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Abstract
RNA cotranscriptional folding is the phenomenon in which an RNA transcript folds upon itself while being synthesized out

of a gene. The oritatami system is a computation model of this phenomenon, which lets its sequence (transcript) of beads

(abstract molecules) fold cotranscriptionally by the interactions between beads according to the binding ruleset. In such

models based on self-assembly, one of the key questions is the ability to construct fractal structures. We focus on the

problem of generating an infinite fractal curves using a cyclic oritatami system, which has an infinite periodic transcript.

We first establish a formal definition of drawing a curve using an oritatami system, proposing conditions and restrictions

with reference to prior oritatami designs for possibly infinite conformations. Under such definition, we prove that it is

impossible to draw a Koch curve or a Minkowski curve infinitely. We then establish sufficient conditions of infinite

aperiodic curves that a cyclic oritatami system cannot fold.

Keywords Self-assembly � Oritatami system � Cotranscriptional folding � Infinite fractal

1 Introduction

Self-assembly is the process where smaller components

autonomously form a larger complex structure using rather

simple interactions among components. Self-assembly

plays an important role in constructing biological structures

and high polymers (Whitesides and Boncheva 2002). One

well-known mathematical model of the self-assembly

phenomenon is the abstract tile assembly model (aTAM)

(Winfree 1998). Recently, Geary et al. (2016) proposed a

new computation model, called the oritatami system, based

on cotranscriptional self-assembly phenomenon from the

experimental RNA transcription called RNA origami

(Geary et al. 2014). In general, the oritatami system use

beads to describe basic components, and a sequence of

beads is transcribed linearly to fold a geometric structure

on the planar triangular lattice according to the predefined

set of interactions and the reaction rate of the folding. The

oritatami system consists of a transcript (a sequence of

beads) and a set of rules for possible intermolecular reac-

tions between beads (Fig. 1). For each bead in the

sequence, the system takes a lookahead of a few upcoming

beads and determines the best location of the bead that

maximizes the number of possible interactions from the

lookahead. The lookahead represents the reaction rate of

the cotranscriptional folding and the number of interactions

represents the energy level (see Fig. 2 for the analogy

between RNA origami and oritatami).

Since the oritatami system is a geometric computation

model, many researchers focused on the capability of

folding geometric structures. It is proved that we can fold

arbitrary geometric shapes with the fixed bead types and

rulesets (Demaine et al. 2018; Han and Kim 2018). Rogers

and Seki (2017) proved the decidability of geometric

structure constructions based on the delay.

A fractal is an infinite pattern that is self-similar across

different scales, and is an important structure in nature. The

construction of fractals is one of the most important topics

in both geometric computation models (Hendricks et al.

2018; Hendricks and Opseth 2017; Lathrop et al. 2009) and

experiments (Tesoro and Ahnert 2016; Tikhomirov et al.
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2017). There are two types of shape self-assembly: strict

self-assembly, where the target shape is distinguished by

existence of the constructed structure, and weak self-

assembly, where the target shape is distinguished by dif-

ferent tile types. In aTAM, it is known that we can weakly

assemble the Sierpinski triangle (Rothemund et al. 2004),

but not strictly without a few modifications (Lathrop et al.

2009). In oritatami, fractals that can be embedded in 1D

cellular automata can be weakly and infinitely assembled

(Pchelina et al. 2020). On the other hand, Masuda et al.

(2018) proposed how to strictly construct a finite Heighway

dragon using a cyclic oritatami system, which has a peri-

odic transcript.

We focus on the problem of strictly drawing an infinite

aperiodic curves on the plane. It is crucial to establish an

agreement on the definition of strict drawing. Based on

prior oritatami designs for possibly infinite conformations,

we first establish a formal definition of drawing a curve

using an oritatami system in Sect. 3, proposing reasonable

conditions and restrictions. Under such definition, we first

prove that regardless of the delay and the period, it is

impossible to strictly fold Koch curves in Sect. 4. Then, we

propose sufficient conditions of an infinite aperiodic curve

and a cyclic oritatami system such that the curve is not

strictly foldable under the given delay and period in

Sect. 5.

