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Abstract Diluted magnetic semiconductor (DMS)

nanoparticles of Sn1-xErxO2 (x = 0.0, 0.02, 0.04, and

0.1) were prepared by sol–gel method. The X-ray

diffraction patterns showed SnO2 rutile structure for

all samples with no impurity peaks. The decrease in

crystallite size with Er concentration was confirmed

from TEM measurements (from 12 to 4 nm). The

UV–Visible absorption spectra of Er-doped SnO2

nanoparticles showed blue shift in band gap com-

pared to undoped SnO2. The electron spin resonance

analysis of Er-doped SnO2 nanoparticles indicate

Er3? in a rutile lattice and also decrease in intensity

with Er concentration above x = 0.02. Temperature-

dependent magnetization studies and the inverse

susceptibility curves indicated increased antiferro-

magnetic interaction with Er concentration.

Keywords DMS � Nanoparticles � SnO2:Er � ESR �
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Introduction

Diluted magnetic semiconductors (DMS) (Ohno

1998) produced by doping transition metal or rare

earth metal ions into non-magnetic semiconductors

have been of great interest to realize spintronics

devices such as spin LED (Fiederling et al. 1999,

p 787), spin field effect transistor (Datta and Das

1990), etc., in the near future. Some authors report

ferromagnetic behavior at room temperature in pure

TiO2, HfO2, and ZnO nanoparticles (Coey et al. 2005;

Hong et al. 2006; Dietl et al. 2000) due to defects and

or oxygen vacancies, hence it is crucial to differentiate

the source of magnetism intrinsic either from the

dopant or from impurity phases. Lee et al. (2003)

reported magnetization of Fe-doped TiO2 samples to

decrease with Fe composition. Apart from oxides,

transition metal doped semiconductor systems such as

(GaMn)As (Ohno et al. 1996), (GaMn)N (Reed et al.

2001), (InMn)As (Ohno et al. 1992), and Cr-doped
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CuZnSe2 (Paul Joseph and Venkateswaran 2010)

DMS also exhibit ferromagnetism. Recently, a wide

variety of magnetic behavior was observed in SnO2

doped with V, Cr, Mn, Fe, Co, and Ni (Hong and

Sakai 2005; Fitzgerald et al. 2004; Wang et al. 2006;

Hong et al. 2005; Ogale et al. 2003; Coey et al. 2004).

Tin dioxide is an n-type wide band gap semicon-

ductor that has variety of applications such as solid-

state gas sensors, surge arresters, transparent conduc-

tors and oxidation catalysts (Fukano et al. 2005; Paul

Joseph et al. 2009; Korotcenkov 2005). ‘Er’ has been

doped into SnO2 and studied mainly for its optical

properties (Brovelli et al. 2006; Wu and Coffer 2007;

Morais and Luis Scalvi 2007) and a very few from

DMS point of view (Mohan Kant et al. 2005). SnO2-

based powders are obtained by means of a variety of

synthesis techniques including the mixed oxides

route, co-precipitation and sol–gel methods (Wang

et al. 1994; Tarey and Raju 1985; Minami et al. 1988).

In this study, we prepared Er3?doped SnO2 nanopar-

ticles by sol–gel technique, a method employed quite

frequently to synthesize nanoparticles because of its

low cost and good stoichiometric control. The struc-

tural, optical, morphological, and magnetic properties

of the prepared nanoparticles are investigated.

Experimental details

Synthesis of Er-doped SnO2 nanoparticles

Undoped and Er-doped SnO2 DMS nanoparticles

were prepared by a sol–gel technique. To achieve the

required composition of Sn1-xErxO2 (x = 0.0, 0.02,

0.04, and 0.1), appropriate amount of tin chloride

(SnCl4�5H2O) and erbium chloride (ErCl3�6H2O) was

dissolved in 75 mL of distilled water at 80 �C along

with 6 mL of polyglycol and citric acid (to attain

pH = 1.5) was continually stirred for 10 min until a

sol is formed. Ammonia solution (NH3�H2O (28%))

was added drop wise to the above mixture until

pH = 8. The formed hydroxide product was stirred

for 3 h to form a gel, and finally dried at 120 �C/12 h

and calcined at 400 �C/2 h in air.

