
Counting infinitely by oritatami co-transcriptional folding

Kohei Maruyama1 • Shinnosuke Seki1,2

Accepted: 8 January 2021 / Published online: 11 March 2021
� The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
A fixed bit-width counter was proposed as a proof-of-concept demonstration of the oritatami model of cotranscriptional

folding [Geary et al., Proc. MFCS 2016, LIPIcs 58, 43:1-43:14], and it was embedded into another oritatami system that

self-assembles a finite portion of Heighway dragon fractal. In order to expand its applications, we endow this counter with

capability to widen bit-width at every encounter with overflow.

Keywords Theory of algorithmic molecular self-assembly � RNA cotranscriptional folding � Oritatami system �
Counting

1 Introduction

Counting is one of the most essential tasks for computing.

Nature has been counting billions of days using molecular

‘‘circadian clockwork’’ which is ‘‘as complicated and as

beautiful as the wonderful chronometers developed in the

18th century’’ (McClung 2006). Nowadays, developments

in molecular self-assembly technology enable us to design

molecules to count. Evans has demonstrated a DNA tile

self-assembly system that counts accurately in-vitro in

binary from a programmed initial value until it overflows

(Evans 2014). In its foundational theory of molecular self-

assembly, such binary counters have been proved versatile,

being used to assemble shapes of particular size (Adleman

et al. 2001; Rothemund and Winfree 2000), towards self-

assembly of fractals (Masuda et al. 2018), and as an infinite

scaffold on which Turing machines can be simulated in

parallel in the abstract tile-assembly model (Bryans et al.

2013; Lathrop et al. 2011), to name a few.

A fixed bit-width (finite) binary counter has been

implemented as a proof-of-concept demonstration of the

oritatami model of cotranscriptional folding (Geary et al.

2019). As shown in Fig. 1, an RNA transcript folds upon

itself while being transcribed (synthesized) from its cor-

responding DNA template strand. Geary, Rothemund, and

Andersen programmed a specific RNA rectangular tile

structure into a DNA template in such a way that the

corresponding RNA transcript folds cotranscriptionally

into the programmed tile structure with high probability in-

vitro at room temperatures (RNA origami) (Geary et al.

2014). An oritatami system folds a transcript of abstract

molecules called beads of finitely many types over the

2-dimensional triangular lattice cotranscriptionally

according to a rule set that specifies which types of

molecules are allowed to bind at unit distance. The tran-

script of the binary counter in Geary et al. (2019) is of

period 60 as - -_- - -_ and its period is

divided semantically into two half-adder (HA) modules

A = - - �_ - and C = - - �_ -

and two structural modules B and D, which are sandwiched

by half-adder modules along the transcript as ABCD. While

being folded cotranscriptionally in zigzags, HA modules

increment the current counter value i by 1, which is ini-

tialized on a linear seed structure, alike the Evans’ counter,

whereas structural modules B and D align HA modules

properly and also make a turn at an end of the counter

value i; B guides the transcript from a zig to a zag (,!)

while D does from a zag to a zig (-). This counter was

An extended abstract on this work was published as a short

paper in the proceedings of the 46th International Conference

on Current Trends in Theory and Practice of Computer

Science (SOFSEM 2020, Limassol, Cyprus, January 20-24,

2020), Lecture Notes in Computer Science (LNCS) 12011,

pp. 566–575.

& Shinnosuke Seki

s.seki@uec.ac.jp

1 The University of Electro-Communications, 1-5-1

Chofugaoka, Chofu, Tokyo 1828585, Japan

2 École Normale Supérieure de Lyon, 46 allée d’Italie,

69007 Lyon, France

123

Natural Computing (2021) 20:329–340
https://doi.org/10.1007/s11047-021-09842-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0276-3322
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-021-09842-6&domain=pdf
https://doi.org/10.1007/s11047-021-09842-6

embedded as a component of an oritatami system to self-

assemble an arbitrary finite portion of Heighway dragon

fractal (Masuda et al. 2018); it remembers how many turns

the dragon has made so far. Its applications are limited,

however, by lack of mechanism to detect an overflow, at

which its behavior is undefined and it gets nondetermin-

istic. In this paper, we shall endow this counter, or more

precisely, its structural module B, with the capability of

overflow detection and bit-width expansion thereof.

The oritatami model has been proven Turing universal

in Geary et al. (2018), where a universal Turing machine is

encoded as a seed and a period of transcript of an oritatami

system using 542 bead types via cyclic tag system, and the

number of bead types needed for the universality was

reduced to almost one-third (183 bead types) recently

(Pchelina et al. 2020) by an intrinsic simulation of 1-di-

mensional cellular automata (CA). It is hence no surprise

that oritatami systems can count even infinitely. In the

read-once-write-once models of computation such as ori-

tatami, abstract tile-assembly model (aTAM) (Rothemund

and Winfree 2000; Winfree 1998), and many others in

molecular self-assembly, however, what a computation

matters is not so much an output obtained conclusively but

rather a shape self-assembled in the course; the shape is

often the goal of computation in molecular self-assembly.

