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Abstract
Pathfinding, also known as route planning, is one of the most important aspects of logistics, robotics, and other applications

where engineers must balance many competing interests. There is a significant challenge in pathfinding problems with

multiple objectives because many paths can map to the same objective value. Such multi-modal solutions cannot easily be

found in multi-objective optimisation algorithms, which are typically geared towards selection mechanisms in the objective

space. A niching approach for preserving good diverse solutions in the decision space is proposed in this paper, which is

tailored for pathfinding problems. The criteria used to compare the solutions within the decision space are path similarity

metrics, which we extend from a previous study, and are used instead of the well-established crowding distance. In two

variations, we investigate the proposed meta-heuristic approach on a range of benchmark instances and compare the

methodology to a deterministic optimisation approach.

Keywords Pathfinding � Multi-objective optimization � Evolutionary algorithm � Path similarities � Shortest path �
Niching

1 Introduction

Optimal route planning (or pathfinding) is among the most

challenging tasks for industrial and logistical applica-

tions (Koenig and Likhachev 2005). Any improvement in

the results can significantly impact several factors, such as

fuel consumption and the environment. Current state-of-

the-art route planning algorithms typically consider the

travel time, and the distance in the optimisation. In a recent

work, we have proposed a scalable benchmark suite for

pathfinding problems (Weise and Mostaghim 2021b) and

define five objective functions. In a recent study (Weise

and Mostaghim 2021c), we investigated a new niching

methodology for the pathfinding problem and this paper

extends our previous work.

There is an extensive amount of literature in the field of

route planning and pathfinding in general, especially for

vehicle route planning which uses evolutionary algo-

rithms (Ahmed and Deb 2013). The most important feature

concerns the solution and problem representation, which

can define the size of the search space and influence the

efficiency of the algorithms (Weise et al 2021). However,

there is a limited amount of literature using evolutionary

algorithms for many-objective pathfinding, i.e., when more

than three objectives are to be optimised. Tozer et al

(2017) provide an overview of existing approaches and use

reinforcement learning to address the problem with six

objective functions. Pulido et al (2015) introduce a

dimensionality reduction technique to minimise dominance

checks during the optimisation and tested their algorithm

on a map from a real-world application. In addition, they

extended the NAMOA� algorithm, which was first intro-

duced by Mandow and De La Cruz (2010) and is a multi-

objective extension to the well-known A� algorithm (Hart

et al 1968). In our previous work, we have proposed the

ASLETISMAC benchmark suite (Weise and Mostaghim

2021b) which includes several maps with various config-

urations for elevation profiles, neighbourhood metrics and
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backtracking options to test and assess multi-objective

pathfinding algorithms. In one of our recent studies (Weise

and Mostaghim 2020), we have found out that many of the

obtained optimal paths have a considerable overlap with

each other, and it is very challenging to diversify the search

in the decision space while solving the many-objective

pathfinding problem.

This paper aims to address this problem by introducing a

specialised similarity measurement of paths into the multi-

objective optimisation algorithms. We propose using three

different metrics to measure similarities between two paths

and incorporate this measurement in the algorithms in two

different ways, as a replacement for crowding distance.

Instead of applying the niching methodology in the

objective space, we apply a customised methodology in the

decision space.

In a previous study, we have evaluated how the usage of

Fréchet distance can help in the diversification during the

search process (Weise and Mostaghim 2021c). We pro-

posed using a dissimilarity matrix to find dense areas in the

decision space. In this paper, we extend the approach and

evaluate two additional path similarity metrics. Further-

more, we implement the crowding measurement in two

variations, extending our previous work, which proposed

using one of them. In addition, we propose a methodology

to solve the used benchmark using classical multi-objective

shortest path techniques, such as a multi-objective version

of the well-known Dijkstra algorithm. We create a larger

set of true Pareto-fronts for the used benchmark, compared

to the original study in Weise and Mostaghim (2021b).

Eventually, we compare the exact approach with our meta-

heuristic approach with a new performance indicator, that

combines runtime and quality of solutions.

The remainder of the paper is structured as follows: In

Sect. 2 we introduce the pathfinding problem, its charac-

teristics and niching, while Sect. 3 presents the similarity

measurements. Section 4 is dedicated to the proposed

multi-objective algorithm, and Sect. 5 describes the

deterministic and exact approach. Finally, Sect. 6 describes

the experiments and discusses the results, and the paper is

concluded in Sect. 7.

2 Background

In this section, we describe the pathfinding problem, its

various representations and a benchmark for the evaluation

of multi-objective pathfinding algorithms. Furthermore, we

discuss niching techniques.

2.1 The multi-objective pathfinding problem

Typically, there are two main ways of representing paths:

The first is a variable-length chromosome representation of

a solution which is often used with the graph-based prob-

lem representation (Jun and Qingbao 2010; Weise and

Mostaghim 2021b). This approach represents a solution as

a list of nodes varying in length when computing a path.

