
Natural Computing (2023) 22:563–585
https://doi.org/10.1007/s11047-023-09963-0

Programmable single-stranded architectures for computing

Yu Kihara1 · Shinnosuke Seki1

Accepted: 3 August 2023 / Published online: 26 September 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Oritatami is amathematicalmodel of co-transcriptional folding, a phenomenon inwhich,while being synthesized (transcribed)
sequentially, an RNA sequence folds upon itself into complex structures via hydrogen bonds between its nucleotides (A, C,
G, and U). RNA sequences fold co-transcriptionally to perform computations in-vivo such as gene expression regulation and
splicing. Co-transcriptional folding has been recently proven modularly programmable for assembling structures in-vitro in
the RNA origami framework as well as for computing arbitrary computable functions in-silico using the oritatami model. In
this tutorial, we overview computations in oritatami and their “bricks” to build up from, that is, modules, and then discuss
what should be done along with concrete open problems as a seed for further fruitful developments in computation by
co-transcriptional folding.

Keywords RNA co-transcriptional folding · RNA origami · Algorithmic molecular self-assembly · Oritatami model

1 Modular approach to the programming of
co-transcriptional folding

Transcription is a process by which an enzyme called RNA
polymerase synthesizes a single-stranded RNA sequence
according to itsDNA template sequence (seeFigs. 1 and2), in
which the template is read nucleotide by nucleotide from its
3’-end to 5’-end, and the growing RNA sequence is extended
by one of the four types of nucleotide (A, C, G, U) energeti-
cally favored by the DNA nucleotide read, that is, A on the
DNA with U on the RNA, T with A, C with G, and G with C.
The product is called a (RNA) transcript. While being thus
synthesized sequentially, the transcript tends to fold upon
itself via binding between nucleotides to get stabilized,where
nucleotides can bind no matter which of the 4 types they are,
though A-U, C-G, and G-U are favored considerably. This
phenomenon is called (RNA) co-transcriptional folding.

This work is supported in part by KAKENHI Grand-in-Aid for
Scientific Research (B) No. 20H04141 and (C) No. 20K11672 to S. S.
Let us express our sincere gratitudes towards anonymous referees for
their valuable comments and suggestions on the previous drafts. Some
of the artworks in this article were generated by using the Simple OS
Simulator developed by Nicolas Schabanel (2016).

B Shinnosuke Seki
s.seki@uec.ac.jp

1 University of Electro-Communications, Tokyo, Japan, 1-5-1,
Chofu 1828585, Chofugaoka, Japan

Co-transcriptional folding can be actually even pro-
grammed in-silico in order to self-assemble various struc-
tures out of a single-stranded RNA transcript in-vitro. This
breakthrough is founded on the RNA origami architecture by
Geary et al. (2014). In this architecture, an artificial RNA tile
structure of 450 nucleotides was programmed for the first
time into an RNA transcript, or more precisely, into its DNA
template sequence in such a manner that the tile structure
can be retrieved later by letting the transcript fold cotran-
scriptionally in-vitro, as shown in Fig. 2. Taking themodular
programming approach, which has been proven quite use-
ful in nucleic acids structure design (see, e.g., Jaeger and
Chworos 2006), nowadays copies of basic RNA origami
tiles can be merged via structural motifs such as kissing
loops (KLs) into tiles of several thousand nucleotides in
length with the aid of RNA Origami Automated Design
(ROAD) (Geary et al. 2021). ROAD provides a software
package to enable programmers to build-up RNA origami
structures with various scale and functionality modularly
from a library of structural modules such as helical turns,
antiparallel crossovers, and KLs of several kinds and to opti-
mize the design of a transcript and folding pathway, along
which the transcript folds into the target structure.

What comes next? Computation, of course! Co-transcript
ional folding is a major driving force of computing in-vivo
including gene expression regulation (Watters et al. 2016)
and splicing (Merkhofer et al. 2014), to name a few exam-
ples, but yet to be applied for human-made computation.Note

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-023-09963-0&domain=pdf

564 Y. Kihara, S. Seki

S P S P S
3′ 5′

CTA

DNA

S P S P S
3′5′

U A G

RNA

PP SP
high-energy

bond

G

GTP
P P

Fig. 1 A “Feynman” diagram of transcription (Feynman 1996). S
and P stand for sugar and phosphate, respectively. The DNA template
sequence is read and the corresponding RNA sequence (transcript) is
synthesized nucleotide by nucleotide according to the mapping A → U,
C → G, G → C, T → A

that folding and transcription have been already incorporated
into computational protocols in-vitro such as whiplash PCR
(Hagiya et al. 1997) and its isothermal variants (Reif and
Majumder 2010; Rose et al. 2006), but their computations go
through hairpin (de)formation and transcription alternately,
rather than being driven by co-transcriptional folding. Being
co-transcriptional poses a novel challenge; once being writ-
ten on a transcript, a code cannot be modified at run-time
anyhow. Hence, if the folding pathway were designed so
finely as done in the RNA origami, the transcript would be
entirely deprived of capability to do any computation. In fact,
the co-transcriptional folding pathway for the gene expres-
sion regulation mentioned above undergoes bifurcation that
either leads to the formation of a terminator stem, which
inhibits gene expression, or its collapse into a pseudoknot
(Watters et al. 2016). Multiple folding pathways are indis-
pensable for computing by a single linear molecule.

Oritatami is the first mathematical platform to study pro-
gramming multiple co-transcriptional folding pathways. It
lets a transcript of abstract molecules (called beads) of finite
kinds be elongated one bead per unit time and fold into
a directed self-avoiding path on the triangular grid graph

co-transcriptionally. An oritatami system has been designed
for the first time by Geary et al. to count in binary (Geary
et al. 2016). It alternately transcribes a half-adder module,
which accommodates four folding pathways pairwise dis-
tinct enough to let the succeeding computation know what
was computed, and a structural module, which guides the
transcript into a zigzag folding pathway and propagates a
1 bit information between half-adders. Turing-universal ori-
tatami systems (Geary et al. 2018; Pchelina et al. 2022, 2020)
are a few orders of magnitude greater in size and functional-
ity but still built up from modules that play basic functions
such as 1-bit read/write, 1-bit propagation, and referencing
to a lookup table. Oritatami is however “too close to the
molecular hardware” to let us call these “basic” functions as
handily as we do in conventional programming by high-level
programming languages such as C++ or Java. Indeed, these
Turing universal oritatami systems have been developed over
years, after bringing home to us more than a few times how
non-trivial it is to compute co-transcriptionally something
simple in-silico.

As a high-level programming language for co-transcriptio
nal computations, Turedo has been proposed recently by
Pchelina et al., together with a compiler to translate a Turedo
program into an oritatami machine code (Pchelina et al.
2022). It is a novel variant of 2D Turing machines. Turedo
programmers can utilize a wealth of knowledge and tech-
niques accumulated over almost a century.After the oritatami
model and Turedo are described in Sect. 2 and at the begin-
ning of Sect. 3, respectively, we shall present in the rest of
Sect. 3 a basic principle of how the compiler works with the
aid of Example 2, which describes how the discrete Sier-
pinski triangle can self-assemble in Turedo. The compiler
can handle only Turedos at radius 1, that is, those which can
observe only the adjacent cells, and furthermore their trans-
lation in oritatami thus compiled operates only at a specific
transcription speed that has not been justified anyhow exper-
imentally yet. Therefore, it should be of some help to explain
in Sect. 4 how oritatami systems have been designed.

Fig. 2 Co-transcriptional folding and RNAorigami (Geary et al. 2014).
TheRNApolymerase scans theDNA template (colored in grey) sequen-
tially and maps its nucleotides one by one to its RNA counterpart

as illustrated in Fig. 1, synthesizing (transcribing) the encoded RNA
sequence (blue), sequentially. The resulting RNA transcript folds upon
itself co-transcriptionally

123

Programmable single-stranded... 565

This tutorial proposes open problems at the end of every
section, which hopefully will serve as a seed to open fruitful
future research. In order to focus on computations, shape
self-assembly in oritatami (Demaine et al. 2018; Fazekas
et al. 2022; Han and Kim 2018, 2021; Masuda et al. 2018)
is barely covered. In order to make best use of this tutorial,
readers are assumed to have basic knowledge in theory of
computation (Hopcroft et al. 2001) and complexity (Arora
and Barak 2009; Geary and Johnson 1979), graph theory
(Diestel 2010), and molecular biology (Alberts et al. 2014;
Elliott and Ladomery 2016).

2 Oritatami model

Let � be a finite set (alphabet) of types of an abstract
molecule called a bead. Beads can represent whatever capa-
ble of binding in RNA origami including nucleotides (unit of
transcription), kissing loops, and even larger subunits. Mod-
ified alphabets such as �′ = {a′ | a ∈ �} are of use;
unless otherwise noted, we suppose that an alphabet mod-
ified anyhow is disjoint from its original, e.g., � ∩ �′ = ∅.
By �∗ and �ω, we denote the set of finite sequences of
letters in � and that of infinite sequences of letters in �,
respectively. Let w = a1a2 · · · be a sequence of letters
a1, a2, . . . ∈ �. For indices i, j , the infix aiai+1 · · · a j of
w is referred to as w[i .. j]; if i = j , this notation is simpli-
fied as w[i] and refers to the i-th letter of w. If w is finite as
w = a1a2 · · · an for some a1, . . . , an ∈ �, then by |w| we
denote its length, that is, |w| = n. The Watson-Crick com-
plementarity in RNA,A-U and C-G, which induces the helical
structure, can be modeled by the antimorphic involution
θ : {A,C,G,U}∗ → {A,C,G,U}∗ that is defined based on the
involution θ(A) = U, θ(C) = G, θ(G) = C, and θ(U) = A and
extended to the antimorphism, that is, θ(xy) = θ(y)θ(x) for
any words x, y ∈ {A,C,G,U}∗. This maps, for instance, an

RNA sequence UACG to θ(UACG) = θ(G)θ(UAC) = · · · =
θ(G)θ(C)θ(A)θ(U) = CGUA. For x, y ∈ {A,C,G,U}∗, the
RNA sequence xyθ(x) folds into a hairpin via nested base
pairs between x and θ(x) (the k-th base of x with the k-th
last base of θ(x)) as long as y is of length at least 3, serving
as a loop of the hairpin.

In the oritatami model, a pre-programmed sequence w

of letters in � (beads) folds over the triangular grid graph
T = (Z2,∼) into a directed self-avoiding path while being
synthesized (transcribed) one bead per unit time, where for
two lattice points p, q ∈ Z

2, p ∼ q means that they are adja-
cent to each other. Folding co-transcriptionally in oritatami
means that the prefix ofw transcribed so far lets only its suffix
of length δ, that is, the most recently-synthesized (nascent)
δ beads, move as long as the backbone between beads does
not get broken or intersect, where δ is a system parameter
explained later (see Fig. 3 for the case δ = 3). An oritatami
system O = (w,♥, δ, α) is composed of a (possibly infi-
nite) bead type sequence w ∈ �∗ ∪�ω called a transcript, a
symmetric relation ♥ ⊆ �2 called an (attraction) rule (set),
and two integer parameters δ, α ≥ 1 called delay and arity,
respectively. It is said to be periodic with a period p ≥ 1,
or more simply of period p, if its transcript w is periodic as
w[i + p] = w[i] for all i ≥ 1.

Beads of types a, b ∈ � attract each other if a♥b, and a
hydrogen bond can form between them as long as they are at
unit distance. A bead type a ∈ � is said to be inert if there
is no bead type b ∈ � such that a♥b. See Fig. 3. A confor-
mation c of a bead-type sequence u ∈ �∗ ∪ �ω is a pair
(p, B) of a directed self-avoiding path p in T along which u
folds, that is, u[i] at p[i], and a subset B of the set of all possi-
ble bonds:

{
(i, j)

∣∣ j − i ≥ 2, u[i]♥u[j], and p[i] ∼ p[j]}
(this is exactly a configuration of an oritatami system but we
prefer the terminology “conformation” as it abstracts a yield
of folding an RNA sequence, which is called a conformation

Fig. 3 A conformation of a bead-type sequence
F0− · · · −F4−F5−F5−F5−F5 −S0− · · · −S5−H0− · · · −H6
and its (3-)elongation by H7−H8−H9. Components in oritatami are

coded in color and line style here as: a seed in brown, a transcript solid,
bonds dashed, beads and bonds already fixed in black, and those not
fixed yet in cyan

123

566 Y. Kihara, S. Seki

Fig. 4 Glider in oritatami. A transcript of period 6, a •b’b •a’a · · · , folds deterministically into a directed linear structure of height 3 and width
2 per period

in molecular biology and engineering). Its stability H(c) is
measured by the number of bonds in it, that is, H(c) = |B|.
A partial conformation of c is a conformation of a prefix of u.
An elongation of c by a finite bead-type sequence v ∈ �∗ is
a conformation of uv. It is particularly called a k-elongation
if |v| = k. The set of all elongations of c by v is denoted by
cv . The conformation c is said to be of arity at most α if
every bead of c forms at most α bonds. By Cα , we denote
the set of all conformations of arity at most α.