Measurements

The X-ray diffraction (XRD) patterns were obtained

using X’PERT PRO X-ray diffractometer with

CuKa = 1.5406 Å radiation. Transmission Electron

Micrographs (TEM) were recorded in (JEOL-TEM

2010) with an accelerating voltage of 200 kV. The

optical absorption measurements were performed in a

JASCO-V-670 spectrophotometer. Electron spin res-

onance (ESR) spectra of powder samples were

recorded at room temperature using X-Band JEOL,

JES PX 2300 spectrometer in the frequency range of

8.8–9.6 GHz. The magnetic measurements were

carried out using a superconducting quantum inter-

ference device (SQUID, Quantum Design MPMS-

XL7).

Results and discussion

The XRD patterns of Sn1-xErxO2 (with x = 0.0, 0.02,

0.04, and 0.1) DMS nanoparticles (Fig. 1) reveal that

all the samples have a rutile-type cassiterite (tetrag-

onal) phase of SnO2, and the doping does not change

the tetragonal structure (JCPDS # 41-1445) of SnO2.

Furthermore, we could not find any diffraction peak

corresponding to any impurity phase within the limit

of instrumental sensitivity. The peak positions do not

show any measurable change, while the intensities of

the peaks increase with increasing Er content. The

diffraction peaks of undoped SnO2 are broadened and

the average crystallite size was estimated to be

16.1 nm. As Er content increases, the XRD peaks

appear to be sharper with decreased full width at half

Fig. 1 XRD patterns of Sn1-xErxO2 (x = 0.0, 0.02, 0.04, and

0.1) nanoparticles

4624 J Nanopart Res (2011) 13:4623–4630

123



the maximum (FWHM), indicating possible increase

in crystallite size. The average crystallite size of the

Er-doped samples was found to be in the range

16–19 nm using the Scherrer equation (Table 1). The

TEM measurements were performed to confirm the

nanocrystalline nature and to study the morphology

of the particles. Typical TEM micrograph of Sn1-x

ErxO2 (x = 0.02) sample (Fig. 2) shows well isolated

and nearly spherical shaped crystallites. The distri-

bution plot fitted with a Gaussian profile (Inset of

Fig. 2) shows narrow distribution in size with an

average crystallite size of 12 nm. The TEM micro-

graph and SAED pattern of sample with x = 0.04

also show well isolated nanoparticles (Fig. 3). The

high resolution TEM image of sample with x = 0.04

shows highly crystallized spherical and few elongated

particles with clear lattice fringes and with almost no

grain boundaries (Fig. 4). The calculated d spacing

value of 1.18 Å for the lengthy elongated rod

correspond to the (400) plane (JCPDS # 41-1445).

The elongated rod was found to have high aspect

ratio of 5.33. The estimated average crystallite size

from size distribution plot (Inset of Fig. 4) is 4 nm.

The average crystallite size estimated from XRD and

TEM have contradicting trend. In this case, due to the

method of preparation and subsequent annealing, the

particles are well crystallized and hence the FWHM

value decreases indicating increasing crystallite size

with Er concentration. However, the direct observa-

tion by TEM and analysis of the data confirms

decrease in size with Er concentration.

The optical properties of semiconductor nanopar-

ticles exhibiting interesting behavior have been

studied extensively in recent years. Optical absorp-

tion spectra of Sn1-xErxO2 (x = 0.0, 0.02, 0.04, and

0.1) nanoparticles shown in Fig. 5 indicate absorption

edge to shift to shorter wavelengths implying a blue

shift in band gap with respect to bulk SnO2 (3.6 eV at

300 K). Similar blue shift in band gap has been

Table 1 Average crystallite size, band gap and g values of

Sn1-xErxO2 (x = 0.0, 0.02, 0.04, and 0.1) nanoparticles

Composition

(x)

Average crystallite

size from XRD (nm)

Band

gap

(eV)

g values

from ESR

0.0 16.1 3.73 –

0.02 16.8 3.79 2.00148

0.04 17.3 3.81 2.00145

0.1 18.6 3.91 2.00145

Fig. 2 TEM micrograph of Sn1-xErxO2 (x = 0.02) nanopar-

ticles with the inset showing the size distribution plot

Fig. 3 TEM micrograph of Sn1-xErxO2 (x = 0.04) sample

showing smaller sized nanoparticles. Inset is the SAED pattern

Fig. 4 High resolution TEM micrograph of Sn1-xErxO2

(x = 0.04) nanoparticles with the inset showing the size

distribution plot
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observed in the case of pure SnO2 due to size effect

by Das et al. (2006). This blue shift in band gap is due

to size effect, and observed when the particle size of a

semiconductor becomes comparable to the Bohr

radius of the exciton leading to variations in the

properties of the material due to quantum confine-

ment. The increase in band gap value with decreasing

crystallite size induced by Er content is listed in

Table 1.

