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Abstract
The one-dimensional cellular automata (CA) system detailed herein uses a hybrid mechanism to attain reversibility, and

this approach is adapted to create a novel block cipher algorithm called HCA (Hybrid Cellular Automata). CA are widely

used for modeling complex systems and display inherently parallel properties. Therefore, applications derived from CA

have a tendency to fit very well in the current computational paradigm where multithreading potential is very desirable.

The HCA system has recently received a patent by the Brazilian agency INPI. Analyses performed on the model are

presented here, including a theoretical discussion on its reversibility. Finally, the cryptographic robustness of HCA is

empirically evaluated through avalanche property compliance and the NIST randomness suite.
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1 Introduction

Cryptography is the everlasting study of methods that

ensure confidentiality, integrity and authentication, when

storing or transmitting data, to minimize security vulnera-

bilities. In such approaches, data is codified in a specific

way so that only those for whom it is intended can read and

process it.

Despite the successful application of reputed algorithms,

such as AES (Daemen and Rijmen 2002) and RSA (Rivest

et al. 1978), the evolution of hardware architectures

imposes an ongoing race to develop more secure and

effective encryption models. For example, with the popu-

larization of portable electronic devices able to capture

digital images, the exchange of such data between entities

on private social networks or e-mails became more fre-

quent, which led to the demand for methods that enable

high throughput without loss of security.

Since the most popular symmetric encryption algorithms

AES and DES (FIPS 1999) are of serial nature, this poses a

challenge to massive data processing (Daemen and Rijmen

2005; Zeghid et al. 2007). This motivated a search for

improving these classical algorithms (Prasad and Mah-

eswari 2013) as an attempt to introduce parallelism on

some costly or redundant steps in the process of encryption

(Le et al. 2010). However, as they are inherently sequential

systems, this customization is limited and does not allow

the desirable level of parallelism to be reached. As such,

the capacity of high-performance parallel architectures can

become underutilized. In this context, cellular automata

(CA) appear as a useful tool in the design of inherently

parallel encryption systems.
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CA are totally discrete mathematical models based on

the livelihood of cellular organisms, a naturally occurring

process which dictates the survival of such cells based on

their behavior (implemented as CA rules) while interacting

with the environment conditions they are exposed to (the

cell neighborhood) (Rozenberg et al. 2012). CA are widely

used in the literature (Sarkar 2000; Dennunzio et al. 2019)

and, among the most known applications, the following can

be mentioned: (i) modeling of biological and physical

systems (Vichniac 1984; Ermentrout and Edelstein-Keshet

1993; Maerivoet and De Moor 2005; Alizadeh 2011;

Ghimire et al. 2013; Feliciani and Nishinari 2016; Mattei

et al. 2018; (ii) investigation of new computational para-

digms (Hillis 1984; Lent et al. 1993; Morita 2008; Yilmaz

2015; (iii) proposition of tools for solving various com-

putational problems, such as task scheduling (Swiecicka

et al. 2006; Carneiro and Oliveira 2013; Carvalho et al.

2019), image processing (Rosin 2010), computational tasks

(Mitchell 2005; Oliveira et al. 2009), robotics (Ioannidis

et al. 2011; Lima and Oliveira 2017) and, more signifi-

cantly related to this article, cryptographic models (Wol-

fram 1986; Gutowitz 1995; Sen et al. 2002).

The implementation simplicity and the ability to process

data in parallel are some of the main advantages of

applying CA-based models in the most diverse areas

mentioned above (Vasantha et al. 2015). In addition, the

discovery that even the simplest CA models, known as

elementary, are capable of exhibiting chaotic-like dynam-

ics (Wolfram 1986; Dennunzio et al. 2020) led researchers

to see CA-based models as natural options for proposing

fast, parallel and potentially secure encryption methods

(Wolfram 1986; Gutowitz 1995; Sen et al. 2002).

A novel cryptographic model called HCA (Hybrid

Cellular Automata), based on chaotic one-dimensional CA

rules, is described herein. The HCA model recently

received a patent registration in Brazil (Oliveira and

Macêdo 2019), and this paper presents an unique detailed

view on how the parameters of HCA were defined and on

the investigations done to measure its cryptographic

robustness.

This model employs preimage computation (the back-

ward evolution of a CA configuration, defined in the next

section) in the encryption process and applies one-dimen-

sional permutive CA rules, the so-called toggle rules

(which will be detailed in the following section), such as

the method proposed by Gutowitz (Gutowitz 1995). Fur-

thermore, this innovative method also addresses two

problems of that approach (Gutowitz 1995): the spread of

plaintext disturbances in only one direction and the block

length increase during the successive preimage computa-

tions done in the encryption process.

Even though later models, also based on CA toggle

rules, sought to reduce these problems (Wuensche 2008;

Oliveira et al. 2004, 2008, 2010b; Silva et al. 2016), the

solution proposed here is the only one that ensures an

appropriate propagation of the disturbance over the entire

lattice, as well as keeping the size of the ciphertext the

same as the plaintext.

This paper is structured as follows: Sect. 2 brings an

overview of CA concepts that are relevant to understand

the HCA model description and when comparing it to

predecessor systems. Section 3 presents a review of the

main works in the literature related to the novel investi-

gated method. Section 4 formally presents the HCA model

and details all of the processes involved in its proposition.

Section 5 presents a theoretical aspect related to HCA: the

proof that the hybrid CA model used in HCA is reversible,

unlike the model used by Gutowitz (Gutowitz 1995) that is

irreversible. Section 6 describes methods established in the

literature to verify the security of a cryptographic method.

Experimental results obtained for them are presented in

Sect. 7 for the validation of HCA security against crypt-

analysis attacks: plaintext avalanche effect, key avalanche

effect and NIST suite tests. Finally, Sect. 8 presents our

main conclusions on the novel HCA cryptographic method

and proposes some future directions to this research.

2 Formal concepts

A brief recollection of necessary formalism and definitions

from the classic CA model is important before comparing

the novel HCA system to other predecessor methods and

describing its inner mechanism.

2.1 Basic CA model definitions

Since HCA is based on the one-dimensional CA specifi-

cation, unless directly stated, consider CA references in

this paper as adhering to this model.

Consider a set s of N cells. In an one-dimensional CA

setting, s can be visually represented as a row of N

neighboring cells. This row of cells is generally called a

CA grid or a CA lattice, and each cell, in this s lattice, has

its 0-based i-indexed position, where 0� i\N as displayed

in Fig. 1.

CA is a discrete time model, meaning every s[i] cell has

a state for each time step t. In classic CA, the state (or

value) of a st½i� cell is binary in nature. Therefore, it can be

expressed as st½i� 2 f0; 1g, a Boolean value. Also, the set of
all lattice cell values at a certain time step, st, is called a

Fig. 1 One-dimensional CA lattice visual representation
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CA configuration. Figure 2 demonstrates one possible

configuration for a CA grid of N ¼ 8 cells.

The forward evolution of a st configuration, such as the

one displayed in Fig. 2, is the process by which one or

more evolution rules, which can be represented as Boolean

functions, are applied to cell values from st resulting in a

new stþ1 successor configuration. The value of every stþ1½i�
cell is computed using a local evolution rule applied to the

values of st½i� and its neighboring cells, as will be further

explained.

The arbitrary specification of a neighborhood radius

directly affects the CA evolution process. For instance, if

CA evolution will be processed considering a r ¼ 1

neighborhood radius, the computation of cell stþ1½i� will be
based on cell st½i� and on both neighboring cells that are at a
r ¼ 1 index distance from it in the grid, which are st½i� 1�
and st½iþ 1�. Likewise, when considering r ¼ 2, the com-

putation of stþ1½i� is based on the ðst½i� 2�; st½i�
1�; st½i�; st½iþ 1�; st½iþ 2�Þ neighborhood, and so on.

