
A tutorial on the formal framework for spiking neural P systems

Sergey Verlan1 • Gexiang Zhang2

Accepted: 27 May 2022 / Published online: 9 July 2022
� The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
The model of Spiking Neural P systems (SNP systems) is a widespread computational model in the area of membrane

computing. It has numerous applications, especially related to machine learning. Most of these applications require a

custom variant of SNP systems, differing by the rule form and by semantics. The model of network of cells and the formal

framework for SNP systems were developed to help the analysis of such custom models, to compare and relate them to

each other and to other models of computing. The model specifies the data structure, the rules and the update procedure,

while the formal framework concentrates on how the input, output and the choice of the update strategy are handled.

Together, these concepts specify a concrete instance of a network of cells that strongly bisimulates the desired model, thus

making easier the process of the creation of new models and the extension of existing ones. Since the formal framework is

rather generic, it might be slightly complex to use it for concrete cases. This paper provides a tutorial that explains the

model of networks of cells and the basic concepts used in the formal framework for SNP systems. It gives a series of

examples for the analysis of existing models, their bisimulation and their extension by different features.

Keywords Spiking neural P systems � Membrane computing � Formal framework � Tutorial

Mathematics Subject Classification 68-01 � 68Q07 � 68Q42 � 68Q85

1 Introduction

Membrane computing is a branch of natural computing

inspired by the structure and the functioning of living cells

(Păun 2000; Pan et al. 2019). Its models, called P systems,

can be considered as distributed multiset rewriting, from a

theoretical point of view (Valencia-Cabrera et al. 2020;

Orellana-Martı́n and Riscos-Núñez 2020; Zhang et al.

2020). Beside many theoretical results and relations to

other multiset-based models (like chemical reaction net-

works, Petri nets, register machines etc.), P systems have

numerous applications in different fields ranging from

biological modelling to robotic control and machine

learning, we refer to Csuhaj-Varjú et al. (2021), Zhang

et al. (2021a) for a recent overview. An SNP system is a

variant of P systems that is particularly suitable for this last

field and there are numerous results showing that it can

provide highly competitive algorithms for different real-

world problems, see a recent overview in Rong et al.

(2018), Zhang et al. (2017).

P systems, as well as the related models, are mostly

based on the multiset data structure (Dong et al. 2022;

Zhang et al. 2021b). While a multiset can be seen as a set

whose elements have multiplicity that can be greater than

one, it is also possible to consider a multiset to be a vector

of non-negative integer numbers (since its support/alphabet

is finite). There are numerous models using a multiset or a

vector of numbers as a data structure, e.g., P systems, Petri

nets, vector addition systems, register machines, population

protocols, Boolean networks etc. (this list is far from being

exclusive) (Battyányi and Vaszil 2020; Adorna 2020). In

order to be able to analyse and compare different P systems

and also multiset-based models in general, the formal

framework (FF) for P systems was developed (Freund and

Verlan 2007; Verlan et al. 2020).

The core of FF is the family of models called Network of

Cells (NC). This family corresponds to a very generic

& Sergey Verlan

verlan@u-pec.fr

Gexiang Zhang

zhgxdylan@126.com

1 Univ Paris Est Creteil, LACL, 94010 Creteil, France

2 School of Automation, Chengdu University of Information

Technology, Chengdu 610225, China

123

Natural Computing (2023) 22:181–194
https://doi.org/10.1007/s11047-022-09896-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7800-1618
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-022-09896-0&domain=pdf
https://doi.org/10.1007/s11047-022-09896-0

computing model that abstracts many computing models

using multisets/vectors of numbers as a data structure. The

data structure of NC is composed from distributed (spa-

tially distinct) locations called cells each containing a

multiset (of objects). Hence, as a whole, it can be seen as a

vector of multisets. Because of the equivalence between a

multiset and a vector of (non-negative) integers, the above

representation can also be seen as a vector of vectors of

integers. Obviously, a vector of vectors can be seen as a big

vector obtained as a concatenation of individual compo-

nents, the corresponding procedure being called flattening.

However, doing so the location information might be lost

and also the complexity of rules needed to handle the

flattened model might increase.

The computation is performed by rules updating the

contents of multisets and guarded by different context

conditions verifying if the vector contents belongs to some

(semilinear) sets. This allows to define the applicability of

a rule and also of a group of rules, yielding the set of

applicable multisets (groups) of rules. Also, an implicit

secondary structure can be deduced by considering all cells

involved in a single rule to be part of a connection. In the

general case, this induces a hypergraph, however, in most

of the situations a graph or even a tree structure is obtained.

The important point of the definition of NC is that it

does not specify a default semantics and, in particular, how

the data are input, output and processed. The definition is

given in terms of abstract functions that produce the input,

restrict the rule set to be applied and provide the output.

These details are completed using the formal framework,

which provides ready concrete specifications for common

cases and mechanisms for more complex definitions. Thus,

a concrete instance of a model from the family is obtained.

From the description above it looks clear that most of

models that have a multiset (or a vector of multisets) as a

data structure and that update this structure based on some

kind of rewriting rules can be directly rewritten in terms of

network of cells. This implies that there is trivial strong

bisimulation between corresponding models and the

matching instance of NC. We recall that in such case most

properties valid for the NC are also valid for the target

model. Hence, the model of network of cells combined

with the formal framework gives a powerful tool for the

specification, the analysis and the comparison of most

models using multiset as a data structure.

In this paper we present the functioning of the model of

network of cells and list some important bricks provided by

the formal framework, especially in the context of SNP

systems. The presentation is not focused on definitions, but

rather aims to help in the understanding how to use the

model. We present a series of examples and use cases

showing how to use network of cells and the formal

framework to understand, compare and extend models

from the area of SNP systems.

The structure of the paper is organized as follows.

Section 2 gives an introduction to the formal framework

and SNP systems model. It also discusses the particularities

of the representation of SNP systems in the formal

framework. Section 3 considers some existing models from

the area of SNP systems. It shows how they can be trans-

lated to NC using FF and explains how to analyse the

obtained results. Section 4 gives examples of bisimulation

between different variants of SNP and P systems using NC

as intermediate. Section 5 explains how to extend existing

systems with new features based on their NC descriptions.

Finally, Sect. 6 summarizes the main points discussed in

the paper and gives further research ideas.

2 Network of cells, formal framework
and SNP systems

This section recalls the ideas behind the model of NC and

the FF. We will not present the definitions and we refer to

Verlan et al. (2020), Freund and Verlan (2007) for the

formal details. This section also quickly presents SNP

systems and the restrictions that can be considered in the

formal framework when using SNP systems.

We start with a discussion on the links between multi-

sets, vectors of numbers and vectors of multisets. For an

alphabet V (of objects), a multiset over V is a mapping

M : V ! N, where N is the set of non-negative integers. It

is custom to denote a multiset using a string w over V,

where the multiplicity of each symbol corresponds to the

value of M: jwja ¼ MðaÞ, for all a 2 V . It should be clear

that there might be several strings denoting the same

multiset. By numbering the symbols from V

(V ¼ fa1; . . .; ang) it is possible to associate a vector v with

M, where the component i (1� i� n) of v is equal toMðaiÞ.
Hence, for a given finite alphabet V, there is a straight link

between a multiset over V, a (commutative) string over V

and a vector from NjV j.

Example 1 Consider the alphabet V ¼ fa; b; cg and the

multiset M defined by MðaÞ ¼ 3, MðbÞ ¼ 0, MðcÞ ¼ 1.

Then M can be written as a string as aaac, aaca, acaa or

caaa. Also, M can be written as a 3-dimensional integer

vector as (3, 0, 1).

Remark 1 We would like to note that in the model of

register machines (Minsky 1967), the configuration is

described in terms of a vector of non-negative numbers. So,

it is quite clear that the corresponding data structure is a

multiset.

