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Abstract The size dependency of the cohesive

energy of nanocrystals is obtained in terms of their

averaged structural and energetic properties, which

are in direct proportion with their cohesive energies.

The significance of the effect of the geometrical

shape of nanoparticles on their thermal stability has

been discussed. The model has been found to have

good prediction for the case of Cu and Al nanopar-

ticles, with sizes in the ranges of 1–22 nm and 2–

22 nm, respectively. Defining a new parameter,

named as the surface-to-volume energy-contribution

ratio, the relative thermal stabilities of different

nanoclusters and their different surface-crystalline

faces are discussed and compared to the molecular

dynamic (MD) simulation results of copper nanocl-

usters. Finally, based on the size dependency of the

cohesive energy, a formula for the size-dependent

diffusion coefficient has been presented which

includes the structural and energetic effects. Using

this formula, the faster-than-expected interdiffusion/

alloying of Au(core)–Ag(shell) nanoparticles with the

core–shell structure, the Au-core diameter of 20 nm

and the Ag-shell thickness of 2.91 nm, has been

discussed and the calculated diffusion coefficient has

been found to be consistent with its corresponding

experimental value.

Keywords Nanocrystals � Clusters �
Cohesive energy � Diffusion � Average coordination

number � Modeling and simulation

Introduction

The diversity of the increasingly growing applica-

tions of nanocrystals in the rapidly changing world of

nanotechnology is determined by their unique prop-

erties that are essentially different from those of bulk

materials. These substantially different properties of

nanoscaled matter from the bulk, which are structure-

, shape-, and size-dependent, are heavily influenced

by the heavily concentrated low-coordinated atoms at

the surface of the nanocrystal. For example, the

increased activity of supported nanocrystals can be

attributed to the presence of a high portion of low-

coordinated atoms in nanocrystals (Lopez et al.

2004). A change from bulk to molecular properties

can occur when the coordination number of atoms

decreases (DiCenzo et al. 1988), e.g., the bond nature

evolution, resulting from the reduced coordination

number of atoms, leads to a conductor–insulator

transition (Rao et al. 2002). Also it has been stated

that, due to the reduced coordination number of

atoms at the surface of a metal, the preferred bond
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length within the plane of the metal surface is

generally shorter than the bond length in the bulk

(Needs and Mansfield 1989).

Therefore, in order to fully understand the way in

which these properties changes with size, we need to

gain knowledge about the volume-, and particularly,

the surface-structure of nanocrystals. The average

coordination number of nanocrystals is a parameter

which can be used to averagely describe their

structures. One of most important properties, depen-

dent upon the surface-structure of nanocrystals, is

their cohesive energy being an important coupling

parameter for other physical–chemical properties,

such as the Debye temperature, the diffusion activa-

tion energy, and the vacancy formation energy, etc

(Yang and Li 2007). It has been recently proved that

the cohesive energy of a nanocrystal can be well

coupled with its average coordination number, which

is only an averaged structural parameter (Attarian

Shandiz et al. 2008; Mirjalili and Vahdati-Khaki

2008; Attarian Shandiz 2008). In this article, taking

into account of the averaged effects of the first-

nearest-neighbor (1NN), second-nearest-neighbor

(2NN), and third-nearest-neighbor (3NN) interac-

tions, we present a model for the cohesive energy of

nanocrystals in terms of their energetic and structural

features. Then, considering some simplifying

assumptions, we develop a symmetrical proportion

between the cohesive energy of elemental nanocrys-

tals and their averaged 1-, 2-, and 3NN coordination

numbers and energetic properties. Thereupon, with

the use of the assumption that the energetic properties

of the nanocrystal surface are the same as that of its

volume and also by neglecting any likely size

dependency of the atomic binding energy of nano-

crystals, we obtain the recently developed, simple

direct proportion between the cohesive energy and

the 1NN-average coordination number of nanocrys-

tals, presented in (Attarian Shandiz et al. 2008;

Mirjalili and Vahdati-Khaki 2008; Attarian Shandiz

2008). This simple proportion, which has been based

only upon the structural properties of nanocrystals, is

the simplest approximation of the present model.

Based on the proportionality between the melting

point and cohesive energy (Yang and Li 2007), the

present model for cohesive energy is applied to the

melting point of elemental nanocrystals, and the

effectiveness of its simplest form, i.e. its simplest

approximation presented by Attarian Shandiz et al.

(2008), Mirjalili and Vahdati-Khaki (2008), and

Attarian Shandiz (2008), is discussed for some

elemental nanoparticles. It has been found that this

approximation can only effectively predict the melt-

ing point variation of some restricted nanocrystals

such as Cu and Al nanoparticles. It has also been seen

that the molecular dynamic (MD) simulation results

of the melting point of Cu nanoclusters (Delogu

2005; Wang et al. 2003) and the experimental data of

Al nanoparticles (Lai et al. 1998; Sun and Simon

2007) are both higher than the predictions of some

theoretical models, such as the liquid-drop model

(LDM; Nanda et al. 2002), the model of the reference

(Safaei et al. 2008), the homogenous melting model

(HMM; Buffat and Borel 1976; Hanszen 1960;

Pawlow 1909), and the model developed by Jiang

et al. (2000, 2003). This discrepancy between the

experiment and the theories is attributed to the

significance of the effect of the structure and shape

on the melting point of Cu and Al nanoparticles. Also

with the use of the definition of a new parameter,

named as the surface-to-volume energy-contribution

ratio, the relative thermal stabilities of copper

nanoclusters and different-crystalline faces on their

surfaces are discussed, and the results are found to be

consistent with the recently published findings of

Daff et al. (2009). Also the higher prediction of the

simple model represented in the references (Attarian

Shandiz et al. 2008; Mirjalili and Vahdati-Khaki

2008; Attarian Shandiz 2008) for some elemental

nanoparticles, such as Au, has been attributed to the

neglected size dependency of the bonding energy of

the surface atoms of these nanoparticles.

As a next step, we introduce a new lattice-type-

sensitive formula for the size-dependent diffusion

coefficient of atoms into nanocrystals, taking into

account the effect of the volume (lattice) and surface

structure of nanocrystals. This formula has been

applied to the case of the mixing of Au(core)–Ag(shell)

nanoparticles to calculate the diffusion coefficient

and time scale of their interdiffusion/alloying, which

are found to be in good agreement with the

corresponding experimental values reported by

Hodak et al. (2000). It has finally been suggested

that the faster-than-expected interdiffusion/alloying

of Au(core)–Ag(shell) nanoparticles occurs in the solid

phase, and hence, it may be due to some structural

effects, such as the depression of the average

coordination number of nanoparticles, and is not
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due to the surface melting of nanoparticles as has

been stated by Hodak et al. (2000).

The model

The cohesive energy of nanocrystals

In Appendix 1, considering the effects of the first-

nearest-neighbor (1NN) and the second-nearest-

neighbor (2NN) atomic interactions, defining some

structural averaged quantities, and neglecting any

difference between the bond energies of volume

atoms of nanocrystals and also between the bond

energies of their surface atoms located at surface

faces, surface edges and surface corners, we have

found the below formula for the cohesive energy of

nanocrystals (Ecn) as follows:

Ecn

Ecb

¼
�EV

�EVb

1� 1�
�ES

�EV

� �
nS

nt

� �
; C ¼

�ES

�EV

: ð1Þ

Equation 1 is a general relation for the size-depen-

dent cohesive energy of all types of crystalline nanos-

olids (nanocrystals), where C is a new parameter, named

as the surface-to-volume energy-contribution ratio of

the nanocrystal, which is defined here for the first time in

this equation. �EV and �ES are, respectively, the average

contributions of each volume and surface atom of the

nanocrystal to its total cohesive energy, defined in

Appendix 1. For all other definitions in this equation

and in the coming equations, see Appendices 1–3. If we

also consider the contribution of the third-nearest-

neighbor (3NN) atoms to the cohesive energy of the

nanocrystal, then we can obtain again Eq. 1 with C ¼
ð �ZSeS þ �Z 0Se

0
S þ �Z 00Se00SÞ=ð �ZVeV þ �Z 0Ve0V þ �Z 00Ve00VÞ; where

�Z 00 and e00 represent the corresponding parameters for

the 3NN interactions, defined similarly as those of the

1- and 2NN atomic interactions in Appendix 1.

The cohesive energy and average coordination

number of nanocrystals

Considering only the effect of the 1NN atoms, it has

recently been found that the 1NN-based average

coordination number of nanocrystals �Znð Þ is in direct

proportion with their cohesive energy (Ecn), i.e.

Ecn=Ecb ¼ �Zn= �Zb (Attarian Shandiz et al. 2008;

Mirjalili and Vahdati-Khaki 2008; Attarian Shandiz

2008) where �Zb is the average coordination number

of the bulk crystal according to the 1NN definition.