2.2 Boundary condition

Some edge cases must be considered when the neighbor-

hood set contains cells whose computed indexes are either

negative or greater than N � 1. Such cases are treated by a

boundary condition that is arbitrarily defined by the model

designer and which, for this paper, unless explicitly stated,

is the setting called ‘periodic boundary condition’.

By this definition, despite the CA grid being visually

represented as a row, it will be treated as a toroidal structure

when computing the neighborhood of cells. So the first cell of

the grid (st½0�) has the last cell of the grid (st½N � 1�) as its left
neighbor and, in a corresponding manner, this last cell of the

grid (st½N � 1�) has the first cell (st½0�) as its right neighbor.
This system design choice allows a simple 1-bit disturbance

to be propagated throughout the entire grid as CA evolution

is performed, regardless of the position where this pertur-

bation first occurs.

2.3 Wolfram’s notation

Since the value of every stþ1½i� cell is computed using the

values of a ð2� r þ 1Þ-sized neighborhood comprised of

st½i� and r neighboring cells from both sides, and due to the

Boolean nature of cell values, local evolution rules for this

CA must define a resulting value (output) for every one of

the 22�rþ1 possible combinations of input values the pre-

viously mentioned set could assume.

In fact, due to being mathematical functions, these local

CA rules can be expressed using many conventional

notations, such as Boolean functions or graphs. In this

paper, a special notation for CA rules created by Wolfram

will also be relevant (Wolfram 2002). Wolfram’s notation

is made by concatenating, in descending order, the result-

ing bits from a truth table representing the Boolean func-

tion of the CA rule. For instance, consider Table 1 for an

arbitrary r ¼ 1 CA rule.

In Wolfram’s encoding, the CA rule expressed through

Table 1 is called rule 30. This is due to the concatenation of

the 22�rþ1 resulting bits, in reverse order, being the

‘00011110’ string which, in binary, represents the decimal

number 30. This method of encoding CA rules as binary

strings is vastly used in this paper, especially since the

main CA rules applied in the HCA system are derived from

the input encryption key through a process that will be

explained in later sections.

2.4 Hybrid/heterogeneous cellular automata

When designing CA systems, there are two alternatives

regarding rules used in CA evolution. The first option is

using a single local CA rule to evolve all lattice cells, the

latter is using distinct local CA rules to evolve separate

regions (sites) of the CA grid. This second option of

applying potentially different rules to non-overlapping

sections of the lattice causes the CA in question to be

called ‘hybrid’, ‘heterogeneous’, or ’non-uniform’ (Den-

nunzio et al. 2014).

As described in (Dennunzio et al. 2012), non-uniform

CA can present drastic changes in their dynamical behavior

when compared to conventional CA. And thus, there are

instances where adopting hybrid CA is considered a help-

ing feature, such as pseudo-random number generation,

which has close ties to cryptography (Dennunzio et al.

2013).

Consider, for instance, a st lattice comprised of N ¼ 8

cells, and two distinct CA rules denoted by /m and /b. In a

Fig. 2 One-dimensional CA configuration example

Table 1 Boolean table for radius-1 Rule 30

st½i� 1� st½i� st½iþ 1� stþ1½i�

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0
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hybrid CA setting, it could be arbitrarily established that

cells st½0�, st½1�, st½2�, st½3�, st½4� and st½5� are to be evolved

using /m while cells st½6� and st½7� are to be evolved using

/b. In fact, the HCA method, to be further detailed in

Sect. 4, employs a hybrid CA strategy similar to this.

2.5 Permutivity and toggle rules

CA rules are often classified according to global evolution

patterns that can be visually observed in CA lattices they

are applied to. Other approach is the classification based on

mathematical properties they express. Some CA rules

display a property called ‘permutivity’ (Dennunzio et al.

2014), which is relevant to the HCA system description.

Aspreviously established, anyone-dimensionalCArule/
is a Boolean function that maps every possible m-sized

neighborhood word w (input) to a corresponding bit result

value (output).Furthermore, this input canbeexpressedusing

a 1-based index p j 1� p�m, like ðw½p ¼ 1�;w½p ¼
2�; . . .;w½p¼ m�Þ,where theresultingoutputbit isobtainedby
applying / to it, as /ðwÞ.

Now, considering every possible w, for any p index,

either w½p� ¼ 0 or w½p� ¼ 1, due to the Boolean nature of

the cell values in the CA grid. Let us denote, for simplicity,

that w(0, p) represents the variant of w where w½p� ¼ 0, and

that w(1, p) represents the variant of w where w½p� ¼ 1. For

instance, consider m ¼ 5, and also arbitrarily,

w ¼ ð0; 0; 1; 1; 0Þ. In this case, for p ¼ 1, wð0; p ¼ 1Þ ¼
ð0; 0; 1; 1; 0Þ and wð1; p ¼ 1Þ ¼ ð1; 0; 1; 1; 0Þ. Meanwhile,

for p ¼ 3, wð0; p ¼ 3Þ ¼ ð0; 0; 0; 1; 0Þ and wð1; p ¼ 3Þ ¼
ð0; 0; 1; 1; 0Þ, and so on.

According to (Leporati and Mariot 2014), a CA rule / is

‘p-permutive’ if, for every possible neighborhood word w,

it holds that /ðwð0; pÞÞ 6¼ /ðwð1; pÞÞ. This definition is

relevant since both the novel HCA method, which will be

defined in Sect. 4, and a predecessor system (Gutowitz

1995), that is described in Sect. 3, employ permutive rules

under a different naming scheme ‘toggle rules’. A leftmost

permutive rule (1-permutive rule) can be also described as

a ’left-toggle’ rule, while a rightmost permutive rule is

called a ’right-toggle’ rule. This naming convention will be

the one used in future sections for simplification.

Moreover, leftmost and rightmost toggle rules display

unique characteristics. Take, for instance, a left-toggle CA

rule / and consider any w input neighborhood. Since / is a

leftmost permutive rule, for any w: /ðwð0; p ¼ 1ÞÞ 6¼ /
ðwð1; p ¼ 1ÞÞ. This also means the output bit /ðwð0; p ¼
1ÞÞ is the binary complement value of /ðwð1; p ¼ 1ÞÞ,
represented as /ðwð0; p ¼ 1ÞÞ ¼ /ðwð1; p ¼ 1ÞÞ.

Therefore, in a Boolean table for a left-toggle CA rule,

the sequence of output values for inputs where w½1� ¼ 0 is

the exact Boolean complement of the output values

sequence for inputs where w½1� ¼ 1. And thus, for left-

toggle rules, the second half of the corresponding Wolfram

notation string can be inferred as the binary complement of

the first half. Since rule 30 is leftmost permutive, Table 1

exemplifies such behavior, and the first half (‘0001’) of the

corresponding Wolfram notation (‘00011110’) can be used

as a compressed notation from which the rule can be easily

derived. This holds, by definition, for every left-toggle rule,

regardless of the neighborhood radius.

2.6 Preimage and reversibility

Finally, while CA evolution generally indicates a forward

evolution procedure (denoted here as U), there also exists a

CA backward evolution which represents its mathematical

inverse (U�1) function. And thus, while UðstÞ ¼ stþ1, its

inverse function is U�1ðstþ1Þ ¼ st and st is considered a

preimage of stþ1.

Dependingon the rule definitionof theCA, theremayexist

configurations that are not reachable by forward evolution.

Theyarecalled ‘GardenofEden’and, thus, it isnotpossible to

determine a preimage for them (Moore 1962). On the other

hand, there might also be cases in which a stþ1 configuration

has more than one possible preimage.