2 Preliminaries

Let w ¼ a1a2. . .an be a string over R for some integer n

and bead types a1; . . .; an 2 R. The length |w| of w is n. For

two indices i, j with 1� i� j� n, we let w[i, j] be the

substring aiaiþ1. . .aj�1aj; we use w[i] to denote w[i, i]. We

use wm to denote the concatenation of m copies of w.

Oritatami systems operate on the triangular lattice Kt

with the vertex set V and the edge set E. A configuration

on Kt is a triple (P, w, H) of a directed path P in Kt,

w 2 R� [ Rx, and a set H � fði; jÞ
�
� 1� i; iþ 2� j; fP½i�;

P½j�g 2 Eg of interactions. This is to be interpreted as the

sequence w being folded while its i-th bead w[i] is placed

Fig. 1 The motivation of the oritatami system. a An illustration of an RNA origami (Geary et al. 2016), which transcribes an RNA strand that

self-assembles. b The product of an RNA origami. c Abstraction of the product in the oritatami system
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Fig. 2 a Analogy between RNA origami and oritatami. b Visualiza-

tion of an oritatami system and its terms
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on the i-th point P[i] along the path and there is an inter-

action between the i-th and j-th beads if and only if

ði; jÞ 2 H. Configurations ðP1;w1;H1Þ and ðP2;w2;H2Þ are
congruent provided w1 ¼ w2, H1 ¼ H2, and P1 can be

transformed into P2 by a combination of a translation, a

reflection, and rotations by 60 degrees. The set of all

configurations congruent to a configuration (P, w, H) is

called the conformation of the configuration and denoted

by C ¼ ½ðP;w;HÞ�. We call w a transcript of C.

A ruleset H � R� R is a symmetric relation specifying

between which bead types can form an interaction. An

interaction ði; jÞ 2 H is valid with respect to H, or simply

H-valid, if ðw½i�;w½j�Þ 2 H. We say that a conformation C

is H-valid if all of its interactions are H-valid. For an

integer a	 1, C is of arity a if the maximum number of

interactions per bead is a, that is, if for any k	 1,
�
�fi j

ði; kÞ 2 Hg
�
�þ

�
�fj j ðk; jÞ 2 Hg

�
�� a and this inequality

holds as an equation for some k. By C� a, we denote the set

of all conformations of arity at most a.
Oritatami systems grow conformations by elongating

them under their own ruleset. For a finite conformation C1,

we say that a finite conformation C2 is an elongation of C1

by a bead b 2 R under a ruleset H, written as C1!
H

bC2, if

there exists a configuration (P, w, H) of C1 such that C2

includes a configuration ðP � p;w � b;H [ H0Þ, where p 2 V

is a point not in P and H0 � ði; jPjþ1Þ
�
� 1� i� jPj � 1;

�

fP½i�; pg 2 E; ðw½i�; bÞ 2 Hg. This operation is recursively

extended to the elongation by a finite sequence of beads as

follows: For any conformation C, C!H
�
kC; and for a finite

sequence of beads w and a bead b, a conformation C1 is

elongated to a conformation C2 by w � b, written as

C1!
H �

w�bC2, if there is a conformation C0 that satisfies

C1!
H �

wC
0 and C0!H bC2.

An oritatami system is a 6-tuple N ¼ ðR;w;H;

d; a;Cr ¼ ½ðPr;wr;HrÞ�Þ, where H is a ruleset, d	 1 is

a delay, and Cr is an H-valid initial seed conformation of

arity at most a, upon which its transcript w 2 R� [ Rx is to

be folded by stabilizing beads of w one at a time and

minimize energy collaboratively with the succeeding d� 1

nascent beads. The set FðNÞ of conformations foldable by

this system is defined recursively, as follows: the seed Cr

is in FðNÞ; then provided that an elongation Ci of Cr by

the prefix w[1 : i] is foldable (i.e., C0 ¼ Cr), its further

elongation Ciþ1 by the next bead w½iþ1� is foldable if

C2 2 argmin
C2EaðC1;x½1�Þ

min DGðC0Þ
�
� C0 2 EaðC; x½2; d�ÞÞ

� �

;