Remark 1 Asmentioned above, even a largermolecule than a
nucleotide can be represented by a bead unless it violates the
order of transcription by, for instance, being scattered over
a transcript. A more complex rule than the hydrogen bond
rule of the RNA origami, which meaningfully excludes any
pair of nucleotides but the Watson-Crick complementarity
(A-U, C-G) and the pair G-U, has been thus justified. Needless
to say, a rule should be simple for the wetlab implementa-
tion. It might be interesting to implement a Turing-universal
oritatami system, for example, with a complementary (i.e.,
bijective) rule (Open Problem 2-1)?

This freedom in level of abstraction makes it impossible
as of this moment to tell which value the delay δ should be
set to. The value 3 has been chosen in many works (Fazekas
et al. 2022; Geary et al. 2018; Han et al. 2021; Maruyama
and Seki 2021; Masuda et al. 2018; Pchelina et al. 2022),
but this is simply because the glider motif, which shall be
introduced shortly in Example 1, was discovered at this delay
and found quite useful during early days of oritatami research
in order not only to sustain computations but also to serve as
a foundation of computational modules such as a half-adder
as shown in Fig. 12.

2.1 (Oblivious) dynamics in oritatami

Two dynamics have been studied in oritatami so far: inertial
and oblivious. Among them, here we introduce only the pre-
vailing oblivious dynamics. Indeed, the first binary counter
(Geary et al. 2016) is the only system implemented so far on
the inertial dynamics. As for the inertial dynamics, we just
point out how different it is from the oblivious one.

An oritatami systemO = (w,♥, δ, α) is given as input an
initial (seed) conformationσ ∈ Cα (arity atmostα) of a finite
bead-type sequence s ∈ �∗ and folds its transcriptw upon σ

co-transcriptionally as a sequence of partial conformations
of sw as σ = c0, c1, c2, . . ., where ci is a (1-)elongation of
ci−1 by the i-th bead w[i] such that

ci ∈ arg max
γ∈cw[i]

i−1 ∩Cα

(
max

η∈γ w[i+1..i+δ−1]∩Cα

H(η)

)
. (1)

This means that at the i-th step, w has been transcribed up
to its (i + δ − 1)-th bead, all but the most nascent δ beads,
w[i], w[i + 1], · · · , w[i + δ − 1], have already been fixed
as ci−1, and according to those with the largest number of
bonds among all the elongations η of ci−1 by w[i]w[i +
1..i + δ − 1] that are of arity at most α, w[i] and the bonds
it forms are fixed. Note that conformations of arity α + 1
or larger are excluded in (1). Hence, any conformation with
a bead that binds to α or more beads cannot be reached.
Bead binding is thus on thefirst-come-first-served basis; once
a bead has formed α bonds permanently, that is, in some
reachable conformation ci , it cannot bind anymore even if the
rule set ♥ allows it. If α is set to the degree of the underlying
grid graph, beads never use up their capability of binding. In
that case, we say that the arity is inexhaustible and denoted
as α = ∞ in case for model modification over other grid
graphs. Note that the simulator (Schabanel 2016) presumes
inexhaustible arity.

Example 1 Glider. (Geary et al. 2018) Directional and self-
supportive structures and patterns have been called gliders
in the research of computational models such as cellular
automata. In oritatami, a glider was implemented for the first
time in order to underpin the simulation of a cyclic tag system
at delay 3. Its transcript is of period 6 as a • b’b • a’a · · ·
and its rule is to let a bind with a’ and b bind with b’; that
is, • is inert.

As long as the previous period folds as shown in Fig. 4
(right), a period recursively folds alike. The nascent fragment
a•b’, colored in cyan, folds into all the possible conforma-
tions, three of which are illustrated in the figure, and finds
the most stable ones. Note that this fragment cannot form

123

Programmable single-stranded... 567

more than one new bond because there is no a’ around to
which the nascent a can bind (note that no bead can bind to
its predecessor) and there is only one b around to which the
nascent b’ can adjoin. Accordingly, the nascent a is stabi-
lized, as shown in Fig. 4 (center). This temporary decision
to locate the nascent b’ to the left of the b and bind them
will not be overridden until when the b’ is finally stabilized
because the two beads transcribed by then, that is, b and •,
cannot form any new bond.

The glider motif by itself operates at an arbitrary arity
α ≥ 1. Note that any bead of it admits within its range atmost
one bead to which it can actually bind; a glider is provided
with a’s and at any arity strictly larger than 1 these beads
remain capable of binding even after being stabilized, but
all of them but the latest one are hindered sterically from
attracting a nascent a’.

If there is i such that the set in the right-hand-side of
(1) is composed of two or more elongations, then this sys-
tem folds non-deterministically on σ ; otherwise, the folding
is deterministic on σ . All the oritatami systems published
except those studied in (Han et al. 2018) are deterministic
(Open Problem 2-2) but only in the sense that they remain
deterministic on any supposed seed; in an extreme case, any
system immediately gets non-deterministic on a seed made
of a single bead. At i when the RHS of (1) gets empty, the
system halts.

This dynamics is oblivious in the sense that after the bead
w[i] is stabilized according to (1), the system entirely forgets
how the nascent fragment w[i ..i + δ − 1] has folded/bonded
and at time i + 1, it considers afresh all the possible elonga-
tions of ci by w[i + 1..i + δ]. The inertial dynamics rather
remembers howw[i ..i+δ−1] has been folded/bonded so as
to maximize the number of bonds, and at time i + 1, it con-
siders only their elongations by w[i + δ]. These dynamics
hence coincide at delay 1.

2.2 Oritatami classes

The class of deterministic oritatami systems that has been
studied the most is that of periodic (cyclic) systems (Fazekas
et al. 2022; Geary et al. 2016, 2018, 2019; Maruyama and
Seki 2021; Masuda et al. 2018; Pchelina et al. 2022, 2020).
This class is motivated by the possible synthesis of a periodic
transcript from a cyclic DNA template (Geary and Andersen
2014). It has been proved Turing-universal at delay 2 and
3 as summarized in Table 1 (see also Open Problems 2-3,
2-4, and 2-5; see, e.g, (Fazekas et al. 2021) for some elemen-
tary results on computationally-weak subclasses of delay-1
oritatami systems).

Another class of interest is that of complementary ori-
tatami systems. An oritatami system is complementary if its
rule set ♥ is so, that is, for all a, b, c ∈ �, a♥b and a♥c

imply b = c. It was considered in the context of transcript
design (Han et al. 2020), which asks to complete an ori-
tatami system all of whose components but transcript are
given along with a seed and a directed self-avoiding path by
designing a transcript with which the system folds upon the
seed deterministically along the given path. This problem
was proved NP-hard even if the given system is promised to
be complementary with just three binding pairs a♥a, b♥b,
and c♥c with no other inert bead type involved (Han et al.
2020) (Open Problem 2–6).

The class of oritatami systems with exhaustible arity has
been hardly studied though it seems more intuitive for a bead
to use up its capability of binding and a bead to be transcribed
later cannot help but break into a bond already formed in
order to bind to the bead as the DNA strand displacement.
This kind of local reconfiguration has been recently incor-
porated in oritatami (Marcus et al. 2023) but in the ordinary
oritatamimodel, binding is on a first-come-first-served basis.
Diminishing capabilities of binding have not been utilized for
any computation in oritatami yet. For instance, at arity 1, glid-
ers can propagate an extra one bit beyond and independently
of their known capability to propagate one bit as a position
of their first and last beads by replacing their inert beads with
a self-attractive bead. See the six unlabeled beads in Fig. 4
(left). Suppose they are all of this self-attractive bead type;
then they admit two binding patterns as ◦ ◦ − ◦ ◦− ◦ ◦ and
◦− ◦ ◦− ◦ ◦−◦; they are certainly capable of propagating
1-bit depending on whether the leftmost bead is still capable
of binding or not.

Open problems

2-1 Can we simulate some Turing-universal model of com-
putation by an oritatami system with a complementary
rule? (Page 4)

2-2 Does nondeterminism help us save bead types, and if
so, how? (Page 5)

2-3 For δ ≥ 4, prove that the class of delay-δ periodic deter-
ministic oritatami systems is Turing universal. (Page 5)

2-4 Prove that the class of delay-1 deterministic oritatami
systems is not Turing-universal. (Page 5)

2-5 What is the minimum number of bead types necessary
for Turing-universal computation in oritatami? (Page 5)

2-6 Can we solve the transcript design problem (Han et al.
2020) efficiently when only two binding pairs are
involved? (Page 5)

3 Turedo: a high-level programming
language for oritatami

A Turedo (Turing + Teredo navalis) is a finite-state machine
with its head crawling on the 2-dimensional hexagonal lattice

123

568 Y. Kihara, S. Seki

Table 1 A summary of Turing universal oritatami systems. The Period
column involves variables W , Q, r , and A. W is the sum of the lengths
of all productions (words) in a simulated skipping cyclic tag system. By

Q and r , we denote the number of states in the 1D cellular automaton
and the radius, respectively, and A is a tape alphabet of a simulated
Turedo

To be simulated δ α |�| Period

Geary et al. (2018) Skipping cyclic tag system 3 ∞ 542 O(W 4)

Pchelina et al. (2020) 1D-CA (Q states, radius r) 2 ∞ 183 O
(
r Q4r+2 log Q

)

Pchelina et al. (2022) (Head-up stateless) Turedo of radius 1 3 ∞ 1735 O(|A|6 log |A|)

Z
2, or equivalently but more intuitively, on the honey-

comb grid each of whose hex cell is centered at a lattice
point, without crossing its trail Pchelina et al. (2022). Its
tape configuration is an element of AZ

2
, where A is a

finite tape alphabet including the blank symbol ⊥. Sup-
pose the underlying lattice Z

2 is equipped with a set D =
{�N, �NE, �SE, �S, �SW, �NW} of six unit vectors. We denote by
B(r) the ball of radius r centered at (0, 0). A radius-r Turedo
can see only the cells within the distance r . That is, even in
a tape configuration c ∈ AZ

2
, at a position p ∈ Z

2, it can
only observe for each u ∈ B(r)what c(p+u) is (the symbol
written at the position p + u). This observable ball can be
represented by the restriction of c to the ball of radius r cen-
tered at p, that is, cp(r) = (u ∈ B(r) �→ c(p + u)). It then
refers to its lookup table δ by using cp(r) as a key in order to
decide which state it changes to, with which of the non-blank
symbols it marks the current cell, and which of the unvisited
neighbor cells to visit next, which have been initialized by
the blank symbol ⊥. Turedos are thus self-avoiding; they
can visit only where a blank symbol ⊥ is and they rewrite
the symbol into a non-blank one (in A \ {⊥}) before leaving.

Definition 1 ((North-up) Turedo Pchelina et al. 2022) A
Turedo is a tuple T = (A, Q, q0, r , δ), where A is a tape
alphabet including the blank symbol ⊥, Q is a finite set of
head states including the initial state q0, r ≥ 0 is a lookup
radius, and δ : Q × AB(r) → Q × D × (A\{⊥}) is a lookup
table used as a local transition function.

A global state is an element of AZ
2 ×Z

2×Q (tape config-
uration, head position, and state of the head). In a global state
(c, p, q)with δ(q, cp(r)) = (q ′, d, a), only if c(p+d) = ⊥,
the Turedo can transition to a global state (c′, p + d, q ′),
where c′ is defined by c′(p) = a and c′(u) = c(u) for all
u �= p; otherwise, it is blocked.