The second approach is a fixed-length chromosome, rep-

resenting the directions of travel, together with a list of

nodes in a graph or a list of grid cells (Besada-Portas et al

2013; Beke et al 2020; Weise et al 2021). Grid-based

representations for pathfinding problems are shown to be

very practical for evolutionary algorithms (Ahmed and

Deb 2013; Weise and Mostaghim 2021a). Such grid rep-

resentations can be refined depending on the required res-

olution of the problem. Besides, they are often used for

benchmarking purposes (Sturtevant 2012). Also, they can

represent real-world problems by discretising the problem

representation (Anguelov 2011). Grids typically consist of

units with adjustable sizes (Anbuselvi 2013). A solution

encoding can consist of a linked-list of units (Xiao and

Michalewicz 1999), the directions (Weise et al 2021), or

the coordinates of several waypoints (Weise et al 2020).

Considering grids, we can introduce several constraints for

movements on specific paths by defining an upper limit for

movements (such as speed) on each unit. In this way, we

can easily incorporate various linear and non-linear con-

straints on each unit to represent speed, ascent, obstacles,

and others.

It is comparatively easy to convert a grid into a graph

(also called lattice-graphs) by considering units as nodes

and their contact-edges as the graph’s edges. This con-

version is performed in several applications, e.g. the game

industry. The commonly used A� algorithm is an example

of pathfinding on a grid which is transferred to a gra-

ph (Yap 2002), as its heuristic function can be defined as

the Euclidean distance that can measured on a grid between

the cell centres.

In general, compared to grid-based representations,

graph-based representations allow higher flexibility in

representing real-world problems, which can be considered

heterogeneous, while grids are usually homogeneous. In

this paper, we represent the pathfinding problem as a grid

transferred to a graph. By employing the property-graph-

data-model, we can assign various properties to each

node (Rodriguez and Neubauer 2010)

The multi-objective pathfinding problem can be defined

as follows. The goal is to find a set of k Pareto optimal

paths P� ¼ fp1; . . .; pkg in a graph G(V, E) from a starting

node nS 2 V to a pre-defined end node nEnd 2 V , i.e.,

pi ¼ ðnS; . . .; nEndÞ, where each path is of a variable length
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K that is evaluated concerning a set of objective functions

f~ðpÞ which are to be minimised. Given this definition, we

can use a variable-length chromosome representation to

apply the proposed next distance metrics. Figure 1 depicts

a graph which is superimposed on a grid (lattice-graph) in

the left figure and two paths pi and piþ1 in the right figure.

In Weise and Mostaghim (2021b), we proposed a

benchmark suite, where we have defined five objective

functions for a multi-objective pathfinding problem. Note

that problems with more than three objectives are consid-

ered as many-objective (Köppen and Yoshida 2007).

The benchmark instances themselves are defined on a

grid with a size of ðxmax; ymaxÞ; however, in the original

study, the authors used a graph-based representation, where

each grid-cell was represented by a node n in the set of

vertices V in a graph G = (V, E). Neighbourhood relations

between cells, set by a benchmark’s instance settings, are

reflected in the set of edges E. Each edge defines if the

traversal from one cell to one of its neighbours is allowed,

as a directed graph is used.

Therefore, following the original study Weise and

Mostaghim (2021b), the objective functions are defined for

a list of nodes n 2 N, N � V . A list of nodes, of variable

length K, Ni ¼ n1; . . .; nKð Þ represents a path pi, that con-

sists of a list of subsequent coordinates, i.e.

pi ¼ ðx1; . . .; xKÞ, where xi 2 R2. Therefore, each node’s ni
location is defined by a two-dimensional coordinate.

The paths are evaluated by: the length of a path, travel

time, delay, smoothness (or curvature) of a path, and ascent

(or elevation) of a path. In the following, the equations to

compute each objective are shown:

Objective 1: Euclidean length. In the first objective

function, the Euclidean lengths between two neighbours

are summed.

f1ðNÞ ¼
XK�1

i¼1

deucðni; niþ1Þ ð1Þ

Objective 2: Expected delays. The second objective can

be considered as a measurement of running in an accident

or any other unexpected event. It is defined by the differ-

ences in vmax of two consecutive cells or nodes.

f2ðNÞ ¼
XK�1

i¼1

delayðni; niþ1Þ ð2Þ

Objective 3: Elevation. The third objective corresponds to

the total positive ascent when traversing a path. Only

positive values are considered, since this objective can

represent fuel consumption to a certain extent.

f3ðNÞ ¼
XK�1

i¼1

eðni; niþ1Þ

eðm; nÞ ¼
hðnÞ � hðmÞ; if hðnÞ[ hðmÞ

0; otherwise

� ð3Þ

Objective 4: Travelling time. The fourth objective cor-

responds to the total time needed to traverse a path, and is

defined by the distance between two nodes and the average

vmax.

f4ðNÞ ¼
XK�1

i¼1

2 � dðni; niþ1Þ
vmaxðnÞ þ vmaxðniþ1Þ

ð4Þ

Objective 5: Smoothness. The last objective corresponds

to the smoothness of the path. However, since we intend to

minimise the objectives, a smaller objective value repre-

sents a more straight path. Similar to Oleiwi et al (2014)

and Jun and Qingbao (2010), a � b ¼ kakkbkcosðhÞ is

inverted:

(a) Superimposed graph on a grid (b) Two paths pi and pi+1 which go along nodes
and edges.

