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Abstract Measurement strategies for exposure to

nano-sized particles differ from traditional integrated

sampling methods for exposure assessment by the use

of real-time instruments. The resulting measurement

series is a time series, where typically the sequential

measurements are not independent from each other

but show a pattern of autocorrelation. This article

addresses the statistical difficulties when analyzing

real-time measurements for exposure assessment to

manufactured nano objects. To account for autocor-

relation patterns, Autoregressive Integrated Moving

Average (ARIMA) models are proposed. A simulation

study shows the pitfalls of using a standard t-test and

the application of ARIMA models is illustrated with

three real-data examples. Some practical suggestions

for the data analysis of real-time exposure measure-

ments conclude this article.

Keywords Nano exposure measurements �
Time series � ARIMA � Environmental,

health and safety (EHS) effects

Introduction

Assessment of the exposure of workers to manufac-

tured nano particles at the workplace receives consid-

erable attention, because the number of workers

involved with nanotechnology is increasing rapidly.

In the absence of sufficient scientific knowledge on the

hazardous potential and possible health effects of

exposure to nano particles, exposure measurements

are performed to locate sources of emission and to

characterize exposure in different work situations to

gain knowledge on how to reduce personal exposure

levels. However, there is no consensus method yet on

how to (statistically) analyze and report these expo-

sure measurement results.

Although real-time measurements in exposure

assessment are found in, for instance, studying expo-

sure to noise, measurement strategies for exposure to

nano-sized particles differ from the majority of

traditional integrated sampling methods by the use

of real-time instruments. Common instruments for

on-line measuring number concentrations or surface

area concentrations of (nano) particles are the SMPS,

CPC and ELPI, and diffusion chargers, respectively

(Brouwer et al. 2004), which have various response

times ranging between t = 1,…,180 s. That is, every

t seconds, a measurement result (number concentra-

tion) is recorded. The resulting measurement series,

therefore, is a time series, a set of measurements

collected sequentially over time. Typically, in time

series the recorded set of measurement results are not
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independent and show significant autocorrelation

between subsequent samples.

The current literature on exposure to manufactured

nano objects discusses several ways of statistically

analyzing data obtained from real-time exposure

measurements. Brouwer et al. (2004) identified the

effect of work activities on particle number concen-

tration and the percentage of ultrafine particles

graphically. Although the authors showed that useful

information can be retrieved, graphical analysis is

limited to making qualitative inferences. Demou et al.

(2008) repeatedly collected time series data on

20 days with the same production process. The

analysis of the data was done by averaging the 20

time series and making a graphical analysis. Bello

et al. (2009) mentions the testing of mean differences

at a significance level of P \ 0.05, but the article is

unclear about what kind of test was performed. Park

et al. (2010) used t-tests for evaluating mean differ-

ences of time series data. There are two potential

problems with using t-tests: First, the mean of a time

series only has a substantial interpretation when the

time-series is stationary, that is, the time series is a

random fluctuation around the mean and there are no

trends in the data. Second, the autocorrelation in the

measurements leads to underestimation of the vari-

ance in the data, resulting in a biased test statistic of

the t-test. Subsequently, Park et al. (2010) modeled the

data using random effects models for which they

assumed a compound symmetry covariance structure.

Such a covariance structure assumes that all measure-

ments have the same correlation with each other. This

implies, for instance, that two measurements with a

time lag of two hours are equally correlated with each

other as two measurements with a time lag of two

minutes. Clearly, this assumption is not appropriate.

Evans et al. (2010) emphasized the usefulness of

real-time measurements, but also these authors only

reported graphical inferences. Pfefferkorn et al. (2010)

used (partial) autocorrelation assessments, Autore-

gressive Integrated Moving Average (ARIMA) time

series models and first-order autocorrelation models to

analyze their data. ARIMA models are well-known

statistical models to deal with autocorrelated time

series observations that we also propose in this article.

ARIMA methods for analyzing time series data have

also been used in environmental studies to (the effects

of) air pollution. Recent examples are, for instance

Sharma et al. (2009) and Mann et al. (2010). Note that

in this article we focus on the statistical modeling and

analysis of real-time nano exposure measurements. As

such, the statistical methods are only descriptive and

not explanatory. For a good understanding of what is

happening at a workplace, it is necessary to combine

mechanistic models with data collection and statistical

analysis, but this is outside the scope of this article.