ð1Þ

where DGðC0Þ is an energy function that assigns to C0 with
the negation of the number of h-interactions within C0 as
energy. Informally speaking, C2 is a conformation obtained

by elongating C1 by the bead x[1] such that the

beads x½1�; x½2�; . . .; x½d� create as many h-interactions as

possible. Then, we write C1,!
N

xC2, and the superscript N is

omitted whenever N is clear from the context. Through the

folding, the first bead of x is stabilized. A conformation

foldable by N is terminal if none of its elongations is

foldable by N. An oritatami system is deterministic if, for

all i, there exists at most one Ciþ1 that satisfies (1). Namely,

a deterministic oritatami system folds into a unique ter-

minal conformation. An oritatami system is cyclic if its

transcript w ¼ wx
o is a repetition of some string wo. We say

that the oritatami system has a period jwoj.
Figure 3 illustrates an example of an oritatami system

with delay 3, arity 4, ruleset fða; �aÞg and tran-

script w ¼ �a�a�aaaa�a�a�a; in (a), the system tries to stabilize

the first bead �a of the transcript, and the elongation P1

gives 2 interactions, while the elongation P2 gives 4 in-

teractions, which is the most stable one. Thus, the first

bead �a is stabilized according to the location in P2. In (b)

and (c), P2 is the most stable elongation and �a’s are sta-

bilized according to P2. As a result, the terminal confor-

mation is given as in (d). Note that the terminal

conformation has repeated patterns that may grow infi-

nitely, and we can use w ¼ ð�a�a�aaaaÞx to fold an infinite

periodic conformation. This example is called a glider

(Geary et al. 2018).

The bead stabilization in an oritatami system is a local

optimization of finding the best position of the bead using

the next d beads. Thus, the stabilization of a bead w[i] in a

delay-d oritatami system is not affected by any bead whose

distance from w½i�1� is greater than dþ 1. On the trian-

gular lattice, we can draw a hexagonal border of

radius dþ 1 from w½i�1�, which we call the event horizon

of w[i] (Han et al. 2020), to identify the set of points that

may affect the stabilization of w[i]. While stabilizing a

bead w[i], we define the event horizon context of w[i] (Han

et al. 2020) to be the pair of beads and interactions within

this hexagon. We call the stabilization point of w[i] as the

center of the event horizon (context). Namely, the event

horizon context is the context used to stabilize w[i]. Thus,

if two beads w[i] and w[j] have the same event horizon

context, then w[i] and w[j] are stabilized congruently (see

Fig. 4). In general, we define the event horizon of a point

on Kt to be a hexagonal border of radius dþ 1 from the

point, regardless of bead existence on the point. Given a

number of event horizons, we define the union of event

horizons to be the border surrounding points within one of

the event horizons, and the union of event horizon contexts

to be the partial conformation within the unified event

horizon.

An L-system is a parallel rewriting system and its

recursive nature makes the system easy to describe fractal-
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like structures (Rozenburg and Salomaa 1980). An L-sys-

tem is defined as G ¼ ðV ;C;x;PÞ, where

– V is the set of variables that can be replaced by

production rules,

– C is the set of constants that do not get replaced,

– x 2 ðV [ CÞ� is the axiom, the initial string, and

– P � V � ðV [ CÞ� is the set of production rules defin-

ing rewriting of variables.

The system starts with x, and as many rules as possible are

applied simultaneously for each iteration. With graphical

semantics on variables and constants, the L-system is often

used to represent self-similar fractals (Fig. 5). In this paper,

we focus on the curves that can be plotted on the triangular

or square grid. We assume that curves are represented by

strings, whose characters represent turns and unit segments.

Then, an infinite curve is periodic if there exists a periodic

string representation with a fixed finite period, and is

aperiodic otherwise. Note that all fractal infinite curves are

aperiodic. A curve is self-touching if it intersects with

itself. For example, the Heighway dragon is self-touching

while a spiral is not, as in Fig. 10

3 Strict drawing of a curve

We establish a few assumptions on the drawing of a curve

by the oritatami system, with reference to prior oritatami

designs.

1. Since the oritatami system folds a linear transcript on

the plane, it is natural to consider fractal curves, which

are infinite sequences of segments (and points).

2. We only consider a deterministic oritatami system (that

only folds into a unique conformation). Note that it is

trivial to make a nondeterministic oritatami system that

may fold into several different structures including a

target structure.