Fig. 1 A grid is transferred to a

graph (grid or lattice graph), to

enable graph-based pathfinding

algorithms to find

solutions (Weise and

Mostaghim 2021c)
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f5ðNÞ ¼
XK�1

i¼2

arccos
nini�1
���! � niþ1ni

���!

knini�1
���!k � kniþ1ni

���!k

� �
ð5Þ

For our evaluation, we take the same definitions for the

obstacle-defining functions, vmaxðnÞ, and delayðni; niþ1Þ as
in the original study (Weise and Mostaghim 2021b):

vmaxðx; yÞ ¼
130; ifwðx; yÞ[ 0:9

50; ifwðx; yÞ\� 0:4

100; else

8
><

>:

wðx; yÞ ¼ max sinðx� 1Þ; cosðy� 1Þð Þ

ð6Þ

delayðni; niþ1Þ

2 if vmax nið Þ 6¼ vmax niþ1ð Þ
3 if vmax nið Þ ¼ vmax niþ1ð Þ ¼ 50

1 if vmax nið Þ ¼ vmax niþ1ð Þ ¼ 100
1

5
otherwise

8
>>><

>>>:

ð7Þ

The function vmax uses the node n’s coordinates that are

denoted by x and y, ni ¼ ðxi; yiÞ. For more in-depth infor-

mation and how h(n) is computed, the reader is referred to

the original study (Weise and Mostaghim 2021b).

In analogy to the original study, we, furthermore, also

compute paths from the cell or node with the coordinates of

(1, 1) to cell with the coordinates of xmax; ymaxð Þ, which are

given by the specified benchmark instance problem.

It is noteworthy that all objectives, except the Smooth-

ness, i.e. f5, can be computed for a path of length k� 2,

while at least three nodes are needed to compute the fifth

objective. It is important, as this restricts several other

pathfinding algorithms to solve the problem. Usually, edge

weights are taken into account, which is only possible for

the first four objectives, as the function value can be used

as an edge weight in the underlying graph representing the

problem.

2.2 Niching

As Shir noted, genetic algorithms typically suffer from loss

of diversity within populations, resulting in a local opti-

mum (Shir 2012). Niching methods address this problem

by preserving diversity. In state-of-the-art algorithms, there

are various methods for increasing or maintaining diver-

sity. Crowding distance is an example of using the objec-

tive space to identify crowded areas. Individuals are

measured by the average distance between their two

neighbouring solutions (Deb et al 2002). More isolated

solutions can be emphasized by using this measurement

during the NSGA-II algorithm’s replacement and selection

phase. Another technique is to use reference vectors. The

solutions along such vectors are generally preferred, and

their distribution within the objective space allows

diversity to be maintained (Deb and Jain 2014). When

optimizing more than three objectives, the latter method-

ology often serves as a good solution to problems with

many objectives. However, study results indicate that

performance can be affected not only by the number of

objectives but also by the type of problem, requiring

careful consideration when choosing an algorithm (Cai

et al 2018; Weise and Mostaghim 2021b).

Moreover, if more than one solution can map to the

same objective values in specific problems, such as multi-

modal problems, other diversity measurements such as

combining different metrics in the objective and decision

space can be useful (Javadi et al 2020; Deb and Tiwari

2005). For instance, the many-objective pathfinding prob-

lem has close solutions in the objective space, though they

are far apart in the decision space. The use of diversity-

preserving measurements in decision space can, as a result,

improve an algorithm’s performance (Shir et al 2009;

Weise and Mostaghim 2021c). Shir states that diversity

along the Pareto front does not necessarily result in the

same diversity in the decision space among the Pareto set.

Futhermore, a decision space-diverse set is of interest for a

potential decision maker (Shir et al 2009; Ulrich et al

2010). In their work, Ulrich et al (2010) proposed a

methodology to integrate the decision space diversity into a

hypervolume based search. However, there are numerous

difficulties in calculating a measure of diversity in the

decision space, which is especially true if a variable-length

representation represents the solution. The crowding dis-

tance, in addition to other metrics, such as the harmonic

mean, can be used when the chromosomes are fixed-

length (Javadi and Mostaghim 2021).

3 Paths similarities

Path, or curve, similarity measurement is found in several

fields. For instance, in handwriting recognition, curves are

compared to match letters or words (Sriraghavendra et al

2007). Other fields include morphing (Efrat et al 2002) and

protein structure alignment (Jiang et al 2008).

There are different methods of path similarity mea-

surements. This article evaluates three different metrics,

i.e. Hausdorff distance, Fréchet distance, and dynamic time

warping (DTW). With Hausdorff distance, the distance of

two subsets (curves) in a metric space can be mea-

sured (Munkres 2000), while Fréchet distance also takes

the flow of curves into account. Fan et al. used the Fréchet

distance on road networks for measuring the resemblance

of road tracks (Fan et al 2011). Assuming two subsets in

the same metric space, they can have a short Hausdorff

distance but a rather large Fréchet distance. Originating

from signal theory, DTW finds a warping path between two
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curves or signals to align them, and its path length deter-

mines the similarity between the signals, and therefore

curves. In the following, we describe each of the distance

metrics in more detail.

3.1 Hausdorff distance

The Hausdorff distance, can be used to compute the dis-

tance between two sets of points without taking their flow

into account. In Eq. 8 its formula is depicted. It is the

greatest distance of all distances between points in one set

and their nearest points in the other.