For a mechanistic modeling approach of exposure to

nano-sized particles, see for instance Schneider et al.

(2011).

The statistical analysis of time series requires

special attention, since the measurements are not

independent from each other. This has been addressed

in the late 1980s by O’Brien et al. (1989), who

recommended a check for autocorrelation for real time

(dust) exposure data. When studying exposure to

manufactured nano objects, people are confronted

with several measurement series of different nano

processes. Relevant research questions then involve

testing for elevated exposure levels when a certain task

is performed, or evaluating the similarity in trends and

levels of repeated experiments. Other questions may

relate to the identification of exposure determinants

from a set of measurements. From the mentioned

literature above, it is clear that exposure measurement

time series have been dealt with in different ways, of

which some are inappropriate for such data, and others

are incomplete in checking specific (but important)

assumptions of the applied models. In this article, we

aim to show the difficulties of analyzing and inter-

preting time series data in the context of exposure

assessment. First, we briefly introduce the statistical

theory of time series analysis. Second, by means of

simulated data examples we highlight some potential

problems of dealing with nano exposure time series

data. Third, we illustrate the statistical analysis with

some real data examples from exposure measurements

on nano-sized particles. We conclude this article with

a discussion and some practical recommendations for

real-time measurements and the analysis of such data.

Statistical analysis of time series

The first step in analyzing time series data is making a

graph, which serves to quickly identify peaks and

trends in the data. Subsequently, a potential next step

is then fitting a model to the data to make quantitative

inferences.
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The modeling and analysis of time series data has

frequent application in fields as economics (e.g., stock

exchange data), geography, and engineering. A foun-

dation for the statistical analysis of such data was Box

and Jenkins (1970), who developed and applied

Autoregressive Moving Average (ARMA) and AR-

IMA models. An introductory text is Cowpertwait and

Metcalfe (2009). A Bayesian statistical approach to

time series can be found in West and Harrison (1997).

In this article, we have applied ARIMA models to real-

time nano exposure measurements. In this section, we

will first introduce ARIMA models and then give a

brief overview of the model fitting procedure on the

basis of a simulated example.

ARIMA models

Let Yt, t = 1,…, T denote a sequence of measurements

of a variable Y at subsequent and equally spaced times t.

The autoregressive (AR)-part of an ARIMA model

refers to the regression of Yt on time lags of itself. That

is, it expresses the time series as a linear function of its

past values. It is common to denote the order of the

model as the number of time lags p, or AR (p). The

simplest AR model is the first-order autoregressive, or

AR (1), model

Yt � a1Yt�1 ¼ lþ et; et�Nð0; r2Þ; ð1Þ

where a1 is the coefficient of the autoregression, l is an

intercept, and et the residual error term which follows

a normal distribution with mean 0 and variance r2.

A value of a1 close to 1 or -1 denotes a high

autocorrelation in Y, and a value of a1 close to 0

denotes little autocorrelation in Y.

The moving average (MA) part of the ARIMA

model denotes the structure on the error term. The

simplest MA(q) model is the first-order MA(1) model,

with q = 1 denoting the order, given by

Yt ¼ lþ et � c1et�1; et �N 0; r2
� �

; ð2Þ

where c1 is the moving average coefficient of the first

order. A value of c1 close to 1 or -1 denotes a high

autocorrelation of the error term. For a value of c1

close to 0 the model reduces to an ANOVA model with

an intercept and random error component.

The integrated (I)-part refers to the order of

differencing of a time series. In case of a non-

stationary time series, differencing can be applied to

remove trends from the data to obtain a stationary

series that subsequently can be modeled with AR and

MA terms. The idea is that a trend in Y can be

accounted for by taking the derivative (dY/dt) of the

series, which then might be stationary. Since the

measurements are at discrete time steps t = 1, 2,…, T,

a model of order d = 1 is the first-order (or I(1)) model

that models the differenced series of Y with lag 1:

dY/dt = Yt – Yt-1.

