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Abstract
We use the functional programming language Haskell to design semantic interpreters for the spiking neural P systems.

Haskell provides an appropriate support for implementing the denotational semantics of a concurrent language inspired by

the spiking neural P systems. This language and its semantics describe properly the structure and behaviour of the spiking

neural P systems. The semantic interpreters capture accurately the nondeterministic behaviour, the time delays between

firings and spikings, and the synchronization specific to spiking neural P systems.
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1 Introduction

The functional programming language Haskell (http://

haskell.org/) is used in this paper to describe the

spiking neural P systems (Ionescu et al. 2006). This func-

tional implementation is realized by semantic interpreters for

a simple concurrent language able to describe the structure

and behaviour of spiking neural P systems. The semantic

interpreters are designed by using themethod of denotational

semantics (Schmidt 1986). In fact, we design and implement

semantic interpreters for a concurrent language named Lsnp

able to describe the structure and behaviour of spiking neural

P (shortly, SN P) systems. It provides constructs to describe

neurons, synapses and rules with time delays that are specific

to SN P systems. Here we emphasize on issues related to

implementation, simulation and verification, and provide

semantic interpreters describing properly the nondetermin-

istic behaviour, the time delays between firings and spikings,

and the synchronized functioning of the SN P systems.

In Lsnp, a spike is represented as an elementary ’state-

ment’, and statements can be combined by using an oper-

ator for parallel composition. Intuitively, each spike is

’executed’ in the context of a neuron. In general, a state-

ment describes a multiset of spikes which are executed

concurrently. According to Scott (1980), ‘‘it is not neces-

sary for the semantics to determine an implementation, but

it should provide criteria for showing that an implemen-

tation is correct’’. In order to provide support for automated

verification, the nondeterministic systems are modelled in

our implementation taking into account all possible inter-

actions in the behaviour of an SN P system. In denotational

semantics, such a nondeterministic behaviour is described

by using powerdomains; since a specific simulation of an

SN P system represents an execution trace, we work with a

collections of execution traces implementing elements of a

linear time powerdomain (de Bakker and de Vink 1996).

The semantic interpreters of language Lsnp are available

online at http://ftp.utcluj.ro/pub/users/

gc/eneiat/nc22 in three variants contained in files

semSNP.hs, semSNP-rnd.hs and semSNP-fin.hs.

The file semSNP.hs implements a semantic interpreter

producing all possible execution traces regardless of the

length or number of execution traces; in the presence of

nondeterminism, this interpreter can only be used to verify

toy SN P systems. The file semSNP-rnd.hs implements

a semantic interpreter which produces a single execution

trace and simulates nondeterministic behaviour by using a

(pseudo) random number generator. On the other hand, the

semantic interpreter implemented in the file semSNP-

fin.hs is designed to preserve only a finite prefix for each
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execution trace. Intuitively, each execution trace is stopped

after a finite number of steps (no matter whether the system

subsequently halts or not). Thus, the interpreter semSNP-

fin.hs can be used to simulate and verify (bounded)

executions of nondeterministic SN P systems.

2 SN P systems and their semantics
in Haskell

We develop software components able to provide auto-

matic support for simulating and verifying spiking neural P

(SN P) systems. For this purpose, we design a simple

concurrent language called Lsnp capturing the basic notions

specific to an SN P system: neurons, synapses and rules

with time delays. We present the syntax of Lsnp, and

explain informally the behaviour of its constructs. Recent

works describe tools providing support for SN P systems

simulation and verification (Gheorghe et al. 2021; Pérez-

Hurtado et al. 2022), and formal frameworks for SN P

systems (Gheorghe et al. 2021; Verlan et al. 2020; Ciobanu

and Todoran 2019, 2022). The language Lsnp is similar to

the formalisms described in (Ciobanu and Todoran

2019, 2022), where we presented denotational semantics by

using metric spaces in order to describe the behaviour of

SN P systems. In this paper, both the syntax and the

semantics of language Lsnp are implemented in the purely

functional programming language Haskell, a language

which provides an appropriate support for a mathematical

semantics (such as denotational semantics).

In general, denotational semantics provide a meaning

function M : L ! D, where L is a language and D is a

mathematical domain used to assign meanings to the lan-

guage constructs. The main characteristic of such a seman-

tics is its compositionality: the semantics of a composed

construct is defined solely based on the semantics of its

components. Compositionality is a nice property to have

because it provides scalability and modularity. In recent

articles, we developed denotational semantic models for

various kinds of P systems (Ciobanu and Todoran

2017, 2019, 2022). This paper is related to Ciobanu and

Todoran (2019, 2022), where we have presented denota-

tional semantics designed with metric spaces (de Bakker and

de Vink 1996) for languages inspired by SN P systems

similar to the language Lsnp investigated in this work. As in

Ciobanu and Todoran (2019) (and unlike Ciobanu and

Todoran 2022), we use a specific terminology for program-

ming languages, similar to the terminology employed in de

Bakker and deVink (1996). The semanticmodel presented in

this article is similar to the denotational semantics presented

in Ciobanu and Todoran (2022), adapted to the objectives of

this paper in which the emphasize is on implementation,

simulation and verification. The denotational semantics

given in Ciobanu and Todoran (2022) is designed by using

silent steps, needed in the metric setting (de Bakker and de

Vink 1996) employed in Ciobanu and Todoran (2022) in

order to obtain contractiveness of certain semantic operators.

In our Haskell implementation, silent steps would reduce the

efficiency of the semantic interpreters (execution traces

would be longer). Consequently, in this work we do not use

silent steps. It is worth noting that the denotational models

given in Ciobanu and Todoran (2019, 2022) are designed by

using metric domains (de Bakker and de Vink 1996), which

are implemented in this paper as Haskell types. In other

words, the denotational semantics is considered here from an

engineering viewpoint (Schmidt 1986), emphasizing on

implementation, simulation and verification. Rather than

using the theory of domains (Gierz et al. 2003) and the

theory of metric spaces (de Bakker and de Vink 1996), we

use a functional programming language as an implementa-

tion tool and as a metalanguage for our denotational

semantics.

Comparing the semantics presented in this paper and in

Ciobanu and Todoran (2019), the difference is that in

Ciobanu and Todoran (2019) the continuations contain all

the information regarding declarations and concurrent

control aspects, while in this paper we obtain a modular

design based on the concepts of continuation and semantic

environment. The information regarding declarations and

the execution of rules specific to the SN P systems is

contained in semantic environments. Moreover, the con-

current control aspects are described using the concepts of

synchronous continuation and asynchronous continuation,

fact which is not articulated in Ciobanu and Todoran

(2019). A simulator for SN P systems without delays

implemented by using GPUs (Graphics Processing Units)

is presented in Cabarle et al. (2011); here we present SN P

systems allowing delays between firings and spikings,

suggesting the denotational semantics as a sound support

for simulation and verification of SN P systems. Thus, we

develop software components able to provide automatic

support for SN P systems simulation and verification.

