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Abstract
The Protein Structure Prediction Problem is one of the most important and challenging open problems in Computer Science

and Structural Bioinformatics. Accurately predicting protein conformations would significantly impact several fields, such

as understanding proteinopathies and developing smart protein-based drugs. As such, this work has as its primary goal to

improve the prediction power of ab initio methods by utilizing a self-adaptive evolutionary algorithm using Monte Carlo

based fragment insertion and conformational clustering. A meta-heuristic is used as the core of the conformation sampling

process with fragment insertion, feeding domain-specific information into the process. The online parameter control

routines allow the method to adapt to a protein’s structure specificity and behave dynamically in different stages of the

optimization process. The results obtained by the proposed method were compared to results obtained from several other

algorithms found in the literature. It is possible to conclude that the proposed method is highly competitive in terms of free-

energy and RMSD for the protein set used in the experiments.

Keywords Bioinformatics � Fragment insertion � Protein structure prediction problem � ab initio method �
Clustering

1 Introduction

Proteins are responsible for several vital functions, such as

structural, metabolic, and regulatory. Moreover, the protein

function is directly dependent on its three-dimensional

conformation (Kihara 2014). Therefore, knowing the

protein conformation can give insight into specific pro-

teins’ function and help understand and treat diseases

caused by misfolded proteins, such as Parkinson’s and

other diseases (Walsh 2002).

The Protein Structure Prediction Problem (PSPP) is

considered one of the leading open problems in Computer

Science and Structural Bioinformatics (Dorn et al. 2014;

Lopes 2008). The PSPP consists of computationally finding

the tertiary structure of a protein-based on its respective

primary sequence. A plethora of models has been proposed

over the years with different levels of biological plausi-

bility, complexity, and accuracy. One of the simplest

models, the on-lattice 2D HP is an NP-hard problem

(Berger and Leighton 1998). TheNP-hardness of the PSPP

has been generalized for all on-lattice models (Hart and

Istrail 1997) and all off-lattice models. Nevertheless, it is

reasonable to expect more complex models to be NP-hard

too.

Recently, the AlphaFold, the deep learning algorithm

developed by DeepMind, achieved highly promising

results in the CASP13 and CASP14 competition (Jumper

et al. 2021). The AlphaFold combines features derived

from homologous templates and from multiple sequence

alignment to generate the predicted structure. Nevertheless,

AlphaFold has some drawbacks, such as the bias to the
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Protein Data Bank (PDB) database, and the heavy depen-

dency on high-computational efforts for training their

model (David et al. 2022). Also, given the number of

possible natural and artificial protein structures, it is cur-

rently unfeasible to rely on template-based methods to

predict any unknown structure with consistent quality. As

such, the PSPP is still considered to be an open problem.

So far, there is no viable general solution to this chal-

lenging problem. In this way, metaheuristics can be a faster

option to the problem even though achieved results are not

the same as AlphaFold.

As shown in Nunes et al. (2016), it is possible to solve

the 2D HP problem to optimality for small instances of the

problem. However, the presented model has small biolog-

ical plausibility and suffers from poor scalability. To

approach a full atomic representation of the problem, the

use of meta-heuristics becomes the primary approach for

attempting to solve the problem. Several works in the lit-

erature have tried to solve the PSPP using meta-heuristics.

In Borguesan et al. (2015), a genetic algorithm is used. -

Garza-Fabre et al. (2016) utilized a memetic algorithm. A

simulated annealing approach is proposed in Silva and

Parpinelli (2018). In Silva and Parpinelli (2019), the use of

differential evolution is presented.

It is well known that the performance of meta-heuristics

is highly dependent on the set of parameters utilized during

the optimization (Karafotias et al. 2015), and for solving

the PSPP, it is no different. Most of the classical approa-

ches using meta-heuristics have a fixed set of parameters

that control the optimization process’s behavior determin-

istically. These parameters must be found a priori and

usually require a slow and computationally intensive pro-

cess such as a grid search. Furthermore, it is unreasonable

to expect that a single set of parameters will have optimal

performance over a broad set of instances of a problem,

especially for a highly complex problem such as the PSPP.

For these reasons, many authors have employed the use of

on-line parameter control. That is, actively monitoring and

changing the parameters throughout the optimization

(Parpinelli et al. 2019). This approach not only allows the

optimizer to adapt to different instances of a problem, but it

also permits that the optimizer adapts to different regions

of the energy landscape during the optimization process of

a single instance.

Given the problem’s high complexity, a blind optimizer

might underperform due to the energy function’s roughness

and the ample search space. In this case, it is possible to

employ a hybrid algorithm (Blum et al. 2011). A hybrid

algorithm allows the optimization procedure to be guided

to search for more relevant directions, thus improving

overall performance. Given the high dimensionality of the

problem and its multimodality, this becomes a requirement

to improve the overall prediction quality. This is achieved

by employing fragment insertion during the optimization

process, which directly applies small structures with bio-

logical plausibility into the conformation being predicted.

Based on Anfisen’s hypothesis, the point of the lowest

potential energy of the conformational search space will

correspond to the native conformation. Given the size of

the search space, finding this point is a non-trivial task.

However, since the energy landscape tends to have a fun-

nel-like shape, one can leverage the distribution of multiple

predictions in the hope of finding the overall direction of

the native conformation. Hence, the clusterization of pre-

dicted conformations can be employed to this end. There is

a tendency that the more prominent clusters will be closer

to the native conformation.

This work has as its primary goal to study and attempt to

solve the PSPP. For this, an off-lattice ab initio method will

be used. The proteins will be represented computationally

as torsion angles of the backbone and side-chain centroids.

The ab initio model will be optimized using a hybrid

optimizer based on a self-adaptive evolutionary algorithm

with Monte Carlo (MC) and Local Search, named PPF-

MC. Moreover, a conformational clustering routine is

employed to identify promising regions of the search space.

The final clusters are then subject to the Hooke-Jeeves

local search procedure and then fed into a repacking pro-

cedure to translate the model from a centroid one into a full

atom configuration.

The organization of this work is: Sect. 2 presents the

PSPP; Sect. 3 discusses related works; Sect. 4 presents the

proposed method; Sect. 5 presents the experimental setup

and results obtained; finally, Sect. 6 presents the conclu-

sions and future work directions.

2 The protein structure prediction problem

The primary structure of the protein is considered the linear

sequence of amino acids within a protein. Proteins are built

from a set of amino acids, each of which has a unique side-

chain composed of different chemistries. The PSPP con-

sists of taking the primary sequence of a protein as input

and outputting a prediction of its native conformation (or

tertiary structure). There are several methods for doing so,

with varying degrees of success. These methods are cate-

gorized into ab initio and knowledge-based, depending on

how the method operates. The knowledge-based methods,

represented by Homology Modeling (HM) and Threading

Modeling (TM), are the two methods with the best results

so far. However, they rely on the existence of protein with

a known conformation that has a high degree of homology

or on the existence of a suitable template of good quality.

Another class of protein prediction algorithms is the

ab initio methods (Lee et al. 2017). From the Latin,
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ab initio means first principles. The information about the

physical and chemical properties of the proteins are enco-

ded on the protein representation. Its interactions are

evaluated by energy functions (or scoring functions). A

given protein in natura seeks its point of least potential

energy (Anfinsen 1973). Based on this fact, an energy

function for an ab initio method tries to evaluate the

potential energy of a given conformation. With a search

procedure, it is possible to find its point of least potential

energy, which should be close to its respective native

conformation. In other words, ab initio methods can be

seen as an optimization problem where the objective

function is the energy function of the protein, and its

variables are the degrees of freedom from its computational

representation. Also, ab initio methods can be classified

into on-lattice and off-lattice models.