Dðx;KÞ :¼ minfdðx; kÞ j k 2 Kg
dhdðA;BÞ :¼ maxfmaxfDða;BÞ j a 2 Ag;maxfDðb;AÞ j b 2 Bgg

ð8Þ

3.2 Fréchet distance

The Fréchet distance is a measurement of similarity for

curves in a metric space. Eiter and Mannila described it by

using a dog walk analogy (Eiter and Mannila 1994). A dog

and its owner walk on two different paths, and both can

vary their speed but cannot backtrack. Since there is a leash

attached to both, the Fréchet distance can be defined as the

shortest length of a leash, which is required for both to

follow their paths as shown in Fig. 2. The dashed lines

indicate the leash.

Fréchet distance (Eiter and Mannila 1994) is mathe-

matically defined as follows:

dFðA;BÞ ¼ inf
a;b

max
t2½0;1�

(
d
�
AðaðtÞÞ; BðbðtÞÞ

�)
ð9Þ

Here, A and B are curves as a continuous mapping in a

metric space S, defined as A : ½0; 1� ! S and B : ½0; 1� ! S.

The reparametrisations a and b are non-decreasing func-

tions from [0, 1] to [0, 1]. In other words, AðaðtÞÞ and

BðbðtÞÞ are the positions of the owner and the dog in time-

step t and they are non-decreasing as the two entities

cannot move backwards. The function d is the distance

metric in S, e.g. Euclidean distance, and hence it describes

the length of the leash between the dog and the owner.

Eventually, the Fréchet distance is obtained by computing

the infimum (greatest lowest bound) of all parameteriza-

tions a and b of [0, 1] of the maximum over all t of the

distance d in S between AðaðtÞÞ and BðbðtÞÞ. Alt and Godau
studied the computational properties of the measure-

ment (Alt and Godau 1995), initially introduced by Fréchet

(1906). They specified an algorithm to compute the dis-

tance dF in time Oðab log2 abÞ, where a and b are the

number of segments of two curves (Eiter and Mannila

1994). Eiter and Mannila proposed a variation of the dis-

tance metric, i.e., the coupling distance, or discrete Fréchet

distance ddF , which provides a good approximation of dF in

time OðabÞ. They also show that ddF is an upper bound of

dF . They approximate the two curves A and B by polygonal

curves, which is, intuitively, a list of supporting points.

Those points specify the endpoints of line segments. The

sequence of segment endpoints of a polygonal curve P is

denoted as rðAÞ ¼ ðu1; . . .; uaÞ. A coupling L between A

and B is defined as a sequence L ¼ ðuc1 ; vd1Þ; ðuc2 ; vd2Þ; . . .;
ðucm ; vdmÞ of distinct pairs of rðAÞ � rðBÞ, with respect to

c1 ¼ 1; d1 ¼ 1; cm ¼ a; dm ¼ b. The coupling respects the

order of points. Eventually, the length of the coupling is

defined as jjLjj ¼ max
i¼1;...;m

dðuci ; vdiÞ; hence the longest con-

nection in L and the discrete Fréchet distance as shown in

Eq. 10 (Eiter and Mannila 1994).

ddFðA;BÞ ¼ minfjjLjjjL is a coupling betweenA andBg
ð10Þ

In more recent works, subquadratic algorithms were

developed to approximate the discrete Fréchet dis-

tance (Bringmann and Mulzer 2016). The authors devel-

oped an algorithm that runs in Oðn log nþ n2

a Þ, where n is

the number of points and a 2 ½1; n� is the approximation.

The two curves have to have the same number of nodes.

Chan and Rahmati (2018) also proposed an approximation

algorithm resulting in Oðn log nþ n2

f 2
Þ, where f denotes the

approximation and is f 2 ½1; n�. In this paper, we use all

points of the two curves. We can therefore use the original

methodology by Eiter and Mannila (1994). Using the more

recent approaches with all points would result in

a ¼ f ¼ n, resulting in Oðn log nÞ. However, the polygonal
curves in this paper are not constituted of the same number

of nodes. We, therefore, use Eiter and Mannila’s approach.

Compared to the Hausdorff distance, the Fréchet dis-

tance accounts for the flow of the curves, while the

Hausdorff distance measures the distance from one point in

one curve to the closest on the second curve. For the

remainder of the paper, we refer to the discrete Fréchet

distance. As we define a path in this work as

pi ¼ ðns; . . .; nEndÞ, we can represent it by analogy to the

definition of ddF; hence pi ¼ rðAÞ and
Fig. 2 An example of a dog walk (Weise and Mostaghim 2021c)
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ðns; . . .; nEndÞ ¼ ðu1; . . .; uaÞ, where ns ¼ u1, nsþ1 ¼ u2,

nEnd ¼ ua. In other words, A represents a continuously

defined curve and rðAÞ are the segment endpoints. Since a

path in a graph is defined by its nodes, every node ni 2 pi
is, in fact, a segment endpoint.