A preliminary version of this paper was presented in

Ciobanu and Todoran (2021). The possibility of using

denotational semantics for SN P systems simulation in

random trace semantics was not explored in Ciobanu and

Todoran (2021).

2.1 Syntax of the language Lsnp

We use specific mathematical notations to describe the

formal syntax of language Lsnp (Definition 1) and to

explain Example 1 and Example 2. We present shortly

some mathematical preliminaries (for sets, multisets and
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regular languages) as in our previous work (Ciobanu and

Todoran 2019). We use the notation ða; b 2ÞS to introduce

the set S with typical elements a, b ranging over S. PfinðSÞ
denotes the powerset of all finite subsets of set S. We

denote by L(E) the language associated with a regular

expression E. Also, we represent a multiset by enumerating

its elements between brackets ’[’ and ’]’. For example, ½ � is
the empty multiset. A multiset is an unordered collection,

e.g., ½a; a; b� ¼ ½a; b; a� ¼ ½b; a; a� is the multiset containing

two occurrences of element a and one occurrence of ele-

ment b. A multiset u is also written in the form

u ¼ ½am1

1 ; . . .; amn
n �, where mi is the multiplicity (number of

occurrences) of element ai in multiset u, for i ¼ 1; . . .; n.

For example, ½a; a; b� ¼ ½a2; b1�.
For more information on formal languages, see

(Rozenberg and Salomaa 1998).

In Definition 1 we present the formal syntax for lan-

guage Lsnp. The basic components are an alphabet ða 2ÞO
of spikes or objects, and a set ðN 2ÞNname of neuron

names. We use the set ðu 2ÞU of all finite multisets over O,

and the set ðp 2ÞP ¼ PfinðNnameÞ whose elements p are

finite sets of neuron names. To simplify Definition 1, we

use the (semantic) notions of a set p 2 P and a multiset

u 2 U to represent some (syntactic) components for which

the order of elements is irrelevant.1 In this work, both sets

and multisets are implemented as Haskell lists. The ele-

ments of language Lsnp are syntactic constructions called

statements and programs, and the terms execution and

evaluation are used to describe their behaviour.

Definition 1 The syntax of the language Lsnp is presented

in Table 1, where E is a regular expression over O, and

#� 0 (# 2 NÞ.

An element rs 2 Rs is a list of rules. A construction

E=u ! x;# is called a firing rule. A construction u0 ! k is

called a forgetting rule. A list of rules rs 2 Rs is valid only

if for any pair of (forgetting and firing) rules u0 ! k and

E=u ! s;# contained in rs the following condition is sat-

isfied: :ðu0 2 LðEÞÞ. Here L(E) is the language associated

with the regular expression E, and we use the notation

u0 2 LðEÞ to express that there is a permutation of multiset

u0 which is an element of the language L(E) (: is the

logical negation operator). Note that the multiset u occur-

ring on the left-hand side of a firing or a forgetting must be

nonempty, i.e., u 6¼ ½ �. Usually we omit a terminating r�,

and write a non-empty list of rules rs 2 Rs,

rs ¼ r1; . . .; ri; r�, as rs ¼ r1; . . .; ri. Also, for a list of dec-

larations D ¼ neuronN0 f rs0 j p0 g; . . .;

neuronNn f rsn j pn g to be valid, the neuron names

N0; . . .;Nn must be pairwise distinct and the name of the

first neuron in the list must be N0 (the name N0 is special, it

is reserved).

Apart minor differences in notations, the definitions for

the set of programs q 2 Lsnp, the set of declarations D 2
Decl and the set of rules rs 2 Rs remain as in Ciobanu and

Todoran (2019). A neuron declaration is a construction

neuronN f rs j p g, where N 2 Nname is a neuron name,

rs 2 Rs is a list of rules and p 2 P is a finite set containing

the names of the neurons that are connected by synapses

(are adjacent or neighbouring) to neuron with name N.

Intuitively, each statement s 2 S is executed by (or in the

context of) a neuron.

A program q 2 Lsnp is a pair q ¼ðD; sÞ, where D¼
neuronN0 f rs0 j p0 g; . . .; neuronNn f rsn j pn g is a

declaration (a list of neuron declarations), and s 2 S is a

statement. The execution of program q ¼ ðD; sÞ starts by

executing statement s in the context of neuron with

name N0 (i.e., statement s is executed in the context of the

neuron whose declaration occurs on the first position in the

list of declarations D). In all other cases, a statement s 2 S

is executed in the context of a neuron neuronN f rs j p g
if s occurs in the right-hand side of a rule occurring in the

list rs.

As in the original SN P systems model (Ionescu et al.

2006), a neuron may be in one of the following two states:

open or closed. A neuron only accepts spikes in the open

status. Essentially, firing and forgetting rules are handled as

in Ionescu et al. (2006). An Lsnp firing rule is a construct

E=u ! s;#, where E is a regular expression, u 2 U is a

multiset, s 2 S is a statement, and # 2 N is a natural

number denoting a time interval. A statement s denotes a

multiset of spikes that are executed concurrently. Hence, a

firing rule E=u ! s;# is similar to an extended SN P firing

rule allowing for multiple types of spikes (Ionescu et al.

2011; Păun et al. 2010).

At any moment, each neuron contains a (possibly

empty) multiset of spikes. Let neuronN f rsN j pN g be a

neuron that contains in its list of rules rsN a firing rule

r ¼ E=u ! s;# and currently stores a multiset of spikes

uN , such that uN 2 LðEÞ and u � uN (the notation uN 2
LðEÞ is described in Definition 1, and the condition u � uN
means that u is a submultiset of uN). In this case, neuron N

can fire (execute) the rule r meaning the following: the

multiset u is consumed (in neuron N remains the multiset of

spikes ðuN n uÞ, where ðuN n uÞ is the multiset difference

between uN and u) and the execution of statement s is

triggered after exactly # time units (s is suspended for the

next # time units). As in the original SN P systems, the

neuron is closed (meaning that it cannot receive new

spikes) in the time interval between firing and spiking; after1 These components could be defined in BNF as pure syntactic

entities, e.g., as lists.
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this time interval elapses, the neuron becomes open (hence

able to receive spikes) again. A forgetting rule u ! k
executed by a neuron N removes the multiset u 2 U if it is

executed in a state where neuron N contains exactly the

multiset u. Rules and the open/closed status are handled as

in the original proposal (Ionescu et al. 2006), assuming a

global clock for measuring time, each neuron operating in a

nondeterministic sequential manner, with at most one rule

applied in each step.