From Eq (1) and (2) it can be seen that several

assumptions are made in an ARMA model, of which

we want to stress two explicitly: First, the ARMA

model assumes that the time series is stationary. A

stationary process is defined as a stochastic process

whose probability distribution is not a function of

time. This means that parameters like the mean and the

variance of the series are constant over time. In other

words, it is assumed that there is no trend or seasonal

variation present in the data Y. An example of a

stationary process in a workplace situation would be a

time series showing a constant particle concentration

over time with only some random fluctuation. A non-

stationary example could be an increasing particle

concentration in the first hour after starting up a

production process. Second, it is assumed that the

error terms follow a normal distribution with constant

variance. Those assumptions have important practical

implications when evaluating exposure measure-

ments. If a series of exposure measurements is not

stationary, sample statistics like the mean, variance,

and correlations with other variables are not mean-

ingful since they are dependent on the length of the

measurement series. This is quickly seen when

considering a series with an increasing trend over

time, e.g., the series has a positive slope over time. In

that case, both the estimates for the mean and the

variance will grow with sample size over time. As a

consequence, neither the correlations with other

variables are well-defined, nor are comparisons like

a t-test of any significance. Symanski and Rappaport

(1994) investigated autocorrelation and stationarity of

exposure measurements (not on the nano scale) and

noted that in assessing occupation exposure, summa-

ries like the mean and variance components play an

important role, illustrating the importance of assessing

stationarity, see also Rappaport (1991).

Note that the distribution of the error term is

assumed to be normal, it says not that the (empirical)

distribution of Y is necessarily normal. Therefore,
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these assumptions are very important to check before

proceeding with any inferences on the time series.

The combination of the AR(p), I(d), and MA(q) parts

specifies an ARIMA(p,d,q) model, where p, d, and q

denote the orders of the specific model terms. Selection

of the appropriate orders is the topic of the next

subsection.

Estimation and software

In most statistical software packages, standard rou-

tines are available for time series modeling with

ARIMA models. For the analyses in this article, we

used the arima() function available in the stats-

package in the free statistical environment R (R

Development Core Team 2011).

Stepwise approach for analyzing time series data

This section describes a stepwise approach for statis-

tically analyzing time series data from nano exposure

measurements using ARIMA models.

Step 1

The first step in fitting an ARIMA model is checking

the stationarity of a time series. A standard procedure

is to study a time series plot of the data together with

the autocorrelation function (ACF, more details

below). With a graph of the data one can visually

check the constancy of the mean and variance

(Fig. 1a). A plot of the autocorrelation of the data

can also be informative (Fig. 1b). Typically, when the

sample autocorrelation is high initially ([0.8) and

shows a very slow decay to zero (e.g., over more than

ten time lags) it is a sign for non-stationarity of the

data. Then, difference the data once (corresponding to

an ARIMA(0,1,0) model) and see if the differenced

series appears stationary. An exponential trend in the

data, alongside an increasing variance with time, is an

indicator for a multiplicative relationship instead of

(linear) additive growth. In that case, a log-transform

of the data is useful to obtain a linear growth and to

stabilize the variance.

To quantitatively test if a time series is stationary or a

differencing step might be necessary first, one can test

the hypothesis H0: a1 = 1 versus the alternative Ha:

a1 \ 1. To do so, an AR(1) model can be fitted and

compared to a first-order differencing or ARIMA(0,1,0)

model. In case the series is non-stationary, the AR(1)

coefficient will be close to 1. For comparison of the

AR(1) and the ARIMA(0,1,0) models, the AIC model

fit criterion can be used (explained below in Step 2).

In case the assumption of stationarity is reasonable for

the data at hand, the AIC will favor the AR(1) model

over the ARIMA(0,1,0) model. For a worked example,

see Example 2.

When, after differencing, the series is stationary,

proceed with Step 2. If it is not possible to obtain

approximate stationarity of the series, ARIMA models

are not appropriate. Then, qualitative graphical infer-

ences are possible, or other statistical methods have to

be considered.

Step 2

In the second step, the orders p and q of the

ARMA(p,q) components need to be determined. Here,

the ACF and the Partial Autocorrelation Function

(PACF) play an important role. The Cross Correlation

Function (CCF) is related to the ACF, but estimates

the correlation between two different series.