Here, we show that this proportion is an approxima-

tion of the present model. Considering the effects of

the 1NN and 2NN interactions, we have obtained the

following relation in Appendix 2:

Ecn

Ecb

¼ eV
�Zn

eVb
�Zb þ e0Vb

�Z 0b
1þ

�ZS

�Zn

eS

eV

� 1

� �
nS

nt

� �

þ e0V �Z 0n
eVb

�Zb þ e0Vb
�Z 0b

1þ
�Z 0S
�Z 0n

e0S
e0V
� 1

� �
nS

nt

� �
: ð2aÞ

Equation 2a shows a general relation between the

cohesive energy and the average coordination number

of nanocrystals, taking into account the effects of

both of the averaged structural and energetic prop-

erties of their surface and volume. With the use of the

assumptions eS & eV and e0S � e0V; meaning that there

is no significant difference between the bond energies

of the surface and the volume atoms, we can write the

following first-order approximation of Eq. 2a:

Ecn

Ecb

¼ eV
�Zn þ e0V �Z 0n

eVb
�Zb þ e0Vb

�Z 0b
; eS � eV and e0S � e0V:

ð2bÞ
Interestingly enough, there is a well-formulated

symmetry in Eq. 2b. In addition to the effect of the

averaged structural properties of the nanocrystal,

Eq. 2b represents the effect of the energetic proper-

ties of volume atoms, eV and e0V; upon its cohesive

energy. The ratios of eV/eVb and e0V=e
0
Vb may have

significant effects on the cohesive energy of nano-

sized materials, due to the possible size dependency

of the binding energy (Chacko et al. 2005). Taking

into account the 3NN atoms, also leads to the similar

equation as follows:

Ecn

Ecb

¼ eV
�Zn þ e0V �Z 0n þ e00V �Z 00n

eVb
�Zb þ e0Vb

�Z 0b þ e00Vb
�Z 00b
: ð2cÞ

Now, neglecting the effect of the interactions

between the 2NN and the 3NN atoms in Eq. 2c, i.e.

e0V=eV ¼ e00V=eV � 0 and e0Vb=eVb ¼ e00Vb=eVb � 0; we

can find the second-order approximation of Eq. 2a as

follows:

Tmn

Tmb

¼ Ecn

Ecb

¼ eV
�Zn

eVb
�Zb

; ð2dÞ

where Tmn and Tmb are the melting points of nanocrystal

and its bulk material, respectively. More importantly,

as it can be seen from Eq. 2d, both of the averaged

structural properties of nanocrystals and the energetic
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properties of their volume atoms directly influence their

cohesive energy and melting point. The importance of

the effect of the volume energetic property (eV) in

Eq. 2d can be well understood when we consider the

proportionality of Ecn/Ecb = Ean/Eab = Evn/Evb, pro-

posed by Yang and Li (2007), where Ean and Evn are the

diffusion activation energy and the vacancy formation

energy of nanocrystals, respectively, and Eab and Evb

are the corresponding parameters for their bulk mate-

rial. It is obvious that the diffusion activation and

vacancy formation energies are dependent upon the

strength of the atomic interactions (i.e. eV and e0V) as

well as the number of neighbors of atoms (i.e. �ZV; �ZS,
�Z 0V, �Z 0S, or averagely �Zn and �Z 0n). Considering Eq. 2d

and the above proportionality, it can be easily under-

stood that the lower the binding energy and the average

coordination number, the lower the diffusion activa-

tion and the vacancy formation energies.

The value of eV/eVb may have considerable effect

for very small nanoparticles where the quantum-size

effects may play an important role. However here, if

we neglect any possible size dependency of eV and

assume eV/eVb = 1, we can obtain the third-order

approximation of Eq. 2a as follows:

Tmn

Tmb

¼ Ecn

Ecb

¼
�Zn

�Zb

: ð2eÞ

Equation 2e is the simplest relation between the

cohesive energy (or melting point) of nanocrystals

and their 1NN-based average coordination number,

which has recently been derived in the references

(Attarian Shandiz et al. 2008; Mirjalili and Vahdati-

Khaki 2008; Attarian Shandiz 2008). The assump-

tions of eS/eV & 1 and eV/eVb & 1, which have been

used to obtain Eq. 2e, may lead to some deviation in

it, especially for very small nanocrystal sizes where

the binding energies and bond lengths may be size-

dependent and may need to consider the electronic

structure effects (Chacko et al. 2005). In order to

evaluate its effect in Eq. 2d, we need to know about

the size dependency of eS and eV.

Another approximation of Eq. 2c can be obtained

through consideration of the effects of the 1-, 2-, and

3NN atoms as well as assuming eV � e0V � e00V; eVb �
e0Vb � e00Vb; and eV/eVb = 1. Therefore, we can write

the other second-order approximation of Eq. 2a as:

Tmn

Tmb

¼ Ecn

Ecb

¼
�Zn þ �Z 0n þ �Z 00n
�Zb þ �Z 0b þ �Z 00b

: ð2fÞ

Equation 2f only shows the effect of the averaged

structural properties of the nanocrystal on its

cohesive energy and melting point in a symmetrical

format.

The names of the above-mentioned approxima-

tions of Eq. 2a have only been chosen to indicate the

numbers and the types of the required assumptions to

obtain each approximation. For example, the third-

order approximation, i.e. Eq. 2e, is obtained through

using three types of assumptions: (i) the first

assumption of equality between the surface and the

volume energetic properties; (ii) the second assump-

tion of neglecting the 2- and 3NN atomic interac-

tions; and (iii) the third assumption of neglecting any

possible size dependency of the bonding energy (eV),

i.e. assuming that eV/eVb = 1. These three types of

assumptions are related to three different character-

istics of each atom of a nanocrystal. The first

assumption is related to the point that an atom

located at the surface of the crystal is different from

that located within its volume, and so gives different

properties to the solid. The second assumption is

related to the strength and the type of atomic bonds of

a solid, which shows how long the range of interac-

tion of an atom in a solid is. The third assumption is

about the point that the atomic interactions may also

be dependent upon the crystal’s size, as well as being

dependent upon the position of the atom in the solid

(i.e. the surface or volume atoms) and/or the type of

the solid (range of interactions).

According to the proportion given in the reference

(Yang and Li 2007), other properties of nanocrystals

such as their melting point, diffusion activation

energy, vacancy formation energy, etc., similarly

follow Eqs. 2a–d. In continuation, we first discuss

about the accuracy of the prediction of Eq. 2e and the

significance of the value of eS/eV (in Eq. 2a), for

some elemental nanoparticles, e.g., Au, Cu, and Al

nanoparticles. After that we apply our model to study

diffusion and rapid alloying at the nanoscale.

Results and discussion

The significance of energetic effects on melting

point of nanoparticles

As it has been discussed, through neglecting any

likely size dependency of the atomic bonding energy
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in Eq. 2d, we can obtain Eq. 2e which has recently

been introduced in the references (Attarian Shandiz

et al. 2008; Mirjalili and Vahdati-Khaki 2008;

Attarian Shandiz 2008). Equation 2e simply demon-

strates only the effect of the nanocrystal’s geometry

on its cohesive energy and, consequently, on its

melting point (or its other physical properties). Here,

we use Eq. 2e for the prediction of melting point of

nanoparticles (Tmp). The size-dependent geometrical

characteristics of nanoclusters and especially their

1NN-average coordination number (denoted by �Zclu)

have been presented by Montejano-Carrizales et al.

(1997) as a function of the cluster order (m—the

number of crusts forming the cluster). Assuming that

relatively large nanoparticles (with diameters larger

than 6 nm) can be considered as spheres (Wautelet

1998) and approximately equivalent to the nanoclus-

ters described by Montejano-Carrizales et al. (1997),

one can use their obtained 1NN-average coordination

number ( �Zclu) as an approximation for the nanopar-

ticles average coordination number in Eq. 2e. There-

fore, Mirjalili and Vahdati-Khaki (2008) have

recently used Eq. 2e with the size-dependent func-

tions of �Zclu; reported in the reference (Montejano-

Carrizales et al. 1997), to predict the melting point

variations of some simple-cubic (SC), body-centered

cubic (BCC), and face-centered cubic (FCC) nano-

particles. If we plot Eq. 2e by assuming �Zn � �Zclu; i.e.