Unless being interlocked geometrically, the output cannot

wire to an input of another computation. The versatile

systems in oritatami (Geary et al. 2018; Pchelina et al.

2020) hence never discourage us to design a set of singly-

functional modules of simple enough shape to be wired,

preferably via a common interface. (Note that unless being

provided anyhow with random access memory, in molec-

ular self-assembly, the ability to count highly unlikely

suffices for Turing universality; c.f. Minsky 1967.)

The proposed counter is simple in number of bead types

used as well as length of its transcript period. It transcribes

��`� � � � ��132 repetitively (needless to say, 132 bead

types), whereas the period of a transcript to simulate a

radius-r CA with Q states by the simplified Turing uni-

versal oritatami system (Pchelina et al. 2020) is of length

about 142
3
Q2

r log2 Qr, where Qr ¼ 2dlog2ð2Q
2rþ1Þe, whose value

cannot be smaller than 142
3
� 4� 189, obtained at Q ¼ 1 and

r ¼ 0, and rises significantly in order for CAs to be able to

compute as 142
3
� 4 � 162� 48469 at Q ¼ 2 and r ¼ 1. A

periodic transcript is expected to be transcribed from a

circular DNA (Geary and Andersen 2014) but such a

template DNA sequence gets more costly to be synthesized

as it gets longer. The proposed counter folds in zigzags into

a logarithmically-widening trapezoid so that it cannot be

afforded at any scaling of Heighway dragon fractal. It

therefore does not truly enable to self-assemble this fractal.

The significance of this counter is rather to demonstrate

that an oritatami system can detect an overflow and change

its phase therein from counting to bit-expansion and back

(note that oritatami is not provided with any internal states;

see Sect. 2). This phase-transition capability should be

applicable, for example, to self-assemble the n� n square

in oritatami at a scale, starting from an Oðlog nÞ-size seed

encoding n, based on the system in aTAM for square self-

assembly (Rothemund and Winfree 2000); such a system

would make use of this capability rather to transition from

the binary counting phase to the phase to fill the remaining

n� ðn� log nÞ rectangle while drawing the diagonal.

This paper is organized as follows. In Sect. 2, we pro-

vide basic notions and notation of oritatami system. The

infinite counter shall be explained into detail in Sect. 3. We

conclude this paper in Sect. 4 with a short discussion.

2 Preliminaries

Let R be a finite alphabet, whose elements should be

regarded as types of abstract molecule, or beads. A bead of

type a 2 R is called an a-bead. By R� and Rx, we denote

the set of finite sequences of beads and that of one-way

infinite sequences of beads, respectively. The empty

sequence is denoted by k. Let w ¼ b1b2 � � � bn 2 R� be a

sequence of length n for some integer n and bead types

b1; . . .; bn 2 R. The length of w is denoted by |w|, that is,

jwj ¼ n. For two indices i, j with 1� i� j� n, we let w[i..j]

refer to the subsequence bibiþ1 � � � bj�1bj; if i ¼ j, then

w[i..i] is simplified as w[i]. For k� 1, w[1..k] is called a

prefix of w.

Oritatami systems fold their transcript, which is a

sequence of beads, over the triangular grid graph T ¼
ðV;EÞ cotranscriptionally. A directed path P ¼ p1p2 � � � pn
in T is a sequence of pairwise-distinct points

p1; p2; . . .; pn 2 V such that fpi; piþ1g 2 E for all 1� i\n.

Its i-th point is referred to as P[i]. Now we are ready to

abstract RNA single-stranded structures in the name of

conformation. A conformation C (over R) is a triple

(P, w, H) of a directed path P in T, w 2 R� of the same

length as P, and a set of (hydrogen) bonds

H 	
�
fi; jg

�� 1� i; iþ 2� j; fP½i
;P½j
g 2 E
�
. This is to be

interpreted as the sequence w being folded along the path P

in such a manner that its i-th bead w[i] is placed at the i-th

Fig. 1 RNA origami. RNA polymerase enzyme (orange) synthesizes

the temporal copy (blue) of a gene (gray spiral) out of ribonucleotides

of four types A, C, G, and U

330 K. Maruyama, S. Seki

123

point P[i] and the i-th and j-th beads are bonded (by a

hydrogen-bond-based interaction) if and only if fi; jg 2 H.