By definition, a CA can only be considered reversible if

every configuration can be reached by forward evolution

from any other configuration and if, for each configuration,

there is a single possible preimage. In this case, the

preimage computation operation is a deterministic func-

tion, and CA backward evolution (U�1) is always possible.

The novel HCA model described herein is based on this

backward evolution operation, as will be detailed in

Sect. 4, and the reversibility of HCA will be formally

proven in Sect. 5.

3 Related work

The first suggestion of using cellular automata models in

cryptography was made by Wolfram (Wolfram 1985), after

his studies on the statistical properties of CA chaotic rules

with radius 1, which can be used as pseudo-random number

generators (Wolfram 1986). Since then, various works on

this topic have been published (Tomassini and Perrenoud

2000; Sen et al. 2002; Vasantha et al. 2015; Oliveira and

Macêdo 2019; Benkiniouar and Benmohamed 2004; Nandi

et al. 1994; Gutowitz 1995; Oliveira et al.

2004, 2008, 2010b; Silva et al. 2016; Wolfram 1985;

Wuensche 2008; Oliveira et al. 2010a; Wuensche and

Lesser 1992; Seredynski et al. 2004; Yang et al. 2016),

where the cryptographic models can be classified into three

kinds of approaches.
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The first approach, proposed by Wolfram, takes advan-

tage of the pseudo-random properties of known transition

rules with chaotic behavior to generate random binary

sequences. However, said rules are not used as the cryp-

tographic key, which, in fact, corresponds to the initial

lattice. This lattice is evolved by a predetermined chaotic

rule (elementary rule 30) and the sequence of bits gener-

ated in a specific cell position is used as a pseudo-random

sequence. Moreover, the effective ciphering process is

made by a reversible function that mixes the plaintext with

the random sequence, such as the XOR logical function

(Wolfram 1985, 1986; Tomassini and Perrenoud 2000;

Benkiniouar and Benmohamed 2004; Nandi et al. 1994).

On the other hand, the HCA model discussed herein uses

transition rules as secret keys and the plaintext as a initial

lattice. More recently, this first approach was diversified,

for example, by using different one-dimensional transition

rules with radius 1 and 2 and also two-dimensional rules,

and using evolutionary search for finding suitable chaotic

rules (Seredynski et al. 2004; Tomassini and Perrenoud

2001; Sirakoulis 2016; Toffoli and Margolus 1957; Kari

1992; Machicao et al. 2012; John et al. 2020). Another line

of investigation is the parallelization of cellular automata

as pseudo-random number generators that can be applied in

cryptographic schemes (Sirakoulis 2016).

The second approach is based on additive, hybrid and

reversible CA rules. The cryptographic keys are typically a

combination of known additive rules (Toffoli and Margolus

1957) that exhibit algebraic properties. When such rules are

used together in a heterogeneous scheme, they exhibit a

periodic dynamics with maximum and/or known cycle

(Nandi et al. 1994; Kari 1992; Dennunzio et al. 2021).

However, the parallelism and security of these models are

limited, due to the additive property of the rules, which limits

their chaoticity. The system proposed in Nandi et al. (1994)

was broken in Blackburn et al. (1997) by analyzing the

additive properties of the rules. More recently proposed

systems based on this line of research have been mixing

additive rules and nonlinear rules to circumvent the security

problems of their predecessors (Das and Chowdhury 2010).

The last approach uses the backward evolution of the

CA lattice to encrypt the plaintext. The cryptographic key

is the CA transition rule and it must have some properties

to ensure the preimage existence (Oliveira et al. 2008;

Wuensche 2008; Oliveira et al. 2010a; Wuensche and

Lesser 1992). Gutowitz was the first to propose a crypto-

graphic model using such approach; it is based on the

preimage computation of irreversible homogeneous CA

(Gutowitz 1995). The cryptographic model discussed here

also uses the backward evolution. However, in the novel

HCA method, reversibility is attained by using a hybrid CA

setting to ensure the existence of a single same-sized

preimage stþ1 with the same length of the image for each

possible st configuration. Due to similarities, we further

detail the state of the art related to CA-based models that

belong to the third approach.

Gutowitz’s model employs CA toggle rules, which are

used as cryptographic keys (or a part of these). Such rules

are sensitive to the leftmost and/or to the rightmost cell in

the neighborhood. That means any modification to the state

of this cell necessarily causes a modification on the central

cell. A preimage of an arbitrary lattice of size N is calcu-

lated adding R extra bits to each side and a preimage will

be calculated with N ? 2R cells. If a right-toggle rule

transition is used as key, the preimage cells can be obtained

in a deterministic way, step-by-step, from the leftmost side

to the right Gutowitz (1994).

In Gutowitz’s model, the plaintext corresponds to the ini-

tial lattice and P preimages are calculated to obtain the

ciphertext. As 2R bits are added to each preimage calculated,

the size of the final lattice is given by N ? 2RP. Such non-

negligible increment is pointed as themajor drawback of this

model. Moreover, another flaw was identified in it, a high

degree of similarity between ciphertexts was observed when

the plaintext is submitted to a s perturbation. To dealwith this

problem, the model employs two phases where a left-toggle

anda right-toggle rule are applied ineach stage.Both rules are

generatedstartingfromthesamecryptographickey,however,

it needsmore time steps to encrypt the plaintext.Later on, this

model was altered by using bidirectional toggle CA rules (to

the right and to the left simultaneously) in Oliveira et al.

(2004),showingthat thesimilarityflawwassolvedwithsucha

modification and that it is protected against differential

cryptanalysis. However, the ciphertext length increment,

when compared to the plaintext, remains in this model.

An algorithm known as ‘reverse algorithm’ was pro-

posed in Wuensche and Lesser (1992) for a preimage

computation starting from any lattice and applying an

arbitrary transition rule (not only toggle rules). However,

using a periodic boundary CA, the preimage computation is

concluded verifying whether the initial bits can be equal to

the final 2R rightmost ones. If so, the extra bits are dis-

carded returning the preimage to the same size of the

original lattice. If no, this preimage does not exist. This

algorithm finds all the possible preimages for any arbitrary

periodic boundary lattice, if at least one exists.

This reverse algorithm was evaluated as an encryption

method in Oliveira et al. (2008) and Wuensche (2008).

However, since there is no guarantee of preimage existence

for all possible rule transitions, the major challenge these

predecessor models faced was selecting rules that ensure

the existence of at least one preimage for any possible

lattice. An attempt to solve this problem was to use the Z

parameter (Silva et al. 2016) in the rule specification.

A reversible system based on hybrid toggle radius-4 cellular automata and its application as a…
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The method proposed in Wuensche (2008) is very

similar to the initial method proposed in Oliveira et al.

(2008), despite being developed independently. The major

conclusion in Wuensche (2008) is that the simple adoption

of the reverse algorithm is not viable because the possible

rules with 100% guarantee of preimage existence are not

appropriate for ciphering, even when using the Z parameter

to choose suitable secret keys. No treatment to this problem

was addressed in Oliveira et al. (2008), that is, how to

proceed if a failure occurs when computing preimages.

This is an important distinction between the (Wuensche

2008) and Oliveira et al. (2008) works.

An alternative approach to use the reverse algorithm by

adopting a wrap (contour) procedure was later investigated

in Oliveira et al. (2010a). This contour procedure ensures

any plaintext can be encrypted. However, it generates a

variable size ciphertext, which can be larger than the plain-

text. Later on, it was shown that an improved specification of

the secret key reduces the occurrence rate of this failure

(Oliveira et al. 2010b), which keeps the ciphertext length

close to the plaintext. This specification was further inves-

tigated in Oliveira et al. (2010c) and Oliveira et al. (2011).