A statement s 2 S may be a spike a 2 O, an initializa-

tion statement init p (with p 2 P), a send statement

sendp a (with p 2 P and a 2 O), or a parallel composi-

tion s1 k s2 of two statements s1 and s2.
2 As in Ciobanu and

Todoran (2019, 2022), when a spike a 2 O is executed by a

neuron neuronN f rsN j pN g the spike a is transmitted to

all open neighbouring neurons with names in the set pN . A
statement s 2 S essentially denotes a multiset of spikes that

are executed concurrently.

The constructs init p and sendp a have an initializa-

tion effect with no counterpart in the original SN P systems

(Ionescu et al. 2006). The execution of a program

q ¼ ðD; sÞ, where D ¼ neuronN0 f rs0 j p0 g; . . .;
neuronNn f rsn j pn g, with D 2 Decl and s 2 S, starts by

executing statement s in the context of neuron N0 (by

convention, the name N0 is reserved to be used as the name

of the neuron whose declaration occurs on the first position

in any list of declarations D 2 Decl). In the initial state

only the neuron with name N0 is active. The neuron N0 is

initialized automatically upon system start up as an open

neuron containing an empty multiset of spikes. In the initial

state all other neurons are idle, meaning that they cannot

participate in interactions (they cannot send and cannot

receive spikes), and in order to participate in interactions

they must be initialized explicitly by using statements

initp and sendp a .
When a statement init p is executed by a neuron

neuronN f rsN j pN g, each neighbouring neuron with

name in the set p \ pN (that have not been initialized

previously) is initialized as an open neuron containing an

empty multiset of spikes; here, p \ pN is the set theoretic

intersection of sets p and pN . The statement init p has no

effect upon neurons that have been initialized beforehand.

If the statement init p is executed by a neuron

neuronN f rsN j pN g in a state where all neurons with

names in the set p \ pN have been initialized beforehand,

then the statement init p is inoperative.

The statement send p a has a similar initialization

effect. When a statement send p a is executed by a neuron

neuronN f rsN j pN g, each neighbouring neuron with

name in the set p \ pN that have not been initialized pre-

viously is initialized as an open neuron containing the

multiset of spikes ½a� (multiset ½a� contains exactly one

occurrence of spike a, and nothing else). If the statement

sendp a is executed by a neuron neuronN f rsN j pN g
in a state where all neurons with names in the set p \ pN
have been initialized beforehand, then the statement

send p a has no initialization effect, but it transmits the

spike a to all open neurons with names in the set p \ pN .
send p a is a send operation with target indication given by

p (Păun 2002). Note that, spikes a0 2 O occurring outside

the scope of any send p a statement are transmitted to the

open neighbouring neurons, but have no initialization effect.

The execution of an Lsnp program involves an initial-

ization phase with no counterpart in the original SN P

systems presented in Ionescu et al. (2006). In the SN P

model presented in Ionescu et al. (2006), the initial mul-

tiset of objects contained in each neuron is part of the

system specification. By contrast, an Lsnp program q ¼
ðD; sÞ starts its execution with only one active neuron,

namely the neuron with name N0, which is automatically

initialized upon system start up as an open neuron con-

taining an empty multiset of spikes (by convention, N0 is

Table 1 Syntax of the language

Lsnp
Statements sð2 SÞ ::= a (spike)

j init p (initialization)

j send p a (send statement)

j s k s (parallel composition)

Rules rsð2 RsÞ ::= r� j r; rs
rð2 RÞ ::= E=u ! s;# (firing rule)

j u ! k (forgetting rule)

Neuron Declarations Dð2 DeclÞ ::= d j d;D
dð2 NDeclÞ ::= neuronN f rs j p g (neuron)

Programs qð2 LsnpÞ ::= D; s.

2 The language Lsnp is similar to that in Ciobanu and Todoran

(2019, 2022). The set of statements ðs 2ÞS is similar to the set of

statements employed in Ciobanu and Todoran (2019), but there are

also differences. The construct init p is lacking from Ciobanu and

Todoran (2019). A version of the construct send p a is provided in

Ciobanu and Todoran (2019), but it has no initialization effect.
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the name of the first neuron occurring in any list of decla-

rations D 2 Decl). All other neurons are idle in the initial

state, and must be initialized explicitly (by using statements

initp and sendp a ) in order to participate to interactions.

When an Lsnp program q ¼ ðD; sÞ starts its execution, the
system initialization operation can be accomplished with the

aid of statement s 2 S, which is executed by the neuron with

name N0. In case the neuron with name N0 is connected (by

synapses) to all other neurons, this initialization phase can be

accomplished in a single step (one time unit). Apart from this

initialization phase, an Lsnp program can describe accurately

how an SN P system behaves.

2.2 Semantic interpreter for the language Lsnp

We describe the main components of a semantic interpreter

for the language Lsnp. The semantic interpreter is available

online at http://ftp.utcluj.ro/pub/users/

gc/eneiat/nc22 in the file semSNP.hs.

type Spike = String
type U = [Spike]
type Nname = String
type Pi = [Nname]

The types Spike and Nname implement the sets O of

spikes and Nname of neuron names, respectively. The types

U and Pi implement the sets U of multisets of spikes and

P of (finite) sets of neuron names, respectively. Sets and

multisets are implemented as Haskell lists. The syntax of

language Lsnp presented in Definition 1 can be imple-

mented in Haskell as follows:

data S = Spike Spike | Init Pi | Send Pi Spike | Par S S
data Rule = FireR (RegExp Spike) U S Int | ForgetR U
type Rules = [Rule]
type NDecl = (Nname,Rules,Pi)
type Decl = [NDecl]
type Prog = (Decl,S)

The types S, Rule, Rules, NDecl, Decl and Prog

implement the classes S of statements,R of rules,Rs of lists of

rules,NDecl of neuron declarations,Decl of declarations and

programs of Lsnp, respectively, introduced in Definition 1.

We omit here the definition of the type RegExp which

we use to handle regular expressions defined over the

alphabet of spikes Spike. For manipulating regular

expressions we use a predicate (elemRegExp u re)

which accepts as arguments a multiset u of spikes and a

regular expression re and verifies whether any permuta-

tion of multiset u is an element of the language associated

with regular expression re.