On-lattice models consist of a protein representation

where a lattice bounds its shape. Despite the on-lattice

model’s simplicity, it still is an intractable problem on a

large scale due to its NP-completeness. Nevertheless, from

a practical point of view, these models can not represent a

protein with enough details. Therefore, a more robust

representation is required. This is possible using off-lattice

models that are models not constrained by a lattice.

The AB model can be considered the simplest off-lattice

model, in which the amino acids are represented as spheres

that are either hydrophobic or polar, and the angles

between them are not constrained (Berger and Leighton

1998; Boiani and Parpinelli 2020). A more detailed model

consists of using the coordinates of the Ca. In this model,

the amino acids are abstracted into spheres; however, they

maintain their properties such as polarity and hydropho-

bicity, allowing for an increased level of detail. It is pos-

sible to represent each of the amino acid heavy atoms

(Nitrogen, Carbon, and Oxygen) individually, instead of

using a sphere to represent the whole amino acid. This

model allows for interactions between individual atoms in

the backbone to be considered during the prediction. The

protein backbone is what holds a protein together and gives

its tertiary structure.

Increasing the level of detail, it is possible to represent

all atoms in the backbone, including the hydrogen atoms.

This permits that hydrogen bonds be taken into account,

which plays a significant role in forming secondary struc-

tures and their interactions. The secondary structure refers

to regular, recurring arrangements in the space of adjacent

amino acid residues in a polypeptide chain. Furthermore, it

is possible to include a centroid (also called ellipsoid) to

describe the amino acid side-chain. With this, each amino

acid’s shape can be considered when predicting the pro-

tein’s three-dimensional structure.

There are two main models to fully represent the pro-

tein: The backbone and side-chain torsion angles, and all

atoms coordinates (Rohl et al. 2004). The former describes

all atoms in the protein, including the side-chain. However,

the bond length between these atoms is fixed and the

position of the hydrogen atoms. This model is enough to

describe the protein very accurately and take into account

most of its interactions. Nevertheless, since artificial con-

straints are imposed in the model, it is possible that some

proteins can not be correctly predicted because it depends

on one of the aspects that the model abstracted. For this

reason, the all-atom coordinates model can be employed. In

this model, all atoms are represented and can have a degree

of freedom. Currently, this model is the most accurate one,

at the expense of adding up a hundred variables per amino

acid.

Several energy functions in the literature allow for an

ab initio approach, such as the AMBER, GROMOS,

CHARMM, and Rosetta. The AMBER (Salomon-Ferrer

et al. 2013) package contains a set of scoring functions

based only on the potential energy of proteins (and other

molecules). It was originally designed for molecular

dynamics simulations. However, it is possible to use it to

score a given conformation. Another package that offers

energy functions for proteins is CHARMM (Brooks et al.

2009). Like AMBER, it is primarily intended for molecular

dynamics simulations for several organic molecules of

interest. Nevertheless, its scoring can be used for ab initio

methods. The GROMOS package (Eichenberger et al.

2011) also focuses primarily on molecular dynamics sim-

ulations and provides energy scoring of protein confor-

mations. A more detailed discussion of the energy

functions is available at Dorn et al. (2014). In Narloch and

Parpinelli (2016), the authors explored the differences

between AMBER, CHARMM, and Rosetta. A further

discussion on energy fields (from molecular dynamic

packages) can be found in Vlachakis et al. (2014).

The Rosetta Suite (Rohl et al. 2004; Kaufmann et al.

2010) contains multiple energy functions for all-atom

coordinates models, backbone and side-chain torsion

angles, and backbone torsion angles with centroids for the

side-chains. This suite also allows for the customization

and creation of new energy functions. The Rosetta energy

functions consider the protein’s physicochemical properties

and its statistical nature, based on a knowledge database

with propensities of each amino acids. Information

regarding the compactness of the structure and other

properties, such as the formation of side-chain structures,

are also computed. This removes the possibility of scoring

the protein with a physical unit of measurement. Instead,

the energy functions are measured by the Rosetta Energy

Units (REU). More information about the Rosetta energy

function is available in Alford et al. (2017).
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With an energy function for scoring the protein con-

formations, it is possible to employ an optimizer to search

for the least potential energy structures. This procedure

must sample the conformation space accessible from the

computational representation of a given protein. A vast

range of methods has been employed over the years in the

literature. In Li and Scheraga (1987), a Monte Carlo based

search, is used to optimize a set of dihedral angles. Basin-

hopping is a method where a random perturbation is

applied to the conformation, and then a hill-climbing type

of algorithm is employed to find a local minimum. It has

been used in Prentiss et al. (2008) and Olson and Shehu

(2012).

One particular branch of algorithms that have been used

extensively in the literature is bio-inspired algorithms. The

well-established algorithms are present in the literature,

such as the Particle Swarm Optimization (Geng and Shen

2017), Differential Evolution (Hao et al. 2017), and the

Genetic Algorithm (Higgs et al. 2010). Other algorithms

that are not so widely used have also been explored for the

PSPP, such as the Cuckoo Search (CS) (Ramyachitra and

Ajeeth 2017) and the Bee Colony Algorithm (Li et al.

2015).

2.1 The Rosetta suite

Practically, working with an ab initio method is very time-

consuming due to the high amount of boilerplate code

required to model the protein and its molecular dynamics

from scratch. Furthermore, this process is also very error-

prone. The Rosetta Suite (Rohl et al. 2004) introduces a

robust and validated suite for working with proteins and

other macromolecules. It also includes multiple utilities for

manipulating, pre-processing, and post-processing the

protein conformations in a pipeline. The Rosetta Suite is

free for academic use, and it is open-source 1.

One of the tools available at Rosetta and required for

this work is fragment insertion. A fragment consists of a

sequence of contiguous amino acids at a specific configu-

ration extracted from some known structure protein. This

sequence must fully match some continuous sequence of

amino acids in the target protein, where the structure is

unknown. The purpose of this is to use multiple fragments

as building blocks. It is worth noting that homologous

structures’ fragments must be removed to avoid potential

sampling from the same protein from another organism.

Creating a set of fragments for a particular target protein

must be run only once per target and per-fragment size.

Two sizes of fragments commonly used are 3 and 9. The

fragment picker is responsible for searching a database of

non-redundant protein conformations and sampling it to

assemble fragments. More information about the inner

workings of the Rosetta Fragment Picker is available

in Gront et al. (2011).

Rosetta Suite includes two fragment insertion operators

(called movers). One is found in Rosetta as ClassicFrag-

mentInsertion, and the other operator is the smooth, found

in Rosetta as SmoothFragmentInsertion.

The classical operator replaces one portion of the protein

with its respective fragment. This change can be very

aggressive and have a high changing impact on protein

conformation.

The smooth fragment insertion applies a classic frag-

ment insertion followed by a second fragment insertion that

tries to minimize the Gunn Cost (Gunn 1997). The Gunn

Cost measures the amount of change in a conformation due

to the arm lever effect. The further away from the insertion

point an amino acid is, the more it will move. Since the

smooth fragment insertion tends to negate some of the

change, it will preserve some of the protein structure,

leading to a more localized change in the conformation. It

is worth noting that the smooth fragment insertion is an

optimization problem that minimizes the Gunn Cost. Since

this operator tries to minimize the amount of change by its

application, the impact on the energy score will be smaller,

leading to smaller and more progressive changes.

3 Related works

This section provides a comparison with the most recent

works in the literature. Only works using ab-initio with all-

atom modeling or all backbone atoms with side-chains

centroids are considered. The papers are presented in order

of year of publication, starting from the year of 2015.

In Sudha et al. (2015), the authors applied SaDE with a

diversity control strategy and local search operators to the

PSPP. This modified version of SaDE, called DCSaDE-LS,

was then compared with SaDE and other competing

methods. DCSaDE-LS was able to outperform the other

methods. However, it is worth noting that the authors used

Met-enkephalin (1PLW), a small protein comprising only

five amino acids, for the testing.