Additionally, a cryptographic model that employs a

lattice with a fixed extra boundary was investigated in Silva

et al. (2016), which applies the a variation of the reverse

algorithm proposed by Wuensche. Even though the lattice

size growth is less than in Gutowitz’s model, the final

lattice is still larger than the plaintext, which increases the

cost of sending encrypted information, in addition to the

aperiodic condition of the lattice hindering the good

propagation of disturbances.

On a side note, even though producing a ciphertext larger

than the plaintext is generally seen as a negative character-

istic in symmetric cryptography, it is worth mentioning the

existence of other cryptographic applicationswhere having a

preimage computation which increases the lattice size can be

seen as beneficial. One such example is Mariot and Leporati

(2014), where the text increase allows generating a suffi-

ciently long configuration to be split among the participants

of a secret sharing scheme.

As far as we know, the HCA model described herein is

the first that simultaneously displays the following prop-

erties: uses backward evolution with chaotic toggle rules,

preimage computation is valid for every possible configu-

ration, and the ciphertext maintains the same size of the

plaintext (using a periodic boundary condition). HCA was

initially proposed in Macêdo (2007) and a patent registra-

tion was submitted to the Brazilian agency of patents

(INPI) in 2007, which has been recently accepted in 2019

Oliveira and Macêdo (2019).

Meanwhile, other academic works have investigated

different aspects of HCA and propose some adaptations of

this CA-based model (Magalhães Júnior 2010; Lima 2012;

Alt 2013). Some of the analyses over HCA investigated in

these works are presented here. More recently, a new model

inspired by HCA was proposed, replacing the cellular auto-

mata structure by complex networks connections (Barros de

Macedo et al. 2014). In spite of some advantages related to

the fast propagation of information promoted by non-local

connections, the intrinsic parallelism of CA models is not

presented in the model based on complex networks.

4 HCA method description

The HCA method consists of a symmetric block-based

cryptographic system that uses the dynamic behavior of

CAs to perform the encryption and decryption processes.

Both forward and backward evolution of CAs are essential

parts of this algorithm.

The original patented description of this system provides

support for using right-toggle or left-toggle rules at will,

but the focus of this current description will be on using

left-toggle rules only, for simplicity.

4.1 HCA - block size definition

In HCA, 128-bit blocks are used for the encryption and

decryption processes. The method could be easily adapted

to be used with other block sizes, but this value was set to

conform with the current standard for symmetric cryptog-

raphy methods.

Like all block cipher methods, the HCA method is

compatible with every mode of operation described in the

literature, such as ECB, CBC, OFB, CFB, CTR, among

others (NIST 2018). Despite this, the use of ECB and CBC

are discouraged due to the publicly known inherent vul-

nerabilities caused by ECB Rogaway (2011) and to the

existence of padding oracle attacks applicable when using

CBC (Vaudenay 2004).

4.2 HCA - cryptographic key definition

InHCA, the plaintext is partitioned into 128-bit blockswhich

constitute CA lattice configurations and, as previously sta-

ted, the encryption and decryption processes are based onCA

evolution. Therefore, encryption quality is directly related to

the CA evolution rules used in these processeswhichmust be

derived from a K cryptographic key.

The Wolfram notation defined in Sect. 2.3 allows

expressing radius r CA rules as 22�rþ1-bit strings. How-

ever, since HCA is based on left-toggle rules and according

to Sect. 2.5, half of that string length is enough for the

compressed rule notation that will be the K cryptographic

key.
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Despite the HCA method being compatible with any

left-toggle rule, some do not produce the desired dynamic

behavior. The normalized spatial entropy (h), computed for

any potential key K, can be used to evaluate the quality of

rules Oliveira et al. (2010c). Consider k an integer that

denotes the bit size of K, the h coefficient is computed by

the Expression (1) (Shannon 1948), where pi is the prob-

ability of a log2ðkÞ-bit substring occurring in the K

sequence, which is evaluated for every possible log2ðkÞ-bit
binary string through the summation.

h ¼ �
Pk

i¼1 ðpi � log2ðpiÞÞ
log2ðkÞ

ð1Þ

Setting the acceptable cryptographic key entropy above

0.75 is a criteria that filters out CA rules without chaotic

dynamics (Oliveira et al. 2010c). Rules extracted from K

where hðKÞ[ 0:75 do not produce an easily identifiable

pattern during CA evolution and, therefore, make the

resulting ciphertext hard enough to decrypt without previ-

ous knowledge of K.

Accordingly, keys with h� 0:75 are discarded. Table 2

presents the relation between the CA rule radius, the length

of the K key, the corresponding keyspace, and the per-

centage of discarded keys when the hðKÞ[ 0:75 criteria is

enforced.

In Table 2 the percentages listed for r ¼ 1 and r ¼ 2 are

absolute, since all the possible keys were tested. An anal-

ysis of the entire keyspace for r� 3 is impractical, but

extrapolations based on random sampling are presented for

r ¼ 3 and r ¼ 4. For both estimates, 232 keys were ran-

domly generated and evaluated in regard to this acceptance

criteria (h[ 0:75). An apparent correlation can be

observed between increasing the CA radius and a reduction

in the percentage of discarded keys.

Taking into account the speed of commercially available

hardware, HCA employs radius-4 rules (r ¼ 4) to ensure a

large 2256 keyspace, which is deemed appropriate against a

brute force attack. The estimated r ¼ 4 discarded keys per-

centage suggests that only a minimal set of very homoge-

neous keys would be rejected in the vast 2256 keyspace.

Since HCA is a left-toggle rule CA model, the K cryp-

tographic key is a 29

2
¼ 256-bit sequence which can be

expanded to 512-bit (left-toggle) radius-4 CA rule, under

the conventional Wolfram notation. An explanation on how

CA rules are derived from keys will be provided in

Sect. 4.3.1.

4.3 HCA - defining operations

Considering each 128-bit block, a partition of the plaintext

is the initial lattice configuration st¼0, for the CA. To

encrypt means applying the reverse evolution operation

(U�1), also known as preimage computation, for 128 steps

until the configuration st¼�128 is reached. Two CA rules

derived from the cryptographic key K are applied at each

evolution step, which are the main rule /m and the border

rule /b. Decryption is performed through the forward CA

evolution operation (U), using the same set of rules

employed in encryption.

At each t time step of the HCA procedure, from the 128

cells in lattice st, 2� r ¼ 8 consecutive cells are consid-

ered the border region, whose cells are evolved using

border rule /b. All other 120 cells are the main region,

evolved using main rule /m.

4.3.1 Generating CA rules from a key

As previously established in Sect. 4.2, HCA is a radius-4

CA model that uses left-toggle rules, which means the 256-

bit cryptographic key K can be expanded into a 512-bit

string Km that represents the /m radius-4 CA rule in

Wolfram notation. This expansion procedure, exemplified

at the end of Sect. 2.5, is presented as Expression 2, where

the þ sign stands for string concatenation and the upper

slash indicates a binary complement operation.

Km ¼ K þ K ð2Þ

While /m is derived from K as shown in Expression (2), the

512-bit border rule, /b is determined between two rules

which are rule f11 � � � 11þ 00 � � � 00g and rule

f00 � � � 00þ 11 � � � 11g. The Wolfram notation for these

two left-toggle 512-bit rules start with a 256-bit consecu-

tive repetition of a certain bit value and, thus, are bitwise

complements one to another. The determination criteria for

/b is denoted in Expression by its Wolfram representation

string Kb.