Turedos can be initialized by an arbitrary global state, even
with more than one connected component of cells labeled
by a non-blank symbol (Nalin and Theyssier 2022), though
as a programming language of oritatami, it is supposed to
start with all the cells being blank but the one where the
head is placed initially, or at least with only one connected
component of non-blank cells, and that is what the Turedo-
to-oritatami compiler, which we shall introduce in Sect. 3.1,
expects.

Turedos are “north-up” by Definition 1. However, unless
they forget where they have come from immediately after a
transition is made or they are blind in the sense of r = 0,
no compass is needed. Indeed, a north-up Turedo can be
simulated intrinsically by a so-called “track-up” Turedo with
the same radius, which reads its neighbors in some specific
order with respect to the direction of travel such as reading
the six neighbors at r = 1 counter-clockwise starting from
the diagonally-backward right, the diagonally-forward right
next, and so on until the backward, where the previous cell
is. In this specific order, the previous cell is read last, and
hence, can let the current cell know by its label in which of
the possible six directions in D = {�N, �NE, �SE, �S, �SW, �NW}
the system is heading, and even which state the system is in.

Definition 2 ((Stateless) Track-up Turedo with radius 1)
Let us define the π/3-degree (CCW) rotation ρπ/3 : D →
D as ρπ/3(�N) = �NW, ρπ/3(�NW) = �SW, ρπ/3(�SW) = �S,
ρπ/3(�S) = �SE, ρπ/3(�SE) = �NE, and ρπ/3(�NE) = �N.

A stateless radius-1 track-up Turedo is a pair T = (A, δ),
where A is defined as in the ordinaryTuredo,while δ is a look-
up table δ : A × A × A × A × A × A → {0, 1, 2, 3, 4, 5} ×
(A\{⊥}). Being stateless, its global state is just a pair of a
tape configuration c ∈ AZ

2
and a head position p ∈ Z

2.
Suppose T is in a global state (ct , pt) and its head was at a
position pt−1 in the previous step. For 1 ≤ k ≤ 6, let ak =
ct (pt +ρk

π/3(
−−−−→pt pt−1)), that is, a1, a2, a3, a4, a5 are possibly-

blank letters written in the respective diagonally-backward
right, diagonally-forward right, forward, diagonally-forward
left, diagonally-backward left, and backward neighbor cells
of pi with respect to the direction of travel (from pt−1 to pt);
that is, a6 = ct (pt−1). Then according to the rule (k, a) =
δ(a1, a2, a3, a4, a5, a6), the Turedo transitions to the global
state (ct+1, pt+1) unless it is blocked (defined as done in
Definition 1), where ct+1(pt) = a and ct+1(q) = ct (q) for
all q ∈ Z

2\{p}, pt+1 = pt + ρk
π/3(

−−−−→pt pt−1).

The stateless track-up Turedo is similar in dynamics to
oritatami. An input Turedo to the Turedo-to-oritatami com-
piler is expected to be stateless, track-up, and with radius 1
(though, technically speaking, being stateless is dispensable
as noted above). The compiled oritatami system folds each
period of its transcript into a macrocell that simulates one
transition of the input Turedo. The macrocell reads the states

123

Programmable single-stranded... 569

of the neighboring macrocells, which are written in binary,
weighs the bits read, and sums them up in a uniquely decod-
ablemanner. It is highly non-trivial in oritatami to implement
a mechanism to take the weighted-sum of integral inputs but
in Turedo the mechanism can be programmed in a straight-
forward manner in the lookup table. Hence, here we present
an example track-up Turedo as if it would rather explicitly
take a weighted-sum of bits read from the adjacent cells as
a table reference key in order to give an idea of how the
oritatami macrocell works.

Example 2 (Sierpinski triangle by aTuredo)Self-assembly
of self-similar fractals has been intensively investigated in
molecular programming. Based on the abstract tile assembly
model (aTAM), Rothemund, Papadakis, and Winfree pro-
grammed “white and black” DNA tiles that assemble into a
discrete Sierpinski triangle as a pattern in-vitro (Rothemund
et al. 2004). Lathrop, Lutz, and Summers proved that it is
impossible to assemble this fractal more strictly as a shape,
that is, on condition that wherever colered in white in the
pattern is rather not to be visited. They then demonstrated an
aTAM system that assembles rather a fibered Sierpinski tri-
angle, which has the same fractal dimension as the standard
one (Lathrop et al. 2009).

Let us introduce a track-up, stateless, radius-1 Turedo that
assembles a discrete Sierpinski triangle on the hex grid. This
Turedo employs the alphabet A = {(0, 0, 0), (1, 0, 0), (1, 0,
1), (1, 1, 0)}, where (0, 0, 0) is reserved as the blank sym-
bol ⊥, whereas among the other three non-blank symbols,
the two with the first two bits being (1, 0) should be inter-
preted as black while the other one should be interpreted
as white; hence, hereafter, we rather denote this alphabet as
A = {⊥, (•, 0), (•, 1), (◦, 0)}. It starts from a global state
with all the cells labeled with the blank symbol except the
one at the origin (the top cell in Fig. 5 (right)), which is
labeledwith (•, 0). Its head sweeps the region bounded by the−→
SW- and

−→
SE-axes in a zigzag manner. During zigs and zags,

it colors the current cell by (◦, 0) or by (•, 0), depeding on
whether the two cells above are the same in color or not.
Along the border, which is colored in black, it makes a U-
turn downward.

Let us explain its technicalities. As noted above, this
Turedo labels cells with a triple of 3 bits c1, c0, s ∈ {0, 1},
where the first 2-bits (c1, c0) represent the color of the cell
as ◦ = (1, 1), • = (1, 0), and (0, 0) being uncolored, and
hence, we call them color bits, while the LSB s is set to
1 as a signal to start a U-turn along the right border of
the triangle; we call it a state bit. Its head reads the 3-bit
labels of the surrounding 6 cells, weighs them according to
the weights shown in Fig. 5 (Left), and sums them up to a
key to refer to its lookup table δ : {0, 1, 2, 3, 4, 5, 7, 8} →
{1, 2, 3, 4, 5} × {(•, 0), (•, 1), (◦, 0)}. If (c1, c0, s) is read
from diagonally-backward left (northeast in this figure) or

forward right (SW), which is weighed by (1, 1, 0), it con-
tributes to the key by 1×c1+1×c0+0×s = c1+c0, while
if it is read from diagonally-forward left (SE) or backward
right (NW), which is weighed by (3, 3, 0), its contribution is
by 3× c1 + 3× c0 + 0× s = 3(c1 + c0); in these cases, the
state bit is thus ignored. If it is read from the back (north), it
is weighted-summed as 0× c1 + 0× c0 + 2× s = 2s; in this
case, the color bits are thus ignored.Therefore, each cell reads
only the state bit from its predecessor and only color bits from
the others. Being labeled with (0, 0, 0), no blank neighbor
contributes to this key. Since this Turedo is not expected to
collide head-on with a visited cell, the corresponding weight
(south) is set to (0, 0, 0). All the environments that this Turedo
can encounter are illustrated in Fig. 6 and the corresponding
transitions are:

δ(0) = (5, (•, 0))

δ(1) = (2, (•, 1))

δ(2) = (1, (•, 0))

δ(3) = (3, (•, 0))

δ(4), δ(8) = (3, (◦, 0))

δ(5), δ(7) = (3, (•, 0)) (2)

During the left and right U-turns, the Turedo encounters
exactly the same environment, where nothing but the previ-
ous cell is at distance 1; it is the state bit that enables the
system to distinguish these two kinds of U-turns by having
set the state bit of the previous cell to 1 for turns along the
right border (the bottom-leftmost case in Fig. 6).

3.1 Turedo-to-oritatami compiler (Pchelina et al.
2022)

The compiler developed by Pchelina et al. (2022) trans-
lates a stateless track-up Turedo with radius 1 over an
alphabet A to a deterministic oritatami system at delay
3 and of period O(|A|6 log |A|). The compiled oritatami
system intrinsically simulates the Turedo, that is, behaves
as the Turedo does modulo scaling, by simulating each
Turedo hex cell by a hexagonal “macrocell” of side length
O(|A|3 log |A|). The macrocell encodes in binary a symbol
in A written on a simulated Turedo cell along its macrosides;
00 · · · 0︸ ︷︷ ︸
�log |A|�

is reserved for the blank symbol ⊥. Each period of

the transcript folds into a macrocell through the following
five phases (see Fig. 7):

1. Scaffold layer
2. Read layer
3. Write layer
4. Speedbump
5. Exit layer.

123

570 Y. Kihara, S. Seki

Fig. 5 The Sierpinski triangle
self-assembles from the track-up
Turedo with radius 1 in
Example 2. (Left) Weights that
the Turedo uses to compute an
integral key from the 3-bit labels
(c1, c0, s) of the possibly-empty
6 neighboring cells to refer to its
own lookup table, which is in
Fig. 6. (Right) The first 18
transitions of this Turedo,
starting from the initial
configuration all of whose cells
but the one at the top in this
figure are blank

(0, 0, 2)

(1, 1, 0)

(3
, 3
, 0
)

(0, 0, 0)

(1, 1, 0)

(3
, 3
, 0
)

(•, 0)

(•, 0) (•, 1)

(•, 0)(◦, 0)(•, 0)

(•, 0) (•, 0) (•, 0) (•, 1)

(•, 0)(◦, 0)(◦, 0)(◦, 0)(•, 0)

(•, 0) (•, 0) (◦, 0)

Fig. 6 All the environments that
the Sierpinski-triangle Turedo
can encounter and the
corresponding transitions; each
of those in the second row is
nothing but the horizontal
reflection of the one above,
though. Any neighbor with
nothing written is supposed not
to have been visited yet, that is,
to be labeled with (0, 0, 0). The
sum noted below each
environment is computed by
weighing integral labels of the
adjacent cells (⊥ as 0, • as 1,
and ◦ as 2) and used as a key to
refer to the transition function
(2)

×1 ×3

×2
0

×1 ×3

×2
0

×1 ×3

×2
0

×1 ×3

×2
0

◦ ◦
(◦, 0)

sum = 8

◦ •
(•, 0)

sum = 5

• ◦
(•, 0)

sum = 7

• •
(◦, 0)

sum = 4

×3 ×1

×2
0

×3 ×1

×2
0

×3 ×1

×2
0

×3 ×1

×2
0

◦ ◦
(◦, 0)

sum = 8

◦ •
(•, 0)

sum = 5

• ◦
(•, 0)

sum = 7

• •
(◦, 0)

sum = 4

(•, 1) (•, 0) (•, 0) (•, 0)
×1

×2

×2 ×3

×2

×2
•

0

sum = 1

1

sum = 2

•
0

sum = 3

0

sum = 0

Fig. 7 Folding of a macrocell in the oritatami system translated by the compiler (Pchelina et al. 2022) from a radius-1 Turedo

123

Programmable single-stranded... 571

Fig. 8 Straight speedbump developed to simulate a 1D cellular automa-
ton in oritatami at delay 2 (Pchelina et al. 2020). The “car” transcript
folds from right to left over the smooth (blue) and bumpy (pink) ground.
(Top) With no offset, the car stretches entirely straight, with blue over

blue and red over red. (Bottom) Being pushed leftward by an offset
(12 in this case), the car hits the brake with the offset divided by half
whenever its blue sequence goes over the bumpy ground

Throughout the explanation, the previous macrocell is
assumed to be the north of the current one, and the
(macro)sides of the current one are indexed as 0, 1, 2, 3,
4, and 5 counter-clockwise (CCW), starting from the north-
west; that is, the side 5 points to where the system has come.

The Scaffold layer folds clockwise (CW) from the north to
the northwest into a macroscopically-hexagonal core of the
macrocell in a hardcoded manner and underpins succeeding
computations. The succeeding three layers (Read,Write, and
Exit) wrap around this core one over another CCW, CW, and
CCW, respectively. The scaffolds of adjacent cells must be
distanced even at the nearest by 6 lattice points to accom-
modate these layers as SRWE|EWRS. Macrocells are actually
lumpy, and they get as close as 6 points between only for bit
I/O; that is, a bit is written on the top of a hilly structure. By
the way, the Scaffold layer was designed by using a library
of structural motifs with a unified interface called scaffold
builder (see Sect. 4.3).