Tmp=Tmb � �Zclu= �Zb; and using �Zclu functions of each

structure from the reference (Montejano-Carrizales

et al. 1997), then we can find that the predictions of

Eq. 2e is generally higher than the experimental data

of the melting points of Au, Pb, In, Sn, and Bi

nanoparticles, especially for small nanoparticles. This

can also be understood if we see the graphs of Au, Pb,

In, Sn, and Bi nanoparticles, plotted by Mirjalili and

Vahdati-Khaki (2008). For brevity, we do not plot

these graphs here, which are found in Mirjalili and

Vahdati-Khaki (2008). This result motivates us to

ask, for which elements and shapes, Eq. 2e (using
�Zn � �Zclu) is applicable. The reason for this discrep-

ancy between the prediction of Eq. 2e and the

experimental data for these nanoparticles is not

obvious, but there are some likely tentative explana-

tions. It is possible that the shapes of Au, Pb, In, Sn,

and Bi nanoparticles at their corresponding experi-

mental conditions could not be completely consid-

ered as the nanoclusters described by Montejano-

Carrizales et al. (1997), and therefore �Zn � �Zclu may

not be actually accurate. The other possible explana-

tion is that, for these particles eV in Eq. 2d may be

size dependent, especially for small particles, and

therefore assuming eV/eVb & 1 in Eq. 2e may cause

this deviation from the experimental data. Also it is

worthy to note that the size dependency of the ratio of

eS/eV in Eq. 2a may have significant effect on the

cohesive energy of nanocrystals; therefore, the

assumption of eS/eV & 1 in Eq. 2a, may be another

possible reason for the deviation of Eq. 2e from the

experimental data. We shall discuss about the case of

Au nanoparticles.

Au nanoparticles

Here, we discuss about the case of Au nanoparticles.

Solliard and Flueli (1985) investigated the effect of

the surface stress and size on the lattice parameter

of small gold particles. They found that the surface of

the gold particles was in a state of tension, and

therefore interatomic distances at the surface was

greater than the distances characterizing an infinite

(111) plane of gold at equilibrium; i.e. a 5% dilatation

had occurred in the surface faces of the icosahedron

gold clusters (Solliard and Flueli 1985). This means

that the bond length of the surface atoms of small

gold particles is longer than that of the surface of the

bulk gold. It has also been found that the lattice

constant of gold particles decreases with decreasing

their size (Solliard and Flueli 1985); meaning that, in

general, the average interatomic spacing in the gold

particles decreases with decreasing their size (Sol-

liard and Flueli 1985). This finding also means that

on average the bond length of the gold particles is

shorter than the average bond length of the bulk gold.

These findings implicitly mean that the bond length

of the surface atoms of gold nanoparticles is longer

than that of their volume atoms; meaning that the

surface bonds are weaker than the volume bonds of

the gold particles; i.e. eS/eV \ 1.

We have plotted Eqs. 2a and 2e for gold nanopar-

ticles in Fig. 1, compared with the experimental data

of the reference (Buffat and Borel 1976). The lattice

structure of gold is FCC, and hence in order to plot

Eq. 2e, we assumed that FCC nanoparticles are

approximately equivalent to the cubo-octahedral

(CO) and/or the icosahedral (ICO) clusters described

by Montejano-Carrizales et al. (1997). The average
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coordination number of the CO �ZCO
clu

� �
and the ICO

( �ZICO
clu ) clusters have been calculated as follows

(Montejano-Carrizales et al. 1997): �ZCO
clu ¼ 24m

ð5m2 þ 3mþ 1Þ=ð10m3 þ 15m2 þ 11mþ 3Þ and �ZICO
clu ¼

6mð20m2 þ 15mþ 7Þ=ð10m3 þ 15m2 þ11mþ 3Þ: There-

fore, the melting point of FCC nanoparticles can be

obtained from Eq. 2a and 2e with the use of �Zn �
�ZCO

clu and/or �Zn � �ZICO
clu ; and �Zb ¼ 12: Using these

values and m = (D/d - 1)/2, we have plotted Eqs. 2a

and 2e in terms of the nanoparticles diameter (D).

As shown in Fig. 1, the use of ICO structure gives

higher prediction than using CO structure; therefore,

we now assume that Au nanoparticles, investigated

by Buffat and Borel (1976), are nearly CO nanocl-

usters. It can be seen from the figure that the

prediction of Eq. 2e is higher than the melting point

experimental data of gold nanoparticles. However,

plotting Eq. 2a with the value of eS/eV = 0.9, and

without considering the 2NN interactions, gives good

consistency with the melting point experimental data

of gold nanoparticles having diameters approximately

larger than 10 nm. However, for smaller particles a

larger reduction of the ratio of eS/eV is expected; and

the value of eS/eV = 0.6 is nearly suitable for this

range of sizes. Our finding, that eS/eV \ 1, is

qualitatively consistent with the finding of Solliard

and Flueli (1985) that the bond length of the surface

atoms is longer than the volume atoms; however,

Eq. 2a requires a larger decrease of the ratio of eS/eV

with decreasing gold nanoparticles size. Quantita-

tively, we can refer to the amount of the dilation (5%)

within the surface of Au (Solliard and Flueli 1985).

Considering this value, one can conclude that

aafter
S =abefore

S � 1:05 where aafter
S and abefore

S are the aver-

aged interatomic distances within the surface of Au

nanoparticles after and before their surface dilation,

respectively. Assuming that the bond energy is in

inverse proportion to the interatomic distance, we can

find eafter
S =ebefore

S � 0:95; where eafter
S and ebefore

S are the

average bond energies of surface atoms after and

before the dilation within the surface faces, respec-

tively. Here, if we assume that the bond energy of

surface atoms before dilation is approximately equal to

that of the volume atoms, then we can have: eafter
S =eV �

0:95; which is fairly in agreement with the value of

eS/eV & 0.90, used by us, for Au nanoparticles larger

than 10 nm; however, for smaller particles, we expect

a larger depression of the ratio of eS/eV.

For other elements, such as Pb, In, Sn, and Bi, the

higher prediction of Eq. 2e compared with the

experimental data (see Mirjalili and Vahdati-Khaki

2008), also indicates that the bond energy of the

surface atoms of these nanoparticles may be smaller

than that of the volume atoms, i.e. eS/eV \ 1, and

also may decrease with decreasing their size.

However, this is in direct contradiction to the results

0 2 4 6 8 10 12 14 16 18 20 22
0.2

0.4

0.6

0.8

1

D (nm)

T
m

p
/T

m
b
 (

°K
/°

K
)

Au Nanoclusters

Experimental data (Buffat and Borel 1976)
Eq. (2e) with ICO structure, in Eq. (2a): ε

S
/ε

V
=1.0

Eq. (2e) with CO structure, in Eq. (2a): ε
S
/ε

V
=1.0

Eq. (2a) with CO structure: ε
S
/ε

V
=0.90

Eq. (2a) with CO structure: ε
S
/ε

V
=0.60

Fig. 1 The dependence of

the melting point of Au

nanoparticles on their size.

Equations 2a and 2e are

compared to the

experimental data (Buffat

and Borel 1976). For bulk

Au: Tmb = 1337.3 K (Lide

2005) and its atomic radius

is r = 0.1594 nm deduced

from its atomic volume

(Nanda et al. 2002)

764 J Nanopart Res (2010) 12:759–776

123



previously obtained for the bond length of surface

atoms. In general, it has been found that, owing to

the lower coordination number of atoms, the

preferred bond length within the plane of a metal

surface is shorter than the bond length in the bulk

(Mansfield and Needs 1991; Needs and Mansfield

1989; Salomons et al. 1988). All of these investi-

gations are for a surface of a bulk crystal and the

bond length has been compared with that of the

volume of the bulk crystal. Therefore, the size

dependency of the ratio of eS/eV for nanocrystals of

these elements is still unknown. Hence, it requires

further investigation to clarify this point that, for

which elements, the surface atomic bonds are

weaker and/or stronger than the volume atomic

bonds in nanoscale.

Now, we do not have any appropriate size-

dependent function for eS/eV to evaluate its effect

on melting point of nanoparticles; we only represent

two cases of nanoparticles (Al and Cu with FCC

lattice) whose melting point variations are fully

consistent with the consideration of only geometrical

effects, i.e. with the prediction of Eq. 2e when we use
�Zn � �Zclu:

The significance of geometrical effects on melting

point of nanoparticles

Cu nanoparticles

As shown in Fig. 2, the prediction of the model of

Jiang et al. (2000, 2003), LDM (Nanda et al. 2002),

and our previous model (Safaei et al. 2008) are all

lower than the MDs results of the melting point of Cu

nanoparticles (Delogu 2005; Wang et al. 2003). Now

the reason for this deviation is not clear to us.

However, using the average coordination number of

the CO and ICO clusters, it is found that the

prediction of Eq. 2e is fully consistent with these

MD results. As shown in Fig. 2, using �Zn � �ZCO
clu

gives the better consistency with the MD results of

the references (Delogu 2005; Wang et al. 2003) than

using �Zn � �ZICO
clu : This implies that the Cu nanopar-

ticles investigated by Delogu (2005) and also by
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Fig. 2 The size-dependence of the melting point of Cu

nanoclusters: Eq. 2e is compared to the LDM (Nanda et al.

2002); Jiang et al. (2000, 2003) and the model of (Safaei et al.

2008) as well as the MD results (Delogu 2005; Wang et al.

2003). The melting point data of the reference (Delogu 2005;

denoted by circles) has been divided by the value of T simu:
mb ¼

1250 K which has been obtained by the bulk simulation of Cu

crystals by Delogu (2005). Also the data of the reference

(Wang et al. 2003; shown by triangles) has been divided by

Textra:
mb ¼ 1360 K which has been obtained through extrapolat-

ing the obtained data for the bulk Cu crystal by Wang et al.