The ACF is the correlation of a variable with itself

at different times. For example, the autocorrelation at

lag 2 is the correlation between Yt and Yt-2. The CCF

is estimated in exactly the same way as the ACF, but

with the difference that it is not the autocorrelation of

the series with itself, but the correlation of two time

series at lags k = 0, 1,….,K. The CCF is helpful to

determine the similarity in the patterns of two time

series, for instance in determining the similarity

between repeated experiments (see also Example 3

in the ‘‘Empirical Examples’’ section). The PACF at

time lag k is the correlation that remains after

removing the effects of autocorrelation at shorter time

lags. For example, the PACF at lag k = 2 is the

autocorrelation that remains after correcting for the

propagating effect of the autocorrelation at lag k = 1

(if there is an autocorrelation of 0.5 of lag k = 0 with

lag k = 1, then this autocorrelation propagates to lag 2

since the samples at lag 1 and lag 2 are also correlated,

resulting in an autocorrelation of lag 0 and lag 2 of

0.5 9 0.5 = 0.25).

To determine the orders p and q of the AR and MA

model terms, plots of the ACF and PACF of the

(differenced) data are typically used. It is best to look

at the ACF and PACF together, and follow the

following rules of thumb:
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• If the PACF has a sharp cut-off, then an AR term

should be considered. The order of the autoregres-

sion is determined by looking at the PACF

function, and checking after which time lag the

PACF is approximately zero. For instance, if the

PACF has significant spikes at time lags 1 and 2,

but is (almost) zero at time lag 3 and higher, then

an AR(2) model might be appropriate.

• For determination of the order (q) of the MA part

the ACF is used in a similar way, where q is chosen

based on significant (positive or negative) spikes in

the ACF. The rule of thumb here is: if the ACF has

a sharp cut-off, then an MA term should be

considered. Again, the lag were the ACF cuts off

corresponds with the order of the MA model part.

We illustrate the order selection procedure for the

AR(p) component with the simulated example pre-

sented in Fig. 1. Fig. 1a shows the time series plot of an

AR(2) process. In Fig. 1b the ACF is plotted, showing

a significant positive spike at lag 1, and significant

negative spikes at lags 3 and 4. However, it can be seen

that the PACF plot shows a significant positive spike at

the first time lag, and a negative spike at the second

time lag and is approximately zero afterward. Based on

the PACF, it seems that after accounting for the

autocorrelation at lags 1 and 2, no significant higher

order terms are needed to describe this time series. An

appropriate model then would be an AR(2) model.

It can sometimes be difficult in practice to select the

best model based on a data sample and the estimated

ACF and PACF. For instance, it can be hard to

distinguish between an AR(1) or an MA(1) model by

visual inspection of the ACF and PACF, and then

decide which of the two models fits the data best.

Therefore, information criteria like the Akaike Infor-

mation Criterion (AIC) can be used to search for the

best fitting model. The AIC is a relative measure of

model fit that balances an improvement in model fit

based on the log-likelihood with the number of added

model parameters. As such, it is only useful to compare

two (or more) models with each other, where the

model with the lower AIC value is considered to

provide a better fit to the data. An alternative to the

AIC is the Bayesian Information Criterion (BIC),

which differs from the AIC in how it penalizes for

adding model parameters, but otherwise its interpre-

tation is similar to the AIC. Most statistical software

Fig. 1 Simulated time series ARIMA(2,0,0) with n = 200. From above to below: a measurement series against time, b autocorrelation

function (ACF), and c the partial autocorrelation function (PACF)
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packages provide such model fit statistics along with

the estimated model parameters.

Step 3

ARIMA models can be extended to include covariates

to explain observed effects or changes in the concen-

tration level of a time series. For example, an indicator

variable to model the effect of a process activity on

exposure, where Xt = 1 denotes activity, and Xt = 0

denotes no activity. For an AR(1) model, the resulting

equation then is:

Yt � a1Yt�1 ¼ lþ ðXt � a1Xt�1Þbþ et;

et�Nð0; r2Þ; ð3Þ

where b is the regression coefficient of concentration

level Y on indicator variable X. In this case the

autoregression on Y also applies to X. When a

differencing step is necessary, note that also X is

differenced, i.e., the change in X is related to the

change in Y. Effectively, this means that the ARIMA

model is fitted to the errors of the regression of Y on

X (note that without explanatory variables, the resid-

ual errors plus the mean term equal the observations

Y). The cross correlation between the series Y and

X can be helpful to identify if there is a relationship

between observed trends in Y and a covariate X.