The Read layer folds CCW from the northwest to the
north, and then the Write layer folds back CW to the
northwest. The Read layer reads a symbol in A written
in binary along the side of each neighboring macrocell, if
any, or �log |A|� 0’s otherwise, from the LSB as an input
(wNW,wSW,wS,wSE,wNE,wN) for wNW,wSW,wS,wSE,

wNE,wN ∈ {0, 1}�log |A|� CCW starting from the north-
western neighbor, and takes their weighted sum by simply
concatenating them into wNwNEwSEwSwSWwNW as done in
(Pchelina et al. 2022) or in another ad-hoc manner like
the one in Example 2. The resulting sum offsets the suc-
ceeding transcript, that is, pushes it forward. Lookup tables,
which are hardcoded along theWrite layer as a folding meter
(Sect. 3.1.1), thus shift and expose their entries referred by
the input at the points where they are supposed to be read
later by another macrocell, expressing the symbol written
and specifying from which side to exit. After the offset is
absorbed entirely through the speedbump, which we shall
explain next, the Exit layer faithfully folds along the Write
layer until the exiting signal where the rest of the period for
this macrocell is absorbed before exiting.

The offset is no longer in use after shifting the lookup
tables, that is, by the end of the Write layer. The speedbump

module was developed in Pchelina et al. (2020) for the offset-
based I/O in oritatami in order to cancel out all the expected
offsets. It consists of a “ground” and “car” (see Fig. 8). First,
the ground folds from left to right, resulting in an alternation
of flat (blue) and bumpy (pink) grounds, getting doubled in
length at every alternation. The “car,” which folds later from
right to left, is colored alike so that with no offset, its color
pattern matches completely the color pattern on the ground,
leaving nobumpas shown in the top of Fig. 8.With a non-zero
offset, the car is pushed forward (leftward), forcing a blue
fragment to drive over a bumpy ground (pink) and halving
the offset. For example, Fig. 8 (bottom) depicts how the offset
12 decreases to 0 after driving over a logarithmic number of
bumpy surfaces as 12, 6, 3, 1, down to 0.

The longest bumpy ground on the speedbump is indeed
as long as the maximum offset expected. Since a macro-
cell is supposed to read at most 6 symbols of A in binary,
with a straight speedbump, its side would be as long as

O
((
2log�|A|�)6

)
= O(|A|6). With a bendable speedbump,

the offset can be absorbed much more compactly. A zigzag
speedbump has been developed in Pchelina et al. (2022) to
downsize the macrocell to the one half power; in fact, its side
is of length O(|A|3 · log |A|), where log |A| derives from that
number of lookup tables responsible for each output bit per
side.

Before introducing the folding meter, let us raise one
open problem (Open Problem 3-1). The proposed compiler is
implemented at delay 3, but could be done in principle even
at delay 2. Recall how far two adjacent macrocells are. The
boundary between them can be represented by the capitals of
their layers as SRWE|EWRS; that is to say, when one macro-
cell is to read the other, the boundary isSR··|EWRS. Note that
at delay δ, even a bead at distance δ + 1 can be “sensed” by
letting the most recently transcribed bead, that is, the one at
the tip of the nascent fragment bind to the bead, unless being
hindered geometrically. All of its other functional modules
seem modifiable so as to work at delay 2; for instance, the
straight speedbump (Pchelina et al. 2020) was implemented
at delay 2.

123

572 Y. Kihara, S. Seki

a100

a101

a102

a103 t0

t1

t2

a22

a23

a24

a25 b26

b27

b28

a49

a50

a51

t52

t53

t54

a55 a100

a101

a102

a103

t0

t1

t2

Fig. 9 Basic binding patterns of a folding meter

3.1.1 Folding meter

The compact macrocell must store 6�log |A|� + 5 lookup
tables of |A|6 entries (one table per output bit or exit-decision
bit), somehow inside and expose only the called entries out-
side. Folding meter (Pchelina et al. 2022) was developed for
this purpose, but it constituted all the computational mecha-
nisms except the speedbump in the end.

A folding meter consists of a sequence of period 104 as

−t0©−t1©−t2©−a3©− · · · −a25©−b26©−b27©−b28©−a29©− · · ·−a51© →
→ −t52©−t53©−t54©−a55©− · · ·−a77©−b78©−b79©−b80©−a81©− · · ·−a103© →

The period is partitioned into the quarters (of length 26)
at t0, b26, t52, and b78, respectively. Let us call them
storage units, and more particularly, the first and third t-
type and the second and fourth b-type. A rule is designed in
such a way that

1. the folding meter traces any surface as long as every
nascent fragment (of length δ = 3) can form 6 bonds,
as shown in Fig. 9 (left);

2. t-type and b-type storage units are capable of fold-
ing back to their previous storage unit being initiated
by their first three beads (t0-t1-t2, t52-t53-t54,
b26-b27-b28, b78-b79-b80) forming 5 and 4 bonds,
respectively, as illustrated in Fig. 9 (center, right); and

3. they never fold back anywhere else.

These basic properties enable a folding meter to be stored
compactly in a box with u-turns at the top by t-type storage
units while those at the bottom by b-type ones, as exemplified
in Fig. 10, where a folding meter of theWrite layer folds into
switchbacks inside a write pocket.

The write pocket consists of a folding meter with |A|6
storage units on the Write layer and a box of size O(|A|3) ×

O(|A|3) that has been founded by the Scaffold layer and
traced by the Read layer. The Read layer is in fact made
entirely of a folding meter, and hence, of period 104. For
ease in implementation, the folding meters of the Read and
Write layers share no bead type with each other, as their
bead types are distinguished by their initials W and R (see
Fig. 10). The Read layer has shifted dependently on an input
and pushed the Write layer forward, but the offset is guar-
anteed to be a multiple of 52 by the bit-reading mechanism.
This means that no matter what was input, every bead of the
Write folding meter faces the same bead types of the Read
folding meter, modulo 52. The binding rule can be hence
orthogonalized between these folding meters and spares a
considerable amount of room to program functions that can
be called by de-synchronizing these meters.

De-synchronization and re-synchronization between the
Write and Read folding meters enable a macrocell to store
lookup tables compactly in write pockets and to write a 1-
bit geometrically at the top of a mountainous bit I/O site.
See Fig. 10. An appendix at the bottom of the left wall of
the box traps a portion of the Read layer and shall cause a
de-synchronization when the Write layer would have been
tracing the Read layer along the wall down to that point.
As long as the nascent fragment at the de-synchronization
is either −b26©−b27©−b28© or −b78©−b79©−b80©, it stably folds back
upward, thus initiating the first switchback. Once back to the
top of the box, the folding meter is already far enough from
the Read layer to be attracted, and hence, it folds afterward
into as many switchbacks as the width of the box until it gets
re-synchronized with the Read layer on the opposite side of
the box.Aboxof sizeO(|A|3)×O(|A|3) thus accommodates
the whole lookup table for one bit.

Geometrical bit writing is also programmed outside the
diagonal. A bit I/O site consists of a mountain and de-
synchrozing and re-synchrozing holes respectively at its
left and right bases, sandwiched by two write pockets. The
lookup table for this bit is accommodated in these pockets,
slides between them according to an offset like a movie film
on the classical two-reel projector (though inside a box it
folds into switchbacks rather than being reeled), and exposes
the table entry called by the offset at the summit. Bits must
be expressed geometrically. This is because a side is not
always covered by the Exit layer. Recall that the Exit layer is
designed so as to fold CCW from the northwest after an off-
set being absorbed through the speedbump, and hence, given
an input on which the simulated Turedo is to exit southward,
for instance, neither the southeast nor northeast side is cov-
ered, but for another input, they may be. No matter whether
being covered by the Exit layer or not, bits must be readable
by a hardcoded mechanism (it should be uncomputable in
Turedo how the facing cell has transitioned). The following
three conformations are programmed in each of the |A|6 stor-
age units of this table: two bumps (1) at the summit, (2) on

123

Programmable single-stranded... 573

Fig. 10 A write pocket. The
Scaffold, Read, Write, and Exit
layers overlap one after another
outside the pocket. A write
folding meter folds from left to
right, traces the Read layer as
long as they are synchronized,
that is, up to the appendix at the
bottom of the pocket’s left wall,
which traps a small portion of
the Read layer for
de-synchronization, and then
folds into switchbacks

the right base, or (3) on the left base. The bumps in the first
conformation directly attract a bit-reading probe, which we
shall explain in the next paragraph, in case of the bit not being
covered by the Exit layer, while those in the second confor-
mation slide the Exit layer so as to expose specific beads on
the summit that attract the probe. These thus amount to writ-
ing 1 while the third one is to write 0. Note that we know in
advance in which way each 1 entry should be programmed.

Folding meters are utilized not only to write a bit but also
to read it. A read pocket is positioned in face of the summit of
themountain where a bit is written. The read pocket is almost
a carbon copy of the write pocket; inside a box made by the
Scaffold layer, the Read layer is to fold into switchbacks
unconditionally. Both its first half period (from t0 to a51)
and second one are endowed with the capability to fold into a
glider-like conformation by being attracted to the beads that

encode 1 in order to jump over a read pocket. Without such
beads, that is, when either 0 is written or no macrocell is
adjacent, the Read layer rather falls into the write pocket and
folds into as many switchbacks as the width of the pocket.
The difference in length between these two folding pathways
amounts to an offset, which is proportional to the pocket
capacity.

Last but not the least, it is the foldingmeter that enables the
macrocell to exit from an arbitrary side. The Exit layer must
be at least 4 times as long as a side of themacrocell in order to
wrap around the macrocell from the northwest corner to the
northeast side. Therefore, when exiting earlier, the remaining
portion of the Exit layer must be accommodated somehow
along the side (or somewhere earlier, though this option was
not chosen). The Exit layer is hence implemented as a folding
meter as a whole. Every side of the macrocell but the north

123

574 Y. Kihara, S. Seki

one is provided with an exit pocket, which consists of a box
and a lookup table on the Write layer like the write pocket.
The box is provided with an outer corner at the bottom of its
right wall, which we call an exiting corner, and the lookup
table is to inform the Exit layer of which side to exit from.
The lookup table slides along the contour of the box and
positions its entry called around the exiting corner. The Exit
layer, which traces the contour of the box, is peeled off from
the layer below and initiates switchbacks, not by being de-
synchronized as done in the write pocket but by a bead of
specific type that attracts the fragments −b26©−b27©−b28© and
−b78©−b79©−b80© moderately to let them fold back but only at an
outer corner. The lookup table is programmed by modifying
each storage unit by replacing its bead that can be positioned
at the exiting corner by a bead of this mildly-attractive type if
on the corresponding input, the simulated Turedo is supposed
to exit from this side. Being thus peeled off, the remaining
whole portion of the current period folds into switchbacks
inside the box and then exits from the side to start the next
macrocell. Otherwise, it keeps tracing the contour and go for
the next side.

Open problems

3-1 Can we modify the compiler so that the translated ori-
tatami system operates rather at delay 2? (Page 9)

3-2 Expand the Turedo-to-oritatami compiler for Turedos
with longer radii than 1, or prove that it is impossible
to intrinsically simulate such a Turedo in oritatami.

4 Single-stranded architectures for
computing

The Turedo-to-oritatami compiler outlined in Sect. 3 has
drastically facilitated oritatami programming as exempli-
fied by the Sierpinski triangle assembler (Example 2) and
a clockwise walker, which is a track-up Turedo that faith-
fully follows the right “wall” of visited cells (Pchelina et al.
2022). In particular, clockwise walkers are a promising can-
didate for the first wetlab implementation of a computational
system driven by RNA co-transcriptional folding because as
long as going around something convex, only two kinds of
move are needed: going straight and diagonally turning for-
ward right. However, being thus compiled from a Turedo, the
resulting oritatami system comes nowhere near the wetlab
realization as it operates only at delay 3 and requires maxi-
mum (inexhaustible) arity and as many as 1735 bead types
according to the current implementation of the compiler as of
August 2023. The wetlab realization of computations driven

by RNA co-transcriptional folding requires such a compiler
to spare as many bead types as possible, or otherwise encour-
ages us to drop the idea of using high-level programming
languages and rather to program an oritatami system directly.
Two oritatami clockwise walkers, shown in Fig. 11, were
hence programmed from scratch. Practical compilers highly
probably require novel architectures for computing.