182 S. Verlan, G. Zhang

123

A vector of multisets (or a vector of vectors) can be seen

as a single multiset over a bigger alphabet. This can be

simply observed by taking the vector representation of the

multiset. Then, by concatenating the corresponding vec-

tors, a vector of higher dimension is obtained, that corre-

sponds to a bigger multiset. We call this procedure

flattening. We remark that while a vector of multisets is

equivalent to its flattened version, it is still interesting to

consider it in this manner, as it allows to spot the positional

information easier.

Example 2 Consider the alphabet V ¼ fa; b; cg and the

vector of multisets v ¼ ðaab; abc; abbccÞ. In the vector

representation this corresponds to the following vector of

vectors of integers: ((2, 1, 0), (1, 1, 1), (1, 2, 2)). By con-

catenating each component a vector v1 ¼
ð2; 1; 0; 1; 1; 1; 1; 2; 2Þ is obtained. This corresponds to the

multiset a1a1b1a2b2c2a3b3b3c3c3 over the alphabet

V 0 ¼ fa1; b1; c1; a2; b2; c2; a3; b3; c3g. We observe that the

first representation looks simpler and allows to better

understand the structure of the multiset.

2.1 Network of cells and the formal framework

We start with the general schema depicting the relation

between NC and FF. As shown on Fig. 1, the definition of

NC specifies the notions of configuration and rule. More

precisely, a configuration is a vector of multisets, each

component being called a cell. Rules are defined as vector

of multisets rewriting, guarded by context conditions. A

context condition is defined via a vector of control lan-

guages, allowing the application of a rule only if each

component of the current configuration belongs to the

corresponding language. Hence, the definition of network

of cells defines the applicability of a rule, the computation

of the set of multisets of applicable rules (for a given

configuration) and how a group (multiset) of rules is

applied altogether, we refer to Verlan et al. (2020) for more

details. The computation follows the algorithm below (also

depicted on Fig. 2):

1. At each discrete time t� 0, for a configuration C(t)

(initially fixed, given by the definition) a configuration

C0ðtÞ is computed by combining C(t) and the input at

time t.

2. Based on C0ðtÞ and the set of rules R, the set of

multisets of applicable rules ApplðR;C0ðtÞÞ is

computed.

3. This set is restricted according to the derivation mode

(strategy) d, yielding the set ApplðR;C0ðtÞ; dÞ.
4. If the size of ApplðR;C0ðtÞ; dÞ is greater than one, a

non-deterministic choice is performed in order to

obtain the multiset of rules to be applied R (if the

size is one, then the corresponding multiset is directly

taken).

5. The multiset of rules R is applied to the configuration

C0ðtÞ yielding the next configuration Cðt þ 1Þ.
6. The above process is repeated for t þ 1. The result is

collected at each time step using an output function. It

is possible to consider a halting mechanism and a

single result.

Configura�on

Rules

Set of applicable mul�sets
of rules

Applica�on

Deriva�on mode

Input

Output

Deriva�on mode

Input

Output

Family of networks of cells Network of cells Formal framework

instance

Fig. 1 An instance of a network

of cells is obtained by

specifying ingredients (input,

output and derivation mode)

from the formal framework

Configura�on C

Input

Set of rules R 1.
Compute the set

of applicable
mul�sets of rules

Appl(R,C’)

r11...rn1

r1p...rsp r11...rn1

2.
Restrict according

to deriva�on
mode

2.
Restrict according

to deriva�on
mode

3.
Choice

3.
Choice

r12...rn2

r12...rn2

r11...rn1

4.
Apply

4.
Apply

Next
configura�on Output

Fig. 2 A computational step is performed in following steps: (1)

based on the current configuration, current input and the set of rules,

the set of multisets of applicable rules is computed; (2) a derivation

mode restricts the obtained set; (3) a non-deterministic choice is

performed (if there are more than 1 variant); (4) the chosen multiset of

rules is applied yielding the next configuration. The output of the

system is obtained from each configuration

A tutorial on the formal framework for Spiking... 183

123

Derivation mode One of the most important ingredients

provided by the formal framework are the derivation

modes. They concretize the semantics of the corresponding

NC model, allowing it to be further considered in proofs or

implementations. Technically, derivation modes are

defined as set restrictions of the set of multisets of appli-

cable rules computed for some configuration ApplðR;CÞ.
This allows to extract from ApplðR;CÞ the multiset(s) of

rules satisfying the derivation mode property. We give

below the informal description of some common derivation

modes, see Freund and Verlan (2007) for more formal

details.

Asynchronous (asyn): there is no additional restriction.

Sequential (seq): allows the application of only one rule

at each time step.

Maximally parallel (max): at each step only maximally

parallel multisets of rules from ApplðR;CÞ can be used.

A multiset (group) of rules R is maximally parallel, if

there is no other multiset of applicable rules in

ApplðR;CÞ that strictly includes R.

Set-maximally parallel (also called flat) (smax): this

variant corresponds to those maximally parallel multisets

of rules, where each rule has the multiplicity at most one.

It can also be seen as a set of rules that cannot be

extended by a different rule and still be applicable.

Minimally parallel of size 1 (min1): in this mode the rule

set is additionally partitioned in subsets and from each

subset at most one rule might be chosen such that the

final result is not extensible by some rule (from a not yet

considered subset).

We remark that set-maximally parallel derivation mode can

be seen as min1 mode, where each partition is composed

from exactly one rule. Usually partions correspond to cells,

so it is then possible to say that a rule is ‘‘located’’ in the

corresponding cell. In the area of Petri nets or register

machines, generally, the sequential derivation mode is

considered, while in the area of P systems the most com-

mon mode is the maximally parallel. However, this is

different for spiking neural P systems, whose semantics is

driven by the min1 mode.

Example 3 Consider a network of cells with a single cell

and whose rules do not have context conditions. In this

case, the configuration of the system is a multiset and the

rules are plain multiset rewriting rules. Let the set of rules

be defined as follows:

R ¼ fr1 : a ! bc; r2 : abc ! cc; r3 : c ! abg. Consider

the configuration C ¼ aabc. Then, Table 1 gives the set of

applicable multisets of rules for different derivation modes

(for the min1 mode we consider the partition

fr1; r2g [fr3g).

Input Among different types of input described in the

FF, we would like to mention 3 variants. The first one,

initial input, corresponds to the input handling common in

P systems or Petri nets—at the beginning of the compu-

tation input values (an input multiset) are added to the first

configuration. The second variant, spike train input, inputs

a value in the system by considering the time difference

between two apparitions of some specific symbol in a

specific location. The corresponding time difference is

taken as the input data. Such input handling is common to

the area of spiking neural P systems.

In both cases above, the input is single and it is added to

the configuration (at some time step). The third variant,

transient input, allows a recurrent insertion of data at some

specific point of the configuration. E.g., some input value

can be specified by a number of symbols a in the first cell,

updated at each time step by an external entity. Such kind

of input is interesting for the cases when the computation

consists in continuously updating the output based on

varying inputs, e.g., in the case of numerical P systems

used for robot controllers.

Output As for the previous cases we shall focus on some

common types of output described in FF. The most used

one, called total halting, corresponds to the strategy when

one waits until the system has no more applicable rules (i.e.

it halts) and then the output of the computation is consid-

ered to be the contents of some predefined cell. A different

strategy is a spike train output, which as in the case of the

corresponding input would encode the result in the time

difference between two apparitions of some value in some

predefined cell. We remark that in this case there is no

requirement for the system to reach a halting state, so there

might be applicable rules, but they would never allow an

apparition of the signal symbol in the output cell. Another

strategy, the direct output, just collects a projection of the

configuration of each step, and is particularly useful for

transducer-like computation, e.g., for robot control appli-

cations. Finally, we would like to mention the decision

output that returns a Boolean result: true if the system halts

and false otherwise. This strategy is commonly used in the

acceptor variants of NC.