The model in (3) can also be viewed as a linear

regression model that accounts for the serial correla-

tion in the measurements. In Eq. 3, the serial

correlation is modeled by an AR(1) model, but a

regression model with an MA structure on the error

terms can also be used. However, it is important to

evaluate the stationarity of the series before making

inferences and conclusions from ARMA regression

models, since both ARMA- and regression models

(and their combination) assume stationarity with

constancy of variance of the error terms. Non-station-

ary series typically violate such assumptions and may

bias the estimated coefficients.

Step 4

When the time series appears stationary and the

appropriate orders of the ARIMA model have been

determined, model assumptions as the normality of the

residuals and residual autocorrelation and have to be

checked. This step finalizes the model fitting and

model checking procedure. Subsequently, interpreta-

tion of the results remains.

Testing for mean differences: standard t-test

or ARIMA?

To show the influence of autocorrelation between

measurements on statistical testing for mean differ-

ences (i.e., a standard t-test and an ARIMA regression

model), a simulation study was performed. All data

were simulated from an AR(1) model with l = 0 and

r2 = 1, see Eq (1), for four different values of the

autocorrelation, a1 = 0.3, 0.5, 0.7, and 0.9. The length

of the series was N = 200 samples. A switch in the

mean level of the series occurred at t = 101, and two

tests for the difference in mean level between the first

100 and the second 100 samples were performed. The

first test was a standard t-test for a difference in means.

In the second test, an AR(1) model was fitted, where an

indicator variable modeled the mean difference

between the second and the first half of the data.

From the fitted AR(1) regression model, a t-test for the

estimated mean difference was obtained from the

estimated coefficient and its standard deviation for the

indicator variable, corresponding to a regular t-test but

with the important difference that autocorrelation

between the samples was accounted for. For each

condition (mean difference and autocorrelation) 100

data sets were simulated.

Figure 2 summarizes the results, where the aver-

ages over the 100 simulated data sets of the

estimated t-values were plotted against the simulated

mean differences. It can be seen that the t-test

overestimated the statistical significance of the mean

difference in all cases, where the overestimation was

greater for increasing autocorrelation between the

samples. Although the mean, variance, and sample

size of the simulated data sets were chosen arbi-

trarily, the principle of this result stands for any data

set where there is autocorrelation between subse-

quent samples. It shows that when testing for mean

differences, autocorrelation in the data cannot be

ignored. Neglecting autocorrelation can lead to

false significant results, especially when mean dif-

ferences are small or autocorrelation between sam-

ples is high.
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Empirical examples

In this section, we present three real data examples to

illustrate the use of ARIMA models for (statistically)

analyzing time-series of nano exposure measurement

results.

Example 1: Testing for an effect of an activity

on the particle number concentration level

A measurement series of a certain activity or task

resulted in a time series of 1500 subsequent measure-

ments of number concentration of particles smaller than

100 nm, using an ELPI on-line measurement device

with a response time of 1 s. For simplicity, we refer to

this measurement series as ‘‘Example 1’’ from now on.

A time series plot of the data is shown in Fig. 3a, in

which a dotted line denotes the region where the task or

activity was performed during the measurement period.

The research question was to investigate a potential rise

in exposure to nano-sized particles (\100 nm) during

performance of the activity compared with the non-

activity period.

Step 1

First, the stationarity of the series is evaluated. From

Fig. 3a, there are no suggestions for a non-stationary

process, since the measurements seem to fluctuate

around a constant value. In addition, Fig. 3b shows

that the ACF quickly decays to zero (in 4 time lags).

Therefore, from the time series plot and ACF it was

concluded that it is safe to assume that the time series

is stationary.

Step 2

Since the ACF (Fig. 3b) indicates that there is

significant autocorrelation in the data, the order of

the ARMA components has to be selected. The ACF
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Fig. 2 Estimated t-value (y-axis) for mean differences (x-axis)

using an AR(1) model (solid line) and a t-test (dotted line). AR(1)

autoregression coefficient denoted by a1. Horizontal dots denote

t = 2, which corresponds to the lower bound for a statistical

significant test result at the a = 0.05 level
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shows significant spikes at the first four time lags. A

possible MA model of order q = 4 could therefore be

fitted to the data. However, the PACF suggests that

there is a significant first-order autocorrelation, and

probably a moderate second order component, after

which the PACF is approximately zero. Therefore, the

ACF and PACF suggest either an MA model of order

4, or an AR model of order 2. Since the AR model

needs 2 parameters less than the MA model to fit the

data, the AR model seems to be the moist parsimo-

nious choice. Therefore, two models were subse-

quently fitted to the data, an AR(1) and an AR(2)