In Borguesan et al. (2015), the authors present a GA and

a PSO use of APL. Both GA and PSO consider the sta-

tistical distribution of dihedral angles in the search opera-

tors. The use of that information leads to a significant boost

in prediction performance.

An approach based on a Memetic algorithm is presented

in Garza-Fabre et al. (2016). It uses fragment assembly as a

local search form, and a particular type of crossover is

employed a well. This new crossover operator operates

exchanging loop regions between two-parent proteins to

generate new offspring. In general, a-helix and b-sheets are1 Rosetta Suite available at https://www.rosettacommons.org/
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relatively stable, predictable, and well-defined structures.

Meanwhile, loop regions on the protein are highly unpre-

dictable and have a high impact on the protein conforma-

tion. Therefore, one of this work’s main contributions is

operators specific for loop regions and a local search

operator in a memetic environment.

Another memetic approach is presented in Correa et al.

(2016). There, a multi-population based GA is employed in

order to maintain diversity. Special crossover operators

enforce and apply secondary structures to specific parts of

the protein to more easily assemble them during the opti-

mization process. A local operator is also employed in

order to exploit possible suitable conformations. These

operators replace random dihedral angles in the protein

with angles gathered from APL (Borguesan et al. 2015), a

database with statistical data about dihedral angle distri-

butions. Also, a simulated annealing algorithm is utilized

after the angle exchange to explore the conformation

neighborhood.

In Narloch and Parpinelli (2017), the authors explored

the use of different operators throughout the optimization

process to maintain diversity and control exploration/ex-

ploitation. The results do point out that maintaining

diversity and controlling exploitation/exploration improves

the prediction results. The diversification point is explored

in further detail in Narloch and Parpinelli (2016) and the

point about controlling exploration/diversification is con-

firmed in Simoncini et al. (2017).

A method based on a variant of the EDA is proposed

in Hao and Zhang (2017). In this work, the authors utilize a

variant of EDA that works based on the energy distribution

of the conformational energy and the acceptance rate of

fragment insertions. The conformations with better energy

are sampled more often, and the search is focused on the

areas with a lower acceptance rate. This leads to a useful

sampling of conformations while avoiding spending a high

amount of function evaluations on regions with a high

acceptance rate (such as a-helix) and focusing on less

stable regions (such as coils and loops) that have a more

significant effect on the conformation.

A DE approach is studied in Hao et al. (2017), where

the authors employed the use of multiple sub-populations.

Each sub-population is based on a cluster constructed using

a feature reduction method. With this, similar solution

vectors can be found, and then operators can be applied to

similar individuals to intensify the search. Extra cluster

operators are also applied and help maintain diversity and

share information between clusters.

In de Oliveira et al. (2017), the authors argue that

sequential sampling leads to better efficiency in terms of

function evaluations and a better prediction. The sequential

sampling based on fragment insertion follows the direction

that proteins are assembled naturally. A reverse order

sampling method and a non-sequential one are also

explored. A key difference in this work is that conforma-

tional sampling starts with a small number of amino acids,

adding new amino acids over the run.

In Oliveira et al. (2017), a method named SADE-SPL is

proposed. The authors process the PDB base searching for

structural patterns for coils and loops in knows structure

proteins. The result of this search, called SPL, is then used

as a domain-specific operator in SaDE. This work suc-

cessfully utilized SaDE in a hybrid environment. However,

due to the data-mining approach to finding structural pat-

terns, this work might be considered a mix of an ab initio

method with some characteristics of thread modeling,

namely, the use of templates (structural patterns).

A proposal based on the Genetic Algorithm is presented

in Borguesan et al. (2018). It uses a Restricted Tournament

Selection to focus the crossover operations on individuals

of at least a certain degree of similarity. This helps to

maintain diversity and to cluster similar individuals. This

work also uses a specialized fragment library, which

focuses on inserting fragments covering adjacent sections

of the same secondary structure. The GA operators also use

NIAS information, an APL derivative, which feeds infor-

mation into the sampling process.

A multi-stage strategy is utilized in Silva and Parpinelli

(2018), where the authors presented the Multistage Simu-

lated Annealing (MSA), which applies five different SA

runs sequentially to a model with increasing levels of

detail. Initially, a very rough model is constructed, and it is

refined until a full-atom configuration is given as an output.

In Kandathil et al. (2018), the authors proposed two

changes to the Rosetta ab initio protocol. The first consists

of using a Bilevel Optimization (Sinha et al. 2018). As

pointed by the authors, this approach had a sub-par result.

Another proposal was the use of ILS. With ILS, forced

perturbations are employed for loop regions. The use of

ILS inside Rosetta’s ab initio protocol leads to an

improvement in prediction power. The authors also note

the negative impact that mispredicted secondary structures

can have on the tertiary structure prediction.

The use of the Artificial Bee Colony (ABC) meta-

heuristic is presented in Correa et al. (2018). Both the

standard version of ABC with only minor improvements

and a modified version (MOD-ABC) is availed. The

modified version focuses the search on coils, loops, and

turn regions. Both versions use APL as a way to feed

domain-specific information into the search.

In Gao et al. (2018), a Multi-Objective Evolution

Strategy based on CHARMM, is presented. The authors

added SASA as one of the three objectives being optimized

and bond and non-bond terms from the CHARMM22

energy function. A method using PSO and SVD is pre-

sented in Álvarez et al. (2018), where SVD is utilized to
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reduce the number of variables, similar to the more com-

mon PCA method. Another Multi-Objective PSO is pro-

posed in Song et al. (2018), where it uses two solutions

achieves, density estimation and a mutation operator. The

system output consists of a set of cluster centroids, which

allows the end-user to choose from a set of proteins, the

one with the desired properties.

In Narloch and Dorn (2019), the authors present the

application of SaDE using data from APL to hybridize the

method. The work compared the proposal results with four

variants of DE, each with a different operator. The mod-

eling consists of a custom variant of Rosetta’s score3

function using a centroid protein model. A method pre-

sented by Varela and Santos (2019) interleaves the stages

of Rosetta Classic Abinitio protocol with DE using

Crowding. The proposal is to develop a hybrid method that

improves upon the Classic ab initio protocol from Rosetta

by adding several runs of DE.

Another multi-objective EA is presented in Zaman and

Shehu (2019), which consists of a memetic EA using MC-

based fragment insertion. A crowding operator is utilized to

keep the genotypic diversity and prevent some regions of

the search space from being over-sampled. The population

is generated using the first two steps from Rosetta’s Classic

ab initio protocol.

Based on the literature review, there are several note-

worthy points:

– The use of online parameter control (self-adaptive

methods) for the PSPP. Only two works (both from the

same authors) using online parameter control were

found, and one of them is arguably not a pure ab initio,

namely (Oliveira et al. 2017). Hence, this is an under-

explored area of research.

– The use of hybrid methods for the PSPP. While

recently, this has received attention, it still has several

points left for exploring. One of these points is the use

of fragment insertion as a way of integrating domain-

specific operators.

– The use of clustering as a way of systematically

outputting more than one solution without simply brute-

forcing it. In turn, this allows for more direct use of the

optimizer by a third-party, which wants to predict the

conformation from a protein. This allows for it to

choose from a set of conformation.

These points are reinforced in Table 1. Column EA indi-

cates when the method is based on an Evolutionary

Algorithm or not. The majority of the methods are EA-

based. Column FI shows the use of fragment insertion in

the methods. From the 18 related works, 7 used FI. Column

OPC indicates the use of Online Parameter Control. Only

three works incorporated some form of parameter control.