(2003). The atomic radius of Cu is r = 0.1413 nm deduced

from its atomic volume (Nanda et al. 2002)
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Wang et al. (2003) may have had the CO structure

rather than the ICO structure. This can be verified

from the way in which Delogu built the Cu nanopar-

ticles. Considering one of the atoms in the central

region of the Cu bulk crystal as the center of a sphere

of diameter D, Delogu (2005) individuated approx-

imately spherical crystalline portions of the bulk Cu

with FCC structure. Therefore, the nanosized crys-

talline particles, investigated by Delogu (2005),

consisted of the atoms positioned within the sphere

of diameter D with the FCC arrangement. As we

know, the geometry obtained by the FCC arrange-

ment of atoms in a sphere, with an atom located at the

center of the sphere, is a CO cluster having the non-

compacted crystalline faces as well as the closest-

packed faces [(111) faces]. For more information

about the ICO and CO clusters, see Montejano-

Carrizales et al. (1997) to find that the ICO clusters

have only triangular faces (closest-packed faces) on

their surfaces and the CO clusters have both the

closest-packed and non-closest-packed faces on their

surfaces. Therefore, the Cu nanoparticles, built and

investigated by Delogu (2005), had the CO geometry,

which is fully consistent with the better prediction of

Eq. 2e using �Zn � �ZCO
clu rather than using �Zn � �ZICO

clu :

This clearly implies the importance of the effects of

the geometrical arrangement of atoms in nanoclus-

ters, and especially at their surface, upon their

melting point and thermal stability.

Al nanoparticles

Shown in Fig. 3 are the graphs of Jiang et al. model

(2000, 2003), LDM (Nanda et al. 2002), HMM

(Buffat and Borel 1976; Hanszen 1960; Pawlow

1909), and our previous model (Safaei et al. 2008) as

well as the experimental data obtained by Lai et al.

(1998) and by Sun and Simon (2007). As it can be

seen, all the theoretical models underestimate both

sets of the experimental data. Now, we conjecture the

possible reasons of this contradiction between the

experiment and the theory. The first reason coming to

mind is that the investigated Al nanoparticles were

coated by an oxide layer. However, this idea can be
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Fig. 3 The size-dependence of the melting point of Al

nanoclusters: Eq. 2e compared to the LDM (Nanda et al.

2002), the model of (Safaei et al. 2008), HMM (Buffat and

Borel 1976; Hanszen 1960; Pawlow 1909) and Jiang et al.

(2000, 2003). The experimental data are from the references

(Lai et al. 1998; Sun and Simon 2007). For Bulk Al:

Tmb = 933.47 K (Lide 2005) and its atomic radius is

r = 0.1583 nm deduced from its atomic volume (Nanda

et al. 2002)
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rejected by looking through the experiments per-

formed by Lai et al. (1998) and by Sun and Simon

(2007). Lai et al. (1998) investigated the discontin-

uous Al films, including the collection of individual

Al nanoparticles, deposited on the Si3N4 membrane.

They have reported that no oxide layer was formed

on the surface of the Al nanoparticles.

Sun and Simon (2007) examined the melting

behavior of aluminum nanoparticles having an oxide

passivation layer. They reported that the effect of the

oxide layer on the particles is to apply a compressive

force to the aluminum core, thus increasing the

observed melting point. However, they corrected

their measured melting points taking into account for

the effects of the oxide layer. Here, in Fig. 3, we have

plotted their corrected melting point data which are

close to the data obtained by Lai et al. (1998) and,

hence, one can conclude that the oxide shell effects

on the melting point were accurately eliminated by

Sun and Simon (2007). Therefore, we conclude that

the discrepancy between the experimental results and

the theoretical predictions may be due to other

reasons such as the geometrical effects as the case

of Cu nanoparticles and/or some other things.

Here, we provide a likely explanation for the

deviation between the experiment and the theoretical

models for the melting point of Al nanoparticles. It is

possible that the geometry of Al nanoparticles

investigated by Lai et al. (1998) and by Sun and

Simon (2007) could not be considered as what we

assumed, for plotting the above-mentioned theoreti-

cal models, to be spherical particles with no signif-

icant numbers of the surface edges and surface

corners. If we plot Eq. 2e, using �Zn � �ZICO
clu and �Zn �

�ZCO
clu ; we can find that the melting point experimental

data can be well fitted by �Zn � �ZICO
clu much better than

by �Zn � �ZCO
clu (see Fig. 3). This means that the

geometrical shape of the Al nanoparticles in their

experimental conditions may have been the ICO

clusters rather than the CO clusters and also not that

geometry (a spherical particle with no surface edges

and surface corners) assumed for plotting the LDM

(Nanda et al. 2002), the model of Jiang et al. (2000,

2003), and our previous model (Safaei et al. 2008).

Therefore, we think, the main reason for the deviation

between the theory and the experiments is the

difference between the theoretically assumed geo-

metrical shape of the Al nanoparticles (i.e. spheres)

and their actual shape in the experimental conditions.

The relative thermal stabilities of nanoclusters

and of their surface faces

Now, we discuss about the usefulness of our defined

new factor, named as the surface-to-volume energy-

contribution ratio (C), while comparing the thermal

stability of different shapes of clusters. The higher

thermal stability of the ICO clusters compared to the

CO clusters (shown in Figs. 1, 2, 3) can be predicted

by comparing the C factors of these two structures

from Eq. 22 or Eq. 1. For FCC nanoparticles, using

Eq. 22 with the only 1NN interactions, i.e. C ffi
�ZSeS= �ZVeV; assuming �ZV ¼ 12 and eS ¼ eV; and

using the surface-average coordination numbers of

the ICO and CO clusters proposed in the reference

(Montejano-Carrizales et al. 1997) for �ZS; we

can find: CICO ¼ 30m2=ð12ð5m2 þ 1ÞÞ[ CCO ¼ 24m2=

ð12ð5m2 þ1ÞÞ: Therefore, if there is no other stabilizer

forces, then the ICO cluster is more stable than the

CO cluster. This higher thermal stability of the ICO

cluster compared with the CO cluster of the same

number of atoms can be attributed to the type of the

surface-crystalline faces. The ICO cluster has only

the closest-packed faces on its surface, while the CO

cluster has also noncompacted crystalline faces as

well as the closest-packed faces (Montejano-Carriz-

ales et al. 1997). As shown in Fig. 3, the experimen-

tally investigated Al nanoparticles (Lai et al. 1998;

Sun and Simon 2007) may have had the ICO

geometry, while the Cu nanoparticles investigated

by MD methods (Delogu 2005; Wang et al. 2003)

were close to the CO geometry, because they were

built by intentionally arranging, and not by self-

derived arranging, the atoms in FCC sites within a

sphere of diameter D (Delogu 2005). Hence, much

more importantly, it is expected that the self-assem-

bled FCC nanoparticles have approximately the ICO

geometry rather than the CO. This is in agreement

with the findings of Daff et al. (2009), that the most

stable shapes of copper nanoclusters are those having

a combination of (111) and (100) surface faces with a

greater proportion of (111) faces at their surfaces.

Besides being a useful factor to compare the

relative thermal stabilities of different nanocrystals,

the new factor C has another important usefulness in

comparing the relative thermal stabilities of different

crystalline faces located at the nanocrystal surface.

Taking into account the effects of the 1-, 2-, and 3NN

atomic interactions, we have calculated the values of
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C for the (111), (100), (110), and (210) faces of a FCC

lattice structure in Appendix 3. Considering Eq. 31,

we can conclude that C(111) [ C(100), C(111) [ C(110)

and C(110) [C(210). Also with the use of Eq. 31, we

have Cð100Þ � Cð110Þ ffi 2ðe� e0Þ=ð12eþ 22e0Þ: Since

the strength of the 1NN interactions is more than that

of the 2NN interactions, i.e. e [ e0; we can conclude

that C(100) - C(110) [ 0; and, finally, we have

C(111) [ C(100) [ C(110) [ C(210).

Due to its definition (in Eq. 22), C is a factor

representing the average contribution of each surface-

crystalline face to the cohesive energy of the

nanocrystal. Hence, this factor is a criterion for the

relative thermal stability of a surface-crystalline face

of a nanocrystal. In other words, the more the value

of C for a surface face, the more the thermal stability

of that face. Therefore, we can conclude that the

thermal stabilities of the low index surface faces of a

FCC nanocrystal is in the order of (111) [ (100) [
(110) [ (210). More interestingly, this is exactly the

same conclusion made by Daff et al. (2009) in their

newly published article. They have recently con-

ducted a theoretical research on the effect of atomic

structure and coordination number on the stabilities

and melting behavior of copper surfaces and nanocl-

usters (Daff et al. 2009). The two important conclu-

sion, they have made thorough their MD simulations,

are: (I) the surface melting was observed to occur

below the bulk melting point, at increasingly lower

temperatures from the (111), (100), and (110) faces

down to the (210) face, confirming their order of

decreasing stability; and (II) the ordering of the

stabilities of these surface faces does not vary with

temperature, and their relative values remain the

same. These two conclusions are well consistent with

our findings that: C(111) [C(100) [ C(110) [ C(210)

(we assume that this order of C-factors for these

faces is temperature independent).