model. The AIC was then used to select the order of

the AR model. The AIC favored the AR(2) model

(AIC = 37462) over the simpler AR(1) model

(AIC = 37483). For illustrative purposes, also an

MA(3) model was fitted. The AIC for the MA(3)

model was estimated at 37468, and thus also indicates

that the simpler AR(2) model is more appropriate than

the MA(3). Based on the combined information from

the (P)ACF function and the AIC, it was assumed that

the AR(2) model was most appropriate for this data.

Step 3

The cross correlation function of the indicator variable

for the task (which equaled 1 at the times the task was

performed and 0 otherwise) with the particle count was
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Fig. 3 From above to below a measurement series against time b autocorrelation function (ACF), and c the partial autocorrelation

function (PACF)
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estimated. The CCF showed a small positive correla-

tion between the indicator variable and the particle

count measurements, which was strongest at a lag of 26

time steps into the future. That is, the particle count

responded 26 time steps later on a change in the task.

Step 4

Model diagnostics were evaluated and showed that the

standardized residuals were approximately normal and

that there was no significant residual autocorrelation.

Based on the above assumptions, we fitted an

ARIMA(2,0,0) model to the data of Example 1,

extended with the indicator variable for task as a

covariate with a time lag of 26 s. The estimated

effects, given in Table 1, show a statistically signif-

icant effect of the activity on exposure, indicating that

exposure to nano-sized particles increases on average

with 364 particles (\100 nm) when the activity is

performed, with a time lag of 26 s.

Example 2: Testing for an effect of an activity

on the particle number concentration level

As in Example 1, the interest is in testing the effect of

an activity on the particle number concentration level.

The time series plot, ACF and PACF of a measurement

series of 260 samples of nano-sized particle concen-

tration taken with a CPC with a response time of 20 s

are shown in Fig. 4.

Step 1

The stationarity of the series was evaluated. The ACF

showed a high autocorrelation at lag 1 of 0.83,

declining slowly to 0.4 at lag 20. This is an indicator

for non-stationarity of the series. However, the Partial

ACF suggested this was a first-order process where the

autocorrelation at lag 1 propagates through subsequent

samples (Fig. 4c). It was debatable if a first-order

differencing, or an AR(1) model was most appropriate

for this data set. To investigate this, the hypothesis test

described under Step 1 was used. Both the AR(1) and

the ARIMA(0,1,0) model were fitted and their AIC-

values were compared. The AIC’s were 3157.7 and

3159.01, respectively, a small difference but favoring

the AR(1) model. Also note that the first-order

differencing corresponds to a (non-stationary) AR(1)

model with coefficient a1 = 1, while the estimated

AR(1) coefficient was 0.83, with SD = 0.03, and thus

was significantly different from 1 and indicates a

stationary time series. Therefore, we assumed the

AR(1) model was appropriate for this data set.

Step 2

It was investigated if there was residual autocorrelation

remaining after the AR(1) model was fitted. However,

the ACF of the residuals of the AR(1) model showed no

significant autocorrelation anymore. Therefore, no

additional AR or MA terms were needed.

Step 3

Testing for the influence on the particle concentration

level of an activity that was performed at different

times during the measurement period using the

ARIMA(1,0,0) regression model, a positive but non-

significant (P [ 0.05) result was found (Table 2).

Step 4

Residual analysis showed no aberrant patterns in the

residuals and there no significant residual autocorre-

lation was apparent.

To compare these results with results of a standard

t-test, the estimated parameters are shown in Table 2

together with the results for a t-test for mean differ-

ences where the indicator variable for the activity was

used as the grouping variable. For both tests a positive

effect for the activity on particle number concentration

of nano-sized particles was found. However, the

ARIMA model (which accounted for the autocorrela-

tion in the series) gave a non-significant result (at the

level P \ 0.05), whereas the t-test (which ignores the

autocorrelation in the series) suggested a statistically

significant difference (P \ 0.05) between activity and

Table 1 Estimated model parameters for the AR(2)-regres-

sion model for Example 1

Parameter Estimate SD P value

Intercept 4660.4 79.4 \0.01

a1 0.33 0.03 \0.01

a2 0.12 0.03 \0.01

Task effect 364.4 176.7 0.04

Residual variance 2327827

AIC 26258
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non-activity. This is in line with the results from our

simulated time series presented in Fig. 2, which

showed that the standard t-test overestimated the

statistical significance of the mean differences in

comparison with the ARIMA approach, when there

are serial correlations in the data.