In this section, we overview single-stranded architectures
for computing in oritatami implemented so far with empha-
sis on a modular approach in programming and modules
involved.Nucleic acid structures have been successfully built
up by modularly combining small motifs (see, e.g., Jaeger
and Chworos 2006). A modular approach in oritatami pro-
gramming is to factorize a transcript semantically so as for
each factor (infix) to play relatively simple roles such as

• processing a few bits of information (logic gate, half-
adder, etc.),

• information propagation (wire),
• guiding the transcript physically towards a specific direc-
tion (90-degrees turn, U-turn, etc.), and

• providing a scaffold for succeeding computations.

One module could be rather scattered along the transcript,
but such a deconcentrated module would severely limit the
freedom in the design of a directed path along which the
transcript folds (foldingpathway) andpotentially entail unde-
sirable long distance interaction.

Modules can be either hardcoded or computational. Tur-
ing universal computations in oritatami (Geary et al. 2018;
Pchelina et al. 2022) are sustained by a scaffold composed of
structural modules each of which hardcodes a unique shape
like a line and a turn (for details, see Sect. 4.3); cf. the fact
that the first Turing universal oritatami system (Geary et al.
2018) is free from such a hardcoded scaffold as all of its
modules serve as a scaffold for the succeeding computation.
In contrast to structural modules, computational modules
fold differently in different environments. Half-adders, the
proof-of-concept oritatami module, fold macroscopically
into one shape but microscopically into one of the 4 pos-
sible (intramodular) pathways depending on the values of
their 2-bits input as shown in Fig. 12.

4.1 Algorithmic design of modules in oritatami

Modular programming in oritatami is encouraged also from
the algorithmic viewpoint by a particular affinity of the incre-
mental feature of co-transcriptional folding with dynamic
programming. A problem to design a deterministic oritatami
system has been formulated as follows:

123

Programmable single-stranded... 575

Fig. 11 Oritatami clockwise walkers (left) at delay 2 and of period 14
and (right) at delay 3 and of period 37. They merely check whether
there is a wall diagonally forward right or not. For instance, a period

of the system on the right consists of a right-wall sensor (colored in
blue, of length 10), which admits two conformations, and a hardcoded
structural motif (colored in red, of length 27)

Fig. 12 The latest design of a half-adder in oritatami, whose transcript
is of length 12, colored in red (Fazekas et al. 2022). Unlike the previ-
ous half-adders (Geary et al. 2019; Maruyama and Seki 2021; Masuda
et al. 2018), the self-supportive glider motif (3rd and 4th) enables the

1-bit input from above to be encoded as whether a specific sequence
of bead types is above (0) or nothing is there (1). Carry is fed as done
conventionally as the height of the first bead (of type H0), top for not
being carried (1st and 3rd) and bottom for being carried (2nd and 4th)

Problem 1 (Module Design Problem (Geary et al. 2016,
2019))

Given

• length n ≥ 1 of the transcript of an oritatami system to
be designed,

• two disjoint sets B and {1, 2, . . . , n} of bead types,
• delay δ ≥ 1,
• arity α ≥ 1, and
• a set of k pairs {(σ1, P1), (σ2, P2), . . . , (σk, Pk)}of a seed
over B and an extension of its directed path by n lattice
points in a non-self-crossing manner (folding pathway),

output a rule with which an oritatami system at delay δ with
arity α folds the transcript w = 1©− 2©− · · · − n© determin-
istically upon the seed σi along Pi for every 1 ≤ i ≤ k.

Geary et al. (2016, 2019) have proposed an algorithm
to solve Problem 1 with the promise that arity α be max-
imum (see Open Problem 4-1). It runs in time O(n ·
5δ23k(δ

3+δ2+4δ+1)) and in space O(n · δ223k(δ
3+δ2+4δ+1)).

These complexities motivate us to build up a system from

a small (in n) and monofunctional (small k) components,
matchingperfectlywith the spirit ofmodular programmingas
long as a sufficient number of bead types are available. Note
that the algorithm supposes the inertial dynamics, which has
not been examined after its proposal in Geary et al. (2016),
Geary et al. (2019). It should be modified so as to function
in the oblivious dynamics (Open problem 4-2).

This algorithm requires the transcript to be programmable
in the sense that its bead types are pairwise-distinct and never
appear on a seed. In fact, if a transcript is specified rather
as input, the algorithm cannot run even polynomially in n
unless P = NP. The resulting rule set design problem is
known to be NP-hard in n even for k = 1 except in the
following two cases (1) delay is 1 and (2) delay is 2 and arity
is 1 (Ota and Seki 2017). This problem is proved there to
remain as hard even if configurations are rather given, which
tell not only how the transcript should fold but also how
its beads should bind. This is due to the so-called phantom
bond, which forms only intermittently in order to stabilize a
bead but does not remain in the product. The NP-hardness for
k = 1 means that it is not trivial even to hardcode something
which involves more beads than the bead types available. As

123

576 Y. Kihara, S. Seki

arbitrarily-large macrocells are indispensable for the Turing-
universal simulations in oritatami in Pchelina et al. (2022,
2020), their scaffolds have been modularized. The scaffold
builder (Pchelina et al. 2022) provides a library of structural
motifs with a unified interface (see Sect. 4.3).

With the wetlab experiments in mind, the assumed
pairwise-distinctness of bead types gets hardly justified even
though beads can represent an oligonucleotide or even some-
thing larger. Then the module design problem should be
formulated rather as: with a rule R rather given as input
together with an alphabet �, delay δ, arity, a seed σ , and
a target conformation C , how can we sequentially combine
beads of a small number of types such that starting fromσ , the
resulting transcript deterministically folds intoC . Han, Kim,
and Seki have thus formulated the transcript design problem
(TDP) and particularly investigated its sub-problem where
a given rule is guaranteed to be complementary (Han et al.
2020). They proved that the complementary TDP (CTDP) is
NP-hard even if (1) |R| = 2 but delay δ is not bounded, or
(2) |�| = 6, δ = 3, and |R| = 3. The latter NP-hardness was
obtained by reducing an instance of the planar 3-coloring
problem, which is known to be NP-hard even on the square
grid as a planar graph of n vertices can be embedded in a
square grid graph of size O(n2) (Geary and Johnson 1979;
Harel and Sardas 1998), into a glider-based zigzag folding
pathway. It can be easily adapted to delays larger than 3 by
making gliders in the folding pathway taller, but not to 2 or
1. This problem is known to be solvable in polynomial time
only under the very strict condition that |R| = 1, δ = 1,
and α is either 1 or at least 4; an algorithm that solves this
problem under this condition in linear time in the length of
transcript is given in (Han et al. 2020) (Open Problem 4-3).

4.2 Oritatami design process

Oritatami is a lower-level programming language for co-
transcriptional folding than Turedo. Programming in ori-
tatami is not yet something that one can do just for fun
from the comfort of one’s living room. It has been hardly
automated; in fact, the module-design algorithm (Sect. 4.1)
is the only algorithm available so far. Oritatami systems are
being designed fundamentally by hand. In order to solve a
computational task, oritatami engineers must contemplate
the following general problems, possibly along with task-
specific technicalities:

1. (Modularization) What kinds of modules are neces-
sary/sufficient to solve the task?

2. (Circuit layout) How should these modules be deployed
on the reaction surface, that is, on the 2D plane in the
current oritatami model?

3. (Folding pathway design) How should these modules be
traversed?

4. (Module implementation) How should these modules be
implemented?

These numbers do not suggest any sequential order of engi-
neering but are merely for references. Oritatami design is
rather a cycle of solving these problems repeatedly based on
the feedback from previous trials while untangling the web
of mutual dependence and conflicts among various design
criteria like

Cr-1 A module should expect as few environments as possi-
ble for the sake of algorithmic module implementation
(see Sect. 4.1);

Cr-2 Instances of eachmodule should be deployed at regular
intervals;

Cr-3 Two instances of the same module should not be adja-
cent.

The number, k, of environments in Cr-1 translates directly
to the running time of the module design algorithm men-
tioned in Sect. 4.1 as its time complexity involves the factor(
23(δ

3+δ2+4δ+1)
)k . It should hence be as small as the theo-

retical lower-bound, that is, the minimum number of inputs
for this module to operate. Being deployed regularly, as con-
cerned inCr-2,modules can be programmed compactly along
the transcript. As for Cr-3, it enables us to orthogonalize the
so-called inter-modular rules from intra-modular ones. With
two instances of A next to each other, modifying a rule intra-
modularly, that is, to help an instance fold into a specific
conformation, may prevent these instances from interacting
as expected inter-modularly, and vice versa. In addition, it
is not until this criterion is satisfied that the module design
algorithm can be applied.

Once Cr-3 is met, it suffices to design a set of folding path-
ways for each module, with which the algorithm in Sect. 4.1
yields the module (or says these pathways are not compatible
with each other in one module). These pathways must be dis-
tinct enough to let the succeeding computation knowwhat the
module has computed. This intra-modular folding pathway
design has been done manually but became much less labo-
rious nowadays thanks to the glider motif. The glider motif
is self-standing but made of few enough bonds to remain
plastic to serve as a default conformation of a functional
module, as exemplified in the latest implementation of a
half-adder (Fig. 12), two of whose four conformations are
a glider and its upside-down. Their plasticity was utilized
already in the first Turing-universal oritatami system (Geary
et al. 2018). Bit-width expansion in an oritatami counter
(Maruyama and Seki 2021) should illustrate better how pow-
erful gliders are. No matter how large the seed to begin with,
a zigzag counter eventually overflows, when it cannot rely
on the pre-built “ceiling.” All the modules of the counter

123

Programmable single-stranded... 577

Fig. 13 Deployment of half-adders and wires for a circuit to count in
binary and sequential “zigzag” assembly of the circuit in the aTAM
(Rothemund and Winfree 2000) and in oritatami (Geary et al. 2016,
2019; Maruyama and Seki 2021). The half-adder takes binary inputs x
and y and outputs s = x ⊕ y and c = x ∧ y (carry)

proposed in Maruyama and Seki (2021) are glider-based and
fold into a glider under the open sky. Thus, as illustrated in
Fig. 14, one whole period (pink, purple, green, and orange)
of the transcript folds into a glider at an overflow. The next
period does not keep proceeding forward but rather turns
back because a signal to have the pink module fold into the
left-turn conformation, F27-F26-F21, gets exposed along
the previous orange glider, which is usually hidden beneath
the ceiling sterically; in Fig. 14, both of the instances are
surrounded by a rectangle and magnified.

4.2.1 Case study: binary counter in oritatami

Let us see how the fixed bit-width binary counter has been
designed as a proof-of-concept demonstration of the ori-
tatami model (Geary et al. 2016). It is based on the zigzag
binary counter in the aTAM (see, e.g., Rothemund and Win-
free 2000), which is designed so as to self-assemble in a
sequential manner, in spite of intrinsic parallelism to the
aTAM. The aTAM counter increments by 1 in every zig (←)
and the incremented count is propagated across the succeed-
ing zag (→) to the next zig. It saved the designers of the
oritatami counter from contemplating the first two problems,
modularization and deployment, to a considerable extent, by
suggesting to modularize the counter into half-adders (how

else, though), and then how to deploy them and traverse them
as shown in Fig. 13.

In programming an aTAM system, or more generally, in a
model of self-assembly by molecular aggregation, it suffices
at this stage of system design to implement DNA tiles that
play a role of each module. Here we do not mean that with a
circuit layout, the aTAM programming would be straightfor-
ward; it is in fact NP-hard to design a system in the aTAM that
yields a given planar circuit layout out of at most given num-
ber of tile types even if the layout is composed of only two
types of components (Kari et al. 2017). In the aTAM, how-
ever, at least it does not really matter, and actually should
not matter, in what order tiles (modules) attach to a half-
built circuit unless causality is violated. The order in which
modules are synthesized does matter in programming co-
transcriptional folding. Fortunately, the aTAM counter even
suggests a folding pathway. Indeed, every reachable config-
uration of it admits at most one site at which a tile can attach;
that is, the tile attachment proceeds as if tiles were “tran-
scribed” sequentially one by one and the “transcript” of tiles
folded into zigzags. (This is, of course, no more than an anal-
ogy; a series of tile attachments cannot be pre-programmed
as an attaching tile at each site may vary in type depending
on the initial count.)