Table 1 Applicable multisets of rules from Example 3 for different

derivation modes

mode d ApplðR;C; dÞ

asyn fr1; r2; r3; r1r2; r1r1; r1r3; r1r1r3g
seq fr1; r2; r3g
max fr1r2; r1r1; r1r1r3g
smax fr1r2; r1r1g
min1 fr2; r1r3g

184 S. Verlan, G. Zhang

123

The generic data structure and powerful rules allow a

reasonable simple construction of an NC model for most

variants of P systems, Petri nets and other multiset-based

computing models.

2.2 Spiking neural P systems case

We recall here the definition of SNP systems given in Păun

et al. (2010) and Ionescu et al. (2006).

A spiking neural P system of degree m is the following

tuple:

P ¼ ðO; r1; . . .; rm; syn; in; outÞ;

where

• O ¼ fag is the singleton alphabet (a is called spike);

• ri, 1� i�m are neurons of the form ðni;RiÞ, where
ni � 0 is the initial number of spikes contained in ri and
Ri if a finite set of rules of following two forms:

– (spiking rules) E=ac ! a; d, where E is a regular

expression over O (we also call it a context

condition), c� 1 and d� 0. If E ¼ ac, or d ¼ 0

corresponding parts are omitted from the writing,

e.g., ac ! a;

– (forgetting rules) as ! k, s� 1, with the restriction

that for any rule of type E=ac ! a; d from Ri we

have as 62 LðEÞ;

• syn � f1; . . .;mg2 with ði; iÞ 62 syn, for all 1� i�m, are

the synapses between neurons. The tuple

ðf1; . . .;mg; synÞ forms a directed graph;

• in; out 2 f1; . . .;mg indicate the input and the output

neurons of P.

A firing rule E=ac ! a; d 2 Ri is applicable in neuron ri if
it contains k� c spikes and ak 2 LðEÞ. The application of

such a rule removes c spikes from ri and delivers a spike to
each connected (via a synapse) neuron after d computa-

tional steps (at the same step if d ¼ 0). In the period after

the spikes were removed and before they were emitted (at

steps 1 to d � 1), the neuron remains closed. Any spike

arriving to a closed neuron is lost and also no rule can be

applied (even selected) in the meanwhile. A forgetting rule

just removes the corresponding number of spikes.

During each step of the computation, all applicable rules

are selected for the application, with the condition of

selecting at most one rule per neuron. The computation

starts with the initial configuration given by the initial

contents of neurons and continues by applying at each step

rules as described above. The input and the output are done

using a spike train, as described earlier in this section.

Informally, an SNP system is a set of neurons (cells)

containing an integer number of spikes (denoted by a

power of symbol a) arranged in a directed graph structure.

Each neuron contains rules that remove a number of spikes

from it and add one spike to each interconnected neuron (in

the case of non-forgetting rules). Rules are guarded by

regular expressions and may have a delay. They are exe-

cuted in parallel, but at most one rule per neuron is

executed.

The NC model corresponding to SNP systems has some

particularities that we would like to present below. First,

since the alphabet of the system is composed of a single

symbol, a, the dimension of each vector corresponding to a

cell is 1. Hence, in this case it becomes interesting to

flatten the system and consider as configuration a vector of

dimension n corresponding to the number of cells in the

system. To facilitate the description, we assume that all the

delays are equal to zero. As shown in Ibarra et al. (2007)

such model has the same computational power. In Sect. 5.1

we will show how it is possible to simulate the notion of

delay in systems without delay.

Next, a spiking rule E=an ! a corresponds to the sub-

traction of n from the current neuron and addition of 1 to

each connected neuron, if the current number of spikes

belongs to L(E). Because of a single-letter alphabet, L(E)

corresponds to a semilinear set of numbers SE. So, the

regular test for the contents of neuron i, 1� i� n, can be

replaced by the test Ci 2 SE, where Ci is the i-th component

of the current configuration C.

So, for an SNP system with m neurons, each rule

E=an ! a can be written as K=V , where V is a vector of

integers (so V 2 Zm) and K is a vector of semilinear sets

such that n 2 Ki and SE � Ki (where SE is the semilinear

set associated to E). Such rule is not linked to a neuron/cell

— it describes the rule action at the global level. To apply a

rule r : K=V one has to check that for the current config-

uration C and every i that Ci 2 Ki and then the result of the

application of r is C þ V , similar to a vector addition

system.

Since, in most of the cases, a spiking rule verifies only

the contents of a single cell, it becomes possible to simplify

the notation by omitting semilinear checking sets for other

cells (and that are always equal to N in this case). Using

the convention from above, such a rule is then written as

i : Ki=V . A further simplification might be done by

observing that if the number of cells n is big, there is a high

probability for vectors V from rules to be sparse. Hence, it

is possible to use any sparse vector notation to simplify the

writing of rules for such cases. In what follows we have

chosen to indicate the component the value belongs to as an

index enclosed in a circle (e.g., 1´ means value 1 in the

third component).

Example 4 Consider the SNP system depicted on Fig. 3. In

Table 2 we give the different notations for the rules. We

A tutorial on the formal framework for Spiking... 185

123

also note that the configuration is a vector of size 4 and that

the depicted configuration corresponds to the vector

(2, 1, 3, 0). Finally, we would like to observe that the

system functions in min1 mode (like most of SNP systems)

and uses an initial input and a spiking train output.

We give below first 4 steps of the evolution of the

system.

Step C1 C2 C3 C4

0 2 1 3 0

1 2 2 2 1

2 1 1 1 1

3 1 1 1 2

4 1 1 1 3

The exclusive normal form As shown in Verlan et al.

(2020), any SNP system (and most of its variants) can be

rewritten in the following form (the definition in the paper

is stated in terms of NC).

Definition 1 A spiking neural P system is said to be in the

exclusive normal form (ENF), if for any neuron i, all rules

from that neuron have their corresponding regular expres-

sions either disjoint or equal, i.e., if rules E1=a
k ! a and

E2=a
m ! a belong to the same neuron, then either

LðE1Þ \ LðE2Þ ¼ ;, or E1 ¼ E2. Additionally, the exclusive

normal form states that if the regular expression holds, then

there are enough spikes to apply the corresponding rule,

i.e., for any x 2 LðE1Þ, we have jxj � k.

An important property of a system in the exclusive

normal form is that for any neuron it is possible to partition

its rules into several disjoint groups such that at each time

moment, if there are applicable rules, then all of them are

from the same group. We call rules belonging to groups of

size 1 independent rules and the other ones choice rules.

Thus, the application of independent rules is always

exclusive—no other rule can be applied in the same neu-

ron, while the application of choice rules is always subject

to a non-deterministic choice. Moreover, the partition of

rules into groups is done based on the syntactic equality of

corresponding regular expressions: two rules in the same

neuron E1=a
k ! a and E2=a

m ! a will belong to the same

group if and only if E1 ¼ E2, which can be very easily

checked. We note that the equality of expressions is

checked (E1 ¼ E2) and not of their languages

(LðE1Þ ¼ LðE2Þ), which is a bit longer to verify.

Example 5 Consider an SNP system having in some neu-

ron the following two rules:

ða2 þ a3Þ=a ! a ða2Þ�=a2 ! a

The intersection of the two regular expressions is a2, also

there is no sense to match k. Hence, these two rules can be

rewritten to be in ENF as follows.

a2=a ! a a2=a2 ! a

a3=a ! a a4ða2Þ�=a2 ! a

2

2 / →

→

→
2 →

3

3 →

→
2 →

1

3

2

4

4 + / 3 →

Fig. 3 The spiking neural P system considered in Example 4

Table 2 Different notations for

rules from Example 4
spiking NC full NC simplified NC sparse

1: a2 ! a ({2},N,N,N) / (- 1,1,1,0) 1: {2}/(- 1,1,1,0) 1: f2g=� 1�; 1`; 1´

1: a! k ({1},N,N,N) / (- 1,0,0,0) 1: {1}/(- 1,0,0,0) 1 : f1g=� 1�

1 : ða4Þþ=a3 ! a (S,N,N,N) / (- 3,1,1,0) 1: S/(- 3,1,1,0) 1 : S=� 3�; 1`; 1´

where S={4n j n� 1}.