Kb ¼
11 � � � 11þ 00 � � � 00; K½0� ¼ 0

00 � � � 00þ 11 � � � 11; K½0� ¼ 1

�

According to Expression ,Kb will be the single rule from this

subset which satisfies Kb½0� ¼ K½0�. This subset from which

Kb is selected contains left-toggle rules that generate simple,

but very unique, behaviors. If Kb ¼ 00 � � � 00þ 11 � � � 11,
then /bððst½i� 4�; . . .; st½i�; . . .; st½iþ 4�ÞÞ ¼ st½i� 4�, which

Table 2 Key bits amount � discarded keys percentage

Radius Length

(K)

Keyspace Discarded (%)

1 4-bits 24 ¼ 32 25

2 16-bits 216 ¼ 131072 8.64

3 64-bits 264 � 0:113

4 256-bits 2256 � \0:1� 10�8
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means the resulting output stþ1½i� copies the value of the

leftmost cell of the st½i� neighborhood. Otherwise, if

Kb ¼ 11 � � � 11þ 00 � � � 00, then /bððst½i� 4�; . . .; st½i�;
. . .; st½iþ 4�ÞÞ ¼ st½i� 4�, which means the resulting output

stþ1½i� is the bitwise complement of the leftmost cell of the

st½i� neighborhood. The simplistic behavior expressed by

border rule /b is crucial to the deterministic preimage

computation that allows HCA to achieve reversibility, as

described in following sections.

4.3.2 Backward evolution operation

Given a lattice s at step t (represented as st), consider the

backward evolution operation (preimage computation) as

U�1ðst;/m;/bÞ ¼ st�1. Applying U�1 to st means com-

puting all bits of the predecessor configuration st�1 using

rules /m and /b, where

st�1 ¼ st�1½0�; st�1½1�; � � � ; st�1½127�.
The preimage computation is started by determining the

value of 8 consecutive bits (b1, b2, b3, b4, b5, b6, b7, b8)

of the preimage using /b. As stated in the previous section,

for any output bit st½i� computed from the st�1½i� neigh-
borhood through /b, there is a relation of value equality or

complement between st½i� and the leftmost cell of the st�1½i�
neighborhood, which is st�1½i� 4�.

Therefore, the knowledge of /b and of cell value st½i�,
allows the deterministic computation of st�1½i� 4� if st�1½i�
is a border cell, according to Expression (3).

st�1½i� 4� ¼ /bððst½ðiÞ; . . .ÞÞ ð3Þ

This procedure is used to compute 8 cells of the st�1

preimage. This is only possible due to the simplicity of

border rule /b that imposes a non-chaotic dynamic

behavior to these cells. Such non-chaotic behavior will not

affect the quality of the algorithm, since the border rule

will not have a significant influence on the CA dynamic as

a whole. The border rule is only used to ensure the exis-

tence of a single preimage for any possible configuration,

as proved in Sect. 5.

All the other 120-bits of the preimage are obtained from

main rule /m, responsible for providing the desired chaotic

behavior to the algorithm. The values of these 120

remaining bits are determined, one by one, in the toggle

direction (left) as displayed in Fig. 3. Also, Fig. 4 repre-

sents the computation of a single cell value using main rule

/m.

An initial supposition for the context presented in Fig. 4 is

that the bit value in position st½i� has been computed using

main rule /m. Therefore, there is a valid mapping, specified

by /m, from the (m1; b1; � � � ; b8) values in the st�1½i�
neighborhood (st�1½i� 4�; st�1½i� 3�; � � � ; st�1½iþ 4�) to the

output value in st½i�, which is o.

Since the main rule, /m, is a radius-4 CA rule, it denotes

a Boolean function that maps every possible 9-bit neigh-

borhood values to their corresponding output bits. Due to

the characteristics of /m as a left-toggle rule, and due to

knowledge of the b1; . . .; b8 cells values, there is only one

value that permutive cell m1 could assume in Fig. 4 so that

/mððm1; b1; b2; b3; b4; b5; b6; b7; b8ÞÞ ¼ o.

Afterdetermining them1value forposition st�1½i� 4�, this
same logic can be used to computem2 and, progressively, to

determine every one of the 120 remaining bits in the st�1

preimage. The first steps, and their respective considered

neighborhoods, for this operation are presented on Fig. 5.

The first backward evolution (U�1ðstÞ) is concluded

after 120 main bits of the preimage are evaluated, since this

means all the 128 bits in configuration st�1 have been

determined.

4.3.3 Forward evolution operation

Given a lattice s at step t, consider the forward evolution as

Uðst;/m;/bÞ ¼ stþ1. Applying U to st means finding all

φ

Fig. 3 Order of preimages bits computation using main rule /m

φ

Fig. 4 First main bit determination

φ

φ φ

φ φφ

φ

φ

Fig. 5 Progressive computation of remaining preimage bits
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bits of s at step t þ 1, using rules /m and /b, where

stþ1 ¼ ðstþ1½0�; stþ1½1�; � � � ; stþ1½127�Þ. For each i position,

the bit value of the cell stþ1½i� is determined using main rule

/m or border rule /b.

In this forward evolution procedure, the values of all

stþ1 cells can be computed simultaneously. As previously

stated, from the 128 grid cells, 8 are determined using the

border rule, /b, and 120 cells are determined using the

main rule, /m. A relevant explanation on which cell values

are computed by each rule, for a certain time step t, is

provided in Sect. 4.4.

4.4 HCA - lattice regions

Since the behavior imposed by border rule /b is very

simplistic, in forward evolution the position of this border

region suffers a circular shift by 8 positions to the right at

each time step to ensure every cell position of the CA

lattice is evolved multiple times by the main rule /m which

is the source of chaotic behavior for the system.

There are 128 steps of evolution in HCA, so encryption

starts with the st¼0 plaintext and results in the st¼�128

ciphertext. The first preimage computation U�1, which

determines st¼�1 from st¼0, is done under the premise that

in lattice st¼�1 the border region was comprised of cells

ðst¼�1½0�; . . .; st¼�1½7�Þ. The following Expression 4 com-

putes, for every t\0, which i lattice index should be

considered the leftmost cell of the 8-bit border region in st.

i ¼ ð128� ððjtj � 1Þ � 8Þmod 128Þmod 128 ð4Þ

This Expression 4 is also helpful during HCA decryption to

determine the border region and, thus, validate for each st½i�
cell, if /m or /b should be applied to its neighborhood

during CA evolution U. For instance, when applying t ¼
�128 to Expression 4, the result is i ¼ 0, which means the

border region of the ciphertext is comprised of cells

ðst¼�128½0�; st¼�128½1�; . . .; st¼�128½7�Þ and they should be

evolved using rule /b while all other 120 cells will be

evolved using /m to generate st¼�127.

4.5 HCA - parallelism

A relevant characteristic of cellular automata is the inher-

ent parallelism of these systems. In a conventional forward

evolution procedure, all the st cells can be evolved

simultaneously to generate the stþ1 configuration. Since the

decryption process of HCA is based on the forward evo-

lution operation (U), with proper hardware it is possible to

evolve all 128 cells from the st lattice to the stþ1 lattice in

parallel, with a considerable performance gain.

On the other hand, since the encryption process of HCA is

based on the backward evolution operation (U�1), a distinct

way of achieving parallelism was devised. The HCA

encryption is based on applying 128 successive preimage

computation operations to each block, and, conventionally,

the computationof a st�1 preimagewouldonlybe startedafter

all thebitsofst areknown.However, somelevelofparallelism

can be attained by allowing bits from distinct preimages to be

determined simultaneously. In the following subsections, the

first steps of a HCA decryption process will be detailed

according to the execution cycle at which cell values can be

computed, considering constant time basic CA operations.