The condition iþ 2� j represents the topological restric-

tion that two consecutive beads along the path cannot be

bonded. A rule set R 	 R� R is a symmetric relation over

R, that is, for all bead types a; b 2 R, ða; bÞ 2 R implies

ðb; aÞ 2 R. A bond fi; jg 2 H is valid with respect to R, or

simply R-valid, if ðw½i
;w½j
Þ 2 R. This conformation C is

R-valid if all of its bonds are R-valid. For an integer a� 1,

C is of arity a if it contains a bead that forms a bonds but

none of its beads forms more. By C� aðRÞ, we denote the

set of all conformations over R whose arity is at most a; its
argument R is omitted whenever R is clear from the

context.

The oritatami system grows conformations by an oper-

ation called elongation. Given a rule set R and an R-valid

conformation C1 ¼ ðP;w;HÞ, we say that another confor-

mation C2 is an elongation of C1 by a bead b 2 R, written

as C1�!
R

bC2, if C2 ¼ ðPp;wb;H [H0Þ for some point p 2

V not along the path P and set H0 	
�
fi; jwj þ 1g

�� 1
� i\jwj; fP½i
; pg 2 E; ðw½i
; bÞ 2 R

�
of bonds formed by

the b-bead; this set H0 can be empty. Note that C2 is also R-

valid. This operation is recursively extended to the elon-

gation by a finite sequence of beads as: for any confor-

mation C, C�!R k�C; and for a finite sequence of beads

w 2 R� and a bead b 2 R, a conformation C1 is elongated

to a conformation C2 by wb, written as C1�!
R

wb�C2, if

there is a conformation C0 that satisfies C1�!
R

w�C0 and

C0 �!R bC2.

An oritatami system N is a tuple ðR;R; d; a; r;wÞ, where
R and R are defined as above, while the other elements are

a positive integer d called delay, a positive integer a called

arity, an initial R-valid conformation r 2 C� aðRÞ called
the seed, and a (possibly infinite) transcript w 2 R� [Rx,

which is to be folded upon the seed by stabilizing beads of

w one at a time so as to minimize energy collaboratively

with the succeeding d�1 nascent beads. The energy of a

conformation C ¼ ðP;w;HÞ, denoted by DGðCÞ, is defined

to be �jHj; the more bonds a conformation has, the more

stable it gets. The set FðNÞ of conformations foldable by

the system N is recursively defined as: the seed r is in

FðNÞ; and provided that an elongation Ci of r by the prefix

w[1..i] be foldable (i.e., C0 ¼ r), its further elongation Ciþ1
by the next bead w½iþ 1
 is foldable if

Ciþ1 2 argmin C 2 C� as:t:

Ci�!
R

w½iþ 1
C

min
n
DGðC0Þ

���
C�!R �w½iþ2...iþk
C0;

k� d;C0 2 C� a

o
:

ð1Þ

Then we say that the bead w½iþ 1
 and the bonds it forms

are stabilized according to Ciþ1. Note that an arity-a ori-

tatami system cannot fold any conformation of arity larger

than a. A conformation foldable by N is terminal if none of

its elongations is foldable by N. The oritatami system N is

deterministic if for all i� 0, there exists at most one Ciþ1
that satisfies (1). A deterministic oritatami system folds

into a unique terminal conformation.

Example 1 (Glider1) See Fig. 2 for a delay-3 deterministic

oritatami system N to fold a motif called a glider. Its

transcript is a repetition of a � bb0 � a0 and its rule set R is

fða; a0Þ; ðb; b0Þg. Its seed is colored in red. The first 3 beads,
a � b, are transcribed and elongate the seed in all possible

ways. The a-bead cannot bind or the second bead is inert

according to R. The third bead, b, can bind to the b0-bead in
the seed but for that, the a-bead must be located to the east

of the previous a0-bead; it is thus stabilized there. Then the

next bead, b0, is transcribed. After the three steps, the third
bead, b, is stabilized, along with its bond with the b0-bead,
yielding the rightmost glider of width 3 and height 3 in

Fig. 2. In the next 3 steps, the succeeding b0 � a0 folds alike
and results in a glider of width 4 and height 3. The glider

thus proceeds by unit distance per three beads and one

bond.

The glider is self-sustaining and has provided a solid

scaffold to oritatami systems (Demaine et al. 2018; Elonen

2016; Geary et al. 2018; Han and Kim 2018; Pchelina et al.