2: a! a (N, {1},N,N) / (1,- 1,1,0) 2: {1}/(1,- 1,1,0) 2 : f1g=1�;�1`; 1´

2: a2 ! k (N, {2},N,N) / (0,- 2,0,0) 2 : f1g=ð0;�2; 0; 0Þ 2 : f2g=� 2`

3: a3 ! a (N,N,{3},N) / (0,1,- 3,1) 3: {3}/(0,1,- 3,1) 3 : f3g=� 3´; 1`; 1ˆ

3: a! a (N,N,{1},N) / (0,1,- 1,1) 3: {1}/(0,1,- 1,1) 3: f1g=� 1´; 1`; 1ˆ

3: a2 ! k (N,N,{2},N) / (0,0,- 2,0) 3: {2}/(0,0,- 2,0) 3 : f2g=� 2´

186 S. Verlan, G. Zhang

123

Finally, we recall that this result is stated in terms of NC

and in this case the regular expressions are replaced by

their numerical counterpart—semilinear sets.

Bisimulation with NC and other P system models We

recall an important consequence of the representation of

SNP systems using network of cells. There is a one-to-one

correspondence between the configurations of each model

and also a one-to-one correspondence between rules from

SNP and NC (which are of a particular type). This com-

bined with min1 derivation mode semantics results in a

strong bisimulation between SNP systems and (a variant

of) NC. Consequently, any statement that can be shown in

terms of an SNP system, also holds for the corresponding

NC system and conversely.

The above remark is the strong point of NC and FF,

allowing to use a single model/language for the analysis

and comparison of different variants of SNP and even P

systems. Subsequent sections show several examples of the

benefits of such translation.

Moreover, the representation of SNP systems in terms of

NC allows to draw links with other types of models, e.g.,

with ordinary P systems. For example, SNP systems where

the regular expression for each rule is equal to its left-hand

side (ak=ak ! a) and using initial input and total halting

are identical to a subset of purely catalytic P systems (using

a single letter different from the catalyst in the left-hand

side of rules). This is obvious, because the NC represen-

tation of both models is the same. We refer to Sect. 4 for

more details.

Another important point highlighted in Verlan et al.

(2020) is that any SNP system corresponds to some specific

NC working in sequential mode. Hence, somehow an SNP

system corresponds to a sequential device able to perform

semilinear checks on vectors of integers. This might be

interesting for the implementation of such models, as there

is no need to handle the parallelism.

3 Understand and analyze models

In this section we give several translations of different

variants of SNP to NC and we show how the usage of NC

and FF can help in their understanding and analysis.

3.1 Extended rules

In the standard model of SNP systems, when a rule is

applied, one spike is sent to each connected neuron. Sev-

eral extensions allow to modify this behavior and allow to

send more spikes over a connection. Here we concentrate

on 3 variants of such extension. In the first variant more

than one spike can be sent over all connections exiting a

neuron. The second variant allows to send different num-

bers of spikes over the exiting connections, but this number

is fixed in advance. The third variant is the most flexible, as

it allows to describe on a per rule basis the number of

spikes sent over each connection.

The first variant, spiking neural P systems with extended

rules, was introduced in Chen et al. (2008). Its definition

differs from SNP systems only by the form and semantics

of rules, which are of the form E=am ! an. The difference

with an SNP rule E=am ! a is that as a result of its exe-

cution n spikes are sent to each connected neuron, see

Fig. 4a. This can obviously be written in terms of NC by

using n instead of 1 in corresponding vector components.

More precisely, a rule E=am ! an from a neuron i can be

written using the simplified sparse notation as

i : SE/ −m i , n i1 , . . . , nik , where ði; ijÞ, 1� j� k is an

edge in the synapse graph and SE is the semilinear set

corresponding to the regular expression E.

The second variant, spiking neural P systems with

weighted synapses, is considered in Pan et al. (2012). The

difference with SNP systems is the following: to each

synapse (edge) there is a positive integer associated, the

weight. When a rule is executed, each connected neuron

receives the number of spikes equal to the weight of the

corresponding synapse, see Fig. 4b. The translation of such

rules to NC is not difficult: the value 1 should be replaced

by the synapse weight for corresponding components. So, a

rule E=am ! a becomes i : SE/−m i , n1 i1 , . . . , nkik ,

where where ði; ijÞ, 1� j� k is an edge in the synapse

graph having the weight nj.

The third variant, called extended spiking neural P

systems, was considered in Alhazov et al. (2006). It fea-

tures rules of form E=am ! ði1;w1Þ. . .ðik;wkÞ. When such

a rule is applied, each neuron ij, 1� j� k receives wk

spikes. Even if such rule looks complex, it corresponds

directly to the NC rule i : SE/−m i , w1 i1 , . . . , wkik , see

the example depicted on Fig. 4c.

3.2 Multiple type of spikes/colors

Several papers, e.g. (Ionescu et al. 2011; Song et al. 2017),

consider SNP systems that can have multiple types of

spikes, by using symbols different from a. Sometimes,

these different types are referred as colors as it is custom to

do in the area of Petri nets. In this case the simplification of

the notation operated in Sect. 2 cannot be performed any-

more: the configuration should be treated as a vector of

multisets and the rules should be considered in the generic

form as two vectors of multisets and a vector of semilinear

sets. The translation to NC still remains straightforward, as

A tutorial on the formal framework for Spiking... 187

123

spiking rules (even with several symbols) correspond to a

subset of arbitrary NC rules (that verifies the context

condition only in a single cell).

We would like to notice that the obtained NC translation

is extremely close to a translation of transitional or tissue P

systems. If the regular expression check is not taken into

account, then corresponding spiking model is just a tissue P

system where the result of a rule is sent to all connected

membranes (this can be expressed in terms of rules of

tissue P systems). Hence, by using several types of spikes

very powerful models, generalizing tissue P systems, can

be obtained. Therefore, it is important to add additional

restrictions to such models, otherwise there is no point of

introducing them in the SNP framework. For example, in

Ionescu et al. (2011) only a single spike of some type can

be obtained. However, in our opinion it is more logical to

study such models directly in P systems framework.

3.3 Communication on request

In this section we analyse the model called spiking neural

P systems with communication on request introduced in

Pan et al. (2017). In this model the rules do not produce

spikes to be distributed among neurons, but rather request a

number of spikes from some other neuron. Such rules are

written as E/Qw, where w ¼ ðan1 ; i1Þ; . . .; ðank ; ikÞ. We

remark that the original paper considers several types of

spikes, but here we use a single one in order to simplify the

presentation. A rule as above has the following semantics:

if the contents of neuron i belongs to E, then request anj

spikes from neuron ij, 1� j� k. It is clear that corre-

sponding neurons shall contain at least the requested

number of spikes for the rule to be applicable. If nj ¼ 1,

then all spikes from the corresponding neuron are reques-

ted. A particular semantic condition is also checked when

several rules are applied. In fact, the request values for each

neuron should match: it is not possible for a rule to request

4 spikes from neuron 2 and for another rule to request 3

spikes from the same neuron. Also, if several rules request

the same amount of spikes n from a neuron j, then the

neuron j loses only n spikes, while the other neurons get

n spikes each. This is called spike replication and it is

necessary in order to increase the number of spikes in the

system.