The resulting layout, however, does not deploy the half-
adders regularly enough in the sense that as long as the
transcript is to fold as suggested and the module that incre-
ments the count by 1 in a zig is different from the one for
propagation in a zag, its period cannot be shorter than the
length of one zigzag, and such a transcript can handle only
inputs of specific width in bits. Note that without being car-
ried (y = 0), a half-adder merely outputs its input x as
s = x ⊕ y. By letting half-adders serve as a vertical wire
in this way, the period can get as short as one half-adder and
one wire.

“Pillars of half-adders,” which result from this substitu-
tion, violate Cr-3 and prevent the module design algorithm
from being applied. This problem has been solved by a
technique called doppelgänger. In a nutshell, making a dop-
pelgänger of a module A in an oritatami system means to
“prime” each bead type occurring in the transcript of A as
a → a′ and to augment the original rule with its A-primed
version, which is obtained from the rule by priming all the
occurrences of bead types included in A. Needless to say,
doppelgänger costs more bead types and longer period of the
transcript.

The transcript of the fixed bit-width binary counter is
of period 60 as 0©− 1©− · · · − 59©, which consists of a
half-adder H = 0©− 1©− · · · − 11©, its doppelgänger D =
30©− 31©− · · · − 41©, and the other two factors L = 12©−
13©− · · ·− 29© and R = 42©− 43©− · · · − 59© called an L-turner
and an R-turner, respectively. A period folds into a linear
structure of width 20 and height 3 except at the end of a zig

123

578 Y. Kihara, S. Seki

Table 2 Binary counters in
oritatami.

δ α |�| Period Dynamics At overflow

Geary et al. (2019, 2016) 4 ∞ 60 60 Inertial undefined

Maruyama and Seki (2021) 3 ∞ 132 132 Oblivious Bit expansion

Iwano (2023) 3 ∞ 894 1494 Oblivious Undefined

The columns δ,α, and |�| represent delay, arity, and alphabet size (the number of bead types used), respectively,
where α = ∞ means that in the corresponding system, a bead can form a bond no matter how many bonds
it has already formed. Note that the most recent one (Iwano 2023) has not been optimized yet; hence the
numbers in the corresponding row are highly unlikely minimum

and a zag, where an L-turner and an R-turner take a special
conformation to guide the transcript to the next zig and zag,
respectively. The half-adder folds into one of four possible
conformations in a zig, depending on a 1-bit input x , which
is given as to whether it folds below a specific sequence of
bead types (x = 0) or not (x = 1), and a carry-in y, which
is given as to whether it starts folding at the top (y = 0) or
at the bottom (y = 1) of the zig, and outputs s = x ⊕ y as a
sequence of four bead types exposed below while the carry-
out c = x ∧ y is 1 if and only if the last bead is stabilized
at the bottom; see Fig. 12, which illustrates a more recent
half-adder but serves our purpose here as this I/O principle
had been inherited through the oritatami binary counters until
the shift-based counter by Iwano (2023) (unpublished yet).
L- and R-turners propagate a 1-bit carry from a half-adder
to the next half-adder by folding into a glider of even length,
which starts and ends along the same side, during zigs and
zags (though in zags, carry is always 0). At the ends of a
zig and a zag, they rather fold into another conformation for
U-turn, respectively. An L-turner is informed of being at the
end of a zig from the L-turner above, which has also folded
into a U-turn conformation and exposed some signal below,
and so is an R-turner from the R-turner above. In order to
make sure that an L-turner is transcribed at the left end, the
bit-width must be set to an odd integer as illustrated below,
where 4.5 periods (HLDRHLDRHLDRHLDRHL) fold into one
and half zigzag in a 3bit-wide oritatami binary counter:

� H R D L H

�

L�

D R H L D

�

R

� H R D L H

�

L

(See also Fig. 14, where H is colored in red, L in pink,
D in blue, and R in green.) H and D modules function as a
half-adder in a zig whereas they merely propagate a 1-bit
downward in a zag as designed in Fig. 13. Note that one
period of this counter can handle two bits. In some of the
more recent counters in oritatami, which shall be introduced
in the next paragraph, half-adders encounter a larger number

of environments, and hence, D’s are replaced by a module
dedicated for the vertical 1-bit propagation; as a result, their
period can handle only 1-bit.

Counting in binary is the most well-studied computation
in oritatami so far; the binary counter explained above has
beenmodified or extended functionally, and served as a com-
ponent of larger-scale oritatami systems (Fazekas et al. 2022;
Iwano 2023; Maruyama and Seki 2021; Masuda et al. 2018).
Hence, it might be worthy of introducing them briefly (see
also Table 2).

Binary counters went through three principal functional
expansions. Firstly, the counter was modified so as to work
under the oblivious dynamics towards self-assembly of the
approximatedHeighway dragon fractal (Masuda et al. 2018).
The resulting counter of widthm in bits was combined with a
4-state deterministic finite automaton (DFA) into an oritatami
system that folds into the first 2m turns of the fractal (Open
Problem 4-4).

It was then endowed with the capability of detecting
an overflow in order to widen by 1-bit at every overflow
for counting infinitely (Maruyama and Seki 2021) (Fig. 14).
The detectability also enables counters to trigger a phase
transition at an overflow. For example, an oritatami square
self-assembler (Fazekas et al. 2022) involves two phases and
thus transitions fromPhase 1 to Phase 2. Given n ≥ 1, it actu-
ally folds into the rectangle of size (wn + cw) × (hn + ch)
for some scale factors w and h, independent of n, and some
constants cw, ch (Open Problem 4-5). Upon a seed of length
O(log n) on which n is encoded (in �log n�-bits), it first
measures one side of the rectangle by counting in the con-
ventional zigzag manner until being overflowed, yielding a
thin rectangle of size O(log n)× (hn + ch). At the overflow,
it transitions into Phase 2, where it restarts counting from 0
perpendicularly to the long side of the thin rectangle, folding
in the zigzag manner until the target rectangle is completed.
In order to halt at the completion, it keeps tracking a diagonal
from the start. Recall that the capacity of a zig to propagate
a 1-bit of information is already used up to wire half-adders
for carry. How can the square assembler propagate one more
bit diagonally while counting?

A novel elastic glider motif (Fig. 15) is a solution. An
elastic glider of length 12� for � ≥ 1 is a glider that is capa-

123

Programmable single-stranded... 579

Fig. 14 Bit-expansion at an overflow in the binary counter proposed in
Maruyama and Seki (2021). One period consists of a half-adder (col-
ored in red), an L-turner (pink), a doppelgänger (blue), and an R-turner
(green). The last half-adder at the end of the second zig (←) ends at the
bottom, that is, with a carry. Thismeans that the counter has overflowed.
The ceiling is too far there for the next L-turner to make a U-turn (cf. the

L-turner above). This L-turner takes its default glider conformation and
so do the succeeding three modules D, R, and H of this period. The next
left-turner thus begins at the bottom, but thanks to the absence of the
zag above, it can now interact with the signal F27−F26−F21 exposed
along the glider conformation of H and folds into the alternative U-turn
conformation

Fig. 15 Three conformations of an elastic glider: (Top) an ordinary glider conformation; (Bottom) shrunk conformations that start at top and at
bottom, respectively, under a ceiling with beads of some specific types (here X1, X2, and X3)

ble of shrinking from its default ordinary “stretched” glider
conformation of width 4� and height 3 into another narrower-
but-taller glider-like conformation of width 2w and height 6
(its instance of � = 2 is colored in red in Fig. 15) by being
pulled upward by a sequence of three beads of special types.
Note that the sequence can be as short as 3 no matter how
large � is, and is still capable of shrinking the whole elastic
glider because the shrunk conformation of the unit (� = 1)
elastic glider pulls the next unit, if any, upward instead as
shown in Fig. 15. Furthermore, it serves the same purpose
even if the elastic glider is upside down. This means that an
elastic glider can shrink and propagate a 1-bit at the same
time independently. The square self-assembler makes use of
this capability. Its half-adder is composed of a tandem of two
instances, say Hd and Hnd, of an ordinary half-adder like the
one in Fig. 12 with two elastic gliders sandwiching them. Its
Hd and Hnd shift back and forth by making always one of
the elastic gliders be shrunk while the other be stretched in

order to ensure that its Hd is interlocked in the computation
if and only if it is on the diagonal. It thus tracks the diagonal.

Elastic gliders can really be a game changer. They have
certainly non-negligible potential for facilitating oritatami
engineering to such an extent in a year or two that even
novices become capable of programming large-scale sys-
tems after a fewmonths of learning basics. Iwano, a bachelor
student in our group, has indeed implemented a (fixed-bit
width) counter that propagates a carry unconventionally by
having its half-adder push the succeeding transcript forward
(Iwano 2023) exactly when its carry-out is 1 (Open Prob-
lem 4-6). As shifts can be superposed on top of each other (as
demonstrated in the shift-based Turing-universal simulations
Pchelina et al. 2022, 2020), this shift-based counter, or more
generally, shift-based computational modules would highly
likely be embeddable as a component of another shift-based
computation. Being implemented bymerely combining elas-
tic gliders, its half-adder was spared the laborious process of

123

580 Y. Kihara, S. Seki

Fig. 16 The basic
implementation of a half-adder
in the aTAM at temperature 2. A
tile is equipped with one
strength-1 glue per side (0 or 1)
and cannot rotate or flip. At the
temperature 2, it can attach only
if two or more of its glues match
with neighboring glues
(cooperative tile attachment)

designing from scratch a set of its intra-modular folding path-
ways like those in Fig. 12. To say the least, elastic glidersmay
soon eliminate the need for the module design algorithm or
intra-modular folding pathway design.

4.2.2 Limit of recycling system designs from the aTAM

Research on the aTAM is a goldmine ofwell-thought designs
as exemplified above. Events of tile attachment are so well-
ordered according to those designs that a surprisingly small
number of so-called tile-attachment pathways is actually pos-
sible, facilitating the theoretical analysis and verification.

Modularization in the aTAM might be however too
“coarse.” In the aTAM, a module with n-bit input can be, and
usually is, implemented as a set of 2n tile types,which encode
respective 2n possible inputs as glue types (half-adders are
a typical example for n = 2, see Fig. 16). These constituent
tiles compete for every position where this module is to be
deployed and those with matching inputs (i.e., glues) win.
Two such modules M1 and M2 can be even merged into one
by taking a direct product of every pair of a tile type from
M1 and a tile type from M2, letting multiple computations
run on top of another in parallel.

In contrast, an oritatami module is just one fragment of
a transcript. As the transcript is pre-programmed and can-
not be modified at run-time, the fragment has to handle all
the inputs expected, unless the system is designed so as
to change its order of visiting modules, though more than
one modular-level folding pathway has yet to be accommo-
dated in any oritatami system. In order to handle n bits, a
module has to be provided with a set of 2n intra-modular
folding pathways, which is however hardly accessible even
for n = 3. A larger number of bits have been hence handled
by larger-scale architectures such as binary counters (Geary
et al. 2016, 2019; Iwano 2023; Maruyama and Seki 2021),
finite automata (Han et al. 2021), multi-bit-width wires and
bifurcater (Masuda et al. 2018), and simulators of Turing-

universal models (Geary et al. 2018; Pchelina et al. 2022,
2020). It should be quite applicative to study systematically
how tomerge two simplemodules in a compactmanner. Sim-
ulating them simultaneously in a Turing-universal model and
emulating it further on one of the general-purpose simula-
tors is certainly a way but results in something humongous.
Elastic gliders and additivity of shifts make shift-based com-
putations a promising approach to this problem.

4.3 How to scaffold computations in oritatami?

All the functional modules of the zigzag oritatami counter
serve also as a scaffold for the computation in the next zig or
zag, as shown inFig. 14. That is also the case in the simulation
of skipping cyclic tag system (Geary et al. 2018), which self-
assembles the space-time diagram of a simulated skipping
cyclic tag system in a zigzag manner, and in the assembly
of a finite portion of Heighway dragon fractal (Masuda et al.
2018).