Column LS corresponds to the use of a Local Search

procedure. It is worth noting that mutation/crossover

operators from methods such as DE and GA are not con-

sidered in this column. However, stand-alone procedures

interleaved with another method, e.g., an MC search during

a PSO, are considered. Column CC considers the use of

Conformational Clustering. Of the items considered, this

one was the most scarce with only two occurrences. Col-

umn KD indicated the use of Knowledge Domain Opera-

tors. Fragment indicates that FI was the main source of the

knowledge domain. APL and SPL indicates that APL or

SPL was utilized, as presented in Borguesan et al. (2015)

and Oliveira et al. (2017). From this table, it worth noting

that no work found in the literature uses OPC, LS, and CC.

Moreover, it is a point worth exploring.

4 Proposed method

This Section presents the methods for approaching the

ab initio PSPP. Three points need to be specified for an

ab initio method (Dorn et al. 2014): The protein compu-

tational representation, the energy function, and the con-

formation sampling procedure.

4.1 Computational Representation

This work aims for a full atom prediction of a given target

protein, using a full atom backbone representation. The

backbone is manipulated by changing the three dihedral

angles ð/;w;xÞ. The side-chain is abstracted into a cen-

troid of similar mass and shape, maintaining some of its

properties. Therefore, the model utilized consists of a

backbone torsion angle representation with side-chain

centroids.

For this work, the protein model includes more infor-

mation than just the atoms and its respective conformation.

The model is split into three components, as illustrated in

Fig. 1, using the 1PLW polypeptide as an example. A first

component is the pose object that stores a given protein’s

conformation considering all its atoms. This object is

responsible for updating the atoms when an angle is

alternated. Such changes must be propagated down to the

chain considering an arm lever effect. The second com-

ponent of this model consists of a vector which acts as an

interface for the optimization algorithm and holds all the

backbone dihedral angles. The optimizer does not act

directly upon the pose object. Instead, it operates on this

vector. When this vector is changed, the pose object

changes accordingly. The third component is another

vector containing a sequence of predicted secondary

structures and its confidence intervals. This information is

used to coordinate the sampling procedure.
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From Fig. 1, the top part consists of the pose model,

responsible for holding the atom representation of the

protein. The middle part consists of a vector of dihedral

angles. Since 1PLW has five amino acids, the angle vector

has 15 elements. The first three elements represent the

ð/;w;xÞ angles for the first amino acid. The second three

elements represent the dihedral angles for the second

amino acid, and so on. The bottom part models the pre-

dicted secondary structure. For the 1PLW, it consists of

only a coil along with all the protein. Each cell of this

vector holds the probabilities for each predicted secondary

structure. The secondary structures are classified using a

DSSP8 notation (Frishman and Argos 1995). For this work

they were predicted using the PSIPRED2 server (McGuffin

et al. 2000). Section 4.3 explains how the knowledge from

the secondary structure prediction is incorporated in the

model using fragment insertion.

At the end of the prediction, the output consists of a full

atom protein representation, including the side-chains. For

this, an off-the-shelf repacker available in the Rosetta

Table 1 Comparison of the

works found in the literature
Source EA FI OPC LS CC KD

Sudha et al. (2015) Yes – Yes Yes – –

Borguesan et al. (2015) Yes – – – – Apl

Garza-Fabre et al. (2016) Yes Yes – Yes – Fragment

Correa et al. (2016) Yes – – Yes – Apl

Narloch and Parpinelli (2017) Yes – – – – –

Hao and Zhang (2017) – Yes – – – Fragment

Hao et al. (2017) Yes – – – Yes –

de Oliveira et al. (2017) – Yes – Yes – Fragment

Oliveira et al. (2017) Yes – Yes – – Apl/spl

Borguesan et al. (2018) Yes – – Yes – Apl

Silva and Parpinelli (2018) Yes Yes – – – Fragment

Kandathil et al. (2018) – Yes – Yes – Fragment

Correa et al. (2018) Yes – – Yes – Apl

Gao et al. (2018) Yes – – – – –

Álvarez et al. (2018) Yes – – – – –

Song et al. (2018) Yes – – – Yes –

Narloch and Dorn (2019) Yes – Yes – – Apl

Varela and Santos (2019) Yes Yes – Yes – Fragment

Zaman and Shehu (2019) Yes Yes – Yes – Fragment

Proposed method Yes Yes Yes Yes Yes Fragment

A dash indicates that the relevant criteria in the column were not met. The last line categorizes the methods

proposed in this work

FI Fragment Insertion, OPC Parameter Control, LS local search, CC Conformation Clustering, KD
Knowledge Domain

Fig. 1 The protein

computational model (Source:

Author)

2 Available for educational use in: http://bioinf.cs.ucl.ac.uk/psipred/
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toolkit was utilized. The repacker replaces the centroids

with the actual side-chains. This introduces a series of

(potential) clashes between the side-chains, especially in

more densely packed structures. A gradient descent opti-

mization is applied to handle these clashes, where the Van

der Waals repulsive forces are slightly varied during the

gradient descent. The gradient descent can rotate the side-

chains and move the backbone to make room for the newly

inserted side-chain structures. The final result of this is a

full atom representation of the predicted protein, which is

the proposed approach’s output.

4.2 Energy functions employed

The energy function represents the domain information

from the PSPP in a mathematical equation. Different

energy functions consider different aspects of the problem,

which can be useful in different steps of the optimization

algorithm. This work makes use of three energy functions

available in Rosetta.

The first energy function utilized is referenced in

Rosetta as score0. This energy function consists solely of

the repulsive Van der Waals forces. The goal of this energy

is to aid the generation of initial conformations. Since only

the repulsive forces are considered, a score0 with a value

of 0 indicates that a given conformation has no clashes

between different parts of the protein. The assembly of the

protein guided by the score0 function leads to more

plausible starting proteins.

The second energy function utilized is referenced in

Rosetta as score3. It uses a full atom representation of

the backbone and a centroid to represent the side-chains. A

more in-depth explanation of this energy function is

explained in Alford et al. (2017). Unfortunately, the only

up to date documentation found for the energy functions is

the Rosetta source code itself. The score3 energy func-

tion is used during the central portion of the prediction

process described next section.

Finally, the last energy function is the scorefxn, as

found in Rosetta. It encompasses the same information as

score3. However, it considers a full atom representation

of the side-chain as well. This energy function is utilized

during the last step of the prediction to output a full atom

representation of the protein.

4.3 Conformation sampling

Many metaheuristics can be employed on the PSPP, as

shown in Sect. 3. This work employs an Evolutionary

Algorithm due to its capability to easily integrate with the

necessary tools while detecting promising regions in the

search landscape of the problem. Furthermore, an online

parameter control technique is used based on the SaDE

algorithm (Qin and Suganthan 2005; Qin et al. 2009).

In Kim et al. (2009) is stated that the bottleneck of

solving the PSPP is the conformation sampling procedure.

Therefore, it is the part that must be more focused on since

increasing its performance will likely lead to better pre-

dictions. Furthermore, a blind optimizer that does not know

the problem domain can inherently have worse perfor-

mance since it will spend more time sampling regions of

the conformation space that are not biologically plausible.

Thus, having an efficient sampling procedure and utilizing

problem domain knowledge is essential and can lead to a

better predictor.

This work makes use of domain-specific operators to

integrate the knowledge domain into the optimization

process. The domain-specific operator used is fragment

insertion. Four fragment insertion operators are employed.

Two classic fragment insertion operators of size 3 and 9 are

utilized, and two smooth fragment insertions of size 3 and

9.

The classic fragment insertion can be considered a

global search operator, as it leads very often to very

impactful changes in the conformation. Due to these

changes’ proportions, this operator will have a decreasing

chance of improving the current solution as the optimiza-

tion process progresses.