The final result of the semantic interpreter of language

Lsnp is an element of the type F. The elements of type F

represent program answers. In this section F is a synonym

for type P, which implements a linear time powerdomain

presented in de Bakker and de Vink (1996). Powerdomains

are employed in denotational semantics to describe con-

current and nondeterministic behaviour. Nondeterministic

systems are modelled in our Haskell implementation taking

into account all possible interactions describing the beha-

viour of an SN P system.

type F = P
type P = [Q]
data Q = Qe | Q Obs Q
data O = O Nname U
type Obs = [O]

An element of the type P is a set (implemented as a list)

of sequences of type Q. An element of type Q is a sequence

of observables of type Obs. Qe is the empty sequence. An

observable of type Obs is a set (implemented as a list) of

pairs of the type (O Nname U). We recall that Nname

implements the set of neuron names, and U implements the

set of all finite multisets of spikes. We use the type Obs to

represent the current state of a spiking neural P system.

prefix :: Obs -> P -> P
prefix obs p = [ Q obs q | q <- p ]
ned :: P -> P -> P
ned p1 p2 =

[ q | q <- p1 ‘setUnion‘ p2, q /= Qe ] ‘setUnion‘
[ Qe | Qe <- p1 ‘setIntersect‘ p2 ]

bigned :: [P] -> P
bigned [] = [Qe]
bigned (p:ps) = p ‘ned‘ (bigned ps)

The mapping prefix implements the prefixing of an

observable to a program answer. The mapping ned

describes nondeterminism as a union of behaviours. Note

that (ned p1 p2) terminates only if both p1 and p2

terminate. The mapping bigned implements a nondeter-

ministic choice between several alternatives.

fe :: F
fe = [Qe]
prefixf :: Obs -> F -> F
prefixf = prefix
bignedf :: [F] -> F
bignedf = bigned

We use fe = [Qe] to represent termination or the reach

of a halting configuration as a final program answer of type

fe : : F. In this section F is a synonym for type P, and

mappings bignedf and prefixf behave the same as

mappings bigned and prefix, respectively. In Sects. 3

Spiking neural P systems and their semantics in Haskell 45
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and 4, the definition of type F is modified in order to obtain

different representations of nondeterministic behaviour.

We present now a denotational semantic function den

which describes the behaviour of Lsnp statements in a com-

positional manner. In the definition of mapping den, we use

a set of actions implemented in Haskell by the type Act.

data Act = Act Spike Pi | ActInit Pi | ActSend Spike Pi
type W = [Act]

The elements of the type Act are used to define the

semantics of the elementary statements a, init p and

sendp a . The type W implements a set of multisets of

actions. The type of the semantic function den is

den :: S -> E -> Pi -> D .

The type S implements the class of Lsnp statements, E is

a type of semantic environments and Pi is the type of sets

(implemented as lists) of neuron names specified above. An

element of type D is called a computation. The types

E and D are defined below.

type E = Act -> D .

A semantic environment of the type E is a function which

maps an action of type Act to a computation of type D. In the

definition of semantic function den we use a semantic

environment defined as fixedpoint of a higher ordermapping.

type D = Cont -> W -> F
type Cont = (C,K)
data C = Ce | C D
type K = [(Nname,NState)]
data NState = Open U | Closed U Int U D

The type of computations is designed by using the

continuation semantics for concurrency (CSC) technique

(Ciobanu and Todoran 2014; Todoran 2000). A computa-

tion of type D is a function which receives as arguments a

continuation of type Cont and a multiset of actions of type

W and yields a final value of the type F. In the CSC

approach a continuation is a structured configuration of

computations which can be evaluated concurrently. In the

implementation presented in this paper a continuation of

type Cont is a pair (c,k), where c is an element of type

C and k is an element of type K. An element of type C is

called a synchronous continuation. A synchronous contin-

uation is a computation which executes the spikes that are

transmitted between neurons in the current step.3 An

element of the type K is called an asynchronous continu-

ation. An asynchronous continuation is a list of pairs of

type [(Nname,NState)]. An element of type Nname

is a neuron name. An element of type NState describes

the current state of a neuron. A neuron can be in one of the

following two states: open or closed. The open and closed

states are implemented by using the data constructors

Open and Closed, respectively. The open status of a

neuron is implemented using a construct (Open u), where

u::U is the multiset of spikes currently stored by the

neuron. The closed status of a neuron is implemented using

a construct (Closed u t ur d), where u::U is the

multiset of spikes currently stored by the neuron, t::Int

implements the time interval remaining until the neuron

produces spikes (becoming open again), ur::U is the

multiset of spikes remaining in the neuron after the time

interval t elapses, and d::D is a computation whose

execution is triggered after the time interval t elapses.

The techniques specific to denotational semantics can be

conveniently implemented in Haskell. Since Haskell sup-

ports lazy evaluation, the fixed point combinator can be

defined as follows:

fix :: (a -> a) -> a
fix f = f (fix f)

The definition of the semantic mapping den uses a

semantic operator for parallel composition defined (in the

style of denotational semantics) as the fixed point of a

higher order mapping hopar.

type Op = D -> D -> D
hopar :: Op -> Op
hopar op d1 d2 = \(c,k) w ->

bignedf [d1 (lift op (C d2) c,k) w,d2 (lift op (C d1) c,k) w]
par = fix hopar

The operator lift is used to lift an operator on com-

putations of type D to an operator on synchronous contin-

uations of type C. The semantic interpreters available

at http://ftp.utcluj.ro/pub/users/gc/

eneiat/nc22 use the following definition:

lift :: Op -> C -> C -> C
lift op Ce Ce = Ce
lift op Ce f = f
lift op f Ce = f
lift op (C d1) (C d2) = C (op d1 d2)

The denotational semantics den is a compositional func-

tion defined using the semantic operator for parallel com-

position par as follows:

3 The empty synchronous continuation Ce is used to handle steps

where no spikes are emitted, e.g., because all neurons are closed and

no neuron can move to the open status in the current step.

46 G. Ciobanu, E. N. Todoran

123



den :: S -> E -> Pi -> D
den (Spike a) env pi = env (Act a pi)
den (Send pi1 a) env pi = env (ActSend a (pi1 ‘setIntersect‘ pi))
den (Init pi1) env pi = env (ActInit (pi1 ‘setIntersect‘ pi))
den (Par s1 s2) env pi = (den s1 env pi) ‘par‘ (den s2 env pi),

where setIntersect is the Haskell implementation

of the set theoretic intersection operation.

Finally, the semantic interpreter is a mapping denp

which receives as argument a program of the type Prog

and yields a (final) value of the type F.

denp :: Prog -> F
denp (decl,s) = den s env0 pi0 (Ce,k0) []

where env0 = fix (hoenv decl)
((n0,rs0,pi0):_) = decl
k0 = [(n0,Open [])]

The semantic interpreter denp uses a semantic envi-

ronment env0::E which stores information about the

neuron declarations and applies in a nondeterministic

sequential manner the rules contained in declarations. The

semantic environment env0 is defined as the fixed point of

a higher order mapping hoenv. The Haskell implemen-

tation of the mapping hoenv is available online

(http://ftp.utcluj.ro/pub/users/gc/

eneiat/nc22).

We illustrate in Example 1 how to use the semantic

interpreter described in this section. Further experiments

are provided in Sects. 3 and 4.