3. We consider an infinite fractal construction. Masuda

et al. (2018) proposed how to construct a finite fractal

by implementing a counter and an automaton

Fig. 3 An example oritatami system with delay 3 and arity 4. The seed is colored in red, elongations are colored in blue, and the stabilized beads

and interactions are colored in black. (Color figure online)

Fig. 4 Two same event horizon contexts when d ¼ 2. We consider

two bead types (dots and circles). The current bead is colored in cyan

and the previous bead is colored in blue. Since all the beads and

interactions within two event horizons are congruent, they have the

same event horizon context. Note that two partial conformations

inside the event horizons are not congruent due to red paths. (Color

figure online)

Fig. 5 (left) The Heighway dragon is self-touching (right) A spiral is

not self-touching
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periodically inside the transcript. This approach can be

used to construct an arbitrary long fractal but not an

infinite one, since the counter is finite. Maruyama and

Seki (2020) proposed a periodic infinite counter, but

the counter is not suitable as a (finite) component of

construction since the width infinitely increases to

cover increasing digits.

4. Since we need an infinite transcript with a formal finite

representation, it is a natural choice to use a cyclic

oritatami system that has an infinitely repeated tran-

script. Researchers already used cyclic oritatami sys-

tems to construct conformations that can grow

infinitely (Geary et al. 2018).

Let a shape be a set of points on the triangular lattice Kt,

whose grid graph is connected. A curve can be represented

as a sequence of alternating points and segments. We say

that a sequence of shapes represents a curve if there exists

one-to-one correspondence between shapes and alternating

points and segments, and a point and a segment should be

adjacent on the curve if and only if two shapes corre-

sponding to them are adjacent. We formally define the

strict drawing of the curve by a deterministic oritatami

system as follows:

Definition 1 Given a (possibly infinite) curve on the plane

and the (possibly infinite) sequence ðSkÞ of shapes that

represents the curve, we say that a deterministic oritatami

system strictly draws the curve if the following condition

holds: There exists a (possibly infinite) sequence ðikÞ of

indices that corresponds to the sequence of shapes, where,

for all k’s, there exists a partial configuration for

w½ik�1þ1; ik� that folds within Sk. We say that the oritatami

system covers Sk with the partial transcript w½ik�1þ1; ik�.

Figure 6 shows two examples of strict curve drawing by

an oritatami system. Here, the target curve is represented

by three shapes ðS1; S2; S3Þ. By Definition 1, an oritatami

system draws the curve in Fig. 6a but does not in Fig. 6b

since the partial configuration for w[3, 11] is not within S2.

Note that shapes limit paths of conformations, and it is not

necessary to fill all points in the shape with the

conformation.

From the design perspective, it is crucial to assume this

locality of partial configuration. Oritatami designs are

usually modular (Geary et al. 2016, 2018; Han et al. 2018;

Masuda et al. 2018)—a partial transcript is folded locally

under a controlled context, and we connect these partial

transcripts to perform complex computations. Especially,

for an infinite transcript, it becomes almost impossible to

remove unintended interferences without this locality.

Previous cyclic oritatami systems such as a binary counter

(Geary et al. 2016) or a cyclic tag system (Geary et al.

2018) follow this assumption. Remark that the drawing in

Definition 1 is general in the sense that it does not restrict

the oritatami system to be infinite or cyclic, and the curve

to be infinite.

4 Impossibility of strict drawing
of the infinite Koch curve

We start with one example of infinite fractal curves—the

Koch curve. The Koch curve can be constructed by starting

with a segment, then recursively altering each line segment

as follows:

1. Divide the line segment into three segments of equal

length.

2. Draw an equilateral triangle that has the middle

segment from step 1 as its base and points outward.

3. Remove the line segment that is the base of the triangle

from step 2.

Using the L-system, the Koch curve can be encoded as

follows:

– Variable: F

– Constants: þ;�
– Axiom: F

– Production Rule: F ! F þ F � F þ F,

where F denotes a segment, - denotes 120
 right turn and

þ denotes 60
 left turn. Fig. 7 illustrates the Koch curve

after three iterations.