Let us first discuss the case when there are no rules that

request all spikes and we also suppose that any pair of

applicable rules does not contain requests for the same

neuron. In such case a rule E=Qðan1 ; j1Þ; . . .; ðank ; jkÞ from
neuron i (for a system of m neurons) can be written in NC

as the following general rule (we denote by SE the semi-

linear set corresponding to E):

ðS1; . . .; SmÞ=ðV1; . . .;VmÞ;where

Sl ¼
fn 2 N j n� njg if l ¼ jk;

SE if l ¼ i;

N otherwise:

8
><

>:

Vl ¼
�nj if l ¼ jk;

n1 þ . . .þ nk if l ¼ i;

0 otherwise:

8
><

>:

Now consider the case when the replication is allowed.

This means that several rules can contain requests to the

same neuron. It is not difficult to see that the above con-

struction does not work anymore. The only way to handle

such a condition is to adapt the method used to transform

any SNP system to a sequential NC model as described in

Verlan et al. (2020). This means to consider all combina-

tions of rules (taking a single rule from a neuron) and to

associate to each combination of matching rules (those that

request same value from a neuron) a single rule that will

perform the regular expression check for every neuron and

that will compute the overall effect taking into account the

replication. For example, rules E1=Qða2; 3Þ, E2=Qða2; 3Þ

/ →

1

2

3 / →

1

2

3
/ → (2,)(3,)

1

2

3

or

/ → (2,)(3,)

or

SE/(−m,n, n) SE/(−m,n, k) SE/(−m,n, k)

SE/(−m, p, q)

)c()b()a(

Fig. 4 Different extended spiking rules and their translation to the

simplified network of cells notation: a extended rules (sending an over

all synapses); b weights on synapses (sending ak over the synapse

with weight k); c extended SNP (allow for choosing different amounts

of spikes to be sent over specified synapses, may even depend on the

applied rule). In all cases SE is the semilinear set of numbers

corresponding to E

188 S. Verlan, G. Zhang

123

E3=Qða; 1Þ in neurons 1, 2 and 3 respectively (in a system

having 3 neurons) become the rule

ðE1 [fx 2 N j x� 1g;E2;E3 [fx 2 N j x� 2gÞ=ð1; 2;�1Þ

Hence, when the replication is used, the corresponding

system is checking conditions in several neurons at the

same time and then adds a vector whose sum of values is

strictly positive.

In the case of the ‘‘all’’ request, the situation cannot be

modeled in a simple manner, as rules such as above can

only take into account a fixed amount of spikes. In order to

simulate the unbounded transfer, either an unbounded

derivation mode should be used (e.g., maximally parallel),

or a sequential simulation should be performed, but this

would require an unbounded number of steps, which does

not allow to construct a bisimulation.

So, we can deduce that the analyzed model can be seen

as a collection of 3 different models. The first one (without

replication), corresponds to a standard NC where it is

possible to check context conditions in several neurons at a

time. The second variant (with replication), cannot be

directly described by an NC. Instead, it can be simulated by

an appropriate NC step by step. The third model either

changes the derivation mode to an unbounded one, or

requires a potentially unbounded simulation by NC. So, the

overall definition corresponds to a hybrid model that at

each step functions in one of the ways described above.

4 Relate models by bisimulation

In this section we consider two models of SNP systems and

we show that their translation to NC is the same, which

implies that these two models can be related using a

bisimulation.

The first model, called Spiking neural P systems with

multiple channels (SNPSMC), was introduced in Peng

et al. (2017). The second model, called Spiking neural P

systems with target indications (SNPSTI), was considered

in Wu et al. (2021). Both models have definitions very

close to SNP, the only difference being the form and the

semantics of their rules. In both cases the computation

follows min1 derivation mode, an initial input and a spike

train output are considered.

The definition of the first model has the following dif-

ferences with the standard model of SNP:

• Synapses (graph edges) are labelled by labels from a

fixed set of labels L (we assume also the existence of

the function lab that returns a label for an edge).

• Each non-forgetting rule of neuron i is of form

E=ac ! apðlÞ, with l 2 L and c� p� 0.

The semantics of the above rule is that if the contents of the

corresponding neuron satisfies E, then c spikes would be

removed from the current neuron (i) and p spikes will be

added to all neurons connected by synapses (edges) whose

label is equal to l. So, in terms of NC such rule can be

written as i : SE/−c i , p i1 , . . . , pik , where fði; ijÞ ¼ l j
1� j� kg is the set of all outgoing egdes from i labelled by

the label l.

The definition of the second model has the following

difference with the standard model of SNP:

• Each non-forgetting rule of neuron i is of form

E=ac ! apðtarÞ, where tar � f1; . . .;mg (m is the

number of neurons) and c� p� 0.

The semantics of the above rule is that if the contents of the

corresponding neuron satisfies E, then c spikes would be

removed from the current neuron (i) and p spikes will be

added to all neurons listed in the set tar. So, in terms of NC

such rule can be written as i : SE/−c i , p i1 , . . . , pik ,

where tar ¼ fi1; . . .; ikg.
We observe that the representation of both types of rules

is very similar. We shall argue now that it is possible to

transform a rule of one type to the other one. For a neuron i

let tarl ¼ fik j labði; ikÞ ¼ lg. Then a rule E=ac ! apðlÞ of
SNPSMC is equivalent a rule E=ac ! apðtarlÞ in SNPSTI

(their NC representation is the same). Conversely, for

1� i�m let si1; . . .; s
i
2m�1�1

be the set of non-empty subsets

of f1; . . .;mg n fig. Consider the set of labels li;j, 1� i�m,

1� j� 2m�1 � 1. To each set sij we associate the label li;j.

Then, a rule E=ac ! apðtarÞ of SNPSTI is equivalent to a

rule E=ac ! apðli;jÞ, tar ¼ sij, in SNPSMC (as again, their

NC representation is the same).

Hence, for any SNPSMC P it is possible to construct

SNPSTI P0 such that they have the same configurations

and any step in P corresponds to a step in P0 and con-

versely. Hence, there exists a bisimulation relation between

the above two models and that they are equivalent, see

Fig. 5. This means that in some sense the models are ‘‘the

same’’—any affirmation about the computation in one

model is also true for the other one. There is also a direct

link between the descriptional complexity parameters of

both models.

SNP systems
with mul�ple

channels

SNP with
target

indica�ons

Network of cells +
formal framework

for P systems
bisimula�on bisimula�on

Fig. 5 The bisimulation relation between spiking neural P systems

with multiple channels and spiking neural P systems with target

indications is obtained via a translation to NC where it can be seen

that corresponding rules yield the same translation

A tutorial on the formal framework for Spiking... 189

123

4.1 Catalytic P systems

Consider a SNP system P where the regular expression for

any rule is equal to its left-hand side: an=an ! a (in such

case the rule is simply written an ! a). In this case, the

regular expression check is not necessary in order to apply

the rule, it suffices to verify that there are enough copies of

a. Hence, such a rule translates to NC as m-dimensional

vector having �n in position i and 1 for each position

j1; . . .; jk, corresponding to a connected neuron:

i : −n i , 1j1 , . . . , 1jk . Now let’s interpret the configura-

tion of P as a multiset over some alphabet O ¼
fa1; . . .; amg of cardinality m. In this case, the NC rule

above corresponds to a multiset rewriting rule

ani ! aj1 . . .ajk .

Hence, an SNP system as above corresponds to a con-

text-free multiset rewriting. We remark that in order to

obtain a bisimulation the multiset rewriting (as well as the

NC model) should use the same semantics as SNP systems,

i.e., they should be executed in min1 derivation mode,

where each partition groups all rules with same ai in the

left-hand side. As shown in Verlan (2013) such systems

correspond to purely catalytic P systems (Păun 2002) with

m catalysts working in maximally parallel derivation mode

and having rules of form cia
n
i ! w, w 2 O�, jwjai ¼ 0 and

jwja � 1, for all a 2 O.

So, we obtain that any SNP system with rules of type

an ! a (and of course an ! k) is equivalent to a purely

catalytic P system with m catalysts having rules of form

cia
n
i ! w, w 2 O�.

5 Extend models

In this section we discuss how the representation using

networks of cells can give ideas and help in the extension

of spiking-based models.