Remark 1 In language Lsnp, neuron N0 can be used to

receive the spikes emitted by the output neuron.4 This

technique is also used in the design of Lsnp programs q1
and q3 presented in Example 1 and Example 2, respec-

tively, where the neuron with name N0 receives the spikes

emitted by the output neuron N3. As in Ionescu et al.

(2006), we consider that the result of a computation is the

number of steps elapsed between the first two consecutive

spikes produced by the output neuron (assuming the output

neuron spikes at least twice, ignoring whether or not the

calculation subsequently halts). This convention is used in

the both examples (Example 1 and Example 2) presented

in this paper.

Example 1 We consider an Lsnp program q1 implementing

the spiking neural P system P1 given in Ionescu et al.

(2006) (Section 5, Figure 2). Before presenting the Lsnp

program q1, we briefly describe the system P1 using the

notation and terminology employed in Ionescu et al.

(2006). As in Ionescu et al. (2006), we use the following

convention: when the language associated with regular

expression E is LðEÞ ¼ faig, we write a firing rule E=ai !
a; t in the abbreviated form ai ! a; t.

P1 is a tuple ðfag; r1; r2; r3; fð1; 2Þ; ð2; 3Þg; 3Þ, where
fag is a singleton set (a is called a spike), r1; r2; r3 are

neurons, syns ¼ fð1; 2Þ; ð2; 3Þg is the set of synapses, and 3
is the index of the output neuron (r3 in this example).

Neuron r1 is a pair r1 ¼ ð2n� 1; faþ=a ! a; 2gÞ, where
component 2n� 1 is the initial number of spikes con-

tained in r1, and faþ=a ! a; 2g is the set of rules

describing the behaviour of neuron r1. Neurons r2 and r3
behave as follows: r2 ¼ ð0; fan ! a; 1gÞ and

r3 ¼ ð1; fa ! a; 0gÞ. In the initial state, neurons r2 and

r3 contain 0 and 1 spike, respectively. Each pair ði; jÞ 2
syns describes a synapse providing support for transmitting

spikes from neuron ri to neuron rj.
Two neurons (namely r1 and r3) fire in the first time

unit. The output neuron r3 produces its first spike in step 1.

Neuron r1 remains closed for two time units, and in the

next step it produces a spike which is transmitted to

neuron r2. In 3n time units, neuron r2 receives n spikes

from neuron r1. Next, neuron r2 will fire in step ð3nþ 1Þ
and, after a delay of one time unit, it will send a spike to

neuron r3 in step ð3nþ 2Þ. The output neuron r3 will

release its second spike in step ð3nþ 3Þ. Hence, (using the

convention presented in Remark 1) the number computed

by system P1 is 3nþ 2 ¼ ð3nþ 3Þ � 1 ¼ 3ðnþ 1Þ � 1.

Following Ionescu et al. (2006), we write a firing rule of

the form E=½ai� ! s;# with LðEÞ ¼ faig in the abbreviated

form ½ai� ! s;#. Such a rule consumes all i spikes, when

the neuron executing it contains exactly the multiset ½ai�.
We recall that ½ai� is the multiset containing i occurrences

of the spike a. For example, ½a3� ¼ ½a; a; a�. Also, we use

the notation si to represent i copies of statement s executed

in parallel: s1 ¼ s and siþ1 ¼ s k si, for s 2 S and i 2 N,

i[ 0.

Let n 2 N; n[ 0. The program q1 is given by

q1 ¼ ðD1; s1Þ, where the statement s1 2 S is s1 ¼ ð send
fN1g a Þ2n�1 k init fN2g k send fN3g a , and the declara-

tion D1 2 Decl is given by

D1 ¼ neuronN0 f r� j fN1;N2;N3g g;
neuronN1 f aþ=½a� ! a; 2 j fN2g g;
neuronN2 f ½an� ! a; 1 j fN3g g;
neuronN3 f ½a� ! a; 0 j fN0g g:

After the initialization step, neuron N1 contains (a multiset

with) 2n� 1 spikes, neuron N3 contains 1 spike, neuron N2

contains 0 spikes, and neuron N0 contains 0 spikes.N3 is the

output neuron. In ourLsnp programq1, neuronsN1;N2 andN3

implement the neurons r1; r2 and r3, respectively, presented

4 In the original SN P systems (Ionescu et al. 2006), this role is

played by the environment; this notion should not be confused with

the notion of a semantic environment employed in this paper, which is

specific to the denotational semantics (de Bakker and de Vink 1996).
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in the description of system P1 given in Ionescu et al.

(2006). Apart from the initialization step (which is specific to

Lsnp), the Lsnp program q1 describes accurately the beha-

viour of system P1 presented in Ionescu et al. (2006).

As explained in Remark 1, in our implementation

neuron N0 receives the spikes emitted by the output neuron

N3, and the result is considered to be the number of steps

elapsed between the first two consecutive spikes produced

by the output neuron. The number computed by both

system P1 presented in Ionescu et al. (2006) and Lsnp

program q1 is 3nþ 2.

In the Haskell execution of the program q1 we con-

sider n ¼ 2.5 In this case, the number of steps elapsed

between the first and the second spike produced by output

neuron N3 is 8 ¼ 3nþ 2, which coincides with the result

obtained in Ionescu et al. (2006) for the system P1.

The semantic interpreter is available online

at http://ftp.utcluj.ro/pub/users/gc/

eneiat/nc22 in the file semSNP.hs.

The Lsnp program q1 is implemented and stored in

variable rho1::Prog.

In the rest of the paper, we write e )v to indicate that

an expression e evaluates (reduces) to a value v. For

example, by using the interpreter semSNP.hs, one can

perform the following experiment (which runs Lsnp

program rho1 by evaluating the expression

(denp rho1)):

denp rho1 )

In this experiment and in the experiment presented in

Section 4, the output is a set (implemented as a list) of type P,

where each element is an execution trace of type Q, and each

execution trace is a sequenceofobservables of typeObs. Each

observable is displayed on a separate line, and the observables

thatmake up an execution trace are displayed in chronological

order. It is worth noting that an observable (of type Obs) is a

list implementing a set, and so the order of elements contained

in an observable is not important. In this example, the output

of (denp rho1) is a set (of type P) containing a single

execution trace, where output neuron N3 produces spikes

(received by neuron N0) in steps 1 and 9. Thus, the result of

the computation is 8 ¼ 9� 1.

The Lsnp program q1 given in Example 1 is deterministic:

executing rho1 with our semantic interpreter (denp

rho1) yields a set containing a single execution trace. In

this paper we also aim to handle SN P systems exhibiting

nondeterministic behaviour. In Example 2 we present a

nondeterministic SN P system (also taken from Ionescu

et al. (2006)) and its implementation as an Lsnp program q3.