We assume the followings to draw the Koch curve:

1. The Koch curve consists of an infinite sequence of

alternating points and segments on the triangular

lattice Kc, which is with vertical rows with unit

Fig. 6 a An oritatami system draws the target curve and b an

oritatami system does not draw the target curve by Definition 1
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triangles pointing left and right. We use a hexagon Sd
of side length d to represent a point on the curve. For a

segment on the curve, we use a shape Sl of d points

(lþ 1 rows in total) and d þ 1 points (l rows in total)

in alternative positions which are orthogonal to the

direction of the segment (see Fig. 8a). The oritatami

system starts covering the first Sd, and denote the ith Sd
(Sl) by Sd½i� (Sl½i�). We define the unit distance between

two Sd’s as the unit distance between two points

corresponding to Sd’s on Kc.

2. We use constant numbers of beads for segments or

points—pd beads in Sd, and pl beads in Sl. This

assumption is reasonable in the modular design of the

oritatami system.

Figure 8 shows an example of shapes that can be used to

draw the Koch curve, and a part of an oritatami system that

draws the curve, following the above assumptions. In

Fig. 8a, Sd’s are drawn in red, and Sl’s are drawn in blue,

where d ¼ 2 and l ¼ 3. In Fig. 8b, from the assumption

(2), the number of beads for segments or points are

constant, even if there are different paths in different Sd’s

or Sl’s. For example, paths in Sd use 11 beads and paths in

Sl use 9 beads.

Under these assumptions, we claim the following

theorem.

Theorem 1 Suppose we assume the followings to draw the

Koch curve:

1. We use a hexagon Sd of side length d to represent a

point on the curve. For a segment on the curve, we use

a shape Sl of d points (lþ 1 rows in total) and

d þ 1 points (l rows in total) in alternative positions

which are orthogonal to the direction of the segment.

The oritatami system starts covering the first Sd.

2. We use constant numbers of beads for segments or

points—pd beads in Sd, and pl beads in Sl.

Under these assumptions, there is no deterministic ori-

tatami system that can strictly draw the Koch curve.

Proof Assume that there exists a deterministic cyclic ori-

tatami system N with delay d that draws the Koch curve.

Note that for two Sd’s which are two unit distances apart by

a 120
 in the middle, the distance between centering points

of Sd’s on Kt is 3d þ 3lþ 3. Based on this, we first assume

that d� 3d þ 3lþ 1, which makes the radius of an event

horizon less than 3d þ 3lþ 3. We denote the event horizon

context for the maximum delay as the ‘‘maximum’’ event

horizon context, and omit the term maximum if the context

Fig. 7 The Koch curve after three iterations

Fig. 8 a Shapes used to draw

the Koch curve b an example of

an oritatami system with pl ¼ 9

and pd ¼ 11
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is clear (see Fig. 9a). For convenience, we use Sdl½i� to

denote the shape resulted from connecting Sd½i� and Sl½i�.
Let E(i) be an event horizon context used to fold the

conformation in Sdl½i�. It is straightforward that the

boundary of E(i) includes the union of event horizon

contexts of all points in Sdl½i�. Moreover, we observe that

the first bead of the conformation in Sdl½i� is stabilized

using the event horizon context of the previous bead, which

should be the last bead of the conformation in Sl½i�1�.

Thus, event horizon contexts of all points that are in Sl½i�1�
and adjacent to Sd½i� should also be unified to E(i). We have

two types of turns in the Koch curve—120
 right turn and

60
 left turn, which correspond to two possible directions

of Sl½i�1�. Figure 9b illustrates the boundary of E(i),

including the event horizons of points in orange Sl’s and

adjacent to Sp½i�. Due to the delay upper bound, all Sd’s that
overlap with E(i) are at most two unit distances apart from

Sd½i�.
Since the Koch curve does not touch itself, if a point in

Kc is adjacent to two segments of the curve, there is no

segment other than two that are adjacent to the point.

Moreover, due to the self-similarity of the curve, the same

statement holds for any scale of the power of 3—for a

point q0 in Kc, if there exist two points q1 and q2 on the

curve that are 3t unit distances straight away from q0, then

there is no segment within 3t � 1 unit distances from q0,

other than segments on the curve from q1 and q2 (see

Fig. 10).