The investigation of Daff et al. (2009) has also

yielded the result that melting begins at the location

of low-coordinated atoms in the surface, such as the

atoms located at the surface steps, and especially

those steps with lower coordination numbers. This

conclusion can also be achieved through calculating

C for different surface-crystalline edges and compar-

ing them to each other.

Here, we discuss about the significance of the

effect of another structural feature upon the stability

of crystals, which is the atomic packing arrangement

and is averagely defined here for the first time as

�PS ¼ �Pf � xarea
f þ �Pe � xarea

e þ �Pc � xarea
c ; ð3Þ

where �PS is the average packing factor of the surface of

the nanocrystal, �Pf is the average face-packing factor

of the surface faces of the nanocrystal, �Pe is the

average-edge-packing fraction of the edges of the

nanocrystal surface, and �Pc is the corner-packing

fraction ( �Pc ¼ 1). These packing fractions are defined

as the ratios of the filled areas of the surface faces,

surface edges, and surface corners by atoms to the total

area of the nanocrystal surface corresponding to these

surface sites, i.e. �Pf ¼ nfAa=Af ; �Pe ¼ neAa=

ððLe=dÞ � AaÞ and �Pc ¼ ðncAaÞ=ðncAaÞ ¼ 1:0; where

Aa ¼ pd2=4 is the cross-sectional area of a surface

atom with the nanocrystal surface. nf, ne and nc are

respectively the total number of atoms located at all the

surface-crystalline faces, surface-edges and surface-

corners. Af, (Le/d) � Aa, and ncAa are the total areas of

the surface faces, surface edges, and surface corners,

respectively, which are the portions of the total surface

area of the crystal (AS) which can be potentially

occupied by the face-, edge-, and corner-atoms,

respectively. The area fraction (xarea) of each type of

surface sites (faces, edges, or corners) is defined as the

ratio of the area amount of the crystal surface

associated with that surface site, being occupied or

unoccupied by atoms, to the total area of the crystal

surface (AS). Hence, xarea
f ¼ Af=AS is the area fraction

of the surface faces, xarea
e ¼ ðLe=dÞ � Aa=AS is the area

fraction of the surface edges, and xarea
c ¼ ðncAaÞ=AS is

the area fraction of the surface corners (note that

xarea
f þ xarea

e þ xarea
c ¼ 1). Considering these defini-

tions, we can find the following relations:

nf

nS

¼
�Pf

�PS

� xarea
f ;

ne

nS

¼
�Pe

�PS

� xarea
e ;

and
nc

nS

¼
�Pc

�PS

� xarea
c :

ð4Þ

Now merging Eq. 4 with Eq. 19, we can rewrite

the 1NN, surface average coordination number as:

�ZS ¼
�Pf � xarea

f
�Zf þ �Pe � xarea

e
�Ze þ �Pc � xarea

c
�Zc

�PS

ð5Þ

Interestingly enough, Eqs. 3 and 5 present a well-

formulated, new, size-dependent definition of the

surface average-packing factor and surface average
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coordination number of the nanocrystal, including the

effects of the average atomic arrangement of the

surface faces, surface edges, and surface corners. For

the bulk crystal xarea
e ! 0; xarea

c ! 0
� �

: xarea
f ! 1;

and therefore �PSb ¼ �Pfb; and �ZSb ¼ �Zfb; implying that

the only important factor for the bulk crystal is its

averaged surface face atomic arrangement.

Equation 5 can be written in the following well-

arranged form:

�PS
�ZS ¼ ð �Pf

�ZfÞ � xarea
f þ ð �Pe

�ZeÞ � xarea
e þ ð �Pc

�ZcÞ � xarea
c

¼
X

j¼f ; e; c

ð �Pj
�ZjÞ � xarea

j ð6Þ

Equations 5 and 6 are also true for 2- and 3NN

coordination numbers. In Eq. 6, �PS
�ZS is a well-

formulated quantity that is composed of three compo-

nents: the face component �Pf
�Zfð Þ; the edge component

�Pe
�Zeð Þ; and the corner component �Pc

�Zcð Þ: The crystal

surfaces with highly packed atomic arrangement, i.e.

having the larger values of �PS and �ZS; are more stable

than the others. Therefore, the combined effects of both

of the structural features of the surface, i.e. the atomic

packing factors and coordination numbers, are inter-

estingly represented in parameter �PS
�ZS: In addition to

these structural features, the energetic features of the

surface of a crystal are also of great importance while

determining its thermal stability. Hence, we define a

new parameter, named as the averaged surface energy

density (SED) of a crystal as follows:

SEDh i ¼ �PS
�ZS�eS ð7Þ

where �eS is the average bonding energy of the crystal

surface. It can be inferred from Eq. 7 that the

physical dimension of average SED is atom

unit area
�

bonds
atom�

energy

bond
(i.e. energy-per-unit area). Therefore, it

can be defined as

SEDh i ¼
R R

AS
EDðx; y; zÞ � dA

AS

;

EDðx; y; zÞ ¼
dEðx; y; zÞ

dA
¼

o2Eðx; y; zÞ
ox oy

;

ð8Þ

where ED(x,y,z) and E(x,y,z) are the local energy density

and the local cohesive energy at each point (i.e. each

atom) (x, y, z) of the crystal, respectively.

More importantly, the averaged SED has the

combination of the effects of the averaged structural

and energetic features of the surface and is also a

temperature-dependent quantity. Therefore, we

conjecture that it can be used as a criterion for the

thermal stability of a nanocrystals surface, and

particularly, that its abrupt change near the melting

point can be used as a signature for the onset

temperature of surface melting. Hence, an important

subject about the stability of nanoclusters, that can be

an interesting topic for further investigation and

particularly for computer simulation studies, is the

question of finding the numbers of and/or the area

fractions of each type of surface faces and surface

edges to precisely calculate the values of �ZS (Eq. 5)

and �PS (Eq. 3) and then accurately calculate �PS
�ZS

and/or SED. Similar to Eq. 7, an averaged quantity

can also be defined for a nanocrystal which can be

used as an indicator of its thermal stability and the

beginning of its melting.

We now discuss about the implications of the size-

dependent cohesive energy to the diffusion coefficient

of atoms in the nanocrystals, especially to the size-depen-

dent alloying of core–shell bimetallic nanoparticles.

Size-dependent diffusivity

We assume that a well-known Arrhenius dependence

for diffusion coefficient, DC(X,T), is also applicable

for nanocrystals as

DCðX;TÞ ¼ DC0ðXÞ exp
�EanðXÞ

RT

� �
; ð9Þ

where X is the reciprocal size of the nanocrystal,

DC0(X)is the pre-exponential constant (temperature-

independent factor) for nanocrystals, R is the ideal

gas constant, T is the absolute temperature, and Ean is

the diffusion activation energy of the nanocrystal.

Considering the proportionality of Ean/Eab = Tmn/

Tmb (Yang and Li 2007), and assuming that the

diffusion coefficient at the melting point of a

nanocrystal is size independent, i.e. DC X;Tmnð Þ ¼
DCb Tmbð Þ and also that the diffusion activation energy

is temperature independent (Dick et al. 2002), we can

conclude from Eq. 9: DC0(X) = DC0b, where DC0b is

the pre-exponential constant of Eq. 9 for the bulk

crystal. Therefore, hereafter for simplicity, we use the

notation of DC0 as the abbreviation of DC0ðXÞ and

DC0b: Thus, we can write:

DCðX;TÞ ¼ DC0 exp
�Eab

RT
� Tmn

Tmb

� �
; ð10Þ
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where Eab is the diffusion activation energy for the

bulk crystal. If we substitute our previously obtained

formula for the melting point of nanocrystals (Safaei

et al. 2007, 2008) in Eq. 10, then we can find a

lattice-type-sensitive formula for the size and tem-

perature dependency of the diffusion coefficient of

nanocrystals. Equation 10 can also be rewritten in the

following form:

DC X; Tð Þ
DC0

¼
DCb Tð Þ
DC0

� �Tmn
Tmb

: ð11Þ

Using Eq. 2d, the above equation can be written in

terms of the average coordination number of the

nanocrystal and its binding energy as follows:

DC X;Tð Þ
DC0

¼
DCbðTÞ
DC0

� � eV �Zn
eVb

�Zb

: ð12Þ

Equation 12 clearly shows the effects of the averaged

energetic and structural feature on the diffusivity of

atoms in nanocrystals. Assuming that eV = eVb, we

can simply write:

DCðX;TÞ
DC0

¼
DCbðTÞ
DC0

� � �Zn
�Zb

ð13Þ

In order to obtain Eq. 10 and so Eq. 13, it has been

assumed that the diffusion coefficient at melting point

is size independent. Considering this assumption, we

can find from Eq. 13 that Zn X;Tmn Xð Þð Þ ¼ Zb Tmbð Þ: Here,

this importantly implies that the average coordination

number of nanocrystals at their melting point is a

size-independent quantity. It can be conjectured that

this conclusion may also be true for a droplet of a

liquid, and that its diffusion coefficient may be

independent from its size.