1 A video to show how a glider folds can be found at https://www.

dailymotion.com/video/x3cdj35, in which the Turing universal ori-

tatami system by Geary et al. (2018) is running at delay 3.

a

b b′

a′ a

b b′

a′ a

b b′

a′ a

b b′

a′

ab a

b
a

b

=⇒
a

b

b′ b′

b′

=⇒
a

b

b′

=⇒
a

b

Fig. 2 Folding of a glider motif by a delay-3 deterministic oritatami system

Counting infinitely by oritatami co-transcriptional folding 331

123

https://www.dailymotion.com/video/x3cdj35
https://www.dailymotion.com/video/x3cdj35

b

s

f

t

p

t

b

t

t

b b

b

b

t

b

t

k

b

b

f

c

f

c

f

b

b

b

b

b

b

b

He1

LtH10

Rb F1

LbeHe1

Rb F1

LtH00

Rb F0

LbnH11

Rb F0

LbnH01

Rb F1

H01Rt

Hn Rb

H00Rt

Hn Rb

H10Rt

Hn Rb

H11

Rb

Hn Rb

Rb

Hn RbRbFnbLcre Hn

Rc
r

Fnb

Lbn Hn

Rc
r

FnbLcre Hn

RtFnt

Lbn Hn

RtFntLcrn Hn

RbFnb

Lbn Hn

FnbLbe

F1 Lbn

FntLt

F0 Lbn

FntLt

F1 Lbn

FnbLbn

F0 Lbn

FnbLbn

F1 Lbn

Lcrn

Lbn Hn

RtFnt

Lcre

Hn

RtFnt

Hn

RtFnt

Lbn Hn

Rc
r

Fnb

Lbn Hn

RbFnb

RbFnb

Lcrn Hn

RbFnb

Rc
r

Fnb

Lcre Hn

Rc
r

Fnb

Lcre Hn

RbFnb

Lcrn Hn

Rc
r

Fnb

He1Rb

Hn Rb

H11Rb

Hn Rb

H01Rt

Hn Rb

H00Rt

Hn Rb

H10Rt

Rb F1

LbnH11

Rb F0

LbnH01

Rb F0

LtH00

Rb F1

LtH10

LbeHe1

F0 Lbn

FntLt

F1 Lbn

FntLt

FnbLbe

F0 Lbn

FnbLbn

F1 Lbn

FnbLbn

FnbLbe

Lcrn
Lcre

b

Rc
r

Rc
r

Hn

Fnt

Lcrn
Lcrn

Lcre

Fnb

Fnt

Lcre
Lcrn

b

b

b

h

k

r

d

gl

i

k

a

c

eh

j

b

f

fl

d c

h

j

k be

i

g a

abcdef c

e

a

h

l

g

j

b

d

f

ik

fg

a

b

i

j c

d

e

h

i

f

d

h

ab

c

e

g

a

f g

b

c

d he h ef

a

g d

b

c

a

c

i b

d

j

e

k

g

f

l

h

t b
p s

h
k

r f c

332 K. Maruyama, S. Seki

123

2020). Counting infinitely in a zigzag manner requires a

self-sustaining structure in order to travel ‘‘in a vacuum,’’

that is, in the absence of the previous zag above, while

widening bit-width at an overflow (see Figs. 11 and 12).

Thanks to the sparsity of bonds, gliders can be deformed so

easily for us to design multifunctional modules for the

proposed counter. However, the bond density does not

always determine the degree of functional extensibility;

indeed, parallelograms, based on which the fixed bit-width

counter (Geary et al. 2019) was designed, have turned out

to be highly functionally extensible (Geary et al. 2018;

Pchelina et al. 2020), in spite of relatively larger number of

bonds necessary.

3 Folding an infinite binary counter

In this section, we describe a delay-3, arity-5 deterministic

oritatami system to count infinitely. It employs 132 bead

types, and its transcript w is a repetition of 1-2-3- � � � -
132. Its rule set is given in Sect. 3.6. The fixed bit-width

counter by Geary et al. (2019) operates at delay 4 under a

different dynamics, but it was modified in Masuda et al.

(2018) so as to run at delay 3 and under the more prevailing

dynamics (1) in the research of oritatami model.

3.1 General idea

Between two consecutive overflows, the proposed system

behaves in the same way as the fixed bit-width counter. Its

transcript folds in a zigzag manner macroscopically

(downward in figures throughout this paper). A zig, folding

from right to left, increments the current counter value by

1. The succeeding zag, folding from left to right, formats

the incremented counter value for the sake of next zig and

copies it downward. Unlike the existing counter, when a

zig encounters an overflow, it does not abort but rather

extends the bit-width of the current counter value by 1 bit.

The transcript of the proposed counter is periodic. Its

period 1-2-3- � � � -132 is divided semantically into the

following four subsequences, called modules:

1– 30 Format module or F; colored in green

31– 66 Left-Turn module or L; blue

67– 96 Half-Adder module or H; red

97–132 Right-Turn module or R; yellow

The transcript can be hence represented as ðFLHRÞ� at the
modular level. Modules are to play their roles in expected

environments by folding into respective conformations

which should be pairwise-distinct enough to be distin-

guishable by other modules transcribed later. Such expec-

ted conformations are called a brick. For example, module

F encounters the four environments shown in Fig. 4 where

it takes the four bricks Fnt, Fnb, F0, and F1, respec-

tively. Here, by saying (an instance of) a module folds into

(or takes) a brick in an environment, what we actually

mean is that the rule set is designed so as for the transcript

of the module to interact with itself as well as with the

environment and fold deterministically into that brick

according to the dynamics (1). The whole system is

designed to guarantee that each module is transcribed only

in one of the environments it expects. This fact is illus-

trated in the brick automaton in Fig. 3, which describes

pairs of an environment and a brick as a vertex and tran-

sitions between them, introduced in Geary et al. (2019).