Conversely, the smooth fragment insertion can be

thought of as being a local search operator. This operator’s

nature is to try to negate the changes of the first fragment

insertion by using a second one. This leads to smaller

changes in the overall protein conformation, even though

twice the residues are changed. This operator’s use allows

for the proposed method to have a domain-specific local

search, which stays useful throughout the optimization

process by operating with small changes.

These four fragment insertion operators require a crite-

rion to be used. For this, an MC based search is employed.

The search consists of a series of random fragments

insertion, where each fragment insertion is accepted under

the MC criterion. A temperature parameter (Cr) determines

the likelihood of a degrading (energy-wise) sample being

accepted. The fragments that improve upon the energy

score are always accepted, while fragments that deteriorate

the energy score are more likely to be kept based on how

little it affected the energy. This allows for the search to

potentially escape from being trapped in minima regions.

Furthermore, it helps to navigate through the rugged energy

landscape of the protein potential energy function.

Another essential tool in the conformation sampling step

is the use of Forced Fragment Insertion (FFI). FFI consists

of inserting a random fragment regardless of its impact.

Unlike the MC fragment insertion, FFI applies the frag-

ment without considering the energy impact it has.
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Determining when FFI occurs is of paramount impor-

tance. If it happens too often, suitable conformations will

keep being destroyed, and the sampling procedure will be

impaired. If it seldom happens, then the benefit of escaping

local minima will rarely be used. Therefore, the strategy

has to be tuned so that we escape local minima often

enough to avoid wasting too many function evaluations

while stuck but not so often so that too many suit-

able conformations are destroyed. Also, exploring local

minima is by itself import. While the optimization is

happening, there is no way of knowing if the best local

minima found so far is the global minima or not. If local

minima are not explored enough, FFI may prevent the

optimal point from being found.

Despite its potential downsides, using FFI can help

prevent premature convergence in the system. It adds

diversity to the conformation pool in a controlled manner.

With that, a constant stream of information is added to the

optimizer. Finally, coupled with the optimizer itself, FFI

acts as a catalyst for the optimizer to make significant

conformation changes because FFI can bypass the EA’s

greedy nature.

Figure 2 presents a flowchart of the proposed approach.

It shows the initialization phase, the optimization phase,

and the post-processing phase.

In the initialization phase, the primary sequence is taken

as input in the FASTA format, consisting of the one-letter

code sequence of amino acids. The primary sequence is

stored for later use and feeds the PSIPRED secondary

structure predictor. PSIPRED outputs a probability matrix

mapping probabilities for the secondary structures’ carte-

sian product versus the amino acid sequence. This output is

also stored for later use and feeds the fragment picker. The

fragment picker used is the Rosetta Fragment Picker. The

fragment picker is responsible for selecting a set of frag-

ments for all possible combinations of contiguous amino

acids of size 3 and 9. The fragment set is stored to be used

as input for the tertiary prediction routine. Since the ini-

tialization phase consists only of preprocessing, its time is

not considered when measuring the time required to predict

a given target protein, especially considering the waiting

time for the PSIPRED server.

The second phase is the optimization phase. It starts

with the step of generating the initial population. The initial

population generation consists of assembly random protein

conformations using the fragments generated in the ini-

tialization phase. A Monte Carlo search is run using the

score0 energy function to search for protein conforma-

tions with no (or as few as possible) hysterical clashes. This

step stops when a fixed number of samples is used for each

solution vector in the population or when the score0

function reaches zero.

With the initial population generated, the optimization

procedure itself starts guided by the score3 energy

function. The self-adaptive evolutionary algorithm carries

out the basis of the search procedure. The hybridization

happens when the Domain Operators are added to the

search procedure.

Firstly, the proposed method’s online parameter control

portion selects which operator to use for each individual in

the population.

The operators consists of a MC fragment insertion with

fragments of size either 3 or 9 using a smooth or a classical

fragment insertion. Once it is selected, a small sub search

procedure starts, corresponding to the operator itself.

Before the operator is applied, the check for FFI happens.

The check occurs for all solution vectors. If the FFI check

passes, then a random fragment is applied. Regardless of

FFI being used, the next step is to apply the probabilistic

fragment insertion operator. An MC search procedure is

initialized based on the operator chosen. This search takes

a fixed amount of function evaluation that is fed as a

parameter. When this search procedure stops, the output is

fed to the greedy selection routine. Each solution vector in

the population is compared to its respective trial vector.

Greedy selection is performed in which the trial vector is

accepted if and only if it has a better score3 value than

its current solution vector. From there, the stop criteria is

verified. If it is not met, then the parameter update routine

is called, updating the parameter Cr (for all operators) and

the probabilities for each operator. The Cr parameter rep-

resents the MC temperature parameter. The parameter

control is agnostic to which parameter it is updating. Once

the Parameter Update step is finished, the optimization

cycle starts over again from the operator selection.

When stop criteria are met, the optimization phase stops,

and the post-processing phase starts. The first post-pro-

cessing step is to cluster the conformations. After the

clustering process finishes, the cluster centroids are selec-

ted. The number of clusters is a parameter of the algorithm.

The conformations closest to the centroids are found and

feed-forward to the next steps. A Hooke-Jeeves local

search is applied to acting on all three dihedral angles of

the full protein backbone. This helps to reach nearby local

minima that might have been inaccessible by the fragments

alone.

Once the local search finishes, the repacking procedure

is applied to all conformations that were selected in the

clustering phase and then re-optimized. The repacking

procedure removes the centroids and places rotamers (side-

chains fragments). The conformation is again re-optimized,

this time using a gradient descent guided by the score-

fxn energy function. After this step finishes, the confor-

mations are returned.
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5 Experiments, results and analysis

This section presents the design of experiments, the energy

and RMSD analysis, the processing time, the comparison

with competing methods in the literature, the GDT-TS,

TM-Score analysis, and the predicted conformations’

visual analysis.

5.1 Design of experiments

The experiments were all conducted on a single machine

using the same hardware throughout the full experimenta-

tion. Table 2 presents the machine utilized to run all the

experiments. Each run of a prediction method consists of a

serial program that runs continuously without interruption.

The experiments were run in parallel, limited to at most

Fig. 2 The Proposed search procedure (Source: Author)

Table 2 The Machine Setup

Name Value

Operating system Arch Linux

Kernel Arch Linux Kernel 4.18.16

CPU Intel(R) Core(TM) i5-3570K CPU @ 4.20GHz

Number of cores 4 Physical cores, no hyper-threading cores

RAM 16 GB @ 1400 MHz
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one running test per core3. To ensure maximum repeata-

bility, the machine had no graphical interface enabled or

any other user interaction form during the experimentation.

The proposed method was developed using the Python

language. The experimentation consisted of running two

methods: The proposed method, namely PPF-MC4, and the

Rosetta Ab Initio protocol.

The metrics utilized are the scorefxn energy value of the

best solution and the RMSD associated with the confor-

mation. The results were collected over 50 independent

runs of each method for each target protein. A rigorous

numerical statistic set of tests is conducted. The Shapiro-

Wilk (Wilk and Shapiro 1968) normality test is employed

with a confidence level of 5%, i.e., a ¼ 0:05, to assess the

presence (or lack) of an underlying normal distribution.

Based on its result, a parametric/non-parametric test is

employed with a confidence level of a ¼ 0:05. Due to the

presence of multiple comparisons, the Kruskal-Wallis test

is applied to detect any method with different perfor-

mances. Then, the pairwise Mann-Whitney test is

employed with the proposed method against its competi-

tors. Also, graphical analysis is conducted in order to

identify the relative performance of the proposed method

visually.