3.3 Dynamic time warping

Although the Fréchet distance is a metric that results in a

dissimilarity measurement of two curves, there is another

metric that can find the best match between two signals and

determine their distance (Müller 2007). The Dynamic

Time Warping (DTW) measures similarities between

temporal sequences. However, we can use the approach to

determine a distance between two paths, which are

sequences of locations. In Eq. 11 the formal definition of

the DTW distance is shown. For its computation, a local

cost measurement d(a, b) is needed that describes the

similarity between two points a 2 A and b 2 B, e.g., the

Euclidean distance. A cost matrix C(A, B) can be built by

computing d(a, b) for each pair of a and b. The goal is to

find an optimal warping path p� of the two curves A of

length R and B of length S that the overall cost (Eq. 11a) of

a warping path p is minimal (Eq. 11c). An (R, S)-warping

path p is a path in the cost matrix that runs along a valley of

low cost (Müller 2007). As the matrix’ values represent

cost, the warping path is the one obtaining the least com-

bined costs, if it can go through the matrix’ cells (Eq. 11c).

In this path, the element ar‘ 2 A is assigned to the element

bs‘ 2 B. To compute ddtw, dynamic programming has been

used.

cpðA;BÞ :¼
XL

‘¼1

d ar‘ ; bs‘ð Þ ð11aÞ

ddtwðA;BÞ :¼ cp� ðA;BÞ ð11bÞ

ddtwðA;BÞ ¼ min cpðA;BÞ j pis anðR; SÞ�warping path
� 	

ð11cÞ

Figure 3 shows two curves and their respective distance

values using each of the three proposed metrics. In all three

metrics, the function dð�; �Þ represents the Euclidean dis-

tance between two points.

4 Path similarity-based NSGA-II

To preserve the diversity of solutions (paths) in the deci-

sion space, we use each of the proposed path similarity

measurements in the well-known NSGA-II algorithm (Deb

et al 2002). Although NSGA-II has some drawbacks on

many-objective problems, we saw in our previous

study (Weise and Mostaghim 2021b) that it outperformed

NSGA-III (Deb and Jain 2014) in the majority of our

problem instances. The problem’s Pareto-fronts are usually

irregular and degenerate. Due to the use of crowding dis-

tance, NSGA-II is more robust to these types of problems,

as evenly distributed reference vectors which are used in

NSGA-III can lead to the same solution (Cai et al 2018).

Furthermore, the pathfinding problem is partially decep-

tive, which can lead the algorithms to get stuck in local

optima. We use the three proposed distance metrics and

aim to understand their impact on the algorithm results.

In our algorithm’s approach, we replace the crowding

distance used in the NSGA-II algorithm with the proposed

distance metric in the decision space. In other words, when

the next parent population is filled and the last front cannot

be added completely, we compare the solutions by using

dhd, ddF , or ddtw. Moreover, we use this distance metric in

the selection process. For this purpose, we implement a

path similarity sorting method. We compute a dissimilarity

matrix for N paths in a population and assign either the

lowest distance of all N � 1 values to each path or the

median distance to N � 1 paths as described in algorithm 1.

The function w describes if to use minð�Þ or medianð�Þ as

the crowding measurement.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Distance Comparisons of two Curves
Fréchet Distance (

dF
):      10

Hausdorff Distance (
hd

):    9

DTW Distance (
dtw

):         39.39

Fig. 3 Comparison of the three used distance metrics on two curves

(orange and green)
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Algorithm 1: Crowding Path similarity (Weise and Mostaghim,
2021c), adapted
Input: List of Paths P = {p1, · · · , pk}
// Map is a key-value store. A path p is the key with the

minimum distance as its value.
Result: Map(Path,minimum distance)
// Every Path pi ∈ P gets ∞ assigned
Map results = Map(Paths,Infinity);
// The distance δ from every path to every other is

computed
// {(pi, pj)|pi, pj ∈ P, pi �= pj}
for i=1 to k do

for j=i+1 to k do
δold(pi) = Map(pi);
δcurrent(pi)=δ(pi,pj);
Map(pi)=ψ(δold(pi),δcurrent(pi));

end
end

In this way, paths with less similarity have a higher

distance value. Figure 4 illustrates an example with several

possible paths on a benchmark instance. Figure 4a shows

two of the paths and their respective discrete Fréchet dis-

tance of 1, while Fig. 4b shows two rather distinct paths

with large distance values of 5.65. After computing every

pair, the paths are sorted by their distance value in

descending order. This algorithm is called NSGA-II-CR- d-
w, where d and w are exchanged with their respective

implementation when running the algorithm. For instance,

if d ¼ dFD and w ¼ minðÞ, then is algorithm is called

NSGA-II-CR-FD-MIN.

5 Deterministic and exact approaches

We also compare our approach in terms of performance to

an exact approach, i.e., the multi-objective Dijkstra shortest

path algorithm (Martins 1984). However, a comparison

with exact methods is not trivial, since algorithms, such as

Dijkstra or A* usually use edge-weights to evaluate a

path’s cost. In the classical multi-objective shortest path

problem, a path p of length k is defined by a sequence of

edges in the graph, i.e., p ¼ ðe1; . . .; ekÞ, where ei 2 E, for

i ¼ 1; . . .; k and its cost is defined by the sum of the edges’

weight vectors, i.e., zðpÞ ¼ z1ðpÞ; . . .; zmðpÞð Þ, where

zjðpÞ ¼
Pk

l¼1 wjðelÞ and wðeÞ~ ¼ ðw1ðeÞ; . . .;wmðeÞÞ, where
m is the number of cost values or objectives (Gandibleux

et al 2006).