Since this automaton is closed, it suffices to test whether

for all pairs of an environment and a brick, the brick is

folded deterministically in the environment. This test has

been done in-silico using a simulator developed for this

project. This brick automaton and all the certificates can be

found at https://komaruyama.github.io/oritatami-infinit-

counter/.

Seed and Encoding. An initial counter value is encoded

in binary as bk�1bk�2 � � � b1b0 on the seed in the following

format:

64�65�66�
Y0

i¼k�1

�
wHnwRbwFbiwLbn

�
 !

wHn; ð2Þ

where

wHn ¼67�76�77�78�79�88�89�90�91�96;
wRb ¼97�102�103�108�109�114�115�120�

�121�126�127�132;
wF0 ¼1�10�11�12�13�22�23�24�25�30;
wF1 ¼1�22�23�24�25�26�27�28�29�30;
wLbn ¼31�36�37�42�43�48�49�54�55�64�

�65�66:

bFig. 3 A brick automaton of the proposed infinite binary counter. 9

possible ways of folding the first several beads of a module being

transcribed are enumerated at the bottom with labels t, b, ..., and

transitions in the brick automaton are labeled with a corresponding

way of folding

Counting infinitely by oritatami co-transcriptional folding 333

123

https://komaruyama.github.io/oritatami-infinit-counter/
https://komaruyama.github.io/oritatami-infinit-counter/

131

96

128

67 89

1

15

24

30

34

19

28

1226

76

132

17 2

91

7

90

16

78 88

13

23

66

527

25

129

18

77 79

6 127

21 10

20

22

8

9

11

65

29

14

130

None (Hn)

None (Fnt)

14

79

5

90

18

20

27

30

66

127

21

26

77

4

23

129

7

11

22

29

91

130

8

10

24

128

13

16

88 89

19

28

65 76

3

25 1

915

17

78

2

6

67

132

96

12

131

None (Fnb)

None (Hn)

15

1920

24 30

8

12

6

7131

3 5 17

29

22 23127126

124

9

28

25

16

132

129 4

10

14

130

1

2

11

125

27

13

18

21128 26

0 (H00, H11)

0 (F0)

130

128

25 29127 24

124

125

8 12

28

2

5 6 10

18 15

132

3

13

7

14

1

21

126 23 30

131

4 11

22

1719

26 27

16

9129

20

1 (H01, H10, He1)

1 (F1)
Fig. 4 All the four bricks of module F: The two bricks at the top, Fnt and Fnb, are for zigs while the others, F0 and F1, are for zags. Fnb binds

to the zag above so weakly that it can fold even in the absence of such a zag, that is, at an overflow

65

4563

35

37

47

64

26

32

34

42

33

56

40

44

49 314348

284652

54

59

36

62 53

58

66

2741

51

61

57 29

60 55

3038

39

50

25

Lt Lbn Lbe

Lt
64 4243

61

5157

62

31

4450 41

54

345258

25

39 27

55

263847

46 33

53

60

65 36

45

4866 30

35

49

56

59

32

40

29

28

37

63

Lt Lbn Lbe

Lbn

65

31

64

44

65

30

63

59

34

42

43

51

55

29

6636

37

45

61

27

6263

22

52 23

61

33

38

47

49

5654

62

40

46

25

60

50

53

58

58

26

64

28

35

48

57 60

66

32

39

41

59

Turn Signal

Turn Signal

Lcrn

48

26

22

41

59

4245

57 1325 12

27

64

52

8

18

11

19

20

9

44

65

60

14

31

53

6162

3547 37

43

49 1628

32 17

10

36

66

21

58

63

15

7

23

3950

54

34 38

4046

29

24

51

56

33

55

30

Turn Signal

Lcre

30

28

32

37

45

4753

63

63

36

41

5152

65

58

33

35

40

50

55

59

64

60

64

31

38

39

6061

26

34

434954

59

23

46

65

62

2757

61

29

25

66

42

44

48

56

58

62

66

Turn Signal

Lbe

Fig. 5 All the five bricks of module L: Lt, Lbn, Lcrn, Lcre, and
Lbe from top left to bottom right. In zigs, L folds into either Lt or

