CMP4 at 1.05 mm thickness, inset shows the

absorption ratio of layered film vs compression molded block

J Nanopart Res (2013) 15:1554 Page 9 of 12
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slightly higher thermal conductivity at higher

temperature.

As we increase the shield thickness by stacking of

layers, geometrical effects tend to come into picture

and a clear loss peak is observed in the shielding curve.

Moreover, as the shield thickness increases, the loss

peak intensity increases and shifts toward lower

frequency. This may be due to the combined effect

of dielectric and magnetic properties along with

geometrical (thickness) effects resulting in better

matching of input impedance. Therefore, a five-

layered shield with total thickness of 1.75 mm resulted

in SET value of -60 dB at 8.3 GHz (Fig. 9a) which

corresponds to blocking of more than 99.999 % of

incident EM radiation. To prove further, SET was

divided into reflection and absorption components as

shown in Fig. 9b which clearly demonstrates the

dominance of absorption. In order to explore the

superiority of layer stacking method, a block of above

composite (CMP4) with thickness of *1.75 mm was

also prepared by compression molding. The shielding

response of the block (Fig. 9c) revealed that maximum

attenuation was -50 dB which was less than that

observed for layered sample. Further, unlike layered

sample no band was observed for bulk sample. To

investigate the probable reasons, the SEA/SER ratio

was calculated (Fig. 9d) for a bulk and layered

samples of same thickness i.e., 1.05 mm (equivalent

to three layers). The results revealed that in the entire

frequency range, the ratio was higher for layered

sample than for its bulk counterpart. This reflected that

for layered sample absorption was playing more

significant role than the bulk sample. The same was

also complemented by the fact that ratio of absorbance

value of the film and bulk sample (inset Fig. 9d) was

greater throughout the entire frequency range. Fur-

thermore, reflection loss of layered sample (*-

7.0 dB, Fig. 9b) was much less than block sample

(*-10 dB, Fig. 9c) which signifies better impedance

matching for the former. The better impedance

matching along with higher absorption capability of

the layered film sample resulted in attainment of band

and higher shielding effectiveness value. The above

results implied that layering is a better method of

obtaining higher shielding effectiveness compared to

compression molded thick block of same thickness.

The observed attenuation herein crossed the limit (-

30 to -40 dB) of commercial applications, which

suggests that these nanocomposites are promising

candidates for making futuristic radar absorbers.

These results were also compared with recently

conducted research on CNT–polymer composites in

X-band and tabulated in Table 2. This table shows that

the present result is superior to reported results.

Conclusions

MWCNT–epoxy composites were fabricated using a

novel dispersion and compression molding technique

which enabled dispersion of high loadings of CNTs

(up to 20.4 wt%) uniformly. A value of 9 S/cm of

electrical conductivity was achieved which helped in

attaining high EMI shielding properties of such

composites i.e., up to 60 dB in X-band which is the

most desired range for commercial applications such

as radar, TV picture transmission, and telephone

microwave relay systems, etc. An addition of

MWCNT in the epoxy also provided structural

integrity to the composites with tensile strength of

the order of 60 MPa along with improved thermal

conductivity which is a prerequisite for efficient heat

dissipation in microelectronics devices.
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