In the benchmark from Weise and Mostaghim (2021b),

the objectives cannot be represented as a weight vector

wðeÞ~ on each edge e 2 E. The reason is the smoothness

objective that depends on the location of three nodes in a

sequence. In Eq. 5, it is visible, that this objective takes

three nodes as its input parameters. It, therefore, cannot be

expressed as a weight value assigned to an edge connecting

only two nodes. It always depends on three nodes. There-

fore, an edge’s weight vector wðeiÞ~ depends on the previous

edge on the path, i.e., wðei�1Þ~ . To apply conventional

multi-objective pathfinding methodologies to these prob-

lems, the problem must be reduced to a regular multi-ob-

jective pathfinding problem by transferring the graph

G = (V, E) to a new graph G0 ¼ ðV 0;E0Þ. A node is

denoted by ð�Þ, and a directed edge between two nodes is

denoted by an arrow, i.e., ð�Þ ! ð�Þ. In graph G0, each pair

of nodes, i.e. ðq; rÞ; q; r 2 V , with ðqÞ ! ðrÞ 2 E in graph

G, is represented by a new node ðq; rÞ 2 V 0. Furthermore,

an edge from ðq; rÞ ! ðr; sÞ is added to E0, that represents
the traversal from r to s, assuming q was the traversed node

before r. The pathfinding problem has pre-determined start

and target nodes, i.e., s; t 2 V . Therefore, we add the nodes

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

11.5

Discrete Frechet Distance of curves P and Q: 1
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sþ 2 V 0 and tþ 2 V 0 and edges c ¼ ðsþÞ ! ðs; qÞ 2 E0,
with wiðcÞ ¼ fiðs; qÞ, for i ¼ 1; . . .; 4, but wiðcÞ ¼ 0, for

i = 5, and g ¼ ðq; tÞ ! ðtþÞ 2 E0 with wðgÞ~ ¼ 0~, i.e, the

zero vector.

Although the graph transformation enables conventional

multi-objective shortest path algorithms to solve the

problem, the number of nodes and edges in graph G0 can be

substantially higher compared to those in G, depending on

the specified problem instance. For K3 instances with

enabled backtracking, the number of nodes is defined by

jV 0j ¼ 4ðxmax � 1Þð2xmax � 1Þ þ 2 and the number of edges

jE0j ¼ 4ðxmax � 1Þð16xmax � 23Þ þ 6. Given these func-

tions, it becomes clear that the number of nodes and edges

grows quadratically, and influences the algorithms’ per-

formance. In Fig. 5, an example is visible, showing the

original graph G in Fig. 5a and the transferred graph G’ in

Fig. 5b.

To set the edges’ weight vectors, we can employ the

objective functions from the benchmark to compute the

weights for each e 2 E0. The proposed functions are path-

based and have an arbitrary path p of length k[ 1 as an

input, where k is the number of nodes in pi. Again, all

objective functions, except the smoothness objective, need

two consecutive nodes to be computed. The smoothness (f5,

Eq. 5), however, is based on three nodes to compute the

angle between them. The edge’s weight vectors are set as

shown in Eq. 12, where the inputs of the objective func-

tions are node lists.

w~ððq; rÞ ! ðr; sÞÞ ¼ ðf1ððr; sÞÞ; f2ððr; sÞÞ; f3ððr; sÞÞ; f4ððr; sÞÞ; f5ððq; r; sÞÞÞ

ð12Þ

We have employed the multi-objective Dijkstra on a

variety of instances of different sizes and different prop-

erties, to find the true Pareto fronts and sets.

6 Experiments and results

In this section, we describe the experimental settings and

present and discuss the results.

6.1 Settings

In the experiments, we examine the proposed approaches

on the benchmark test suite ASLETISMAC (Weise and

Mostaghim 2021b). We consider a two-dimensional space

with three obstacle types (NO, LA, CH), with K3 neigh-

bourhood, enabled backtracking, and grid sizes of

f15; 20; 24; 26; 28; 30g. NO indicates no obstacles, while

LA and CH introduce bulk and chequerboard obstacles, as

shown in Fig. 6. In this way, CH constraints the decision

space to a few feasible paths. The K3 neighbourhood

restricts the number of possible neighbours to eight, i.e., all

surrounding cells. All these combinations result in 84 test

instances. Given a solution represented by a path N of

length K as N ¼ ðni; niþ1; . . .; nKÞ, i.e., is a list of nodes, we
evaluate it by five objectives to be minimised: (1) Eucli-

dean length, (2) Delays, (3) Elevation, (4) Travelling time

and (5) Smoothness (Curvature). The details can be found

in Weise and Mostaghim (2021b).

We use the same operators for pathfinding as in Weise

and Mostaghim (2021b) i.e., a one-point crossover, which

creates new offspring chromosomes by crossing two parent

paths at one common point. We also use the proposed

perimeter mutation for the mutation operator, which

mutates the middle point of two arbitrary points within a

specific network distance inside a given maximum radius

and reconnects the paths afterwards. Consequently, we

compare the algorithms with the three incorporated dis-

tance metrics to each other. Although it is a many-objective

optimisation problem, we consider a smaller computational

budget than our previous studies, as we have observed that

the quality of results changes only marginally after 100

generations. With that decision, we want to take time

performance considerations into account by sacrificing

quality. Furthermore, we use a population size of 100, to

further account for fewer function evaluations. In real-

world applications, obtaining results in a short amount of

time is often a requirement. For the experiments, we cal-

culate the IGDþ indicator that is a distance measurement

between the obtained front of non-dominated solutions and

the known true Pareto reference front (Ishibuchi et al

2015). Furthermore, we report the respecting wins, losses

and ties of each algorithm of all problem instances.