Lbn depending on where it starts, until the transcript reaches the left

end, where L folds either into Lcrn if the current counter value has

not been overflowed, or into Lbe at an overflow. In the case of

overflow, the next L folds into Lcre. In zags, L always folds into

Lbn

334 K. Maruyama, S. Seki

123

wHn, wRb, wF0, wF1, and wLbn are sequences of bead types

exposed downward by modules H, R, F, L when they fold

into bricks Hn, Rb, F bi, Lbn, respectively, which can be

found in Figs. 6, 7, 4, and 5 . The seed consists of the

initial value encoded as (2), preceded by the sequence

58�59�60�61�62�63 folded into a glider-shaped signal

for left turn, and succeeded by 97�108�
109�120�122�123� � � � 131�132 that folds as the

113

130

96

94123 92106

97

101116128 119

126

105

102103108

111117

95104

121

122 82125

132 109

110

118129

8081114127

83

93

115

107

120

131

124

98

99100112

Rt

Rt Rb

92113

132

98

130

97

124

104110

123

125

127

89

93

108

119

118

131

96

111112

114126

88117

120

107128 122

94

103

116

100105

121

129

91

95

106

102109115 90

99

101Rb

Rt Rb

92113

132

98

130

97

124

104110

123

125

127

89

93

108

119

118

131

96

111112

114126

88117

120

107128 122

94

103

116

100105

121

129

91

95

106

102109115 90

99

101Rb

131 129 101 102 115

124

98 119

122

118

123

1

91 10896

103

117

132

126

90

106

109

116

130

132

97

125

128

129

95

93 99

122

110

114

128

94

105

120

126

108

85

123

100 113

124

109

111

121

131

120

97

104

112

130

127

127

92

84

107

125

Rcr

121

Fig. 7 All the three bricks of module R: Rt, Rb, and Rcr. In zigs, R

folds into Rt or Rb, depending on how high it starts. In zags, R

always folds into Rb until the transcript reaches the right end, where

R folds into Rcr due to the four beads (boxed). Rcr is provided with

this Turn Signal for the next right carriage-return. Note that Rb is not

bonded to the environment at all. That is, this module certainly folds

into Rb at an overflow

68

82

65

66

2310

95 62

94

127

96

2212

758193

13

7879

83

84

1

72

7789

91 85 61

24

70

30

67

86

88

90

132

87 6469

25

71

73

92

63

74

76

80

11

0 (F0)

0 (H00)

92 65

132

77

86

76

88

96

1

7484

30

5978

90

87

64

6070

91

10

63

67

68

73

79

95

2412 22

75

82

23

8993

127

81

72

80

85 61

66

11

83

94

62

13 25

69

71

0 (F0)

1 (H01)

74

8791

96

132

62

22

6873

80 81

8892

79

70 61

85

1 27

77 83 8476

72

78

29

90

66

2523

63

127

65

28

69

93

95

30

64

75

94

2624

71 67

82

8689

1 (F1)

1 (H10)

23

94 64

24

61

65

132

83

89

30

9093

636268

73

86

59

29

71

92

74

81

60707778

96

25

87

8891

26 281

75

85

66

80 82

72

127

67

6976

2722

79 84

95

1 (F1)

0 (H11)

65

6679

86

646976

8083

55

59

758287

91 8496

56

60

63

61

6895

58

6778

8188

62

70

72

778992

9394 57

71

73

74

8590

1 (He1) 96

59

88 89 91

80

82

85 9262

72

78

71

79

94

9575 866163

9369 8460

68

81

65

70

77

73

9076

83

87

6664 67

74

None (Hn)

None (Fnt Fnb)

Fig. 6 All the six bricks of module H: H00, H01, H10, H11, He1, and Hn from top left to bottom right. In zags, H always folds into Hn while in

zigs, it folds into one of the other five bricks

Counting infinitely by oritatami co-transcriptional folding 335

123

module R folds into a brick Rcr (see Fig. 7). The seed is

exemplified for k ¼ 1 and b0 ¼ 0 in Fig. 8 or for k ¼ 0

(non-coding, i.e., initial counter value 0) in Fig. 13, where

it is colored in purple.