Example 2 We consider an Lsnp program q3 which

implements the spiking neural P system P3 given in

Ionescu et al. (2006) (Section 5, Figure 4). We use the

same notations and conventions as in Example 1. In

Ionescu et al. (2006), P3 is described by a tuple

P3 ¼ ðfag; r1; r2; r3; fð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð2; 3Þg; 3Þ. The

three neurons r1; r2 and r3 behave as follows:

r1 ¼ ð2; fa2=a ! a; 0; a ! kgÞ, r2 ¼ ð1; fa ! a; 0; a !
a; 1gÞ and r3 ¼ ð3; fa3 ! a; 0; a ! a; 1; a2 ! kgÞ. In the

first time unit, all the neurons fire. In particular, the output

neuron r3 emits the first spike in step 1. In a nondeter-

ministic manner, neuron r2 chooses between rules a ! a; 0

and a ! a; 1. As long as neuron r2 chooses rule a ! a; 0,

neurons r1 and r2 transmit each other one spike and (to-

gether) they transmit two spikes to neuron r3, which (ap-

plying its forgetting rule a2 ! k) eliminates the two spikes

in the next step. Alternatively, if neuron r2 chooses rule

a ! a; 1, then it moves to the closed status for one time

unit; it does not receive the spike emitted by neuron r1, and
so neuron r2 remains empty. In the next step, neuron r3
fires applying the rule a ! a; 1, hence it is closed for one

time unit and cannot receive the spike issued by neuron r2.
The spike issued by neuron r2 is received by neuron r1,
but it is removed using the forgetting rule a ! k. Thus, all
the neurons remain empty. Finally, the output neuron r3
emits its second spike with a delay of 1 time unit since the

moment it fired, by applying the rule a ! a; 1. Thus, there
are at least 2 time units between the two spikes produced

by the output neuron r3; in this way, system P3 generates

[[[("N0",[]),("N3",["a"]),("N1",["a","a","a"]),("N2",[])] .
[("N0",["a"]),("N3",[]),("N1",["a","a","a"]),("N2",[])] .
[("N0",["a"]),("N3",[]),("N1",["a","a","a"]),("N2",[])] .
[("N0",["a"]),("N3",[]),("N1",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N3",[]),("N1",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N3",[]),("N1",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N3",[]),("N1",["a"]),("N2",["a","a"])] .
[("N0",["a"]),("N3",[]),("N1",["a"]),("N2",["a","a"])] .
[("N0",["a"]),("N3",["a"]),("N1",["a"]),("N2",[])] .
[("N0",["a","a"]),("N3",[]),("N1",[]),("N2",["a"])]]]

5 In the Haskell implementation available at http://ftp.utcluj.ro/pub/

users/gc/eneiat/nc22., this program q1 is stored in variable

rho1::Prog (in all files semSNP.hs, semSNP-rnd.hs and

semSNP-fin.hs).
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in a nondeterministic manner all natural numbers greater

than 1 (2, 3, 4, 5, . . .), as in Ionescu et al. (2006).

The Lsnp program q3 presented below is designed to

capture the behaviour of spiking neural P system P3

described in Ionescu et al. (2006), namely to generate all

natural numbers greater than 1 (2; 3; 4; 5; . . .) in a nonde-

terministic manner. The program q3 is given by

q3 ¼ ðD3; s3Þ, where the statement s3 2 S is

s3 ¼ ð send fN1g a Þ2 k send fN2g a k ð send fN3g a Þ3

and the declaration D3 2 Decl is given by

D3 ¼ neuronN0 f r� j fN1;N2;N3g g;
neuronN1 f a2=½a� ! a; 0; ½a� ! k j fN2;N3g g;
neuronN2 f ½a� ! a; 0; ½a� ! a; 1 j fN1;N3g g;
neuronN3 f ½a3� ! a; 0; ½a� ! a; 1; ½a2� ! k j fN0g g:

After the initialization step (described by statement s3)

neuron N1 contains 2 spikes (the multiset ½a; a�), neuron N2

contains 1 spike, neuron N3 contains 3 spikes, and neuron

N0 contains 0 spikes. In our Lsnp program q3, neurons

N1;N2 and N3 implement the neurons r1; r2 and r3,
respectively, presented in the description of system P3

given in Ionescu et al. (2006).

The Lsnp program q3 presented in Example 2 (which

implements the SN P system P3 given in Ionescu et al.

(2006)) is designed to generate the natural numbers greater

than 1 (2; 3; 4; 5; . . .) in a nondeterministic manner. The

semantic interpreter presented in this section (available at

http://ftp.utcluj.ro/pub/users/gc/

eneiat/nc22 in the file semSNP.hs) generates all

possible execution traces regardless of the length or num-

ber of execution traces; thus, it cannot be used to test the

Lsnp program q3 given in Example 2. In the following

sections we present two alternative implementation options

which provide support for simulating and verifying the

behaviour of nondeterministic SN P systems, either by

choosing at random an arbitrary execution trace or by

pruning all execution traces after a (given) finite number of

computing steps. The semantic interpreters presented in

Sects. 3 and 4 can be used to test both Lsnp programs q1
(given in Example 1) and q3 (given in Example 2).

The implementation techniques presented in this paper are

quite general and can be used to simulate and verify several

variants of SN P systems. To illustrate the flexibility of these

techniques, in the public repositorywe offer further examples

of SN P systems with structural plasticity Cabarle et al.

(2015) and inhibitory rules Peng et al. (2020), examples

which can be executed by using similar semantic interpreters

(available at http://ftp.utcluj.ro/pub/users/

gc/eneiat/nc22 in folder nother-models).

3 Interpreter based on random choice

In general, the number of alternative execution traces of a

nondeterministic system may be large, even infinite. The

semantic interpreter presented in Section 2 is designed to

produce all possible execution traces (regardless of the

length or number of execution traces), hence in the pres-

ence of nondeterminism it can only be used to test some toy

nondeterministic SN P systems.

Here we present an implementation which produces a

single execution trace and simulates the nondeterministic

behaviour of an SN P system as random choice. We

implement random choice by using a random number

generator from Haskell’s library System.Random. We

define the type Rand of random number generators as a

type synonym of System.Random.StdGen:

type Rand = System.Random.StdGen .

We also need a mapping for obtaining the next value

from the generator; for this purpose, we use the mapping

System.Random.next.

In this section we present an interpreter for the language

Lsnp which simulates nondeterministic behaviour by using

a random number generator. This interpreter is reasonably

efficient and can be used to test any Lsnp program. At

different executions it can produce different results, but at

each execution it only generates a single (randomly

selected) trace. By using the type Rand defined above, the

Haskell interpreter presented in this section can be obtained

from the semantic interpreter described in Section 2 with

only few modifications.

To model nondeterministic behaviour as random choice

we redefine the type F (implementing the final yield of our

semantic interpreter) as follows:

type F = Rand -> (Q,Rand) .