Example 3: Testing for a difference between three

repeated experiments

In this example the data of an experiment that was

repeated three times was analyzed. In a closed room, a

deodorant was sprayed for 3 s. Subsequently, the

particle number concentration was measured during

12 min with a diffusion charger type of device

(Nanotracer�) with a response time of 16 s. The

experiment was repeated when the particle number

concentration was back at the original background

level. This resulted in three time series, which are

plotted together in subsequent order in Fig. 5.

When investigating the similarity between two time

series, two things are of main importance: 1) Do the

series follow a similar pattern, and 2) Are there

substantial absolute mean differences between the

measurements?

To answer the first question, a graphical comparison

was made first. From Fig. 5, it can be seen that the first

two experiments show similar behavior, but that the

third experiment (series 3) seems to differ. The CCF

gives a quantification of the similarity of the series, and

was estimated for all combinations of the series. The

estimated CCF for series 1 with series 2 was 0.76,

showing a substantial association between the trends of

those two series. The estimated CCF between series 1

and 3, and the CCF between series 2 and 3, were

estimated to be 0.66 and 0.69, respectively. These

Fig. 4 a Time series plot Example 2, dots indicate activity. b ACF-plot Example 2 and c PACF Example 2

Table 2 Estimated parameters for Example 2

Parameter Estimate SD P value

ARIMA-model Intercept 4391.9 58.8 \0.01

a1 0.87 0.03 \0.01

Task effect 36.9 31.4 0.25

Residual

variance

16124

T-test for equal

means

t-Value -2.33 0.02
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values are somewhat lower, but correspond with the

observation that all series first show an upward trend

(an increase in particle number concentration after

spraying with the deodorant), followed by a decreasing

particle number concentration. Therefore, it can be

concluded from the CCF and the graphical inspection

that the three series follow a similar pattern.

However, similar trends do not have to correspond

with similar concentration levels. To test this (and

answer question 2), an ARIMA-regression model was

fitted to the data with two dummy variables with series

1 being the reference series with which the mean levels

of series 2 and 3 were compared.

Step 1

The stationarity of the series was investigated before

fitting the ARMA regression model. The ACF

between the measurements was very high, showing a

slowly decreasing ACF with an autocorrelation of 0.93

at lag 1. Taking into account the increasing trend of the

three series, followed by the decrease, this points at

non-stationarity of the series. Therefore, a first-order

differencing step was taken.

Step 2

The ACF and a residual plot of the differenced series

were inspected, to see if there was autocorrelation

remaining. The residual plot and its ACF are shown in

Fig. 6. From these plots it can be seen that there is no

significant autocorrelation remaining, and the residu-

als appear to be randomly. Therefore, it was concluded

that no additional AR or MA terms were needed.

Step 3

The regression model was fitted to the (differenced)

data. The estimates of the parameters are given in

Table 3, which demonstrate that series 2 tends to show

a lower particle concentration level than series 1,

however, this is not statistically significant. Series 3

on the other hand, clearly shows a positive offset

compared with series 1, indicating that the measured

number concentrations in the third repeat of the

experiment were substantially higher.

Step 4

The residual analysis did not indicate deviations from

normality of the residuals and no significant residual

autocorrelation was apparent.

In conclusion, the results suggest that the first two

repeats of the experiment were very similar, both in

absolute particle number concentration levels as well

as observed pattern. However, the third repeat of the

experiment differed from the other two with a

statistically significant (P \ 0.05) higher particle

number concentration of on average 10,278 #/cm3 in

experiment 3 compared with experiment 1 (Table 3).