Clustering to extract and return different conformations

from the proposed method is essential in a complex and

extremely multi-modal problem such as the PSPP. With

clustering, it is possible to identify conformations that are

far apart from each other in the energy landscape but have

similar energies. This process requires extra steps during

the analysis. First, the primary use of returning several

conformations is to allow a human expert to choose one

with the desired properties. As such, the human expert

must be replaced by a computer oracle for performance

evaluation. This oracle can always find the conformation

with the lowest RMSD or the conformation with the lowest

energy. Of course, this would not be possible in a real-

world scenario where a protein without a known structure

is predicted. With that in mind, the proposed method’s

analysis is based on the best conformation, as measured by

RMSD.

Also, a direct comparison against several works in the

literature is considered. Since there is a severe lack of

standardization in the literature regarding experimentation,

the following methodology was used. Works that provided

the best RMSD had their proteins listed. The proteins that

occurred the most were used for comparison. It is worth

noting that the majority of works provide little information

about how the experimentation was conducted. As such,

this work does a direct comparison using the best RMSD

achieved in a set of runs. While this is not ideal, due to

different works running different methods, this is possibly

the only way to compare several works. Nevertheless, at

the end of the day for the PSPP, what matters is having the

lowest possible error. Also, comparing the best RMSD is a

worthwhile analysis.

With that in mind, Table 3 presents the set of chosen

proteins. The column Name contains the protein identifi-

cation code as in PDB. The Size column shows the number

of amino acids in the protein. The Backbone Angles col-

umn shows the number of angles in the backbone. The

Structure column holds the secondary structures present in

the protein set represented by a-helices or b-sheets.
The proposed method operates with the parameters

presented in Table 4. The first column contains the

parameter name, and the second column presents its

respective value. The Population Initialization column

refers to the MC search that is made using score0. It has

10, 000 function evaluations available, such that up to 100

are used for each solution vector. The self-adaptive learn-

ing phase has its default value, as presented in Qin et al.

(2009). There are 100 simultaneous trajectories throughout

the execution, i.e., a population size of 100. A million

function evaluations are available for the optimization

phase, where each fragment insertion routine can use up to

25 at a time. FFI uses a fragment size of 9 and is applied

with a probability of 2% before each standard fragment

insertion. The other methods being compared use the same

values from Table 4 as applicable. The function evaluation

budget available for the Rosetta Ab Initio protocol is the

same as the proposed method. However, the Rosetta Suite

has some specific stopping criteria in its definitions that can

make the optimization process stop before using all func-

tion evaluations available.

3 Only physical cores were considered. No virtual (Hyper-threading)

core was involved in the computations.
4 Source code available at https://github.com/h3nnn4n/protein-

prediction-framework/

Table 3 Target proteins and their features

Name Size Backbone angles Structure

1l2y 20 60 2a

1wqc 26 78 2a

1acw 29 87 1a; 2b

1zdd 35 105 2a

2mr9 44 132 3a

1crn 46 138 2a; 2b

1enh 54 162 3a

1rop 63 189 2a

1utg 70 210 4a

1ail 72 216 3a
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5.2 Energy and RMSD analysis

The analysis is divided into two parts. In the first part, a

visual analysis using box-plots is used to observe the

proposed method’s overall performance compared with the

classical ab initio method provided by the Rosetta Suite. In

the second part, a statistical framework is used to assess the

methods’ performance relative to each other. All analyses

are based on the results collected over 50 independent runs

of each method for each target protein.

In Fig. 3, the RMSD from the predictions is presented as

box-plots. The proteins, presented on the x-axis, are dis-

played in lexicographical order. The y-axis presents the

RMSD, where a lower value is most desirable. The meth-

ods are grouped horizontally by protein.

In a direct comparison against Rosetta, proteins 1acw,

1enh, 1l2y, 1rop, 1utg, and 2mr9, the proposed method had

significant improvements. For 1crn, the Rosetta appears to

have had slightly better performance compared to the

proposed method. In the remaining proteins, 1ail, 1wqc,

and 1zdd, it is not possible to visually detect objectively if

a significant improvement is present. This will be addres-

sed later with proper statistical tests.

Figure 4 presents data similarly to the previous figure,

however, the y-axis now represents the scorefxn energy

function. Considering the energy results, when compared to

the RMSD boxplot, the results are relatively more similar.

The main differences appear for 1utg and 2mr9, where

rosetta appears to be lagging in performance. For 1ail, 1enh

and 1zdd rosetta had a considerably bigger variance than

the proposed method. These observations are just visual

trends which help understand the relative performance.

For the statistical analysis of the results obtained, the

Mann-Whitney test was applied with a ¼ 0:05. The null

hypothesis is that the two distributions are equal, i.e., both

methods have the same performance. Rejection of H0

indicates that one method is better than the other. Con-

sidering that both RMSD and scorefxn will be analyzed,

each for ten proteins, a total of 20 tables are necessary to

expose all the data. As such, this information is not

exposed in this work. Instead, the results are summarized,

reporting the overall results from the test. The proposed

method is compared to rosetta, considering both RMSD

and scorefxn in the analysis.

The results of Mann-Whitney’s statistical tests for the

RMSD are shown in Table 5. The first column indicates the

protein name. The second, third, and fourth columns

indicate if PPF-MC, Rosetta, or neither had a statistically

significant performance difference. The proposed method,

PPF-MC, had a statistically significant difference measured

in the RMSD for proteins 1acw, 1enh, 1l2y, 1rop, 1utg, and

2mr9. The only occasion where Rosetta outperformed the

proposed method was on 1crn. On proteins 1ail, 1wqc, and

1zdd, the performance was statistically equivalent. This

matches the previous observations from Fig. 3. The pro-

posed method had a superior performance for six proteins,

a performance worse than Rosetta on one protein, and an

equivalent performance in three proteins.

The potential energy results from Mann-Whitney’s test,

as measured by the scorefxn function, is presented in

Table 6. Its interpretation is the same as Table 5. Inter-

estingly, for proteins 1acw, 1l2y, and 1rop PPF-MC had a

statistically equivalent performance when measured by the

potential energy, while it had a statistically superior per-

formance when measured by the RMSD. This indicates that

while both methods found regions of similar potential

energy levels, the conformations from PPF-MC had a

lower RMSD for the same energy levels. Conversely, the

same can be said for Rosetta on 1crn. On 1ail, PPF-MC had

a statistically equivalent performance measured by the

RMSD. However, when measured by potential energy, the

performance was superior, as indicated by the test results.

The proposed method had a superior performance on four

proteins, considering the potential energy: 1ail, 1enh, 1utg,

and 2mr9. Rosetta outperformed PPF-MC in no proteins

when considering the potential energy. Both methods had

an equivalent performance in six proteins: 1acw, 1crn,

1l2y, 1rop, 1wqc, and 1zdd.

On three proteins, 1enh, 1utg, and 2mr9, PPF-MC had a

superior performance than Rosetta on energy and RMSD.

Considering the 20 scenarios analyzed, from 10 proteins �
2 metrics (RMSD and Energy), in 10 situations, PPF-MC

had superior performance. Rosetta had a superior perfor-

mance in only one scenario: the RMSD on protein 1crn. In

the other nine scenarios, both methods had a statistically

equivalent performance. Overall, the proposed method had

a performance equivalent or better than Rosetta in 19 of the

20 scenarios.

Table 4 Parameters utilized in the proposed method

Parameter Value

Population initialization evaluation budget 10,000

Learning phase 50

Population size 100

Function evaluation budget 1,000,000

MC function evaluation budget 25

Spicker cluster size 10

FFI probability 0.02

FFI length 9
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5.3 Processing time and function evaluations

Table 7 shows the processing time obtained in the exper-

iments reported in seconds. The first column shows the

protein name. The second column shows the mean, and the

third column shows the standard deviation. The total pro-

cessing time does not include the preprocessing steps. The

time starts counting for the main optimization phase when

the initial population is generated.