4.5.1 First preimage computation

Consider, for instance, the initial step of HCA encryption,

whereU�1 is applied to the st¼0 plaintext lattice, resulting in

the st¼�1 preimage. According to Sect. 4.4, the border region

for t ¼ �1 has cells ðst¼�1½0�; . . .; st¼�1½7�Þ. As established
in Sect. 4.3.2, for any t time step and 0-based cell index i, if

st�1½i� is a border cell, the value of st�1½i� 4� can be com-

puted as soon as the values of /b and cell st½i� are known.

Therefore, since/b can be determined for any t as soon as the

K encryption key is known, and due to all st¼0 cell values

being available from the beginning (cycle ¼ 0), then the

values of 8 st¼�1 cells ðst¼�1½3�; st¼�1½2�; . . .; st¼�1½124�Þ can
be made available at cycle ¼ 1 using /p. After that, all the

other 120 cell values ðst¼�1½123�; st¼�1½122�; . . .; st¼�1½4�Þ
can be sequentially computed (from cycle ¼ 2 to

cycle ¼ 121) using main rule /m.

4.5.2 Second preimage computation

In the second step of HCA encryption, U�1ðst¼�1Þ ¼ st¼�2,

the border region for t ¼ �2 is comprised of cells

ðst¼�2½120�; . . .; st¼�2½127�Þ and, again, for any t time step

and 0-based cell index i, if st�1½i� is a border cell, the value
of st�1½i� 4� can be computed as soon as the values of /b

and cell st½i� are known. Therefore, 4 cell values

ðst¼�2½123�; st¼�2½122�; . . .; st¼�2½120�Þ can be made avail-

able at cycle ¼ 2 using /b. The other 4 cells computed

using /b, ðst¼�2½119�; st¼�2½118�; . . .; st¼�2½116�Þ can be

made available consecutively from cycle ¼ 3 to cycle ¼ 6,

due to the availability of corresponding st¼�1 values. And

the remaining 120 cell values computed using main rule /m,

ðst¼�2½115�; st¼�2½114�; . . .; st¼�2½0�; st¼�2½127�; . . .; st¼�2½124�Þ

are made available sequentially (from cycle ¼ 7 to

cycle ¼ 126).
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4.5.3 Third preimage computation

At the third step of HCA encryption, U�1ðst¼�2Þ ¼ st¼�3,

the border region for t ¼ �3 is comprised of cells

ðst¼�3½112�; . . .; st¼�3½119�Þ. From this preimage computa-

tion onward, a pattern can be established, since all the cell

values will be available for computed in consecutive

cycles, due to the availability of cell values from the image.

And thus, the 8 cell values computed using /b,

ðst¼�3½115�; st¼�3½114�; . . .; st¼�3½108�Þ, are made available

in consecutive cycles, from cycle ¼ 4 to cycle ¼ 11. As for

the 120 cell values computed using /m,

ðst¼�3½107�; st¼�3½106�; . . .; st¼�3½0�; st¼�3½127�; . . .; st¼�3½116�Þ

, they are made available sequentially (from cycle ¼ 12 to

cycle ¼ 131).

4.5.4 Fourth preimage computation

At the forth step of HCA encryption, U�1ðst¼�3Þ ¼ st¼�4,

the border region for t ¼ �4 is comprised of cells

ðst¼�4½104�; . . .; st¼�4½111�Þ. This is the last computation

being described in detail, since the cycle pattern mentioned

above will remain constant and conclusions can be drawn

from it. The 8 cells computed using /b,

ðst¼�4½107�; st¼�4½106�; . . .; st¼�4½100�Þ, are made available

consecutively, from cycle ¼ 9 to cycle ¼ 16. As for the

120 cell values computed using /m,

ðst¼�4½99�; st¼�4½98�; . . .; st¼�4½0�; st¼�4½127�; . . .; st¼�4½108�Þ

, they are made available sequentially (from cycle ¼ 17 to

cycle ¼ 136).

4.5.5 Conclusions on HCA decryption parallelism

The cycle pattern established from U�1ðst¼�2Þ onward

indicates the last cell computation, for a certain st preimage

where t� � 3, will at minimum happen at cycle

131þ ðð�t � 3Þ � 5). The 131 and �3 terms are due to the

cycle where the pattern starts being constant, as for 5, it is

the growth constant observed for each t� � 3 which is

related to the CA radius. Assuming the possibility, with

specialized hardware, of starting each preimage cell com-

putation as soon as its conditions are fulfilled, theoretically

the computation of the t ¼ �128 ciphertext could be done

in cycle ¼ 756 according to the expression presented

above, which is a relevant improvement when compared to

the traditional approach of only starting the next preimage

computation when all the image cell values are available,

an approach that takes 1282 ¼ 16:384 cycles.

4.6 HCA - method overview

The cryptographic key K, used in the process of generating

the /m and /b rules, must be applied in a way that gen-

erates the same rules for equivalent encryption and

decryption steps. Thus, the key K used at step t ¼ 1 in

encryption should be the same as the one used at step

t ¼ 128 during decryption. A scheme illustrating this

relation is presented in Fig. 6, where the left side displays

the encryption process being performed from top to bot-

tom, and the right side of the figure shows the decryption

process being performed in the opposite direction.

During encryption, at each CA step, the cryptographic

key K is circularly shifted to the left by 1 position, gen-

erating two new rules /m and /b.

It is important to note that, in decryption, the ciphertext

(s�128) will be used as the initial configuration for the proce-

dure, but the cryptographic key used in this step will be

Shift127ðK; leftÞ. The original cryptographic key K must be

circularlyshiftedtotheleftby127positionsbeforerules/mand

/b are derived from it. At each decryption step it will be nec-

essary to circularly shift this cryptographic key used in the

previous step to the right by 1 position, so that it becomes

equivalenttothekeyusedinthecorrespondingencryptionstep.

It is expected that all main rules derived from K during

encryption have chaotic dynamic behavior, and since many

distinct rules are employed in the method, it is harder for a

cryptographic attack to exploit the dynamic behavior of a

specific rule.

The Algorithm 1 presents in pseudo-code the operations

performed during the encryption process (backward evo-

lution) and the Algorithm 2 shows the decryption process

operations (forward evolution).

Cryptographic Key
Plaintext Block

Ciphertext Block

Pre-image (t = -128)

Pre-image (t = -1)

Pre-image (t = -2)

...

Plaintext Block

CA evolu�on (t = -128)

CA evolu�on (t = -1)

CA evolu�on (t = -2)

...

...

Create rules

Shi� 1-bit

Create rules

Shi� 1-bit

Create rules

Ciphertext Block

Fig. 6 Scheme illustrating the HCA encryption and decryption

processes

Algorithm 1: HCA algorithm - encryption
input: cryptographic key K and plaintext block s
output: ciphertext block

1 for i ← 1 to 128 do
2 φm ← createRulem(K);
3 φb ← createRuleb(K);
4 s ← Φ−1(s, φm, φb);
5 K ← Shift1(K, left);
6 end
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5 Reversibility of HCA

As described in Sect. 4, for each plaintext block, the HCA

symmetric cryptography method employs a series of

preimage computation operations (U�1) to encrypt it, and a

series of CA forward evolution operations (U) to reverse

the resulting ciphertext back to the original plaintext.

Such mechanism can only be effective if the HCA

model provides CA reversibility, so that any lattice con-

figuration will only have a single preimage. And thus, a

required formal analysis of the reversibility property for

HCA is provided in this section.

Theorem 1 Let /m and /b be, respectively, the main and

boundary rules used at any step of the HCA model. For any

configuration st, st has one and only one preimage, which

is st�1.

Proof Let st½0; . . .; 7� be the cells in st under /b, and

st½8; . . .; 127� the cells in st under /m. For simplicity, the

theorem description is demonstrated for the lattice cell

positions listed above. However, this is done without loss

of generality due to the toroidal arrangement (wrap-

around) of the CA lattice: circular shift could be applied at

will and this description is still valid regardless of lattice

cell positions. Let st�1½0; . . .; 127� be the cells in st�1. Also

w.l.o.g., let us consider only left-toggle rules.