To assess the quality of solutions in the decision space,

we also employ the IGDX indicator (Aimin Zhou et al

2009), which measures the distance between the known

Pareto-set and the found solutions. Again, we compare the

results of the algorithms to each other and test for statistical

significance using Bonferroni correction, as we perform

multiple comparisons. Our null hypothesis states, that the

populations have equal medians.

(0.0,0.0) (0.0,1.0)

(1.0,0.0) (1.0,1.0)
(a) Original Graph G

(1.0,0.0),(1.0,1.0)

(0.0,0.0),(0.0,1.0) (0.0,0.0),(1.0,0.0)

(0.0,1.0),(1.0,1.0)

(0.0,0.0)*

(1.0,1.0)*

(b) Transferred Graph G′

Fig. 5 Comparison of the original problem graph G and the

transferred graph G0. In brackets: the respective grid coordinates
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Naturally, it is not trivial to compare an exact algorithm

to a meta-heuristic. However, since the running time of the

multi-objective Dijkstra is directly related to the number of

nodes and edges, we have decided to combine running

times with the quality of results of the algorithms to

compare them. Therefore, we make use of the indicator

values. Our comparison metric is

kI ¼ medianðtIÞ � ð1þ medianðIÞÞ, i.e., the median run

time tI of an algorithm on a problem times the median

indicator value I added to 1. With such a metric, we take

the suboptimality of meta-heuristics into account. How-

ever, the indicator value I for the optimal algorithm is

naturally 0, where I is the IGDþ or IGDX indicator.

6.2 Results

Figure 7 illustrates the median values and standard error of

the IGDX and IGDþ indicators respectively, concerning

the instance sizes and obstacle settings. Each row in the

figure shows a different obstacle profile, i.e. NO, CH, or

LA.

We also report the number of Pareto-optimal solutions

for each problem instance on the right axis, which we

obtained using the exact approach. From a graphical per-

spective, it is visible that the results vary depending on the

type and size of the problem instance. It is noteworthy that

in the instance of LA P1 BT K3 (bottom left) of size 28, the

algorithms using Fréchet and DTW distance obtain a small

IGDX value, compared to a relatively high IGDþ value.

This indicates that solutions near the optimal solutions in

the decision space have been found, that are, however, of

low quality in the objective space. For the multi-objective

pathfinding problem, we have shown that solutions close to

the optimum in decision space are not necessarily close to

the optimum in terms of the respective objective values.

However, the same two algorithms obtain a worse IGDX

value on instance size 30 for the same map type, while the

algorithm incorporating the Hausdorff distance can still

obtain a low value. Nevertheless, in the other two obstacle

settings, using the Hausdorff distance is not as stable as the

other two distance metrics regarding IGDX values, as

backtracking is allowed, and therefore, the metrics taking

the flow of a curve into account give better results. If a path

gets closer to its origin, whereas another path does not, the

Hausdorff distance is not always able to compute their

similarity. As a result, the outcome can be small although

the Fréchet and DTW distance give higher values, as the

paths are more distinct. Concerning the IGDþ indicator, all

three algorithms obtained similar values. The indicators’

results show that using the proposed niching methodology

can improve the quality of solutions in terms of closeness

to the true Pareto-set, while there is still room for

improvement regarding the objective values. However, as

we have limited the search to 10,000 function evaluations,

which is comparatively low for many-objective optimisa-

tion problems, the results in terms of IGDþ were expected.

In this study, the search process took particularly mea-

surements in the decision space to minimise the objective

functions. We, therefore, do not see much improvement in

the objective space that is measured using IGDþ. The

underlying problem is deceptive, which can result in paths

that are close to an optimal solution in the decision space

(measured using IGDX) but far from the optimum in the

objective space. For a real-world application, the impact

would be, that a slight perturbation when executing or

traversing a path can result in a severe deterioration in

terms of objective functions. Future research can work on

more advanced methodologies, that focus on local opti-

misation, as there is only a small portion of the path that

needs to be changed to result in better objective values.

Table 1 shows the wins, losses, and ties of each algo-

rithm on all the 84 test problems. Again, the differences

concerning the two performance indicators can be seen, as

the majority of outcomes regarding IGDþ are ties, while

several instances have a definite winner, comparing the

IGDX values.
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Fig. 7 IGDX and IGDþ over instance sizes. Top, middle and bottom rows illustrate NO, CH and LA obstacles
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In Fig. 8 we compare two variants of the algorithm

using ddF , i.e. (1) taking the median value of all distances

to other paths, denoted by FD-MED, and (2) taking the

minimum value of the distances, denoted by FD-MIN. The

two variants are again compared concerning IGDX

(Fig. 8a) and IGDþ (Fig. 8b). Interestingly, while in terms

of IGDþ FD-MED wins or is of the same quality as FD-

MIN, the latter wins in several instances when comparing

regarding IGDX. The reason is that the min() approach can

work better for local optimisation since the closest paths

are used as a reference.