As expected, there is a direct correlation between the

number of residues in a given protein and the time required

to predict its structure. The two smallest proteins, 1l2y and

1wqc, had faster processing times, while larger proteins,

1utg and 1ail, had the highest times. The prediction times,

on average, range from about 4 minutes up to 20 minutes

per run. As observed, the Rosetta Ab Initio protocol

(classical method) is faster than the proposed approach.

This can be explained because the PPF-MC is a population-

based approach (multi-trajectory method) and the classical

method is a single-trajectory method.

Another performance analysis that can be made in

studying the spent function evaluations during the local

search phase. The main optimization phase has a fixed

Fig. 3 Box-plot presenting the RMSD obtained by PPF-MC and

Rosetta

Fig. 4 Box-plot presenting the scorefxn for the protein predictions

obtained by PPF-MC and Rosetta

Table 5 Mann-Whitney results applied to RMSD

Protein PPF-MC Rosetta Draw

1acw x

1ail x

1crn x

1enh x

1l2y x

1rop x

1utg x

1wqc x

1zdd x

2mr9 x

Total 6 1 3

Table 6 Mann-Whitney results applied to Energy

Protein PPF-MC Rosetta Draw

1acw x

1ail x

1crn x

1enh x

1l2y x

1rop x

1utg x

1wqc x

1zdd x

2mr9 x

Total 4 0 6

Table 7 Processing time, in seconds, for PPF-MC and Rosetta Suite

Protein PPF-MC Rosetta

1acw 381.8566 ± 76.8664 105.3112 ± 16.5700

1ail 1141.1461 ± 142.2935 253.3252 ± 48.9487

1crn 721.0492 ± 118.6126 283.6198 ± 51.6943

1enh 763.7677 ± 86.2599 208.056 ± 44.3525

1l2y 252.8980 ± 19.1262 109.258 ± 8.8145

1rop 963.2695 ± 124.7610 158.6072 ± 16.3965

1utg 1010.0412 ± 142.8927 184.7794 ± 8.9843

1wqc 341.4484 ± 35.1510 71.4528 ±0.7017

1zdd 462.3010 ± 127.2581 94.2868 ± 3.8235

2mr9 702.5817 ± 95.6492 138.6254 ± 3.5222
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budget of 1 million function evaluations. The post-pro-

cessing phase, however, uses a separate budget, which is

non-fixed. The Hooke-Jeeves search procedure is applied

multiple times, successively until no improvement is

detected. If a single call to Hooke-Jeeves spends more than

5000 evaluations, it is flagged for termination at the next

iteration. As such, each call spends around 5000 to 6000

evaluations. However, multiple calls can be made in

succession.

Table 8 presents the mean spent function evaluations

and the respective standard deviations. For all ten proteins,

the mean stays relatively close to 20,000. A manual

inspection of the logs reveals that there is no spent more

than 100,000 evaluations.

5.4 Comparison with competing methods

A comparison against methods in the literature is chal-

lenging to conduct. Most of the literature’s methods are

relatively superficial in explaining how a given algorithm

was implemented and the employed testing methodology.

Paper space seems to be a possible cause for this since

articles that span more pages are usually more detailed

about the implementation and methodology. As such, a

comparison has to be based on the data provided in the

works, which in most cases, is not enough for a proper

rigorous analysis. Nevertheless, this work attempts to

provide a simple framework for comparing the proposed

method with works in the literature. Several works were

selected, where the model utilized was the full atomic

model with an ab initio method. Their proteins and the

RMSD of the best prediction was recorded.

In Table 9, the first column indicates the year of the

publication presented in decreasing order. The column

Source presents the source of the data, which is the pro-

posed method, Rosetta, or work from the literature. The

remaining columns present several proteins, sorted by the

frequency in which it appears in the literature. The protein

1rop is the most frequent protein, while 1wqc is ranking

10th in the frequency list. The data in these columns is the

best RMSD from the method in the given work. Overall

best results are highlighted in bold. The comparison takes

into account works found between 2018 and 2019.

The proposed method was able to achieve the best

RMSD for several proteins. For proteins 1rop, 1crn, 1enh,

2mr9, 3.39, 1ail, and 1wqc, the proposed method had the

best RMSD considering the past two years. On 1utg, the

proposed method had the second-best RMSD, with a dif-

ference of 0.12Å to a result from literature. For 1zdd, the

proposed method was ranked second, with an RMSD dif-

ference of 0.16Å, with Rosetta ranked first. On 1acw, the

proposed method ranked third, with a difference of 2.78Å.

In light of this, it is reasonable to consider PPF-MC as a

strong competitor of the state-of-the-art methods.

Another point worth stating is that some proteins might

be way too easy for the current methods. Take 1zdd, for

example, had RMSD smaller than 2.62. Considering that

most PDB proteins have a resolution ranging from 1 to 2Å,

trying to go smaller than that is more a pursue of luck than

science. As such, this protein might only be useful for

validating new methods, but not for measuring progress.

5.5 GDT-TS and TM-Score metrics

This section provides an in-depth analysis of the results

obtained using the GDT-TS and the TM-Score metrics. The

GDT-TS and TM-Score measurements are used as major

assessment criteria in the production of results from the

Critical Assessment of protein Structure Prediction

(CASP5). Also, they are intended as a more accurate

measurement than the more common RMSD metric (Zemla

2003). The conformations analyzed are the ones that had

the best RMSD. The results can also be used by other

works to compare against our own using these metrics.

Tables 10 and 11 present the GDT-TS and TM-Score

values, respectively. Both tables follow the same format.

The first column presents the protein name. The results are

presented in separate columns with the best result, the

mean, and the standard deviation.

Both GDT-TS and TM-Score share the same property

where values can be used as thresholds for prediction

quality. A value close to 0.2 indicates a random prediction

performance, while a value of 0.5 or above suggests a

prediction that has the same overall fold. Considering that,

values of 0.5 or above are marked in boldface font. Values

closer to 1.0 indicates a near-perfect prediction.

Table 8 Function evaluations spent on Hooke-Jeeves, for PPF-MC

Protein Mean stddev

1acw 19894.6690 9323.3251

1ail 23215.9890 12096.6411

1crn 23704.9947 11297.4331

1enh 21141.6667 11922.8046

1l2y 16022.7659 7145.3393

1rop 21008.9153 11595.2773

1utg 23257.8303 13708.3805

1wqc 18342.0987 8163.8972

1zdd 21848.3618 10229.3850

2mr9 22260.8176 11415.6200

5 CASP website: https://predictioncenter.org/
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From Table 10, GDT-TS values, for 1zdd, the protein

with the lowest RMSD has a GDT-TS of 0.41. Meanwhile,

1wqc and 2mr9 had values above 0.75 and 0.87, respec-

tively, which means that the two metrics, namely GDT-TS

and RMSD, do not always agree.

Considering the TM-Score, there are a few numbers of

values above the threshold of 0.5. Furthermore, RMSD and

GDT-TS disagree on some cases, such as for 1zdd, 1wqc,

and 2mr9, but TM-Score can differ from the other two

metrics in some cases as well. For instance, on 1wqc, the

GDT-TS value was 0.75 or higher, while the respective

TM-Scores were 0.31 or lower.

One noteworthy aspect of GDT-TS and TM-Score is

that they appear to be more rigorous than RMSD. For

example, the 1enh protein has the second-best RMSD

found in the literature, yet, with GDT-TS, it did not cut 0.5.

More so, both 1enh and 1ail, two relatively large proteins,

had their best RMSD more than two units apart with PPF-

MC. However, with the GDT-TS, the two conformations

are less than 0.01 units apart. This is possible due to RMSD

being a metric with an unbounded upper limit, which scales

quadratically with the number of residues. GDT-TS, on the

other hand, has a normalized value between 0 and 1, which

allows the predictive performance to be compared not only

across different methods but across proteins of different

sizes. Unfortunately, very few works in the literature use

these metrics.