Discussion

This article showed that statistically analyzing results

of on-line measuring particle number concentration

levels of manufactured nano objects in real-time (i.e.,

a time series) needs considerable attention. Typically

in time series, the recorded set of measurement results

Fig. 5 Example 3: Time

series plot of the three

repeated experiments and

background measurement
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are not independent and show significant autocorrela-

tion between subsequent samples. The aim of this

article was to raise awareness for the potential

statistical difficulties when analyzing real-time mea-

surements for exposure assessment to manufactured

nano objects. It was shown how ARIMA models can

be applied to make inferences from real-time exposure

measurements, where the dependencies between

subsequent measurements were accounted for. This

offers a more sophisticated approach compared to

calculation of the difference between a predicted

exposure revealed from a regression equation minus

the observed exposure and an evaluation of the

residual values, as proposed by O’Brien et al.

(1989). Our simulations demonstrated that the auto-

correlation in time series data results in an overesti-

mation of the statistical significance of the mean

difference when using a standard t-test. To account for

the autocorrelation in the time series data, we propose

a stepwise approach for statistically analyzing time

series nano exposure measurement data using an

ARIMA model. As was shown in the empirical

examples, these models can be used to identify the

effect of a specific activity on concentration levels, or

to compare the concentration level and/or pattern of

multiple (repeated) experiments.

Although often applied to time series problems,

ARIMA models are not the only methods for analyz-

ing time series data. In signal processing and analysis,

often modeling is done within the frequency domain

instead of in the time domain. Also, more advanced

dynamic models exist, that allow model parameters to

vary over time (West and Harrison 1997, Prado and

West 2010). These models are more flexible in

describing, for instance, non-stationary series.

Sample size influences the accuracy of estimation.

In principle, for a model with number of parameters m,

at least m ? 1 samples are required for estimation

(Hyndman and Kostenko 2007), however this will

generally be too small a sample size for a reasonable

accuracy of estimation. It is difficult to give simple

guidelines for sample size, since these will depend on

both model complexity and the amount of random

variation in the data (the error term). Nevertheless,

based on a simulation study we performed (not

reported here), we recommend a sample size of at

least 40 for proper estimation of an AR(2) regression

model. In our real data examples, sample sizes were

large ([100) and therefore sample size was not of

concern. The aim of the study should also be

considered. When interest is in testing for a specific

Fig. 6 Residual plot and

ACF of the time series

(Example 3) after a first-

order differencing step

Table 3 Estimated model parameters for the AR(2)-regres-

sion model for Example 3

Parameter CCF Estimate SD P value

Difference series 1–2 0.76 -1336.0 1218.0 0.76

Difference series 1–3 0.66 10278.0 1722.5 \0.01

Difference series 2–3 0.69
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activity effect, the total measurement time should be

long enough for the process to reach a new steady state

after an induced change.

In time series data, the response time of the real-

time measurement instrument directly influences the

properties of the series, where shorter response times

lead to greater sample sizes and higher autocorrela-

tions between samples. Typically, this results in a

greater overestimation of the statistical significance

when using a standard t-test for testing mean differ-

ences. By taking into account the autocorrelation in

the data by using an ARIMA model, this overestima-

tion can be overcome. Also, it is important to know if

the output of the measurement instrument is the raw

data, or that a transformation step has been performed.

For instance, when the instrument averages over

measurements, this reduces the observed variance in

the data.

The proposed use of ARIMA models for analysis of

real-time nano exposure measurements has the draw-

back of requiring more statistical experience from the

researcher. However, these models are implemented

in most standard statistical software packages. Iden-

tifying the appropriate order for an ARIMA(p,d,q)

model for the observed data may be a difficult task, but

for instance the forecast-package for use in the free

R-statistical environment provides the opportunity of

automated model selection. What cannot be done

automatically, however, is a graphical evaluation of

the collected data by the researcher. Making a time

series plot of the data should always be the first step in

an analysis, since it reveals trends and peaks in the

data. The observed pattern should make sense to the

researcher before proceeding with fitting any model or

making inferences. To facilitate the statistical analysis

of nano exposure real-time measurement results by

using ARIMA models, we proposed a stepwise

approach to assist researchers in applying these types

of models on time series data. Currently, the authors

are working on a practical guideline for analyzing real-

time exposure measurements that will be made freely

available.

In exposure assessment, interest is often in sce-

nario-wide assessments where differences between

companies and workers are studied. It is possible to

extend ARIMA models with a random-effects struc-

ture to specify between-company and between-worker

variance components. This is something we want to

explore in the near future. Finally, the applications in

this article all relate to task based measurements.

However, the proposed methodology can equally well

be applied to shift-based measurements.
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