In Fig. 11, since the boundary of E(i) covers up to two

unit distances from Sd½i�, we consider the relative position

of Sdl½i� (illustrated by dots) on the (partial) Koch curve

after one iteration (orange shape), with four segments and

the maximum unit distance among points being 3. We first

transcribe the green curve (if it exists), and then the orange

curve. For each of four distinct positions, we have two

different cases of the former curve which overlaps with

E(i), except 3). In total, we have seven different cases of

the former Koch curve which overlaps with E(i). The thick

black hexagons represent candidates of q0 in Fig. 10. We

can observe that in all cases, all Sd’s are at most three unit

distances apart from one of q0’s, and they are empty except

the green and orange shapes. Moreover, in all cases, all

beads within E(i) are from Sd½i�4� to Sl½i�1�, a consecutive
sequence of shapes before Sl½i�. In other words, a partial

conformation in Sdl½i� is dependent on beads in the

sequence of shapes from Sd½i�4� to Sl½i�1�.
The upper bound for the number of possible paths within

Sd (Sl) is 5
pd (5pl). We have beads from Sd½i�4� to Sl½i�1�

that determine the partial conformation in Sdl½i�. Regarding

Fig. 9 a The maximum event horizon of the center of Sd½i� is

represented by a red hexagon. b The boundary of the event horizon

context E(i) is represented by a red polygon. Small squares in orange

Sl’s indicate points outside Sdl½i� and affecting E(i). All Sl’s and Sd’s
that overlap with E(i) are depicted

Fig. 10 An example of q0, q1 and q2. Points q1 and q2 are 3 unit

distances straight away from q0. Aside from curves from q1 and q2,
there is no segment within 2 unit distances from q0 (surrounded by a

dotted hexagon)
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the period po of the system, we have j and k such that

1� j\k� 1þpo � 54plþ4pd , and Sdl½j� and Sdl½k� have exactly
the same conformation. Moreover, since beads from

Sd½i�4� to Sl½i�1� are consecutively transcribed, Sdl½j� and
Sdl½k� result in a periodic sequence of segment turns of

length k � j (see Fig. 12). Since the Koch curve is

aperiodic, we know that the first assumption d\3lþ 3d þ
2 is wrong.

Now we generalize the upper bound for the delay. Let

xðtÞ ¼ 3 � 4t�1ðlþ d þ 1Þ � 2. For xðt�1Þ\d� xðtÞ, the

event horizon context for beads in Sdl½i� covers only Sd’s

which are within 3t � 1 unit distances from Sd½i�. The case
analysis is similar to the previous delay bound, and at most

2 � 4t segments before Sdl½i� can overlap with E(i). Thus,

among Sdl½1� to Sdl½1þpo � 52�4
tðplþpdÞ�, there should exist

Sdl½j� and Sdl½k[ j� that have exactly the same event

Fig. 11 Seven different cases of

the former Koch curve which

overlaps with E(i). Dots
represent points in Sdl½i�

Fig. 12 A series of event horizon contexts (in dotted hexagons) for

the first bead of Sl½i�. Shapes Sl’s and Sd’s are simplified for better

readability. There exist indices 1� j\k� 1þpo � 54plþ4pd such that

they have exactly the same event horizon contexts for beads within

Sd½j� (Sl½j�) and Sd½k� (Sl½k�)
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horizon context for points within. Therefore, we know that

for any given d, there is no delay-d deterministic oritatami

system that can draw the Koch curve. h

5 Impossibility of strict drawing of infinite
aperiodic curves

We further inspect conditions for impossibility of strict

drawing of infinite aperiodic curves, which include fractals.

Construction of infinite periodic curves using a cyclic

oritatami system seems to be reasonable if we can design a

partial oritatami system that folds one period of the curve,

and we have one running example—the glider in Sect. 2.

On the other hand, for infinite aperiodic curves, we propose

sufficient conditions that makes curves impossible to fold.

We make the following assumptions:

– The curve is on an arbitrary lattice Kc, and each point

(segment) in Kc is mapped to a shape Sd (Sl) in the

triangular lattice Kt.

– The oritatami system uses pd (pl) beads for Sd (Sl). We

say pdl ¼ pd þ pl.

– The oritatami system has the period of po.