42

12911

15

10

5

21

77

34

24

56

16

56

67

122

11

64

84

37

50

77

61

23

7

11

111

78

131

59

62

76

103 54

17

3

51

66 24

102

85

1

102

45

103

132

38

126

25

69

90

13

55

96

57

88

63

21

127

53

75

94 24

9381

25

43

18

45

57

92

58

4

12

66

86

116

80 110

60

112

2

72

9736

95

98

13

27

51 8044

53

32

57

79

95

54

132

43

62

71

13237

4761

16

979

98

32

3

11

10

88

48

117

7776

128

5970

13120

84

13

29

46

128

76

116

22

106

87 92

105

74

5

121

14

19

34

90

123

76

126439

85 41

70

114

14

125

74

60

110

108 132

59

82

94

115

30118

125

127

109 120 89

39

90

56

9193

127

65

12

20

83

74

114

14

3

64

18

55 79

102

2252

89

35

63

103

19

37

75

115

121

6 7 8

1264

130

91

73

38

82

47

29

92

11491 48 77

109

4468

126

9

9471

40

73

105

48

78

35

50113

61

89

83

30

34112 58

55

127

7

119

66

2

15

23

39

113

59 118

86

26

4931

45120

55

88 37

27

124

104

43

33

27 31

32

36

80

1

4 52

108

87

89

124

44 62

67

49

99

25

33

96

8530

90

60

8840

96

49

108

122

101

24

58

68

91

111 36

31

68

41

97

35

54 60

78

64

91

16

52

84 82

3189

122

72

126

121

123

42 43

23

29

40

6100

9

67

62

1872

97

15

42 9630

38

67

81

28

46

2

108

131

48

8 8

46

129

47

1 67

54 66

81

49

107 83

93

107

120

90

26

12064

101

10

33

65

129

22

97

20

51109115

87

1

124

25

73

22

78

42

17

125 95

6

75

106

13

71

78

12863

10

119

61

41 12

28

79

19

100

104

70

88

79

21

235053

109

65

65

26

36

96

5

28

99

17

65

58

66

77

130

63

117

123

69 130 69

76

861 (H01)

1 (F1)

0 (F0)

Carry=1

Carry=0 Carry=0

Turn Signal

Fig. 9 The first zag. A Turn Signal at the left end of the seed makes

module L folds into the brick Lcrn to turn and initiate the zag. This

brick is equipped with another Turn Signal for the sake of the next

turn. In a zag, module F reads the output of module H from above and

formats it for the sake of the next zig

59116

16

107

111

62

96102

14

28

120

12421

56101110 95

1096

112

17

677

113125

114

92

97

1522

53 50

19 5578

57

86

27 100

10324

88105

1318

29 1120 104119 68

12 72

58

30

122

121

10

108

4

61

2

6481

127 91

117

132 84

3

128

99

80

1261

130

115

118123

71

94 63

25 66

75

83 65

87

60

8926

79

93106 70

23

69

5

5282

131

73

9

74

76

85

129

54

7798

90

8 1 (He1)

Turn Signal

⇒
45

54

62

42

56

5557

57

74

1522

50

3

65

129

97

101

16

98

52931069

666785

88

50

61

6096

125

736

63

103127

64

33

39

90

43

58

61

14

58

95107

108

65

23

81

11020

51

126

52

30

60

9113 72

62

12327

13126

49

59

87

53

102

113

115

38

29

99

119

124

31

59

120

37

68

121

10 105

56 8

69

1327

89

1

64

18

130

84109114

32

63

5

12

704

78

92

19

94117

17

35

28 118

11

46

122

36

48

66

7186

100

104

75

47

7780

54

53

82

2

76

25

112

41

116128

111

34

44

55 83

21

40

7924

1 (He1)

Fig. 12 The succeeding R and F also fold into respective glider-like

bricks. (Left) This brick of F (Fnb) exposes Turn Signal 28-27-22
(boxed), which is usually ‘‘hidden’’ under the previous zag. (Right)

The exposed 28-27-22 (boxed) triggers the folding of next L into a

special brick (Lcre) for left carriage-return

121

90 126

79

119

31

78

88

116

103

30 64

24

26 69

1135 131

108

50

65

78

13

80126

49

4717

12 123

60

18

97

6536102

4393

128

8842

220

115

32

1016

103

45

129

125115

25

40

27

55132

35

100

108

62

10912764

757624 81114

1120

1267

70

72129

26

96

29

8965

9022

98

111

120

114 24 89

63

102

122

36

131

7

20

67 77

22

91 10

39

118

77 96

1

87

127

127

31

54

61

132

76

5110

109

58

49

95

105

12088 43

91

44

64106

97

211

97 2311

8

9613

56

25

22

14

60

66 91

99

104

9

122

121

27

94 89

14

7

23107 38

42

74

130

79

124

54

34

23

15

15

4153

124

108 66

21 1124

52109 130

3 73

132

79 78

10

37 25

18

125

126

67

9

66123

3

55

11

59

687185

6

465158

86

6

30

28

92

28

59

37 48

128

19

11

48

57

83

33

63101

76

16

172982

117

61

30

84

12

19

62

13

90

477

28 Carry=1

0 (F0)