Now, we discuss about the alloy formation in the

nanoscale. Hodak et al. (2000) synthesized bimetallic

gold–silver nanoparticles with a core–shell structure

by irradiation chemistry. They investigated the laser-

induced interdiffusion in Au–Ag core–shell nanopar-

ticles and found that the transformation from the abrupt

metal–metal junction into a homogeneous alloyed

nanoparticle reached completion after many laser

pulses (Hodak et al. 2000). They reported that for the

Au(core)–Ag(shell) nanoparticles with the Au-core diam-

eter of 20 nm and Ag-shell thickness of 2.91 nm (with

the concentrations ratio of [Au]:[Ag] = 1:0.5), signif-

icant alloying started when the absorbed energies were

about 0.35 mJ/pulse, and therefore, the temperature of

the sample was about 691 K (Hodak et al. 2000). They

also found that the time scale of mixing at T = 691 K

was at the range of seconds (Hodak et al. 2000).

Because the self-diffusion coefficients of Ag and Au

are identical, the interdiffusion coefficient of Au/Ag

mixture can be taken to be the same as the self-

diffusion coefficients (Hodak et al. 2000). Hence, using

our previous model for the melting point of nanopar-

ticles (Safaei et al. 2008), the value of Tmp/Tmb for the

20-nm-diameter Au nanoparticle is calculated as

Tmp=Tmb ¼ 0:9584: Here with the use of the values

of Eab = 169.52 kJ/mol and DC0 = 0.04 cm2/s (Ho-

dak et al. 2000) in Eq. 10, for the Au-core of 20 nm

diameter, we have calculated the interdiffusion coef-

ficient of Ag atoms into the Au-core at T = 690 K as

DC
Ag!Au

ð20 nm; 690 KÞ ¼ 2:0063� 10�14 cm2=s: Therefore,

using t = x2/(6 9 DC), with x being the diffusion

distance, i.e. x = D/2 = 10 nm (the Au-core radius),

we have calculated the time scale for mixing Ag atoms

into the Au-core as tT¼690 K ¼ 8:311 s which is well

consistent with the experimentally obtained time scale

(Hodak et al. 2000). Hodak et al. (2000) have also

experimentally found that the interdiffusion coefficient

of Ag atoms into the Au-core of D = 20 nm for

absorbed energy of about 1.16 mJ/pulse (and there-

fore, for the sample temperature of T = 1100 K) was

about &10-10 cm2/s, and the time scale needed for

alloying of Au/Ag core–shell particles in this condition

(T = 1100 K) was estimated to be in the range of

microseconds. If we use the above parameters and

T = 1100 K in Eq. 10 for the diameter of 20 nm, then

we can find DC
Ag!Au

ð20 nm; 1100 KÞ ¼ 7:70� 10�10 cm2=s

and, therefore, tT¼1100 K ¼ 216:37 ls; which are in

agreement with the experimentally obtained values by

Hodak et al. (2000) for the diffusion coefficient and the

time scale of alloying at temperature 1100 K.

Based on this high value of the diffusion coeffi-

cient, i.e. &10-10 cm2/s, Hodak et al. (2000)

concluded that their investigated particles were

partially melted and the diffusion coefficients

obtained by them were an average over the solid

and the liquid portions of the nanoparticles. There-

fore, they reported that the surface melting was the

important phenomenon for the observed very fast,

laser-induced interdiffusion/alloying of Au/Ag core–

shell nanoparticles (Hodak et al. 2000). However,

here, we suggest that the main mechanism for this

faster-than-expected interdiffusion/alloying may not
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be only the surface melting of the nanoparticles.

Since the sample temperatures of 690 and 1100 K are

well below the expected melting point of the 20-nm

diameter Au-core [i.e. 1281.7 K estimated from our

previous model (Safaei et al. 2008)] and also because

our calculated values of the diffusion coefficients are

for the solid-phase particles (nanocrystals), we can

conclude that these interdiffusion coefficients are for

the solid-phase diffusion and therefore Au/Ag alloy-

ing started and also, more importantly and interest-

ingly enough, finished within the solid phases. Even

if we assume that, at the experimental conditions of

the reference (Hodak et al. 2000), the surface of the

Au/Ag core–shell nanoparticles was melted, it is

obvious that the Au-core of 20-nm diameter was not

melted, and therefore, the Ag atoms diffused into the

solid-core of Au. Assuming a liquid shell on the

particle surface, one can conclude that the diffusion

of Au atoms into the melted Ag-shell is much faster

than the diffusion of Ag atoms into the solid Au-core.

Hence, the timescale of this alloying, which is much

faster than the usual bulk alloying, is equal to the

timescale of its slower stage, i.e. the timescale needed

for the Ag atoms to diffuse into the solid Au-core

which is very slower than the diffusion of Au atoms

into the melted Ag-shell. In other words, the rate of

alloying of Au–Ag core–shell nanoparticles is depen-

dent upon the rate of the diffusion of Ag atoms from

the melted Ag-shell into the solid Au-core of the

nanoparticles. Therefore, any mechanism describing

this faster-than-expected alloying should focus on the

diffusion of Ag atoms from the shell into the solid

Au-core, namely should involve the solid-phase

diffusion and not the surface melting phenomenon.

Therefore, importantly, we suggest that this very fast

alloying may be caused by some other reasons and

not by the surface melting of the particles. According

to Eq. 12, one can conclude that the size-dependent

energetic and structural properties of nanoparticles

directly influence their diffusion coefficients. There-

fore, we may expect that the reduced average

coordination number of nanoparticles and especially

their reduced surface coordination number can give a

possible explanation for this very fast interdiffusion/

alloying. It is very important to notice that the

volume structure and the binding energy of nanopar-

ticles may be also size dependent, and therefore may

have some effects on the diffusion process of Ag

atoms into the solid Au-core. However, here, we have

neglected any possible size dependency of these

volume properties of the nanoparticles.

Conclusion

We modeled the cohesive energy of nanocrystals in

terms of the averaged structural and energetic features

of their surface and volume. The simple direct

proportion between the cohesive energy and the

average coordination number of nanocrystals, derived

in recent studies (Attarian Shandiz et al. 2008; Mirjalili

and Vahdati-Khaki 2008; Attarian Shandiz 2008), has

been obtained as a third-order approximation of the

present model. We also demonstrated that such a

simple proportion is an approximation that can be only

applicable for a restricted number of elements, such as

Al and Cu nanoparticles whose melting point reduction

can be truly predicted by this simple proportion. Its

consistency for Al and Cu nanoparticles implies the

importance of the geometrical effects upon the cohe-

sive energy. The failure of this simple direct proportion

for some elements, particularly for Au nanoparticles,

has been attributed to the size dependency of the ratio

of eS/eV, which should be taken into account to

correctly predict the size-dependent depression of

cohesive energy of some elements. Also defining a new

parameter, named as the surface-to-volume energy-

contribution ratio, we have predicted the order of

thermal stability of different surface faces of Cu

nanoclusters in fully agreement with the MD results of

the reference (Daff et al. 2009). Finally, we introduced

a lattice-type-sensitive model for the size-dependent

diffusion coefficient of atoms into nanocrystals,

including the averaged structural and energetic fea-

tures of the nanocrystals. We applied our model to the

case of the mixing of Au(core)–Ag(shell) nanoparticles

and found that our prediction is fully consistent with

the experimentally obtained diffusion coefficient of Ag

atoms into the Au core and with the experimental

timescale of their interdiffusion/alloying. We interest-

ingly suggest that any mechanism describing this

faster-than-expected interdiffusion/alloying of

Au(core)–Ag(shell) nanoparticles should take into

account the solid-phase diffusion and not the surface

melting phenomenon. According to our model, this

faster-than-expected interdiffusion/alloying is due to

some structural effects, such as the depression of the

average coordination number of nanoparticles and
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especially that of their surface. We think that a

complete understanding of the mechanism of interdif-

fusion and alloying in nanoscaled crystals requires

further investigation on their averaged structural and

energetic features.

Appendix 1: Cohesive energy of nanocrystals

We assume that the total cohesion energy of each

volume or surface atom of a nanocrystal is the sum of

the contributions from both the first-nearest-neighbor

(1NN) and the second-nearest-neighbor (2NN) atoms.