By definition, we have that the output bit of left-toggle

rules mappings necessarily changes when the leftmost bit

of the input neighborhood is changed if the others

neighborhood bits remain unchanged. From the definition

of the HCA model, we know that /m is left-toggle rule, and

that /b is even stricter: only the leftmost bit matters when

computing the output, that is, the rule either always copies

or always inverts the leftmost input bit. Thus, even though

st½0� is the result of the application of /b over the

neighborhood st�1½124; . . .; 4�, it depends solely on

st�1½124�, as shown in Fig. 7.

Therefore, st½0� ¼ /bðst�1½124�Þ, but also

st�1½124� ¼ /bðst½0�Þ, since /b can only express a copy

or complement operation. The same is true for each lattice

cell in st½0; . . .; 7� with respect to each lattice cell in

st�1½124; . . .; 3�. Therefore, we can apply /b over each

element in st½0; . . .; 7� to uniquely determine

st�1½124; . . .; 3�, as shown in Fig. 8.

Since st½127� ¼ /mðst�1½123; . . .; 3�Þ, and considering the
values of cells st�1½124; . . .; 3� are already known, st�1½123�
can be computed by checking which bit value placed in

st�1½123� would lead to /mðst�1½123; . . .; 3�Þ ¼ st½127�, pic-
tured in Fig. 9.

Since /m is a left-toggle rule, any value change in

st�1½123� would result in a change to st½127�, therefore

st�1½123� is unique. Cells st�1½122; 121; . . .; 5; 4� are

sequentially computed in an analogous manner and there-

fore are also unique.

Since the preimage st�1 is computed deterministically

and uniquely, we have that the theorem holds. h

From Theorem 1 it follows that the HCA model is

reversible.

6 Security

In the literature there are many methods that help evalu-

ating the quality of a cryptographic algorithm, and some

that apply to this context of symmetric cryptography based

on hybrid cellular automata will be listed and explained in

this section.

6.1 Avalanche effect

Initially coined by Feistel (1973), the ‘‘Avalanche Effect’’

is an expected property in cryptographic systems which can

be measured in two cases (Gustafson et al. 1994):

– Plaintext Avalanche: Using the same key, what is the

impact of flipping a single bit in the plaintext?

St-1

[123]
St-1

[124]
St-1

[125]
St-1

[126]
St-1

[127]t-1 St-1

[0]
St-1

[1]
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[2]
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[3]
St-1

[4]

t ... St

[127]
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[0]
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[1]
...

... St-1

[5]
...

Fig. 7 Preimage computation on single bit of the border

Algorithm 2: HCA algorithm - decryption
input : cryptographic key K and ciphertext block s
output: plaintext block

1 K ← Shift127(K, left);
2 for i ← 1 to 128 do
3 φm ← createRulem(K);
4 φb ← createRuleb(K);
5 s ← Φ(s, φm, φb);
6 K ← Shift1(K, right);
7 end

St-1

[123]
St-1

[125]
St-1

[126]
St-1

[127]t - 1 St-1

[0]
St-1

[1]
St-1

[2]
St-1

[3]
St-1

[4]

t ... St

[127]
St

[0]
St

[1]

... ...

St

[2]
St

[3]
St

[4]
St

[5]
St

[6]
St

[7]
St

[8]
...

St-1

[124]

Fig. 8 Preimage computation on all bits of the border
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Fig. 9 Preimage computation in a main bit
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– Key Avalanche: Using the same plaintext, what is the

impact of flipping a single bit in the key?

This procedure is detailed in Fig. 10. When the Plaintext

Avalanche is being evaluated we have K ¼ K 0, otherwise
when Key Avalanche is being measured we have X ¼ X0.
For both cases, Z ¼ Y 	 Y 0.

If an algorithm does not exhibit sufficient Avalanche

Effect compliance it would be extremely vulnerable to

chosen-plaintext attacks, so this kind of analysis is regar-

ded as a conventional test ran to evaluate cryptographic

algorithms’ strength (Ramanujam and Karuppiah 2011;

Mishra et al. 2011; Nadu 2018). The method presented in

Sect. 4 was tested according to the specifications listed in

6.1.1 and 6.1.2. Results are presented on Sect. 7.1.

6.1.1 Avalanche effect - standard deviation analysis

If the algorithm presents strong Avalanche Effect, then we

should expect the minimal difference between X and X’

(for the Plaintext Avalanche test) or between K and K’ (for

the Key Avalanche test) to cause a significant difference

between ciphertexts Y and Y’ and thus, in ideal conditions,

the percentage of ‘1’ bits in Z should be around 50% (as

would also be expected from a randomly generated binary

sequence). It would also be relevant to know, considering

many distinct avalanche evaluations in a diverse popula-

tion, how consistent are these results. In this case, the

standard deviation analysis is considered a proper way to

measure this, and a lower StdDev value would be desirable.

6.1.2 Avalanche effect - entropy analysis

When evaluating the Avalanche Effect on an algorithm,

besides counting how many bits of the ciphertext were

affected by a minimal change, its also important to quantify

how well propagated were the effects of said change. It

would be desirable for this impact (bits changed) to be

strongly distributed through the entire resulting ciphertext,

and the concept of Information Entropy presented in 4.2 is

a means to evaluate this.

So, when using the normalized entropy formula 1 to

analyze sets of Z strings obtained from many Avalanche

experiments, resulting values closer to 1.00 are desirable,

as they would indicate the propagated changes were highly

dispersed across the resulting ciphertext. Meanwhile, a

result close to 0.00 is highly undesirable since it means the

initial change made small or no difference in the ciphertext,

or that it caused all the bits in Y and Y’ to be the exact

opposites.

6.2 NIST PRNG statistical test suite

The NIST (National Institute of Standards and Technology)

is an American Institute founded in 1901 that provides

guidelines on security and innovation. In 2010, NIST

released their latest version of a Statistical Test Suite that

evaluates the statistical quality of sequences generated by

pseudo-random number generators (PRNG) (Zaman and

Ghosh 2012).

Since there is a known correlation between PRNG and

encryption, this test suite is also being used to measure the

quality of encryption algorithms by evaluating the statis-

tical difference between the plaintext and its resulting

ciphertext.

The NIST suite consists of 15 tests, and each test can be

comprised of many subtests, which is why the suite is

sometimes listed as having 15 tests (Lakra et al. 2018) and

in other times as being a set of 188 or more tests (Manzoni

and Mariot 2018).

7 Evaluations

7.1 Avalanche effect

The Avalanche Effect test was applied to HCA in the

following conditions:

– Each CA lattice is comprised of N = 128 bits

– 655, 360 random lattices are generated, totalling 10

megabytes of data

– Each execution ran for N evolution steps (except for

RNG)

Crypto Key (K)

Plaintext (X)

Ciphertext (Y)

Minimal Change (Single Bit)

Crypto Key (K')

Plaintext (X')

Ciphertext (Y')

XOR

Bitwise Difference (Z)

(Change Introduced only when evalua�ng 
Plaintext Avalanche, otherwise X = X')

(Change Introduced only when evalua�ng 
Key Avalanche, otherwise K = K')

Fig. 10 Avalanche Effect evaluation explanation
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Each of the randomly generated initial lattices was

encrypted by the HCA algorithm using random valid HCA

cryptographic keys (with spatial entropy [ 0:75) and the

results are presented in Table 3. In each table, values

obtained from sequences generated by the Mersenne

Twister PRNG (Matsumoto and Nishimura 1998) are

included for comparison purposes.