The ESR technique has been employed to study

rare earth ions in a variety of host lattices (Abragam

and Bleany 1970) in which the study of ground state

of the rare earth impurity reveals the symmetry of the

occupied state. The ESR spectra of Er3? in SnO2

have been recorded at room temperature in the field

range 320–350 mT, at 100 kHz field modulation to

obtain the first derivative spectrum. No resonance

signal was detected in the ESR spectra of undoped

SnO2 nanoparticles. Figure 6 shows the single reso-

nance peak observed for Sn1-xErxO2 (x = 0.0, 0.02,

0.04, and 0.1) samples confirming Er3? ion substi-

tuting the Sn4? sites. This resonance signal could be

attributed to Er3? ions in SnO2 nanoparticles due to

ground state of free Er3? ion in 4f11 electronic

configuration (Yang et al. 2009). The g values of Er-

doped samples are listed in Table 1. Ting et al.

(2001) reported g value of 2.0 for a relatively small

peak of Er3? doped TiO2. The intensity of ESR signal

is initially high for x = 0.02 and then it decreases

with increasing Er content which may be because of

the possibility of antiferromagnetic interactions

induced in the sample due to higher Er concentration.

The temperature dependent (M(T)) (at 500 Oe)

and field dependent (M(H)) (at 300 K) magnetization

measurement of undoped nanocrystalline SnO2 sam-

ple exhibits diamagnetic nature (Fig. 7) confirming

that there is no positive susceptibility contribution

from defects and oxygen vacancies of SnO2 which

has been cautioned to be a universal feature of non-

magnetic oxide nanoparticles (Sundaresan et al.

2006). The magnetic hysteresis loops measured at 5

and 300 K of Sn1-xErxO2 with x = 0.04 and 0.1

nanoparticles are shown in Figs. 8 and 9, respec-

tively. The magnetization at 5 K, though very small

due to the doped Er3? ions, it is comparatively higher

Fig. 5 Optical absorption spectra of Sn1-xErxO2 (x = 0.0,

0.02, 0.04, and 0.1) nanoparticles

Fig. 6 The ESR spectra of Sn1-xErxO2 (x = 0.0, 0.02, 0.04,

and 0.1) samples

Fig. 7 The diamagnetic behavior of nanocrystalline SnO2

sample as a function of temperature. Inset shows the field

dependent diamagnetic signal at 300 K

4626 J Nanopart Res (2011) 13:4623–4630

123



than that at 300 K. It can be seen that hysteresis with

a small coercivity (34 Oe) is observed at room

temperature for x = 0.04 (bottom inset of Fig. 8)

which is not the case at 5 K (top inset of Fig. 8)

indicating loss of the observed weak magnetic

behavior at low temperatures. For x = 0.1, we do

not observe any hysteresis behavior both at 5 and

300 K (Top and bottom inset of Fig. 9) indicating

loss of weak ferromagnetic behavior with increasing

Er concentration. This behavior can be justified

considering antiferromagnetic interactions to increase

with Er content thereby decreasing the observed weak

ferromagnetic interactions. Mohan Kant et al. (2005)

reported intrinsic ferromagnetism in rare earth (Gd,

Dy, and Er) doped SnO2 thin films by pulsed laser

deposition. However, antiferromagnetic behavior has

also been reported in the case of Co-doped ZnO and

Fe-doped ZnO, TiO2, and SnO2 (Bouloudenine et al.

2005; Soumahoro et al. 2010; Lee et al. 2003;

Sambasivam et al. 2011). Lawes et al. (2005)

reported antiferromagnetic interactions in Mn- and

Co-doped ZnO to depend on concentration of the

magnetic dopant.

The molar susceptibility (v(T)) plot from the

temperature-dependent magnetization (M(T)) of the

Sn1-xErxO2 (x = 0.04 and 0.1) nanoparticles under

field-cooled (FC) (at 500 Oe) mode are shown in

Fig. 10. Significant decrease in the positive suscep-

tibility is observed with Er content increasing from

0.04 to 0.1 in the temperature range 300–50 K, below

which the susceptibility merge and start increasing.