Therefore, the total cohesive energy of a nanocrystal

(Ecn) with nt total atoms is:

Ecn ¼
XnV

i¼1

1

2
Z
ðiÞ
V eðiÞV þ Z

0ðiÞ
V e0ðiÞV

� �

þ
XnS

i¼1

1

2
Z
ðiÞ
S eðiÞS þ Z

0ðiÞ
S e0ðiÞS

� �
ð14Þ

where nV and nS are the numbers of atoms located at the

volume and the surface of the nanocrystal, respec-

tively, and its total number of atoms is nt ¼ nV þ nS �
Z
ðiÞ
V and Z

0ðiÞ
V are the coordination numbers of volume

atom i according to the 1NN and the 2NN definitions,

respectively. eðiÞV and e0ðiÞV are respectively the bond

energies of volume atom i of the nanocrystal associated

with the 1NN and 2NN atoms. Similar to the defined

parameters of volume atoms, Z
ðiÞ
S and Z

0ðiÞ
S are the 1NN

and 2NN coordination numbers of surface atom i of the

nanocrystal, respectively. Note that ZS is the number of

the bonds of each surface atom without considering

bonds to interior atoms. This definition of ZS is due to

its function in counting only the total number of the

surface bonds of the crystal. Also, eðiÞS and e0ðiÞS are the

bond energies between surface atom i and its 1NN and

2NN atoms, respectively.

If we assume that the outer surface of the nanocrys-

tal is composed of the number of Nf different crystal-

line faces, Ne different edges, and Nc corner sites on the

surface, then we can rewrite Eq. 14 as follows:

Ecn ¼
XnV

i¼1

1

2
Z
ðiÞ
V eðiÞV þ Z

0ðiÞ
V e0ðiÞV

� �

þ
XNf

j¼1

1

2
n
ðjÞ
f Z

ðjÞ
f eðjÞf þ Z

0ðjÞ
f e0ðjÞf

� �

þ
XNe

k¼1

1

2
nðkÞe ZðkÞe eðkÞe þ Z 0ðkÞe e0ðkÞe

� �

þ
XNc

m¼1

1

2
nðmÞc ZðmÞc eðmÞc þ Z 0ðmÞc e0ðmÞc

� �
ð15Þ

where n
ðjÞ
f is the number of atoms located at each

surface face j of the nanocrystal j ¼ 1; 2; . . .; Nfð Þ;
n
ðkÞ
e is the number of atoms located at each surface edge

k k ¼ 1; 2; . . .; Neð Þ; and n
ðmÞ
c is the number of atoms

located at each corner site m of the nanocrystal surface

(m = 1, 2,…, Nc). The total number of atoms located at

all the surface-crystalline faces is nf ¼
PNf

j¼1 n
ðjÞ
f ; the

total number of atoms located at all the surface edges is

ne ¼
PNe

k¼1 n
ðkÞ
e ; and that located at all the surface

corners is nc ¼
PNc

m¼1 n
ðmÞ
c :Therefore, the total number

of the surface atoms of the nanocrystal is equal to

nS = nf ? ne ? nc. Here, Z
ðjÞ
f ; Z

0ðjÞ
f ; eðjÞf ; and e0ðjÞf are

the previously defined parameters, but associated with

the atoms located at surface-crystalline face j; simi-

larly, Z
ðkÞ
e ; Z

0ðkÞ
e ; eðkÞe and e0ðkÞe are those parameters for

the atoms located at surface edge k and Z
ðmÞ
c ; Z

0ðmÞ
c ; eðmÞc

and e0ðmÞc are for the atom of surface corner m. Here, we

neglect any possible difference between the bond

energies of atoms located at different surface faces,

surface edges, and surface corners of the nanocrystal

and assume that eðjÞf ¼ eðkÞe ¼ eðmÞc ¼ eS; and e0ðjÞf ¼
e0ðkÞe ¼ e0ðmÞc ¼ e0S: Making this assumption also for all

the volume atoms of the nanocrystal as eðiÞV ¼ eV and

e0ðiÞV ¼ e0V; we can rewrite Eq. 15 as follows:

Ecn ¼
XnV

i¼1

1

2
Z
ðiÞ
V eV þ Z

0ðiÞ
V e0V

� �

þ
XNf

j¼1

1

2
n
ðjÞ
f Z

ðjÞ
f eS þ Z

0ðjÞ
f e0S

� �

þ
XNe

k¼1

1

2
nðkÞe ZðkÞe eS þ Z 0ðkÞe e0S

� �

þ
XNc

m¼1

1

2
nðmÞc ZðmÞc eS þ Z 0ðmÞc e0S

� �
ð16Þ

Denoting the 1NN-based average coordination

number of atoms located at the surface faces as �Zf ;

at the surface edges as �Ze; and at the surface corners

as �Zc; we can write:

�Zf ¼
PNf

j¼1 n
ðjÞ
f Z

ðjÞ
f

nf

; �Ze ¼
PNe

k¼1 n
ðkÞ
e Z

ðkÞ
e

ne

;

�Zc ¼
PNc

m¼1 n
ðmÞ
c Z

ðmÞ
c

nc

:

ð17Þ

The 2NN-based definitions are also similar to Eq. 17

only with the corresponding notations, i.e. �Z 0f ; �Z 0e; and
�Z 0c. Using the above definitions, Eq. 16 can be

rewritten as

772 J Nanopart Res (2010) 12:759–776

123



Ecn ¼
XnV

i¼1

1

2
Z
ðiÞ
V eV þ Z

0ðiÞ
V e0V

� �
þ 1

2
nf

�ZfeS þ �Z 0fe
0
S

� �

þ 1

2
ne

�ZeeS þ �Z 0ee
0
S

� �
þ 1

2
nc

�ZceS þ �Z 0ce
0
S

� �
ð18Þ

Here, we denote the average coordination numbers of

the volume and surface atoms of the nanocrystal based

on the 1NN (or 2NN) definition with �ZV(or �Z 0V) and �ZS

(or �Z 0S), respectively, and define them as follows:

�ZV ¼
PnV

i¼1 Z
ðiÞ
V

nV

; �Z 0V ¼
PnV

i¼1 Z
0ðiÞ
V

nV

;

�ZS ¼
nf

�Zf þ ne
�Ze þ nc

�Zc

nS

; �Z 0S ¼
nf

�Z 0f þ ne
�Z 0e þ nc

�Z 0c
nS

;

nS ¼ nf þ ne þ nc: ð19Þ

Using the above definitions, we can rewrite Eq. 18 as:

Ecn ¼
1

2
nV

�ZVeV þ �Z 0Ve0V
� �

þ 1

2
nS

�ZSeS þ �Z 0Se
0
S

� �
¼ nV

�EV þ nS
�ES; ð20Þ

where �EV ¼ �ZVeV þ �Z 0Ve0V
� �

=2 and �ES ¼ �ZSeSþð
�Z 0Se
0
SÞ=2 are the average contributions of each volume

and surface atom of the nanocrystal to its total cohesive

energy, respectively. From Eq. 20, the cohesive energy

of the bulk crystal (Ecb) can be obtained as

Ecb ¼ nVb
�EVb þ nSb

�ESb ð21Þ
Here and hereafter in this article, the subscript b

indicates the corresponding parameters for the bulk

material, e.g., nVb and nSb are the numbers of atoms

located at the volume and the surface of a bulk

crystal, respectively, having the total number of nt

atoms. One may conclude that for a bulk crystal with

nt total atoms: nSb & 0 and nVb & nt. Therefore,

using Eqs. 20 and 21, we can write:

Ecn

Ecb

¼ nV
�EV þ nS

�ES

nVb
�EVb þ nSb

�ESb

¼ nV
�EV þ nS

�ES

nt
�EVb

¼
�EV

�EVb

1� 1�
�ES

�EV

� �
nS

nt

� �
;

C ¼
�ES

�EV

:

ð22Þ

Appendix 2: Cohesive energy and average

coordination number of nanocrystals

Considering the definitions of the volume and the

surface average-coordination numbers, given in

Eq. 19, we can define the 1NN- and 2NN-average

coordination numbers of nanocrystals, denoted by �Zn

and �Z 0n respectively, as follows:

�Zn ¼
nV

�ZV þ nS
�ZS

nV þ nS

¼ �ZV 1� 1�
�ZS

�ZV

� �
nS

nt

� �

�Z 0n ¼
nV

�Z 0V þ nS
�Z 0S

nV þ nS

¼ �Z 0V 1� 1�
�Z 0S
�Z 0V

� �
nS

nt

� �
:

ð23Þ
Equation 23 defines the average coordination

numbers of a nanocrystal and can be used for

nanoparticles, nanowires, nanofilms, and any other

shape of nanocrystals with the appropriate value of

the surface-to-volume atomic ratio (nS/nt). In this

equation, the effects of the surface face, surface edge,

and surface corner atoms have been taken into

account. Now using Eq. 23 for adequately large and

close-to-bulk nanocrystals nS=nt ! 0ð Þ; we have

�Zb ¼ lim
nS=nt!0

�Zn ¼ lim
nS=nt!0

�ZV ¼ �ZVb; and

�Z 0b ¼ lim
nS=nt!0

�Z 0n ¼ lim
nS=nt!0

�Z 0V ¼ �Z 0Vb; ð24Þ

where �Zb ¼ limnS=nt!0
�Zn gives a well-formulated

definition for the 1NN average coordination number

of the bulk crystal, which includes the effects of both

of its surface and volume atoms and is equal to its

volume (lattice) average coordination number, i.e.
�Zb ¼ �ZVb; e.g., for a BCC lattice �Zb ¼ �ZVb ¼ 8:

Similarly �Z 0b is the bulk average coordination number,

based on the 2NN definition. From Eqs. 23 and 24,

we have:

�Zn

�Zb

¼
�ZV

�ZVb

� 1� 1�
�ZS

�ZV

� �
nS

nt

� �

�Z 0n
�Z 0b
¼

�Z 0V
�Z 0Vb

� 1� 1�
�Z 0S
�Z 0V

� �
nS

nt

� �
:

ð25Þ

The above equations, which have similar form as

Eq. 22, represent the 1NN/2NN-based average coor-

dination number of nanocrystals in terms of their size.