5.1 Delays

First, we show how to implement delays. Of course, the

delays are a part of the definition of the basic model of SNP

systems. However, there is an important question: for a

given SNP system with delays P how to construct an

equivalent system without delays, or at least a system that

simulates P (i.e., yields same results for the same inputs).

Since systems without delays are computationally com-

plete (Ibarra et al. 2007), it is always possible to construct a

simulating system, but this affirmation is non-constructive.

So, for a given SNP system with delays it might be not

trivial to construct a system without delays and having the

same behavior.

In what follows, we will try to make a simple con-

struction in order to simulate the delays at the expense of

using a different type of rules. First, we recall the semantics

of the model when a rule with a delay is applied. Let

r ¼ E=an ! a; d be such a rule, located in neuron i. If r is

applied, then n spikes are removed from neuron i and the

neuron emits 1 spike to each connected neurons after d

computational steps (if d ¼ 0 then the spike is emitted

immediately). During this time the neuron is ‘‘closed’’, i.e.,

any spike sent to it during this period is lost. In order to

simulate such a behavior we will implement the notion of

the state of a neuron. For SNP we will use only two states:

open and closed. However, the proposed construction is

also applicable for more states, e.g., corresponding to

neuron polarisations. In order to do this, we will adapt the

method used to add the state notion to a membrane in P

systems, described in Verlan (2013). First, we associate to

every neuron i a new neuron statei. Now, a single spike in

neuron statei encodes that the neuron i is open and two

spikes in neuron statei mean that neuron i is closed.

Next, for any rule i : S/ − n i , 1 i1 , . . . , 1ik ; dr =

(the NC equivalent of E=an ! a; d) using a delay d[0 we

consider an additional neuron counteri;r that will contain

the delay counter for the corresponding rule. Consider now

following rules (see also Fig. 6). Since the labels of neu-

rons become large, in what follows, we use a different

sparse notation: instead of m i we will write (i, m).

Neuroni :

i : SE=ði;�nÞ; ðstatei; 1Þ; ðcounteri;r; dÞ; if d[1

i : SE=ði;�nÞ; ðstatei; 2Þ; ðcounteri;r; 1Þ; if d ¼ 1

Neuronstatei :

statei : f2g=ðstatei;�1Þ
Neuroncounteri;r :

counteri;r : f3; . . .; dg=ðcounteri;r;�1Þ
counteri;r : f2g=ðcounteri;r;�1Þðstatei; 1Þ
counteri;r : f1g=ðcounteri;r;�1Þði1; 1Þ; . . .; ðik; 1Þ

Finally, all existing rules (including the rules we added

above) should be adapted to take into account the fact that

the neuron can be closed. To simplify the writing we will

consider as example the rule

r = i : S/ − n i , 1 i1 , . . . , 1ik . We replace this rule by

two rules that check cells j and statei at the same time. The

first rule will verify that the contents of statej is equal to

one, and then will act as r. The second rule will check if

statej is equal to two and if this is the case, it will just

decrease the value from cell j. More formally, this can be

190 S. Verlan, G. Zhang

123

rewritten as follows (where p is the total number of neurons

in the system after the addition of the abovementioned

ones).

ðE1; . . .;EpÞ=ðv1; . . .; vpÞ;
where

El ¼
S if l ¼ j

f1g if l ¼ statei

N otherwise

8
><

>:

vl ¼
�n if l ¼ j

1 if l ¼ i

0 otherwise

8
><

>:

It is clear that any rule can be replaced in this manner by

several rules that add additional checks for the state cor-

responding target neurons. This can lead to a combinatorial

explosion as the number of introduced rules depends

exponentially on the number of target neurons.

Now we would like to conclude by the remark that the

above transformation is rather complex and needs several

strong ingredients like extended rules and checking for

regular expressions in several neurons at the same time.

This suggests that the delay feature is a very complex

contextual mechanism that potentially needs to verify the

contents of all neurons before making a decision. This is

‘‘hidden’’ in the definition of SNP systems by the sentence

explaining that a closed neuron does not accept any spike.

So, in our opinion, there is a huge difference in the func-

tioning between SNP systems with and without delays and

we suggest to consider them as completely different

models (although having the same computational power).

5.2 Derivation modes and probabilities

Another possible extension is to consider different

derivation modes. We recall that, by definition, SNP sys-

tems work in min1 mode. Using NC and FF it becomes

trivial to investigate the functioning of SNP in other

modes, e.g., the maximally parallel or set-maximal (thus

allowing to apply several rules in the same neuron at the

same time).

Another interesting topic is the integration of the prob-

abilistic evolution for SNP systems. The first idea is to

associate probability values or stochastic/kinetic constants

to each rule and to chose a rule from each neuron based on

the corresponding normalized probability. More precisely,

if in a neuron i containing n spikes at some time t there are

k applicable rules r1; . . .; rk having probabilities p1; . . .; pk,

then the probability to chose a rule j is defined by:

pðrj; nÞ ¼
pj

Pn
l¼1 pl

; rlis applicable to n:

In this case each neuron behaves independently from the

other ones and the rule probability depends only on the

contents of each neuron.

Another possibility is to explore the idea of the group-

wide probability as developed in Verlan (2013) for NC

models. The main idea is to assign different probabilities

for groups of applicable rules (from the set ApplðR;CÞ). In
order to compute the probability of joint application of a

set of rules R for a configuration C, p(R, C), we rely on the

propensity function f : 2R �Nm ! R, where R is the set

of rules of the system having m neurons. This function

associates a real value for a set of rules with respect to a

configuration. Hence the value f(R, C) depends not only on

the set of rules R, but also on the configuration C. We

remark that the construction from (Verlan 2013) consid-

ered multisets of rules, which are reduced here to sets

because of the functioning in min1 derivation mode.

Then, the probability to choose a set R 2 ApplðR;CÞ is
defined as the normalization of corresponding

probabilities:

pðR;CÞ ¼ f ðR;CÞ
P

R02ApplðR;CÞ f ðR0;CÞ ð1Þ

Among different propensity functions discussed in Verlan

(2013) we cite those adapted to the case of SNP systems.

: /(, -), (, 1), (, ,)

> 1:

: /(, -), (, 2), (, , 1)

= 1:

: / , - , 1, 1 , … , (, 1)

= 0:

: {2} / (, -1)

, : {3, … , } / (, , -1)

,

, : 2 / , , -1 , (, 1)

, : 1 / , , -1 , 1, 1 , … , (, 1)

…
1

Fig. 6 The simulation of delays

by rules without delays. The

part of the system allowing to

simulate an NC rule i :
SE=ði;�nÞ; ði1; 1Þ; . . .; ðik; 1Þ; d
corresponding to a spiking rule

i : E=an ! a; d. The used sparse

vector notation represents a

value v in the i-th component of

the vector by (i, v)

A tutorial on the formal framework for Spiking... 191

123

• Constant strategy: each rule r from R has a constant

contribution to f and equal to cr:

f ðR;CÞ ¼
Y

r2R
cr ð2Þ

• Concentration-dependent strategy: this strategy origi-

nating from the mass-action law states that each rule r

from R has a contribution to f proportional to a

stochastic constant cr that only depends on r and hrðCÞ,
the number of ways it is possible to pick up the needed

number of spikes from C by considering them as

distinct objects (by
a
b

� �

we denote the binomial

function):

hrðCÞ ¼
Ci

n

� �

;where r ¼ i : E=an ! a

f ðR;CÞ ¼
Y

r2R
crhrðCÞ

• Gillespie strategy: each rule r from R has a contribution

to f that depends on the order in which it was chosen

and it is equal to cr � hrðC0Þ, where C0 is the configu-

ration obtained by applying all rules that were chosen

before r.