We also need to change the definitions of associated

operators prefixf, bignedf and fe. In this version of

our semantic interpreter, the operator bignedf simulates

a random choice between a finite set of (nondeterministic)

alternatives.

prefixf :: Obs -> F -> F
prefixf obs f = \r -> let (q,r’) = f r in (Q obs q,r’)
bignedf :: [F] -> F
bignedf fs = \r -> let (r’,rand’) = System.Random.next r

in (fs !! (r’ ‘mod‘ (length fs))) rand’
fe :: F
fe = \r -> (Qe,r)
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No other changes are required. All the other Haskell

definitions remain as in Section 2. However, it is conve-

nient to define a function testRand for obtaining a dif-

ferent random trace at every new execution.

testRand :: Prog -> IO()
testRand prg =

do rand0 <- System.Random.newStdGen
print (fst (denp prg rand0))

TheHaskell interpreter described in this section is available

online at http://ftp.utcluj.ro/pub/users/

gc/eneiat/nc22 in thefilesemSNP-rnd.hs, where the

Lsnp programsq1 andq3 (presented inExample 1 andExample

2, respectively) are implemented and stored in variables

rho1::Prog and rho3::Prog, respectively. One can run

Lsnp program rho1 by evaluating the expression (tes-

tRand rho1). However, since the Lsnp program rho1 is

deterministic one always obtains the same result nomatter how

many times the experiment is repeated.6

On the other hand, the Lsnp program rho3 is nondeter-

ministic. Using the interpretersemSNP-rnd.hs to run this

program with (testRand rho3) several times one may

obtain a different (randomly selected) trace at each new

execution. This is illustrated in the three experiments pre-

sented below.

testRand rho3 )

testRand rho3 )

testRand rho3 )

In each of the three experiments presented above the

output is an execution trace of type Q, and each execution

trace is a sequence of observables of type Obs. Each

observable is displayed on a separate line, and the

observables that make up an execution trace are displayed

in chronological order.

Each output obtained in the three experiments presented

above encodes a different value (number). We recall that in

each case the value is encoded as the number of steps

elapsed between the first two consecutive spikes produced

by the output neuron N3 (see Remark 1 and Example 2). In

each experiment the first spike is emitted by the output

neuron N3 (and received by neuron N0) in step 2 (the first

step is used for initialization). The next spike is emitted by

the output neuron N3 (and received by neuron N0) in the

above three experiments in steps 5, 4, and 10, respectively.

Hence, the following numbers are obtained in the three

experiments presented above: 3, 2 and 8, respectively.

Since the Lsnp program rho3 is nondeterministic, if we

continue such experiments we obtain a random sequence of

results (interpreted as numbers). The semantic interpreter

semSNP-rnd.hs can only be used to test a Lsnp program

[[("N0",[]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a"]),("N3",["a"])] .
[("N0",["a"]),("N2",[]),("N1",["a"]),("N3",["a"])] .
[("N0",["a","a"]),("N2",[]),("N1",[]),("N3",[])]]

[[("N0",[]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a"]),("N3",["a"])] .
[("N0",["a"]),("N2",[]),("N1",["a"]),("N3",["a"])] .
[("N0",["a","a"]),("N2",[]),("N1",[]),("N3",[])]]

[[("N0",[]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a","a"]),("N3",["a","a"])] .
[("N0",["a"]),("N2",["a"]),("N1",["a"]),("N3",["a"])] .
[("N0",["a"]),("N2",[]),("N1",["a"]),("N3",["a"])] .
[("N0",["a","a"]),("N2",[]),("N1",[]),("N3",[])]]

6 The result coincides with the output obtained in Example 1 if we

remove a pair of enclosing parentheses ’[’ and ’]’; the output

obtained in Example 1 is a set (implemented as a Haskell list) of

traces, rather than a single execution trace.
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by producing a single (randomly selected) execution of a

nondeterministic Lsnp program.

4 Interpreter based on finite execution
traces

The semantic interpreter presented in Section 2 is designed

to produce all possible execution traces regardless of the

length or number of execution traces. The final result of the

semantic interpreter is an element of a linear time power-

domain (de Bakker and de Vink 1996). In the presence of

nondeterminism the implementation solution described in

Section 2 only provides support to run and verify the

execution of toy Lsnp programs. This is not surprising. An

element of a powerdomain is exponential in the length of

execution traces, hence a direct implementation can lead to

an intractable solution.7 The interpreter presented in Sec-

tion 3 produces a single execution trace and simulates

nondeterministic behaviour by using a random number

generator. This interpreter is tractable, but can be used only

for simulation purposes and, in general, provides only

limited information regarding the behaviour of nondeter-

ministic SN P systems.

In this section we explore an alternative implementation

option. The semantic interpreter presented in this section is

designed to prune the final yield of the semantic function

preserving only a finite prefix for each execution trace.

Intuitively, the interpreter stops each execution trace after a

given number of steps (accepted as an argument by the

semantic interpreter). This solution does not solve the

tractability issue, but it can provide support for verifying

(bounded versions of) nondeterministic SN P systems. The

support for verification is provided by taking into consid-

eration a finite prefix for all possible executions of a non-

deterministic SN P system. The non-deterministic SN P

system presented in Example 2 (Lsnp program q3) is used
below to illustrate this approach.

The Haskell interpreter described in this section (avail-

able online at http://ftp.utcluj.ro/pub/

users/gc/eneiat/nc22 in file semSNP-fin.hs)

can be obtained from the semantic interpreter described in

Section 2 with only few simple modifications, which are

described below.

The Haskell type F implements the final yield of our

semantic interpreter. The definition of type F changes now

to:

type F = Int -> P .

An element of the final domain F is a function of type

Int -[ P, which accepts as argument a number repre-

senting the length of the finite prefix that is produced for

each execution trace contained in a set of type P. We recall

that an element of type P is a set (implemented as a Has-

kell list) of execution traces of the type Q (the types P

and Q are presented in Section 2).

The definition of the prefixing operator prefixf is

adapted to prune the final yield of the semantic interpreter

preserving only a finite prefix of a given length for each

execution trace:

prefixf :: Obs -> F -> F
prefixf obs f =

if l<=0 then [Qe]
else [ Q obs q | q <- f (l-1) ]

\l ->

The operators bignedf and fe are easily adapted to

the new definition of type F.

bignedf :: [F] -> F
bignedf fs = \l -> bigned [ f l | f <- fs ]
fe :: F
fe = \l -> [Qe]

No other modifications are required. However, note that

the semantic interpreter mapping (denp rho l) accepts

two arguments: a program rho of type Prog, and an

additional argument l of type Int representing the num-

ber of steps after which the execution is stopped for each

trace.

The semantic interpreter described in this section can be

used to test both programs q1 and q3 (introduced in the

examples given in Section 2).