– The curve is represented by an infinite alternation of Sd
and Sl, starting from Sd½1�. For convenience, we refer to
the union of Sd½i� and Sl½i� as Sdl½i�.

Let dmax be an upper bound of the delay d. We propose the

condition that curves are not foldable when d� dmax, and
expand the result to all possible delays. Suppose we want to

stabilize beads in Sdl½i�. Then, the maximum event horizon

context Eði; dmaxÞ for beads in Sdl½i� is defined by the union

of event horizon contexts of 1) all points in Sdl½i� and 2)

points which are in the possible Sl½i�1�’s and adjacent to

Sd½i�, for stabilization of the first bead in Sd½i�. Now, for
each i, we have Sd½rði; dmaxÞ� that appears first in Eði; dmaxÞ.
Let Dði; dmaxÞ ¼ max

1� j� i
ðj� rðj; dmaxÞÞ to be the maximum

difference between j and rðj; dmaxÞ for all j� i. Then, it

takes 1þ gcdðpo; pdlÞ � 5Dði;dmaxÞpdl to have exactly the same

conformation for the previous Dði; dmaxÞ segments, which

results in the same maximum event horizon context and the

same conformation for two shapes Sdl½j� and Sdl½k[ j�.
After Sdl½j� and Sdl½k�, it is assured that previous

Di;dmax beads have exactly the same conformation for the

consecutively following shapes, and these shapes fold

exactly the same. Since Dði; dmaxÞ is dependent on i, we

have the following theorem.

Theorem 2 If there exists i such that 1þ gcdðpo; pdlÞ�
5Dði;dmaxÞpdl � i, then it is impossible to strictly draw a given

infinite aperiodic curve with a cyclic oritatami system

whose delay is less than or equal to dmax and period is po.

In practice, the delay of the oritatami system is bounded

by the transcript length. If we consider a cyclic oritatami

system that has an infinite transcript, the delay can be

arbitrarily large. We extend Theorem 2 for arbitrarily

large delays and obtain the following statement.

Theorem 3 Suppose for all dmax 	 1, there exists i such

that 1þ gcdðpo; pdlÞ � 5Dði;dmaxÞpdl � i. Then, it is impossible

to strictly draw a given aperiodic infinite curve with a

cyclic oritatami system whose period is po.

If there exists imax such that Dði; dmaxÞ ¼ Dðimax; dmaxÞ for
all i	 imax, then we may use i	 imax to satisfy the condi-

tions for all dmax’s regardless of gcdðpo; pdlÞ. In such a case,

the following statement holds.

Theorem 4 Suppose for all dmax, there exists imax such that

Dði; dmaxÞ ¼ Dðimax; dmaxÞ for all i	 imax, then it is impos-

sible to strictly draw a given infinite aperiodic curve with a

cyclic oritatami system regardless of the delay and the

period.

We can prove impossibility of strict drawing of the

Koch curve by Theorem 4. Based on Fig. 9, for a given

delay upper bound xðtÞ ¼ 3 � 4t�1ðlþ d þ 1Þ � 2, at most

2 � 4t segments before Sdl½i� can overlap with E(i). Thus,

Dði; xðtÞÞ� 2 � 4t for all i’s, and since the upper bound is

independent of i, the Koch curve is impossible to strictly

draw.

Another example of Theorem 4 is the Minkowski

curve. The Minkowski curve starts from a segment, then

recursively alternates each line segment as follows:

1. Divide the line segment into four segments (we call

these segment 1 to 4 from the start) of equal length.

2. Draw a square with segment 2 as a side to the left of

the original segment, and the other square with

segment 3 as a side to the right.

3. Remove segments 2 and 3.

Using the L-system, the Minkowski curve can be encoded

as follows:

– Variable: F

– Constants: þ;�
– Axiom: F

– Production Rule: F ! F þ F � F � FF þ F þ F � F,

where F denotes a segment, - denotes 90
 right turn and þ
denotes 90
 left turn. Figure 13 illustrates the Minkowski

curve after three iterations.