We remark that the concentration-dependent strategy is not

equal to Gillespie strategy. More precisely, in a Gillespie

run the probability to choose a new rule depends on the

objects consumed and produced by previously chosen

rules. We can consider a Gillespie run as a sequence of

sequential (single-rule) applications using the concentra-

tion-dependent strategy.

We would like to remark that in the area of SNP sys-

tems, often stochastic evolution is considered. In this case,

the time needed for the rule execution is determined by

some probability distribution. When considering a discrete

time, this can be somehow rephrased as follows: instead of

a single rule, there are copies of this rule, but using dif-

ferent delays. Each such copy has a probability, whose

value is driven by the desired probability distribution. E.g.,

if the uniform distribution is considered and the rule can

fire the spike on steps 0 to 4 after it was executed, then this

corresponds to having 5 copies of the original rule, with

delays from 0 to 4 and where the probability of each rule is

the same. Thus, in the discrete time case it is somehow

possible to reduce a stochastic evolution to a probabilistic

one.

5.3 Non-integer values

Another interesting extension idea comes from the obser-

vation that the configuration of SNP systems can be rep-

resented as vectors of integer numbers (over N) and rules

as semilinear sets (which are also over N) combined with

vectors over Z. The computation can be seen as a mem-

bership query followed by an addition.

So, a natural idea is to replace N by a different set al-

lowing the above operations, e.g., Z, R or even an arbitrary

group. The paper (Freund et al. 2015) investigated such

replacements in the framework of NC with finite context

conditions. We discuss below what are the particularities of

such approach for SNP-like systems.

First we recall that SNP systems evolve in min1
derivation mode. As discussed in the aforementioned

paper, bounded derivation modes allow to define a con-

sistent semantics for an arbitrary abelian group. As for the

context conditions, it is possible to use group operations to

define a similar notion.

Let A be an abelian group. Consider v; v1; . . .; vm 2 A.

We define a linear combination of v; v1; . . .; vm the set

S ¼ vþ
Xm

i¼1

kivi; where ki 2 N

We observe that since A is a vector space, the formula

above can be seen as the set of linear combination of

vectors v; v1; . . .; vm.

A semilinear combination is a finite union of linear

combinations. We will denote by SL(A) the set of all

semilinear combinations of elements from an abelian group

A.

Now, by taking an abelian group A, it is possible to

extend an SNP system by considering that its configuration

is the vector An and its rules are of type S/V, where S 2
SLðAÞn and V 2 An.

In the area of SNP systems several models using sup-

ports other than N were considered. For example, the

model with anti-spikes (Song et al. 2018) considers Z and

the model from Wang et al. (2010) uses R as a support.

However, while the above papers concentrated on the

replacement of the configuration and value vector, the

extension of the context condition was minimal (none in

the case of anti-spikes and only by threshold sets R\T ¼
fx 2 R j x\Tg in the second case).

In our opinion, a particular attention deserves the variant

using real-numbers as support, which is interesting for

many real-world applications. The interesting point is that

any Boolean combination of (real) intervals is a semilinear

combination, hence it is possible to use complex rules

using any Presburger arithmetic-like syntax. For example,

one can have the following rule.

ðP;P;QÞ=ð�1:5; 1;�0:5Þ; where

P ¼ fx 2 R j x\10gand
Q ¼ fx 2 R j ðx� 5:5 _ x\10Þ ^ ðx[0 _ x� 1:1Þg:

192 S. Verlan, G. Zhang

123

A next step can be done by considering that the base of the

configuration and rules is defined by a Boolean fuzzy set,

so corresponding elements become fuzzy truth values. The

paper (Wang et al. 2013) implicitly considers such a

variant. As context conditions fuzzy cuts are used. By

applying the same reasoning as above for R it is possible to

have richer conditions that can be useful for different

practical applications.

6 Conclusion

In this paper we presented a tutorial aiming to help persons

willing to better understand the model of network of cells

and the formal framework in the context of SNP systems.

We would like to highlight that the presented tools do not

aim to replace the existing (and future) syntax and defi-

nitions of models related to SNP systems. The main idea is

to use the description provided by NC and FF as a com-

plement to already existing research. We stress that NC and

FF provide a powerful tool allowing to better analyse,

compare and extend existing models and, in our opinion, it

should be considered only with this goal. At the same time,

we suggest to use this tool on a regularly basis as our

experience shows that this might provide important insight

about the existing research and suggest future research

ideas.

Beside topics discussed in this tutorial it might be

interesting to consider the adaptation of the FF to the case

of dynamical structures, i.e., when the number of neu-

rons/cells can also evolve during the computation. Such

demand is regularly observed in applications related to

machine learning. The paper (Freund et al. 2013) gives

some ideas how to handle such cases, however corre-

sponding constructions are much more complex than for

the case of a static structure.

Another interesting topic is to consider non-semilinear

conditions and vector operations. As shown in Alhazov

et al. (2015), Shang et al. (2021) more powerful conditions

allow to express in a simpler (and shorter) way a desired

complex behavior.

Funding The work of GZ was supported by the National Natural

Science Foundation of China (61972324) and Sichuan Science and

Technology Program (2021YFS0313, 2021YFG0133).

Declarations

Conflict of interest The authors have no financial or proprietary

interests in any material discussed in this article.

References

Adorna HN (2020) Computing with SN P systems with I/O mode.

Journal of Membrane Computing 2(4):230–245

Alhazov A, Freund R, Oswald M, et al (2006) Extended spiking

neural P systems. In: Hoogeboom HJ, Păun Gh, Rozenberg G,

et al (eds) Membrane Computing: 7th International Workshop,

WMC 2006, Leiden, The Netherlands, July 17-21, 2006,

Revised, Selected, and Invited Papers. Lecture Notes in Com-

puter Science, vol 4361. Springer, pp 123–134, https://doi.org/

10.1007/11963516_8

Alhazov A, Freund R, Verlan S (2015) Bridging deterministic P

systems and conditional grammars. In: Rozenberg G, Salomaa

A, Sempere JM, et al (eds) Membrane Computing: 16th

International Conference, CMC 2015, Valencia, Spain, August

17-21, 2015, Revised Selected Papers. Lecture Notes in Com-

puter Science, vol 9504. Springer, pp 63–76, https://doi.org/10.

1007/978-3-319-28475-0_5

Battyányi P, Vaszil G (2020) Description of membrane systems with

time Petri nets: promoters/inhibitors, membrane dissolution, and

priorities. J Membr Comput 2(4):341–354

Chen H, Ionescu M, Ishdorj TO et al (2008) Spiking neural P systems

with extended rules: universality and languages. Natural Comput

7(2):147–166. https://doi.org/10.1007/s11047-006-9024-6

Csuhaj-Varjú E, Gheorghe M, Leporati A et al (2021) Membrane

Computing Concepts. Theoretical Developments and Applica-

tions, World Scientific, chap 8, pp 261–339. https://doi.org/10.

1142/9789811235726_0008

Dong J, Zhang G, Luo B et al (2022) A distributed adaptive

optimization spiking neural P system for approximately solving

combinatorial optimization problems. Inf Sci 596:1–14. https://

doi.org/10.1016/j.ins.2022.03.007

Freund R, Pérez-Hurtado I, Riscos-Núñez A et al (2013) A

formalization of membrane systems with dynamically evolving

structures. Int J Comput Math 90(4):801–815. https://doi.org/10.

1080/00207160.2012.748899

Freund R, Ivanov S, Verlan S (2015) P systems with generalized

multisets over totally ordered abelian groups. In: Rozenberg G,

Salomaa A, Sempere JM, et al (eds) Membrane Computing: 16th

International Conference, CMC 2015, Valencia, Spain, August

17-21, 2015, Revised Selected Papers. Lecture Notes in Com-

puter Science, vol 9504. Springer, pp 117–136, https://doi.org/

10.1007/978-3-319-28475-0_9

Freund R, Verlan S (2007) A formal framework for static (tissue) P

systems. In: Eleftherakis G, Kefalas P, Paun G, et al (eds)

Membrane Computing: 8th International Workshop, WMC

2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected

and Invited Papers, Lecture Notes in Computer Science, vol

4860. Springer, pp 271–284, https://doi.org/10.1007/978-3-540-

77312-2_17

Ibarra OH, Păun A, Păun Gh et al (2007) Normal forms for spiking

neural P systems. Theor Comput Sci 372(2–3):196–217. https://

doi.org/10.1016/j.tcs.2006.11.025

Ionescu M, Păun G, Yokomori T (2006) Spiking neural P systems.