First, we consider the Lsnp program q3 presented in

Example 2, which is nondeterministic. As explained in

Example 2, the Lsnp program q3 is designed to generate in a
nondeterministic manner all natural numbers greater than 1

(i.e., 2; 3; 4; 5; . . .). The semantic interpreter described in

this section is available online at http://ftp.ut-

cluj.ro/pub/users/gc/eneiat/nc22 in the file

semSNP-fin.hs, where the Lsnp program q3 is imple-

mented and stored in variable rho3::Prog. In this case,

the semantic interpreter denp accepts as extra argument a

natural number indicating a finite number of steps after

which execution is stopped for each alternative trace. Using

the interpreter semSNP-fin.hs to run this program by

using (denp rho3 7), the following output is obtained:
7 An element of a powerdomain is a tree-like structure, or a

collection of ‘‘traces’’ essentially equivalent to an unfolding of such a

tree.
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denp rho3 7 )
[[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .

[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])]],

[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",["a"])]],

[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",[])]],

[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",[])] .
[("N0",["a","a"]),("N1",[]),("N3",[]),("N2",[])]],

[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",[])] .
[("N0",["a","a"]),("N1",[]),("N3",[]),("N2",[])]],

[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a","a"]),("N3",["a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",[])] .
[("N0",["a","a"]),("N1",[]),("N3",[]),("N2",[])]],

[[("N0",[]),("N1",["a","a"]),("N3",["a","a","a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",["a"])] .
[("N0",["a"]),("N1",["a"]),("N3",["a"]),("N2",[])] .
[("N0",["a","a"]),("N1",[]),("N3",[]),("N2",[])]]]

The output presented above displays a set of execution

traces separated by empty lines: there are 7 distinct exe-

cution traces (the result of this experiment is displayed as

explained in the final part of Example 1). Each execution

trace is a sequence containing at most 7 observables (the

observables are displayed on separate lines in chronologi-

cal order). Notice that the first spike is emitted by the

output neuron N3 (and received by neuron N0) in step 2 –

the first step is used for initialization. The next spike is

emitted by the output neuron N3 (and received by neu-

ron N0) in steps 4, 5, 6 or 7. Thus, the distance between the

first two spikes produced by the output neuron N3 may be

2, 3, 4 or 5 (this can be observed in the last four execution

traces of the experiment). The output neuron N3 will
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continue to produce spikes in subsequent steps as well, but

in our experiment execution is stopped (all execution traces

are pruned) after the first 7 steps.8 Anyway, this example

confirms experimentally that the system P3 presented in

Ionescu et al. (2006) (q3 in our implementation) can gen-

erate the sequence of numbers 2; 3; 4; 5; . . . (i.e., Nþ n f1g,
where Nþ is the set of natural numbers without 0).

The interpreter semSNP-fin.hs can also be used to

test the Lsnp program q1 presented in Example 1. In file

semSNP-fin.hs, the program q1 is implemented and

stored in variable rho1::Prog for the case when n ¼ 2,

and the execution terminates after 10 steps. Thus, using the

interpreter semSNP-fin.hs to run the program with

(denp rho1 10) (or (denp rho1 z) with z[10), it is

obtained the same output as in Example 1.

Depending on the purpose pursued, the language Lsnp

presented in this paper can be modified in various ways,

and can be extended with constructions that could express

more concisely the behaviour of some SN P systems. For

example, one can extend the class of statements S intro-

duced in Definition 1 by replacing the statement sendp a
with a more general construction send p s , where the

argument s is an arbitrary statement s 2 S (rather than an

elementary spike a 2 O as it is in Definition 1). Intuitively,

the construct send p s executes the spikes contained in

statement s with target indication given by p. The class of

statements S for the extended language can be defined by

s :: ¼ a j init p j send p s j s k s , implemented in

Haskell as

data S = Spike Spike | Init Pi | Send Pi S | Par S S .

The semantics of a statement send p1 s (implemented

by Send pi1 s) can be expressed in Haskell by the fol-

lowing equation (which replaces the second equation given

in the definition of function den::S -[ E -[ Pi -[ D

presented in Section 2):

den (Send pi1 s) env pi = den s env (pi1 ‘setIntersect‘ pi) .

This equation describes in a compositional manner the

behaviour of a construct (Send pi1 s). It expresses that

the semantics of a statement (Send pi1 s) evaluated

with respect to semantic environment env and set of

neuron names pi coincides with the semantics of state-

ment s evaluated with respect to semantic environment

env and set of neuron names (pi1

‘setIntersect‘ pi), where the mapping

setIntersect implements the set theoretic intersection

operation. These new definitions for the class of statements

S and the function den can be used with all three versions

(given in Sects. 2, 3, and 4) of the semantic interpreter

presented in this paper.

By using the construct send p s , a parallel composition

of several send statements sendp a1 k � � � k send p an
could be written more succinctly in the form

sendp ða1 k � � � k anÞ . The construction send p s can be

implemented as explained above, and could make it easier

to describe some SN P systems (but would not enhance the

expressiveness of language Lsnp).

5 Conclusion

We implemented the spiking neural P systems by using the

functional programming language Haskell. In this paper we

present this semantic interpreter of spiking neural P sys-

tems designed by using the discipline of denotational

semantics (Schmidt 1986). For such an implementation we

used a programming language Lsnp providing constructs

able to describe the structure of SN P systems, together

with its denotational semantics able to describe properly

the behaviour of SN P systems. Additionally, we used fixed

point semantics and continuations for concurrency. The

semantic interpreter captures accurately the nondetermin-

istic behaviour, the time delays between firings and spik-

ings, and the synchronized functioning specific to spiking

neural P systems. The spiking neural P systems imple-

mented by our semantic interpreter might be seen as ’ex-

ecutable mathematics’ Rabhi and Lapalme (1999); it

provides support for simulating and verifying the behaviour

of SN P systems. Nondeterministic systems are modelled

taking into account all possible interactions describing the

behaviour of an SN P system. In order to obtain a

tractable solution, only finite execution traces are verified.

Additionally, the semantic interpreter can produce a single

execution trace, simulating its nondeterministic behaviour

by using a (pseudo) random number generator.

There exist many classes of SN P systems (Cabarle

et al. 2015; Peng et al. 2020; Păun et al. 2010; Pan et al.

2017; Song et al. 2021). The implementation techniques

presented in this paper could be used for the simulation and

verification in finite trace semantics of several classes of

SN P systems.

8 Notice that executing (den rho3 7) of the nondeterministic

program q3 by using the interpreter semSNP-fin.hs requires around

120 seconds on a processor Intel(R) Core(TM) i5-7200U with CPU @

2.50 GHz, while executing the deterministic program q1 produces its
output almost instantly.
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Hurtado I, Riscos-Núñez A, Pérez-Jiméenez MJ (2020) Spiking

neural P systems with inhibitory rules. Knowl Based Syst

188:105064
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