For the Minkowski curve case, since the oritatami sys-

tem works on the triangular lattice, we assume that the

Minkowski curve is slanted to fit into the triangular lat-

tice—a square in the square lattice is mapped into a

rhombus in the triangular lattice. We assume the followings

for drawing the Minkowski curve:
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1. The (tilted) Minkowski curve consists of an infinite

sequence of alternating points and segments on the

square lattice Kc. We use a parallelogram Sl of width d

and length l to represent a segment on the curve, and a

rhombus Sd of side length d to represents a point on the

curve. The oritatami system starts with covering the

first Sd, and denote the ith Sd (Sl) by Sd½i� (Sl½i�).
2. We use constant numbers of beads for a connecting

line and a point—pd beads for Sd , and pl beads for Sl.

We observe the property of the curve based on self-simi-

larity (Fig. 14). For a given t, let q1 be the starting point of

a periodic substructure of length 8t, and q2 be the ending

point. Points q1 and q2 should be 4t unit distance away.

Now, suppose we draw the square of size 2 � 4t with the

center q2. Then, the point q3 that appears first in the square

(including the boundary) is at most 8tþ1 segments away

from q2.

Similar to the proof for Theorem 1, let

xðtÞ ¼ 4tðlþ d þ 2Þ � l� 2. For xðt�1Þ\d� xðtÞ, the

event horizon context for beads in Sdl½i� covers only Sd’s

which are within 4t unit distances from Sd½i� (see Fig. 15).

Then, at most 8tþ1 segments before Sdl½i� can overlap with

E(i), and Dði; xðtÞÞ� 8tþ1. Since the upper bound is inde-

pendent of i, the Minkowski curve is impossible to strictly

draw.

6 Conclusions

The oritatami system is a computational model inspired by

RNA cotranscriptional folding, where an RNA transcript

folds upon itself while synthesized out of a gene. Since the

oritatami system is a geometric computation model, it is

natural to consider the problem of constructing fractal

curves using the oritatami system. We have formally

defined the strict drawing of the curve by an oritatami

system. Then we have proved that it is impossible to

strictly draw two infinite fractal curves (Koch curve and

Minkowski curve) by a cyclic oritatami system. Moreover,

we have proposed sufficient conditions that make the strict

folding of general infinite curves impossible.

It is open to fill the gap between this impossibility result

about strict drawing and possibility about weak drawing

(Pchelina et al. 2020). In Theorem 1, we have calculated

the maximum length of the curve that affects bead stabi-

lization, which turns out to be constant for an arbitrary

segment on the curve. This property is caused by

‘‘sparseness’’ of the curve without self-touching. For self-

touching curves, we can implement such self-touching

points by partitioning each point into a number of shapes as

in Fig. 16. Such technique can be extended to implement

planar fractal structures such as Sierpinski Triangles by

drawing a (self-touching) Eulerian path of the grid graph

that correspond to the given structure. Still, it is open

whether we can strictly draw self-touching curves infinitely

by oritatami—for example, Di;n of the Heighway dragon

grows linear to i, which fails the condition of Theorem 2.

Fig. 13 The Minkowski curve after three iterations

q1

q2

q3

Fig. 14 Properties of the curve when t ¼ 1. q3 is 64 segments away

from q2

Fig. 15 Case analysis when t ¼ 1. The event horizon context E(i) for
beads in Sdl½i� is drawn in a red polygon, which is the union of event

horizon contexts of points denoted by dots. All Sd’s and Sl’s that

overlap with E(i) are depicted

700 Y. S. Han, H. Kim

123



In general, information propagation of oritatami systems

is local, since a system can probe an event horizon of the

fixed size at a time. Such limitation is independent of

strictness or weakness of structure drawing. On the other

hand, construction of fractal structures often requires dis-

tant information propagation for each point to be drawn.

We can detour such long-distance propagation by an

incremental counter and a function that defines the

behavior of the fractal according to the count (Masuda

et al. 2018). However, such counter (with a finite size)

cannot be infinite, which determines finiteness of Heigh-

way dragon drawing. There are a few fractal structures that

can be implemented using a set of local information

propagation rules, such as Sierpinski triangles using Rule

90 (Wolfram 2002). We assume that except for these rare

fractals, it is impossible to strictly or even weakly draw

fractals using a cyclic oritatami systems.
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Fig. 16 Implementation of a self-touching point in the Heighway

dragon (Masuda et al. 2018). A point in the curve is partitioned into

3� 3 rhombi colored in red
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