Fundamenta Informaticae 71(2–3):279–308

Ionescu M, Păun Gh, Pérez Jiménez MdJ, et al (2011) Spiking neural

P systems with several types of spikes. In Proceedings of the

Ninth brainstorming week on membrane computing. Sevilla,

ETS de Ingenierı́a Informática. Fénix Editora,

pp 183–192https://doi.org/10.15837/ijccc.2011.4.2092

Minsky M (1967) Computations: finite and infinite machines. Prentice

Hall, Englewood Cliffts

Orellana-Martı́n D, Riscos-Núñez A (2020) Seeking computational

efficiency boundaries: the păun’s conjecture. J Membr Comput
2(4):323–331

A tutorial on the formal framework for Spiking... 193

123

https://doi.org/10.1007/11963516_8
https://doi.org/10.1007/11963516_8
https://doi.org/10.1007/978-3-319-28475-0_5
https://doi.org/10.1007/978-3-319-28475-0_5
https://doi.org/10.1007/s11047-006-9024-6
https://doi.org/10.1142/9789811235726_0008
https://doi.org/10.1142/9789811235726_0008
https://doi.org/10.1016/j.ins.2022.03.007
https://doi.org/10.1016/j.ins.2022.03.007
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1007/978-3-319-28475-0_9
https://doi.org/10.1007/978-3-319-28475-0_9
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1016/j.tcs.2006.11.025
https://doi.org/10.1016/j.tcs.2006.11.025
https://doi.org/10.15837/ijccc.2011.4.2092

Pan L, Zeng X, Zhang X et al (2012) Spiking neural P systems with

weighted synapses. Neural Process Lett 35(1):13–27. https://doi.

org/10.1007/s11063-011-9201-1

Pan L, Paun Gh, Zhang G et al (2017) Spiking neural P systems with

communication on request. Int J Neural Syst 27(8):1750,042:1-

1750,042:13. https://doi.org/10.1142/S0129065717500423

Pan L, Păun G, Zhang G (2019) Foreword: starting JMC. J Membr

Comput 1(1):1–2. https://doi.org/10.1007/s41965-019-00010-5

Păun G (2000) Computing with membranes. J Comput Syst Sci

61(1):108–143

Păun Gh (2002) Membrane computing: an introduction. Natural

computing series. Springer, Berlin. https://doi.org/10.1007/978-

3-642-56196-2

Păun Gh, Rozenberg G, Salomaa A (eds) (2010) The Oxford

handbook of membrane computing. Oxford University Press,

Oxford

Peng H, Yang J, Wang J et al (2017) Spiking neural P systems with

multiple channels. Neural Netw 95:66–71. https://doi.org/10.

1016/j.neunet.2017.08.003

Rong H, Wu T, Pan L et al (2018) Spiking neural P systems:

theoretical results and applications. Springer, Cham,

pp 256–268. https://doi.org/10.1007/978-3-030-00265-7_20

Shang Z, Verlan S, Zhang G, et al (2021) FPGA implementation of

numerical P systems. Int J Unconv Comput 16(2-3):279–302.

https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-

issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-

279-302/

Song T, Rodrı́guez-Patón A, Zheng P et al (2017) Spiking neural P

systems with colored spikes. IEEE Trans Cogn Develop Syst

10(4):1106–1115. https://doi.org/10.1109/tcds.2017.2785332

Song X, Wang J, Peng H et al (2018) Spiking neural P systems with

multiple channels and anti-spikes. BioSystems 169–170:13–19.

https://doi.org/10.1016/j.biosystems.2018.05.004

Valencia-Cabrera L, Pérez-Hurtado I, Martı́nez-del Amor MÁ (2020)

Simulation challenges in membrane computing. J Membr Com-

put 2(4):392–402

Verlan S (2013) Using the formal framework for P systems. In:

Alhazov A, Cojocaru S, Gheorghe M, et al (eds) Membrane

Computing: 14th International conference, CMC 2013, Chişinău,

Republic of Moldova, August 20-23, 2013, Revised Selected

Papers, Lecture Notes in Computer Science, vol 8340. Springer,

pp 56–79, https://doi.org/10.1007/978-3-642-54239-8_6

Verlan S, Freund R, Alhazov A et al (2020) A formal framework for

spiking neural P systems. J Membr Comput 2:355–368. https://

doi.org/10.1007/s41965-020-00050-2

Wang J, Hoogeboom HJ, Pan L et al (2010) Spiking neural P systems

with weights. Neural Comput 22(10):2615–2646. https://doi.org/

10.1162/NECO_a_00022

Wang J, Shi P, Peng H et al (2013) Weighted fuzzy spiking neural P

systems. IEEE Trans Fuzzy Syst 21(2):209–220. https://doi.org/

10.1109/TFUZZ.2012.2208974

Wu T, Zhang L, Pan L (2021) Spiking neural P systems with target

indications. Theor Comput Sci 862:250–261. https://doi.org/10.

1016/j.tcs.2020.07.016

Zhang G, Pérez-Jiménez M, Gheorghe M (2017) Real-life applica-

tions with membrane computing. Springer, Berlin

Zhang G, Shang Z, Verlan S et al (2020) An overview of hardware

implementation of membrane computing models. ACM Comput

Surv 53(4):38. https://doi.org/10.1145/3402456

Zhang G, Rong H, Paul P et al (2021) A complete arithmetic

calculator constructed from spiking neural P systems and its

application to information fusion. Int J Neural Syst

31(01):2050,055. https://doi.org/10.1142/S0129065720500550

Zhang G, Pérez-Jiménez M, Riscos Núñes A et al (2021a) Membrane

computing models: implementations. Springer, Berlin

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

194 S. Verlan, G. Zhang

123

https://doi.org/10.1007/s11063-011-9201-1
https://doi.org/10.1007/s11063-011-9201-1
https://doi.org/10.1142/S0129065717500423
https://doi.org/10.1007/s41965-019-00010-5
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1016/j.neunet.2017.08.003
https://doi.org/10.1016/j.neunet.2017.08.003
https://doi.org/10.1007/978-3-030-00265-7_20
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-279-302/
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-279-302/
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-279-302/
https://doi.org/10.1109/tcds.2017.2785332
https://doi.org/10.1016/j.biosystems.2018.05.004
https://doi.org/10.1007/978-3-642-54239-8_6
https://doi.org/10.1007/s41965-020-00050-2
https://doi.org/10.1007/s41965-020-00050-2
https://doi.org/10.1162/NECO_a_00022
https://doi.org/10.1162/NECO_a_00022
https://doi.org/10.1109/TFUZZ.2012.2208974
https://doi.org/10.1109/TFUZZ.2012.2208974
https://doi.org/10.1016/j.tcs.2020.07.016
https://doi.org/10.1016/j.tcs.2020.07.016
https://doi.org/10.1145/3402456
https://doi.org/10.1142/S0129065720500550

	A tutorial on the formal framework for spiking neural P systems
	Abstract
	Introduction
	Network of cells, formal framework and SNP systems
	Network of cells and the formal framework
	Spiking neural P systems case

	Understand and analyze models
	Extended rules
	Multiple type of spikes/colors
	Communication on request

	Relate models by bisimulation
	Catalytic P systems

	Extend models
	Delays
	Derivation modes and probabilities
	Non-integer values

	Conclusion
	Funding
	References