Furthermore, considering that TM-Score tended to

underestimate the predictions’ quality, it might not be the

best for tracking performance in a method under develop-

ment. On the other hand, GDT-TS was able to identify both

good and bad predictions, making it a more suitable metric

for such conditions.

5.6 Visual representation of the predictions

Figure 5 all conformations from the ten best predictions

measured by RMSD from PPF-MC are presented in lexi-

cographical order. The predicted conformation is presented

in green, and the native conformation is presented in red6.

Proteins 1enh, 1rop, 1utg, 1wqc, 1zdd, and 2mr9 had

near-native conformations. All the secondary structures are

present in their respective regions, and the coil sections

Table 9 A comparison of the RMSD from the best prediction

Year Source 1ROP 1CRN 1UTG 1ZDD 1ENH 2MR9 1L2Y 1ACW 1AIL 1WQC

ppf-mc 2.18 4.18 4.41 1.07 2.65 1.66 3.39 4.45 4.26 2.15

Rosetta 3.46 4.30 8.03 0.91 2.84 2.48 4.83 5.85 4.75 2.50

2019 Silva and Parpinelli (2019) – 6.08 – 1.16 3.23 – – – 4.46 –

2019 Narloch and Dorn (2019) 6.02 4.53 6.38 2.35 5.56 2.49 – 1.67 – –

2018 Song et al. (2018) 2.21 5.16 5.68 1.84 5.81 – – – – –

2018 Borguesan et al. (2018) – – 4.29 – – 2.39 – 2.00 – –

2018 Silva and Parpinelli (2018) – 6.96 – 2.62 5.70 – – – 8.27 –

Table 10 GDT-TS for PPF-MC

Protein Best Mean Stddev

1acw 0:5172 0.4605 0.0302

1ail 0.4932 0.3794 0.0473

1crn 0:5870 0.4343 0.0560

1enh 0.4861 0.4262 0.0369

1l2y 0:6625 0:5773 0.0439

1rop 0:6825 0:5772 0.0517

1utg 0:5571 0.4346 0.0631

1wqc 0:7885 0:6446 0.0451

1zdd 0.4412 0.4193 0.0160

2mr9 0:8807 0:6891 0.0720

Table 11 TM Score for PPF-MC

Protein Best Mean Stddev

1acw 0.2475 0.1930 0.0202

1ail 0.4468 0.3039 0.0457

1crn 0.3986 0.2762 0.0462

1enh 0.3489 0.2628 0.0272

1l2y 0.2495 0.1924 0.0294

1rop 0:6229 0.4588 0.0646

1utg 0.4938 0.3676 0.0632

1wqc 0.3757 0.2852 0.0346

1zdd 0.3178 0.2797 0.0276

2mr9 0:7514 0:5117 0.0900

6 For the readers with a black and white copy, the predicted

conformation is in a light shade of grey, while the native conforma-

tion is in dark grey.
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closely match their native counterparts. For protein 1acw,

which had a relatively high RMSD, considering the size of

the protein, there are two main prediction errors. Firstly,

the b-sheets did not form, and where should be one, there is

an a helix instead. The second error is that the a helix is in

the wrong place and split. It starts where it should, but it

only has a single turn. A second helix forms at the eighth

residue and goes on for ten more residues. Both these errors

can be traced down to an error in the Secondary Structure

Prediction, which the proposed method has no way to

avoid. For 1ail, the prediction is mostly correct. However,

two helices are split apart. The first, to the left of the image,

and the second, in the middle helix. These errors were

prediction failures that occurred in the proposed method.

On 1crn, a relatively complex protein has an overall

correct fold. The fine details, however, are lacking. The

two helices are mostly missing, and the sheets did not fold.

These two errors can be traced down to the secondary

structure prediction used as input. For 1l2y, a similar sce-

nario occurs, where the primary source of error is in the

(a) 1acw (4.45 Å)
(b) 1ail (4.26 Å)

(c) 1crn (4.18 Å)

(d) 1enh (2.65( Å))

(e) 1l2y (3.39 Å)

(f) 1rop (2.18 Å)

(g) 1utg (4.41 Å)

(h) 1wqc (2.15 Å)

(i) 1zdd (1.07 Å) (j) 2mr9 (1.66 Å)

Fig. 5 The predicted conformations (in green/light gray) compared to the native conformation (in red/darker gray). The RMSD between the

predicted and native conformation is show between parenthesis
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data fed to the prediction engine. The overall shape of the

protein was correctly predicted. The helix is entirely

missing.

Interestingly, on 4 of the proteins with the biggest

visually detectable error (1acw, 1ail, 1crn, and 1l2y), 3 of

them (1acw, 1crn, and 1l2y) had its source of error outside

to the prediction. The proposed method relies heavily on

the predicted secondary structure and has to deal with

uncertainty. In only a single case, the significant error in a

prediction was generated during the prediction itself, as

occurred on 1ail.

6 Conclusions and future works

This work proposed the PPF-MC algorithm to attempt to

solve the Protein Structure Prediction Problem (PSPP). The

protein is modeled using a full atomic model of the back-

bone, manipulated using fragments and torsion angles, and

side-chain centroids. The proposed method uses the score0,

score3, and scorefxn energy functions from the Rosetta

suit. Also, a clustering process to generate several con-

formations is employed.

The proposed method was compared against Rosetta

using both the RMSD and potential energy. For both

metrics, a rigorous set of statistical tests was applied, which

identified that the proposed method could give equal or

better predictions than Rosetta for the majority of proteins.

Comparing the results obtained from the PPF-MC with

the results obtained from state-of-art algorithms, highly

competitive achievements are reported. For two target

proteins 1wqc and 2mr9, the proposed method was able to

overpass the best result found in the literature. For the 1rop

and 1crn proteins, the PPF-MC could get the second-best

prediction. The same occurred for 1enh protein. The pro-

posed method achieved results that were often close to the

best results for the remaining target proteins.

An analysis using GDT-TS and TMScore metrics

demonstrated that PPF-MC appears to be more strict about

the results than RMSD. Also, results obtained showed that

the three metrics do not always agree with values signifi-

cantly apart. This study gave the insights that the prediction

could be improved even further.

Visual analysis was performed, where four proteins

were detected as having significant errors, and three of

them had its errors tracked down to the predicted secondary

structure, which is the input of the proposed method. We

can conclude that this dependency on predicted informa-

tion is potentially one of the proposed method’s significant

weak-spots. Therefore, a future research direction would be

to employ more than one predictor or research to make the

tertiary structure prediction either less dependent on the

secondary structure prediction or make it more resilient to

predicted information.

The use of other fragments generator is also a research

direction since different fragment libraries may lead to

different predictions. Another possible direction is the

inclusion of gradient descent methods to quickly find

nearby low-energy areas because acting on population

diversity might further extend the potential of using con-

formational clustering and lead to better predictions.

Another way of acting on population diversity is to peri-

odically reset parts of the population or the whole popu-

lation if stagnation occurs. In particular, partial population

re-initialization can allow for old information to contribute

to the newer generated individuals. Still about diversity,

one way would be to implement some speciation or sub-

population technique, as in Deng et al. (2020) and Tawhid

and Ali (2017), respectively.

The proposed method applied the Hooke-Jeeves pattern

search as one of the last steps. However, one direction

would be to use the local search procedure as an operator

for the evolutionary algorithm. Hence, allowing for the

method to quickly find local regions of good potential

energy.

Another recent trend worth exploring is focusing the

search on loops and coil regions of the proteins. These

areas usually have a lower acceptance rate of perturbation

due to the high impact on the overall conformation. In

contrast, a-helices are relatively stable and have a much

higher acceptance rate while having a low impact on the

overall structure.

Also, performing a factorial experiment concerning the

proposed approach’s components may better understand

their impact on the results.
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