Macro-cells to simulate the 1D cellular automaton (Pche-
lina et al. 2020) or Turedo (Pchelina et al. 2022) are rather
sustained by a dedicated scaffold. For the Turedo simulation,
a library of structural motifs has been developed called scaf-
fold builder. It mainly consists of two types of line segment
motif, two types of obtuse turn motifs, and two types of acute
turn motifs, as shown in Fig. 17, which can be jointed arbi-
trarily as long as turns and line segments are alternated. As
of now, it operates exclusively at delay 3 but should be easily
modifiable for other delays. Its line segment motif is a repeti-
tion of S0−S1− · · ·−S7 or that of S10−S11− · · · −S17;
they are a doppelgänger of each other. These two types are
necessary for two line segments close to each other such
as those sandwiching an acute turn. Note that one side of
the resulting line segment is numbered oddly and the other
evenly. The two types of obtuse turn are dedicated towards
the “odd” side and “even” side of the preceding line segment,
respectively, and so are those of acute one. Four “cushion-in”

123

Programmable single-stranded... 581

Fig. 17 Structural motifs used
in the scaffold builder (Pchelina
et al. 2022): line-segment, two
types of obtuse turn oo0-3 and
eo0-3, respectively towards
the odd and even sides of the
preceding line segment, and
their acute variants oa0-3 and
ea0-3

bead types Ci0-3 let a line segment end arbitrarily to make
a turn. The cushion-out is always Co0-1 to start S0-7 seg-
ment or Co10-11 to start S10-17 segment because they
can be assumed to begin with S0 and with S10, respectively.
Even with this basic library, we can describe fairly complex
scaffolds, though the Turedo-to-oritatami compiler (Pchelina
et al. 2022) could not help but employ an extended library of
more complex motifs rigged by using dedicated bead types.

4.4 Towards the wet-lab implementation

Folding pathway design in oritatami addresses two essen-
tially different problems respectively at modular level and
beneath: that is, to determine in what order modules should
be traversed and to provide each module with a set of self-
avoiding directed paths along which the transcript of the
module is to fold. Neither of them has been studied sys-
tematically yet, though the second problem seems pretty
inconsequential in oritatami programming after usefulness
and applicability of elastic gliders have been witnessed in
Fazekas et al. (2022), Iwano (2023).We should not, however,
jump to this conclusion before observing what the oritatami
model fails to capture.

Geary et al. (2021) have revealed experimentally how
significantly the choice of co-transcriptional folding path-
way affects the yield of RNA origami tiles. Any co-
transcriptionally folded structure is underpinned primarily
by double helices, which staple two factors of a transcript
together. A double helix occurs at a factor uxθ(u) of a tran-
script by letting u and θ(u) base-pair in the nested manner
(the k-th base of u bonded with the k-th last base of θ(u) for
all 1 ≤ k ≤ |u|). The longer u is, the more stable this double
helix gets, whereas the longer x is, the less stable the helix
gets. Hence, in order for this double helix to be stabilized
even intermittently, x needs to be either short, when the helix
is closed as a hairpin-loop, or stapled by extra base-pairs

otherwise. In the latter case, the additional base-pairs eas-
ily confine u topologically and compel the RNA polymerase
to twine all the way around u backward while synthesiz-
ing θ(u). Bead-binding in oritatami is neither hindered thus
topologically nor favored; no matter how far they are along
the transcript, beads can bind as long as they have not used
up their capability of binding according to the arity (Open
Problem 4-7).

The class of oritatami systems suitable for wet-lab imple-
mentation should respect the properties of RNA. A system
should not waste any bead type or adopt an unnecessarily-
complex rule. It may have to be modified so as to fit certain
criteria. Simulation should play a central role in the system
modification and provide us with a deeper understanding of
computations by co-transcriptional folding, as done in DNA
tile self-assembly (Doty et al. 2012; Hader et al. 2020).

4.5 Towards intrinsically universal oritatami systems

Anyoritatami system can be simulated indirectly via a Turing
machine using as few as 183 bead types at delay 2 or 542
beads at delay 3 in oritatami (see Table 1) but the simulation
maynot behave as the one simulated does. Turedos of radius δ
can intrinsically simulate any deterministic oritatami system
at delay δ −1. However, the current compiler (Pchelina et al.
2022) can handle only radius-1 Turedos, and delay being 0
makes no sense in oritatami.

Direct (intrinsic) simulation between oritatami systems
has been studied only in the context of design optimization
based on homomorphisms between conformations (modulo
transcript) (Han andKim2019;Rogers andSeki 2017). Some
specific delay(s) should be favored for certain wet-lab imple-
mentations. Nevertheless, it is not known whether a delay-δ
system can be simulated intrinsically at delay δ + c even
for any single value of δ or c (Open Problem 4-8), except
impossibility under a quite restricted notion of simulation

123

582 Y. Kihara, S. Seki

(Rogers and Seki 2017). Being combined with the existing
Turing universal oritatami systems at delay 2 (Pchelina et al.
2020) and 3 (Geary et al. 2018; Pchelina et al. 2022), such a
simulation with δ ∈ {2, 3} proves that the class of oritatami
systems at delay δ + c is as strong computationally.

A rule could be downsized and simplified by an algo-
rithm without changing the behavior, delay, or arity of an
oritatami system. Rule (set) minimization is proved to be
NP-hard in general (Han and Kim 2019), but the oritatami
system reduced from an instance of 1- in- 3- Sat in the proof
requires delay linearly proportional to the number of SAT
variables. A certain kind of binding patterns is subject of
prior removal from a rule over others even at the cost of
bead types or more tractable binding patterns. Self-attraction
a♥a is such a kind. A naive approach to intrinsic simula-
tion is to simulate each bead a of a simulated system by a
designated meta-bead, which may fold into a hexagon-like
shape and interact with other meta-beads as the correspond-
ing simulated beads do. The self-attraction a♥a implies that
being adjacent, the simulating meta-beads interact some-
how to simulate the bond a−a, but its intra-modular rules
severely restrict the possible implementations of the interac-
tion (violation of Cr-3). Self-attractions can be removed from
any delay-δ deterministic finite oritatami system by using
3(δ + 1)(δ + 2) doppelgängers of each bead type (Han et al.
2019) (Open Problem 4-9). A nascent bead can observe at
most 3(δ + 1)(δ + 2) beads (the number of lattice points
inside the ball of radius δ + 1) around, and hence, when the
original system transcribes a bead a, the polymerase can find
among it and its doppelgängers one that is not around and
rather transcribe it; thus, the self-attraction becomes unnec-
essary. The quadratic cost was reduced further to linear and
proved to be asymptotically optimal (Han et al. 2019).

With the use of meta-beads in mind, simulation requires
the following functions:

• Scaling function τ : Z
2 → 2Z

2
, which maps a lattice

point in the triangular lattice T = (Z2,∼), on which the
simulated oritatami system operates, to a region of the
triangular lattice where a simulator works, without vio-
lating the adjacency relation ∼ among the lattice points.
The region τ(p) is where a meta-bead is to be folded in
order to simulate a bead at p.

• Meta-bead function μ : Cα × 2T → � ∪ {⊥}, which
masks a conformation of a simulator at arity α and tells
which of the beads in � the masked (partial) conforma-
tion corresponds to, if any, or says nometa-bead has been
formed there (yet).

The meta-bead function should be monotone in the sense
that for a simulator’s conformation c1 and its elongation
c2, if μ(c1, τ (p)) = b for some bead type b ∈ �, then

μ(c2, τ (p)) = b, that is, once a meta-bead that represents b
is folded in the region corresponding to a point p ∈ T, then
the region will not change to another bead type or get empty.
This monotonicity enables to define the time step when each
meta-bead is stabilized. A simulator is said to simulate a run
of an oritatami system by its run in which

1. for any two points p1, p2 ∈ T, if the simulated system
stabilizes a bead at p1 first and at p2 later, then the sim-
ulator stabilizes a meta-bead at τ(p1) first and then at
τ(p2) later, and

2. if a bead b ∈ � is stabilized at a point p ∈ T, then the
simulator reaches in the run a conformation c ∈ Cα such
that μ(c, τ (p)) = b.

How can a simulator be informed of which oritatami sys-
tem to be simulated among those in a class? The simulator’s
(fixed) transcript cannot accommodate a universal table for
“genomes” of all the oritatami systems unless the envisioned
class is finite. Hence, an oritatami system cannot help but be
input to the simulator as a seed. Such a genome encoded on a
seedmust be replicated at arbitrary distance, arbitrarilymany
times, highly probably one or more copies per meta-bead.
Indeed, in order to observe a bead at delay δ, the transcript
must enter a circle of radius δ + 1 centered at the bead at the
cost of at least one more bead stabilized permanently inside
the circle. This means that, after being observed a quadratic
number of times in δ, one copy of genome becomes unob-
servable. The genome replication is thus indispensable (Open
Problem 4-10).

The scaling function τ cannot be independent of a simu-
lated system because a meta-bead must be large enough to
hold a copy of the genome, which encodes a rule of size
�(|�|2). Such a resizable meta-bead is to span more than
one, and indeed a considerable number of, periods of the tran-
script (Open Problem 4-11). Images of this function, that is,
regions that accommodate onemeta-bead, should be not only
as regular as possible but also scalable; the regular hexagon
is certainly the primary choice. These regions can overlap
and do not have to tessellate the lattice T as long as the adja-
cency relation is respected. The function τ itself should be
simple enough to provide as little support as possible to the
computation it underpins.

Beyond these macroscopically-static challenges lies a
formidable one on oritatami dynamics. Local optimization
(1) to stabilize a bead cannot be spared pieces of information
that are not written on the genome but have been acquired
a posteriori: what beads have been stabilized around and
also how many bonds each of them has been bound with so
far unless arity is inexhaustible. Recall the cost of observa-
tions in oritatami: permanent stabilization of a bead around a
bead observed. Folding a nascent fragment of δ beads could
be simulated by a nascent fragment of δ meta-beads at the

123

Programmable single-stranded... 583

delay of δ multiplied by the size of a meta-bead, that is,
δ ×maxp∈Z2 |τ(p)|. This naive idea is however to be turned
down immediately. Such a simulator would need to know
during its design phase the delay and alphabet of an ori-
tatami system to be simulated (note that even such a “weak”
simulation is highly nontrivial: Open Problem 4-12). In addi-
tion, at such a large delay, even a single bead could not be
stabilized in-silico (Schabanel 2016) within a realistic time
frame as local optimization entails an exponential number of
pathways to be checked in delay.

At a fixed small delay, meta-beads face no choice but
to explore much farther than the delay around in order to
be informed of which type of bead is at each observable
neighboring point, and moreover, of whether or not it is still
capable of binding unless arity is inexhaustible. Such explo-
ration leaves a lot of beads stabilized permanently and easily
blocks the transcript or confines it in a bounded region. An
engineering challenge rises here of how to let trails of explo-
ration cross each other as well as the simulated backbone of
the transcript. This is highly probably an avatar of nemesis,
who enacts retribution against our blasphemous trial to cre-
ate intrinsically universal oritatami systems. The transcript
cannot self-cross by definition. Trails of exploration thus
amount to impregnablewalls, nomatter how slender they are.
Exploration should be hence carried out meticulously only
on as-needed-basis, and at the same time not too passively to
keep necessary information within close reach. Meta-beads
that are nascent according to the functionμ cannot hang onto
the shirttails of those already stabilized. They rather have to
start assembling its dendrite because bead stabilization also
takes into account bindings between nascent beads.

Without the idea of offset-based computing in oritatami
and modules founded on it (Fazekas et al. 2022; Pchelina
et al. 2022, 2020), some of which have been explained in
this tutorial, we would lay our pen down on the desk at this
point. They look however too promising not to be applied to
engineer an intrinsically universal system at least for a certain
non-trivial class in oritatami. Let us briefly share some ideas
in conclusion. They may enable to equip meta-beads with a
“dendrite.” An arbitrarily large amount of information can be
encoded as an offset and transported arbitrarily far without
being impaired by deformation as tested along the bumpy
outer shell of the Turedo macrocell (Pchelina et al. 2022).
The offset control along the thin outer shell of the macrocell
could be therefore adapted to implement a bendable axon
with unlimited transmission capacity by, for example, letting
the transcript be shifted at one end, carry the resulting offset
down to the other end, and expose there the entry specified by
the offset. The resulting axon could be as thin as several beads
in width. It could propagate a piece of information even per-
pendicularly by bending into bumps and dents. Its terminal
could be further equipped with the non-invasive bit-reading
(Pchelina et al. 2022) to establish a non-blocking communi-

cation channel as narrow as delay, through which something
thin enough like the transcript or another axon can pass later
even twice ormore times so that the transcript can avoid being
trapped in a bounded region. Furthermore, dendrites could
be even overlaid on top of each other, as suggested in the
construction of uncomputable limit configuration in Turedo
(Pchelina et al. 2022).