A more detailed view can be seen in Fig. 9, where the

respective indicator values over different sizes for a

specific instance type are depicted. Clearly, FD-MIN

obtains better or similar values when comparing the IGDX

values, while it gets outperformed by FD-MED with

respect to IGDþ.
When analysing the results, it becomes clear that the

high number of ties indicates room for improvement. The

high number of ties are a result of the path similarity

sorting. Sorting, given two subsets of distinct paths with

relatively short distance values inside the subset, will result

in a short distance value for each path, although the two

sets can be apart from each other.

We also compared the performance of the algorithms to

an exact approach as we want to evaluate the quality and

running time, when we only allow a small computational

budget of 10,000 evaluations. Figure 10 shows the values

of the proposed k-performance for the two employed

quality indicators. The y-axis is on a logarithmic scale. In

the left graph, kIGDX shows that the proposed approach has

a better value from instance sizes of 26 onwards, while the

values are lower from size 28 for kIGDþ , compared to the

exact approach. Nevertheless, a trend is visible that shows

lower k values for larger map sizes. That is to be expected

as the running time for the exact approach grows

quadratically. Interestingly, the DTW approach achieved

the best performance in most runs. Although it is compu-

tationally expensive, it can diversify the solution set better

since it is more sensitive to path differences. Nevertheless,

the k indicator is an approximation that cannot be used to

make decisions about significant differences between

algorithms.

Table 1 Wins, Losses and Ties of each algorithm pair (rows vs.

coloumn) with statistical significance at p\0:01, Bonferroni correc-
tion applied, IGDX and IGDþ indicator

FD-MED HD-MED

DTW-MED

IGDX 3/6/75 23/16/45

IGDþ 0/0/84 0/6/78

FD-MED

IGDX 23/14/47

IGDþ 0/2/82

Results by size interval (IGDX indicator)
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Fig. 8 Wins/losses/ties of the algorithm incorporating Fréchet distance with respect to the IGDþ and IGDX indicators over different instance size

intervals
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7 Conclusion

In this paper, we have extended our study in Weise and

Mostaghim (2021c) to evaluate different path similarity

metrics. In the previous study, we have already shown that

using such a metric can positively influence the quality of

results in the objective space. We implemented two further

distance metrics for path similarity calculation and incor-

porated them into the NSGA-II algorithm in two different

ways, i.e. specifying the usage of either the minimum or

median of all distances. We replaced the crowding distance

measurement in objective space with the new distance

metric in decision space. When examining the results in the

objective space, all three algorithms gave similar results

compared to each other. However, when comparing the

quality of solutions in terms of closeness to the true Pareto-

set in the decision space, we have found that all three

distance metrics perform well, with a few exceptions,

depending on the benchmark instance type and size.

Comparing the two crowding measurement type, i.e. min

and median, we have found that the median variant is at

least as good as the min variant in terms of objective val-

ues; however, there are differences regarding the IGDX

indicator, where FD-MIN outperformed FD-MED in sev-

eral instances.

Additionally, we have compared our approach to a

multi-objective version of the well-known Dijkstra algo-

rithm. A significant drawback of the comparison to exact

approaches is that more recent approaches have not been

tested. Pulido et al.’s dimensionality reduction
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Fig. 9 Indicator values of the instance CH P1 K3 BT for different sizes, comparing FD-MED and FD-MIN
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technique (Pulido et al 2015) is one of the approaches that

should be compared to the meta-heuristic approach in the

future. However, on larger maps with more than three

objectives, a meta-heuristic can be beneficial to compute

good results in a short amount of time. In Pulido’s article,

the authors set a time limit of eight hours, which was

exceeded in some experiments, mainly when their algo-

rithm was applied to a large real-world map considering

three objectives.

There is still room for improvement and research by

modifying the usage of the path similarity metric in the

algorithms. For instance, the proposed path similarity

sorting can be developed more in the future by altering the

way it is calculated and used. Furthermore, as shown

in Weise and Mostaghim (2021a), using an ordering of

paths can lead to better results. Nevertheless, different

similarity metrics should be evaluated as well. Maheshwari

et al. proposed a Fréchet distance measurement, incorpo-

rating certain speed limits, which could lead to better

results (Maheshwari et al 2011). Moreover, combining

both crowding distance in objective space and a path

similarity metric in decision space could lead to better

results, which was already shown by Javadi et al (2019).

Moreover, computing the hypervolume in the decision

space, as shown in Ulrich et al (2010), is an interesting

path. However, using a path similarity measurement

function to compute the hypervolume remains future

research. In Deb and Tiwari (2005), the Omni-Optimizer

methodology was proposed. For multi-objective multi-

modal problems, a combination of the crowding distances

in the objective and the decision space is presented, i.e., to

use the maximum of both values as a solution’s final

crowding distance. Multi-modal problems create solutions

that have the same objective values but are different in

their respective decision variables. Deb’s methodology

preserves such solutions and emphasises isolated solutions

in both spaces. This approach is of interest to our proposed

problem and analysed in future research. In the future, we

want to investigate other benchmark instances, e.g. with a

larger size and actual real-world data. Additionally, we

want to incorporate the proposed distance measurement in

other state-of-the-art many-objective algorithms. Further-

more, we want to evaluate adaptive approaches of

decomposition-based algorithms, e.g., an adaptive version

of the NSGA-III algorithm.
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