The M(T) curves of x = 0.04 and 0.1 show a steep

rise in magnetization value below 50 K without any

distinct magnetic phase transition. There is no

bifurcation observed between the ZFC–FC curves

of x = 0.04 and 0.1 (Inset of Fig. 10), thereby

indicating absence of intrinsic ferromagnetic behav-

ior in the samples.

The v(T) of Sn1-xErxO2 (x = 0.04 and 0.1)

(Figs. 11 and 12) are fitted to Curie–Weiss law

v ¼ C

T þ h
ð1Þ

where C is the Curie constant, h is the Curie–Weiss

temperature, and T is the temperature.

Fig. 8 The M(H) curves of Sn1-xErxO2 (x = 0.04) nanopar-

ticles at 5 and 300 K. Insets show the hysteresis behavior at

lower fields

Fig. 9 The M(H) curves of Sn1-xErxO2 (x = 0.1) nanoparti-

cles at 5 and 300 K. Insets show the paramagnetic behavior

without any hysteresis behavior at lower fields

Fig. 10 The molar susceptibility curves calculated from field-

cooled (at 500 Oe) curves of Sn1-xErxO2 (x = 0.04 and 0.1)

nanoparticles. The inset shows the ZFC–FC behavior of the

samples
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The inverse susceptibility (1/v(T)) of x = 0.04

sample (Inset of Fig. 11) has a nearly flat region

starting from 300 to around 175 K, below which

there is a distinct curvature up to 5 K. In order to

obtain h, which reflects the strength and nature of the

magnetic interaction, we have extrapolated the

straight line fitting of the linear region at low

temperatures of 1/v(T). The intercept of the extrap-

olated line yielded a negative value of -5 K

indicating presence of antiferromagnetic interactions.

For x = 0.1, the behavior of v(T) (Fig. 12) is similar

to that of x = 0.04, however, the 1/v(T) of x = 0.1

(Inset of Fig. 12) is distinctly different with less

curvature and more or less similar to a straight line.

The linear fit intercept at -12 K indicates increased

antiferromagnetic interactions on increasing Er con-

tent to x = 0.1. The value of h being negative for Er-

doped SnO2 samples, -5 K for x = 0.04 and -12 K

for x = 0.1 confirms the presence of antiferromag-

netic interactions.

According to RKKY theory (Ruderman and Kittel

1954; Yosida 1957), the observed magnetic proper-

ties are due to the exchange interaction between local

spin-polarized electrons (such as the electrons of

Er3? ions) and conduction electrons. The conduction

electrons are regarded as a media to interact among

the Er3? ions. This interaction leads to the spin

polarization of conduction electrons. Subsequently,

the spin-polarized conduction electrons perform an

exchange interaction with local spin-polarized elec-

trons of other Er3? ions. However, the exchange

interaction is short ranged and oscillating nature

based on the concentration of Er and its nearest

neighbor distance. This may be the plausible expla-

nation of the observed antiferromagnetic interactions.

Conclusion

Sn1-xErxO2 (x = 0.0, 0.02, 0.04, and 0.1) DMS

nanoparticles prepared by sol–gel technique had

rutile structure without any impurities as confirmed

by XRD and TEM measurements. High resolution

TEM results indicate the nanoparticles to be highly

crystalline and the crystallite size to decrease with

increasing Er content. The optical absorption spectra

showed blue shift in band gap with increasing Er

content in SnO2 nanoparticles due to size effect. ESR

analysis shows a single resonance peak due to Er in

3? state in SnO2 and also decrease in intensity above

x = 0.02 Er content. The inverse susceptibility data

from the field-cooled and zero-field-cooled magneti-

zation measurements reveal that Er-doped SnO2

nanoparticles tend toward antiferromagnetic behavior

with Er content.
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Fig. 11 The molar susceptibility curves calculated from field-

cooled (at 500 Oe) curves of Sn1-xErxO2 (x = 0.04) nanopar-

ticles. The inset shows the variation of inverse susceptibility

with temperature

Fig. 12 The molar susceptibility curves calculated from field-

cooled (at 500 Oe) curves of Sn1-xErxO2 (x = 0.1) nanopar-

ticles. The inset shows the variation of inverse susceptibility

with temperature
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