These types of junction are certainly not powerful enough
to make all kinds of dendrite compatible with each other as
well as the folding pathway of the transcript. In fact, it should
be relatively easy to invent an example to outwit them.While
diversifying such information transmission channels further
in function and geometry, we should also tackle the prob-
lem of saving an oritatami system from exponential number
of nascent folding pathways in delay to be searched in sta-
bilizing a bead. Observe that the half-adder in Fig. 12 and
its beads “know” beforehand that they are going to be sta-
bilized at one of the four possible points, or more strongly,
that the half-adder admits only four folding pathways as none
of its beads prefers intermittently anywhere but the point at
which it will be stabilized, that is, no phantom. Phantom is
currently required to read a bit in a non-blocking manner
(Pchelina et al. 2022), but could be dispensed with (Open
Problem 4-13). Modular programming thus spares oritatami
systems exponential-cost optimization and enables us to sim-
ulate them with simpler and more compatible dendrites. The
resulting simulator should be far from an intrinsically uni-
versal oritatami system (Open Problem 4-14), but grappling
with challengesmentioned above amongothers should enrich
the field of programming computations by co-transcriptional
folding further towards heritable in-vivo computation.

Open problems

4-1 Remove the promise of α being maximum from this
algorithm. (Page 13)

4-2 Modify the algorithm by Geary et al. (2016, 2019) so
as to solve Problem 1 in the oblivious dynamics. (Page
13)

4-3 How hard is the transcript design problem in any of
unsettled cases such as being at delay 2? (Page 14)

4-4 Can we self-assemble not a prefix but the whole Heigh-
way dragon fractal in oritatami? (Page 16)

4-5 Design an oritatami system that, given n, determinis-
tically folds into the square of size sn + c for some
scaling factor s and constant c for all n ≥ 1. (Page 16)

4-6 Endow the shift-based counter with the capability of
widening by 1-bit at an overflow. (Page 17)

4-7 Canwemodify the oritatamimodel so that bead binding
takes topological barrier into account? (Page 19)

4-8 Can we simulate a delay-δ oritatami system by a delay-
(δ + c) oritatami system for some δ and c? (Page 19)

123

584 Y. Kihara, S. Seki

4-9 Canwe remove self-attraction from a deterministic infi-
nite periodic oritatami system? (Page 20)

4-10 Design an oritatami system that allows to replicate a
seed arbitrarily far. (Page 20)

4-11 Design an infinite periodic oritatami system that reads
an integer � from a seed and keeps folding hexagonal
cells of side length � one after another. (Page 20)

4-12 Given a delay δ and an alphabet �, can we construct a
universal oritatami system that can simulate any deter-
ministic oritatami system over � at delay δ? (Page 21)

4-13 Can we simulate in oritatami a radius-1 Turedo without
relying on phantoms? Can we characterize so-called
dispensable phantoms? (Page 21)

4-14 Can we construct for a certain (non-trivial) class of ori-
tatami systems a universal oritatami system? (Page 21)

References

Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter
P (2014) Molecular biology of the cell, 6th edn. Garland Science

Arora S, Barak B (2009) Computational complexity: a modern
approach. Cambridge University Press, Cambridge

Demaine ED, Hendricks J, Olsen M, Patitz MJ, Rogers TA, Schabanel
N, Seki S, ThomasH (2018)Knowwhen to fold ’em: self-assembly
of shapes by folding in oritatami. In: Proceedings of the 24th
international conference on DNA computing and molecular pro-
gramming (DNA 24), volume 11145 of LNCS, Springer, pp 19–36

Diestel R (2010) Graph theory, 4th edn. Springer, Cham
Doty D, Lutz J H, Patitz M J, Schweller RT, Summers SM, Woods

D (2012) The tile assembly model is intrinsically universal. In:
Proceedings of the 53rd annual IEEE symposium on foundations
of computer science (FOCS 2012), pp 302–310

Elliott D, LadomeryM (2016)Molecular biology of RNA. Oxford Uni-
versity Press, Oxford

FazekasSZ,KimH,MatsuokaR,MoritaR, Seki S (2021)Linear bounds
on the size of conformations in greedy deterministic oritatami. Int
J Found Comput Sci 32(5):575–596

Fazekas SZ, Kim H, Matsuoka R, Seki S, Takeuchi H (2022) On algo-
rithmic self-assembly of squares by co-transcriptional folding. In:
Proceedings of the 33rd international symposium on algorithms
and computation (ISAAC 2022), volume 248 of LIPIcs, pp 37:1–
37:15

Feynman RP (1996) Feynman lectures on computation. Addison-
Wesley, London

Geary C, Andersen E S (2014) Design principles for single-stranded
RNA origami structures. In: Proceedings of the 20th interna-
tional conference onDNAcomputing andmolecular programming
(DNA 20), volume 8727 of LNCS, pp 1–19. Springer

Geary C, Grossi G, McRae EKS, Rothemund PWK, Andersen ES
(2021) RNA origami design tools enable cotranscriptional fold-
ing of kilobase-sized nanoscaffolds. Nat Chem 13:549–558

Geary C, Meunier P-É, Schabanel N, Seki S (2018) Proving the
turing universality of oritatami co-transcriptional folding. In: Pro-
ceedings of the 29th international symposium on algorithms and
computation (ISAAC 2018), volume 123 of LIPIcs, pp 23:1–23:13

Geary C, Meunier PÉ, Schabanel N, Seki S (2019) Oritatami: a compu-
tational model for molecular cotranscriptional folding. Int J Mol
Sci 20(9):2259

Geary C, Meunier P-É, Schabanel N, Seki S (2016) Programming
biomolecules that fold greedily during transcription. In: Pro-

ceedings of the 41st international symposium on mathematical
foundations of computer science (MFCS 2016), volume 58 of
LIPIcs, pp 43:1–43:14

Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded
architecture for cotranscriptional folding of RNA structures. Sci-
ence 345(6198):799–804

Geary MR, Johnson DS (1979) Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman & Co

Hader D, Koch A, Patitz MJ, Sharp M (2020) The impacts of dimen-
sionality, diffusion, and directedness on intrinsic universality in
the abstract tile assembly model. In: Proceedings of the 2020
ACM-SIAM symposium on discrete algorithms (SODA 2020), pp
2607–2624

Hagiya M, Arita M, Kiga D, Sakamoto K, Yokoyama S (1997)
Towards parallel evaluation and learning of boolean μ-formulas
with molecules. In: Proceedings of the DIMACS workshop on
DNA based computers, volume 48 of DIMACS series in discrete
mathematics and theoretical computer science, pp 57–72

HanY-S,KimH(2018)Constructionof geometric structure byoritatami
system. In: Proceedings of the 24th international conference on
DNA computing and molecular programming (DNA 24), volume
11145 of LNCS, pp 173–188

Han Y-S, Kim H (2019) Ruleset optimization on isomorphic oritatami
systems. Theoret Comput Sci 128–139

Han Y-S, Kim H (2021) Impossibility of strict assembly of infinite
fractals by oritatami. Nat Comput 20(4):691–701

Han Y-S, Kim H, Masuda Y, Seki S (2021) A general architecture of
oritatami systems for simulating arbitrary finite automata. Theoret
Comput Sci 870:29–52

Han Y-S, Kim H, Ota M, Seki S (2018) Nondeterministic seedless
oritatami systems and hardness of testing their equivalence. Nat
Comput 17(1):67–79

HanY-S,KimH,Rogers TA, Seki S (2019) Self-attraction removal from
oritatami systems. Int J Found Comput Sci 30(6–7):1047–1067

Han Y-S, KimH, Seki S (2020) Transcript design problems of oritatami
systems. Nat Comput 19(2):323–335

Harel D, Sardas M (1998) An algorithm for straight-line drawing of
planar graphs. Algorithmica 20(2):119–135

Hopcroft JE, Motwani R, Ullman JD (2001) Introduction to automata
theory, languages, and computation, 2nd edn. Addison Wesley,
London

Iwano N (2023) Concurrent signal passing by co-transcriptional fold-
ing.Bachelor’s thesis, TheUniversity ofElectro-Communications.
Tokyo, Japan

Jaeger L, Chworos A (2006) The architectonics of programmable RNA
and DNA nanostructures. Curr Opin Struct Biol 16(4):531–543

Kari L, Kopecki S,Meunier PÉ, PatitzMJ, Seki S (2017) Binary pattern
tile set synthesis is NP-hard. Algorithmica 78(1):1–46

Lathrop JI, Lutz JH, Summers SM (2009) Strict self-assembly of dis-
crete Sierpinski triangles. Theoret Comput Sci 410:384–405

Marcus P, Schabanel N, Seki S (2023) Ok, a kinetic model for locally
reconfigurable molecular systems. In: Visins of DNA nanotech-
nology at 40 for the next 40, pp 229–240. Springer

Maruyama K, Seki S (2021) Counting infinitely by oritatami co-
transcriptional folding. Nat Comput 20(2):329–340

MasudaY,Seki S ,UbukataY (2018)Towards the algorithmicmolecular
self-assembly of fractals by cotranscriptional folding. In: Proceed-
ings of the 23rd international conference on implementation and
application of automata (CIAA 2018), volume 10977 of LNCS,
pp 261–273

Merkhofer EC, Hu P, Johnson TL (2014) Introduction to cotranscrip-
tional RNA folding. In: Methods in molecular biology, volume
1126, pp 83–96. Springer

Nalin S, Theyssier G (2022) On turedo hierarchies and intrinsic uni-
versality. In: Proceedings of the 28th international conference on

123

Programmable single-stranded... 585

DNA computing and molecular programming (DNA 28), volume
238 of LIPIcs, pp 6:1–6:18

Ota M, Seki S (2017) Ruleset design problems for oritatami systems.
Theoret Comput Sci 671:26–35

Pchelina D, Schabanel N, Seki S, Theyssier G (2022) Oritatami sys-
tems assemble shapes no less complex than tile assembly model
(aTAM). In: Proceedings of the 39th international symposium on
theoretical aspects of computer science (STACS 2022), volume
219 of LIPIcs, pp 51:1–51:23

Pchelina D, Schabanel N, Seki S, Ubukata Y (2020) Simple intrin-
sic simulation of cellular automata in oritatami molecular folding
model. In: Proceedings of the 14th Latin American symposium on
theoretical informatics (LATIN 2020), volume 12118 of LNCS,
pp 425–436

Reif JH, Majumder U (2010) Isothermal reactivating whiplash PCR
for locally programmable molecular computation. Nat Comput
9(1):183–206

Rogers TA, Seki S (2017) Oritatami system; a survey and the impossi-
bility of simple simulation at small delays. Fund Inf 154(1–4):359–
372

Rose JA, Komiya K, Yaegashi S, Hagiya M (2006) Displacement
whiplash PCR: optimized architecture and experimental valida-
tion. In: Proceedings of the 12th international meeting on DNA
computing (DNA12), volume 4287 of LNCS, pp 393–403

Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-
assembly of DNA Sierpinski triangle. PLoS Biol 2:e424

Rothemund PWK, Winfree E (2000) The program-size complexity of
self-assembled squares (extended abstracts). In: Proceedings of
the 32nd annual ACM symposium on theory of computing (STOC
2000), pp 459–468. ACM

Schabanel N (2016) Simple OS simulator. http://perso.ens-lyon.fr/
nicolas.schabanel/OSsimulator/

Watters KE, Strobel EJ, Yu AM, Lis JT, Lucks JB (2016) Cotranscrip-
tional folding of a riboswitch at nucleotide resolution. Nat Struct
Mol Biol 23(12):1124–1131

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/
http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/

	Programmable single-stranded architectures for computing
	Abstract
	1 Modular approach to the programming of co-transcriptional folding
	2 Oritatami model
	2.1 (Oblivious) dynamics in oritatami
	2.2 Oritatami classes

	3 Turedo: a high-level programming language for oritatami
	3.1 Turedo-to-oritatami compiler (PchelinaSST2022)
	3.1.1 Folding meter

	4 Single-stranded architectures for computing
	4.1 Algorithmic design of modules in oritatami
	4.2 Oritatami design process
	4.2.1 Case study: binary counter in oritatami
	4.2.2 Limit of recycling system designs from the aTAM

	4.3 How to scaffold computations in oritatami?
	4.4 Towards the wet-lab implementation
	4.5 Towards intrinsically universal oritatami systems

	References