Now using Eqs. 20 and 23 and with a little

algebra, the cohesive energy of nanocrystals can be

obtained in terms of the crystal average coordination

numbers as follows:

Ecn ¼
1

2
nteV

�Zn 1þ
�ZS

�Zn

eS

eV

� 1

� �
nS

nt

� �

þ 1

2
nte
0
V

�Z 0n 1þ
�Z 0S
�Z 0n

e0S
e0V
� 1

� �
nS

nt

� �
ð26Þ
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As it can be seen from Eq. 26, if we neglect the

difference between the bond energies of the surface

and volume atoms, i.e. assume eV = eS = e and e0V ¼
e0S ¼ e0; then we can write: Ecn ¼ nte �Zn=2þ nte0 �Z 0n=2

which can be easily obtained by counting the

numbers of 1NN and 2NN atomic bonds and

multiplying them by their corresponding bonding

energies. Considering only 1NN atomic interactions,

we can obtain Ecn ¼ nte �Zn=2 which is exactly the

previously developed equation in the reference (At-

tarian Shandiz et al. 2008). Now, from Eq. 26, for the

bulk crystal nS=nt ! 0ð Þ; we have:

Ecb ¼ lim
nS=nt!0

Ecn ¼ lim
nS=nt!0

1

2
nteV

�Zn þ
1

2
nte
0
V

�Z 0n

� �

¼ 1

2
nteVb

�Zb þ
1

2
nte
0
Vb

�Z 0b ð27Þ

Referring to Eq. 24, i.e. �Zb ¼ �ZVb and �Z 0b ¼ �Z 0Vb; it

can be understood that Eq. (27) is similar to Eq. 21.

Here, using Eqs. 26 and 27, leads to

Ecn

Ecb

¼ eV
�Zn

eVb
�Zb þ e0Vb

�Z 0b
1þ

�ZS

�Zn

eS

eV

� 1

� �
nS

nt

� �

þ e0V �Z 0n
eVb

�Zb þ e0Vb
�Z 0b

1þ
�Z 0S
�Z 0n

e0S
e0V
� 1

� �
nS

nt

� �
ð28Þ

Appendix 3: Calculation of C for crystalline planes

of FCC lattice

Here, we calculate the values of C for common

crystalline faces of an FCC lattice, and in order to do

this, we need the values of the 1-, 2-, and 3NN

coordination numbers in each face.

The lattice unit cell of an FCC crystal is shown in

Fig. 4. The position of each of the atoms in the lattice

can be obtained with a vector, e.g., the position vector

A~¼ að1=2; 0; 1=2Þwhich represents the atom A, where

a is the lattice constant of FCC. The atom O is located at

the position (0, 0, 0) of the Cartesian coordinates in

which each position is defined by

the position vector (x, y, z). The distance between the

atom A and all its nearest neighbors located at

the corners of the cube and also at the centers of

the lateral faces, e.g., B
!¼ að0; 0; 1Þ and C

!¼
að1; 1=2; 1=2Þ; is equal to AB

�!��� ��� ¼ AC
�!��� ��� ¼ a=

ffiffiffi
2
p

¼ d(d is the atomic diameter). Therefore, atom A has
�ZV ¼ 12 1NN with the bond length of Lbond = d and

the bond energy of e. The 2NN atoms of the atom A, are

atoms like E ( E
!¼ að�1=2; 0; 1=2ÞÞ and D

(D
!¼ að1=2; 1; 1=2ÞÞ located at the center of the

adjacent and opposite faces of the A’s face, respec-

tively. Therefore, there are the number of Z 0V ¼ 6 2NN

atoms for the atom A with the bond length of L0bond ¼
a ¼ d

ffiffiffi
2
p

and the bond energy of e0(note

that L0bond ¼ AE
�!��� ��� ¼ AD

�!��� ���). As it can be seen from

Fig. 4, the distance between atom F ðF!¼ að0; 1; 1ÞÞ
and A is AF

�!��� ��� ¼ að1=2; 0; 1=2Þ � að0; 1; 1Þj j ¼

a
ffiffiffiffiffiffiffiffi
3=2

p
¼ d

ffiffiffi
3
p

. There are eight atoms such as F in

FCC lattice whose distances from atom A is d
ffiffiffi
3
p

: One

set of these atoms is að0; 1; 1Þ; að1; 1; 1Þ; að1; 1; 0Þ;f
að0; 1; 0Þg and the other set can be obtained by

transferring this set of atoms through the vector a(0,

-2,0), which is as follows: {a(0,-1,1), a(1,-1,1),

a(1,-1,0), a(0,-1,0)}. Besides these sets of atoms,

there are also another eight atoms, such as G, which are

collected in the set {a(-1/2,1/2,1), a(-1/2,1/2,0),

a(-1/2,-1/2,0), a(-1/2,-1/2,1)}, and the set {a(3/

2,1/2,1), a(3/2,1/2,0), a(3/2,-1/2,0), a(3/2,-1/2,1)}

obtained by transferring the first set through the vector

a(2,0,0). The distance of all these atoms from atom A is

equal to d
ffiffiffi
3
p

and, therefore, the 3NN atoms of atom A

are the above mentioned 16 atoms Z 00V ¼ 16
� �

with the

bond length of L00bond ¼ d
ffiffiffi
3
p
¼ a

ffiffiffiffiffiffiffiffi
3=2

p
and the bond

Fig. 4 A schematic illustration of the FCC lattice structure of

Cu showing the first-order bonds (Lbond = d) between the 1NN

atoms like as A–B and A–C, the second-order bonds

L0bond ¼ d
ffiffiffi
2
p� �

between the 2NN atoms like as A–E and A–

D, and the third-order bonds L00bond ¼ d
ffiffiffi
3
p� �

between the 3NN

atoms like as A–F and A–G
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energy of e00: The numbers of these 1-, 2-, and 3NN

atoms for each atom located at the (111), (100), (110),

and (210) faces of the FCC lattice can also be obtained

in the same way and are collected in Table 1.

Considering the definition of C, from Eq. 22, we can

write the definition for each surface face ðhklÞ as

follows:

CðhklÞ ¼
Z
ðhklÞ
f eðhklÞ

f þ Z
0 hklð Þ
f e0 hklð Þ

f þ Z
00 hklð Þ
f e00 hklð Þ

f

�ZVeV þ �Z 0Ve0V þ �Z 00Ve00V
ð29Þ

Now if we assume that the bond energies of atoms

located in the volume and also at each type of surface

faces are equal, i.e. eðhklÞ
f ¼ eV ¼ e; e0 hklð Þ

f ¼ e0V ¼ e0

and e00 hklð Þ
f ¼ e00V ¼ e00; and if we use the values

tabulated in Table 1, then we can calculate the factor

CðhklÞfor each of these faces as below:

Cð111Þ ¼
6eþ 0� e0 þ 6e00

12eþ 6e0 þ 16e00
; Cð100Þ ¼

4eþ 4e0 þ 0� e00

12eþ 6e0 þ 16e00

Cð110Þ ¼
2eþ 2e0 þ 4e00

12eþ 6e0 þ 16e00
; and ð30Þ

Cð210Þ ¼
0� eþ 2e0 þ 4e00

12eþ 6e0 þ 16e00

Since, in FCC lattice, the bond lengths of the 2NN

and 3NN atoms are approximately equal, i.e. L0bond ¼
d
ffiffiffi
2
p
ffi L00bond ¼ d

ffiffiffi
3
p

; we can assume that their bond

energies are also approximately identical, i.e. e0 ffi e00:
Therefore, we can finally write from Eq. 30

Cð111Þ ffi
6eþ 6e0

12eþ 22e0
; Cð100Þ ffi

4eþ 4e0

12eþ 22e0
;

Cð110Þ ffi
2eþ 6e0

12eþ 22e0
; and Cð210Þ ffi

6e0

12eþ 22e0

ð31Þ
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