In Table 3 the test results are displayed for the plaintext

and key avalanche evaluations. A good encryption algo-

rithm should present a modification rate in the final

ciphertext around 50%, with a low standard deviation (r),
as is the case in all average values found for both instances.

The result values are also similar to the bit distribution rate

in the PRNG generated sequences.

It is also important to ensure a random spatial dispersion

of the changed bits, so a spatial entropy analysis is done on

the resulting difference (XOR) lattice. These results follow

in Tables 4 and 5 for the plaintext and key avalanche

evaluations, respectively.

The average entropy results for each tested radius value

should be as close as possible to 1.00 and the evaluated

results, presented above, were comparable in all instances

to the average entropy found in randomly generated

sequences.

7.2 NIST PRNG suite

The NIST suite (Zaman and Ghosh 2012) tests were run on

sequences that directly convey the changes an encryption

method causes on random plaintexts. Each test has a

minimum input size recommendation, and since some of

them are as large as 106 bits, the results presented here

were obtained using sequences consisting of 10 Megabytes.

The input sequence construction procedure is explained on

Fig. 11.

As presented in Fig. 11, building each 10 Megabytes

sequence begins by initializing a single 128-bit block sized

lattice using a pseudo-random seed, this initial plaintext is

regarded as ‘‘P1’’. The encryption algorithm is applied to

P1, generating a ciphertext called ‘‘P2’’, and their binary

difference, P1 	 P2, represents the effect of the encryption

procedure. After P1 	 P2 is calculated, this 128-bit

sequence is the first part of the 10 megabytes input

sequence used for NIST evaluation; the next part will be

P2 	 P3, where ‘‘P3’’ is the new ciphertext obtained by

running the encryption algorithm with P2 as the plaintext.

This iterative procedure is repeated until the 10 Megabytes

sequence is complete by appending the last part,

PN�1 	 PN , where, accordingly,

N ¼ ð10megabytesÞ=ð128 bitsÞ.
The NIST evaluation ran for each algorithm was exe-

cuted for 1,000 distinct 10 Megabytes sequences generated

using the procedure listed above. The percentage of passing

sequences for each NIST test follow in Table 6.

Besides the results found for sequences generated by the

HCA method, Table 6 also contains the results for

sequences similarly generated using the AES algorithm.

Table 3 HCA - Avalanche Effect Result Statistics

HCA - text aval. HCA - key aval. RNG

Avg (%) r Avg (%) r Avg (%) r

49.986 4.421 49.996 4.426 50.002 4.417

Table 4 HCA - plaintext avalanche entropy analysis

HCA RNG

Min Max Avg r Min Max Avg r

0.746 0.948 0.883 0.018 0.750 0.955 0.883 0.018

Table 5 HCA - Key Avalanche entropy analysis

HCA RNG

Min Max Avg r Min Max Avg r

0.741 0.950 0.883 0.018 0.750 0.955 0.883 0.018

...

Random Ini�al Seed (128 bits)

P1

NIST Input Sequence (10 Megabytes)

XORP1 P2 XORP2 P3 ...

1 128 256

Encryp�on

P2

PN

10 MB

XOR PNPN-1

Fig. 11 NIST input sequence building
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The proximity between the passing rates of both algo-

rithms, for all tests in the NIST suite, suggests HCA is a

promising method, since AES is the current symmetric

encryption standard.

8 Conclusions and future work

This paper describes a symmetrical block cipher model

based on reversible heterogeneous cellular automata that

employs two radius-4 left-toggle rules. The main rule is

chaotic and non-additive; it is applied to the majority of

bits at each time step to provide the necessary entropy to

the encryption process. The second one is periodic (more

specifically, fixed-point with a spatial displacement) and

additive; it is applied to a small set of consecutive bits (the

lattice border) and is used to ensure the existence of a

preimage. This model was named HCA (Hybrid Cellular

Automata) and it was firstly proposed in 2007, when a

patent registration was submitted in Brazil Oliveira and

Macêdo (2019). It is the first time that HCA is presented

and evaluated in a wide range scientific forum. In the past,

just the brazilian patent registration (whose process was

finalized in 2019) and some local academic works (mas-

ter’s thesis), written in portuguese, have focused on aspects

of, and extensions to, the HCA model (Magalhães Júnior

2010; Lima 2012; Alt 2013).

The adopted block size is a sequence of 128 bits, and the

secret key has 256 bits which define the main rule to be

applied. Moreover, as presented here, forward and back-

ward CA evolution procedures correspond to the decryp-

tion and encryption processes, respectively. However, the

converse is also possible; HCA enables one to use forward

evolution in ciphering, while the receiver must use

backward evolution to decipher. In general, forward is

faster than backward evolution and in the specification

discussed here the receiver will employ the faster process

to decipher. It would also be easy to increase the size of the

block for 256 bits or more. If one wants to use a larger key

space, it is also simple to adapt the model to use radius-5

toggle rules or more; however this would increase the

complexity of implementing the solution in HPC systems,

such as FPGAs (Halbach and Hoffmann 2004).

Although the statistical methods presented in Sect. 6 are

not capable of fully attesting the security of HCA, they are

the standard validations usually ran against novel crypto-

graphic methods and pseudo-random number generators.

Therefore, their results provide a basic sanity check that

could reveal existing vulnerabilities. The positive results

obtained for HCA are very welcome, but only rigorous

cryptanalysis would be capable of certifying the robustness

of HCA, which is an ongoing work of our research group.

When compared to other similar CA-based methods

(Gutowitz 1995; Oliveira et al. 2004, 2008, 2010b, c, 2011;

Wuensche 2008) which also apply toggle (permutive)

rules, the HCA algorithm has the advantage of keeping the

ciphertext size equal to the plaintext, whereas being valid

for any possible CA initial configuration since the exis-

tence of a preimage is ensured due to the heterogeneous

arrange of the two toggle rules (chaotic and additive)

(Oliveira et al. 2008). As a symmetric algorithm, this

model can be applied to any kind of data (text, images, etc.)

by defining a safe padding strategy and a secure mode of

operation.

Despite the parallelism mechanisms of HCA having

already been explained in this paper, implementation in

specialized hardware was not possible at the time of this

publication. The method was implemented in conventional

Table 6 NIST suite tests
NIST test HCA (%) AES (%)

T01 - Frequency (Monobits) test 99.4 99.1

T02 - Frequency test within a block 98.8 99.4

T03 - Runs test 98.9 98.7

T04 - Test for the longest run of ones in a block 99.0 98.3

T05 - Binary matrix rank test 99.2 99.2

T06 - Discrete fourier transform (Specral) test 99.5 98.6

T07 - Non-overlapping template matcing test 96.6 98.0

T08 - Overlapping template matching test 99.2 99.2

T09 - Maurer’s ‘‘Universal Statistical’’ test 99.4 99.0

T10 - Linear complexity test 99.0 98.4

T11 - Serial test 98.1 98.1

T12 - Approximate entropy test 98.6 99.1

T13 - Cumulative sums (Cusum) test 99.0 98.8

T14 - Random excursions test 93.9 93.2

T15 - Random excursions variant test 92.5 92.7
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x86 software and only inter-block parallelism, which is

available to any block cipher algorithm, was explored.

Therefore, the efficient implementation of HCA in High

Performance Computing (HPC) systems, such as FPGA

architectures, is another ongoing work of our research

group.

The conception of the reversibility analysis presented in

Sect. 5 gave insight into the possibility of extending this

concept to HCA alternatives with an even higher hetero-

geneity level. This could also allow the use of rules with

radius lower than 4, which would lead to more performance

and ease to implement. Another expected development is a

forthcoming work that investigates an HCA adaptation

using multidimensional cellular automata.
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Macêdo HBd (2007) Um novo método criptográfico baseado no
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