Carry=0

1 (H01)
Carry=1

Fig. 8 The first zig. The initial counter value 0 is encoded below the

seed in the format (2) with k ¼ 1 (1-bit width). Being fed with carry,

the zig increments the count. Module H outputs 1, or more precisely a

sequence of bead types which shall be interpreted as 1 in the next zag

and reformatted, as a sum and cancels the carry

47

116

27

119

64

112

113

1

102

2

40

18 32

102

34

5

6871

115

24

28

72

72

1 91

46

86

5878

121109 67

128

4

108

93 70

121

130

88

84104131

51

78

10

44

103 43

64

96 132

96

128

95

79

44

31

25

76

82

80

27

71

21

67 89

132

2

62

77

117

2361

57

15

16

18

116

24

30

63

30

38

43121

124

114

28

62

10

3

31

86

129

113

4

124

81

12119

78

126

5

86

98

37

28

52

19

29

60

22

7 10

89

90

42

23

130

112

84

96

101

1

20

12

36

58

27

83

5174

35

5826

33

68

124109

81

76

44

99

110

4

104

34

129

72

89118

132

17

126

77

28

105

2

38

66

36

83 45

89

1337

39

53

78

24

39

97

97

83

11

33

36

117 94

10

31

32

55

8629

91 66

32107

13

16

63

108

6

59102114

45

122

59

92

115

68

73

62

12315

84

113

120

123 122

67

7

35

115

29

131 63

9

82

67 88

13174

60

79

49

19

70

66

82 57

65

52

90

16

106

96

105

125

54 96

8

9141

78

64

73100

118

35

11

40

80

82

102

13

52

105

128

109

26

54117

97

10

88

67

36

31

107

55

131

16

48

65

87 119

20 127

99

110

88

13

69

20

67

1277

78

95

26

9

66

125

23

16

6123

122

96

118

85

24

30

108120

98 13

114

11

49

58 106 59

28

66

19

38

62 50

61

94

108

63

107

131

9230

130

112

103

1753 14

115

17

75

128

51

92

99 111

11

94

79

48

35

116

884

127

22103

61

49

65

13

65102 48126

55

8

22

105

110

5

56

109

116

21

50

6592

26

98

123

120

125

109

70

127

1

49114

27

45

93

6925

36

79

12271

83

80

117

1544

6

17

30

56

18

23

63

51

54 76

118 75

100

104

12

6

59

12

129

77 103

93

126

88

94

1291

29

8543

53

73

60

42

18

95

12089

34

115

54

56

66

3

53

77

21

42

61

2240

103

79

119

6

33

74

22

87

42

46

4

6

58

5

127

41

119

47

37

90

74

15

24

52

120

7577

21

25

130

71

128

7

34

56

10610

20

27

111 5

26

81

95

22

79 89

47

87

693

127411258

101

120 25

43

48

12

45

15

46

7

46

30

132

104

123

17

69 72

111

132

64

99

114

47

12521

112

28

12

77

126

55

97

4

132

9

129

31

39

75

24

59

37

60

62

11

33

9765

50

85

41

889329

48 76126 42

73

43

100

19

14

70

121

123 11

14

2

64

64

100

14

57

109

81

2050

91

101

85

124

18

98

76 108

40

107

14

6097

769

129

55

37

90

1

111

54

68 113

122

91

3

25

90

110

132

57

108

39

130

90

49

87101

80

124

38 39

23

106

25

0 (H11)
Carry=1Carry=1

Carry=1 (overflow)

Turn Signal 1 (H01)

1 (F1)

Fig. 10 Overflow. When the carry has not been canceled out until the end of a zig, the Turn Signal is too far for the upcoming module, which is

L, to be folded into the brick Lcrn for turn

55

6

98

60

132

20

42 18

29

75 80

66

34

41

83

95

94

12

57 9

67

1210

124

90

37

59

82

48

87

31

32

8

32

24

1450

7

22

63

130

23

33

25

50

21

17

60

26 8

15

90

17

71

89

13

78

4

30

74

128

24 19

4149

13045

127

52

127

66

51

54

91

7

10276

128

73 85

28

51

79

67

81 99

46

91

64

4042

125

36

97

44

38

52

3

11

26

22

44

39

54

65

126

340

62

96

60

1

2

20

57

88

10

38

46

86 10

59

45 88

35

53

58

43

92

37

35

77

28

29

89

64

63

16

68

48

27

31

6 12

14

61

39

30

62

79

122

18

77

125

49

12

15

62

72

21

58

126

27

93

97

12

102

16

47

1

84

33

122

12

34

23

36

63

511

124

9 129

65

70

1315

69 100

132

96

25

43

6665

56

5356

61

78

58

55

13

61

464

76

59

2

129

131

19

47

Carry=1 (overflow)

Turn Signal

Carry=1

⇒
62

33

60

1

28

37

67

19 6

40

86

55

2

56

90

91

54

82

89

292

21

54

96

12547

61

97

65

85

40

59

89

88

26

26

58

23

35

131

4

20

31

89

76 15

3

27

6

46

46

38

66

52

39

92

36

57

1

2787

58

50 8

55

14

18

53

131

126

65

129

68

339

53

13

96

44

6388

72

71

25

74

90

22

25

100

18

62

76

132

10

11

75

130

2971

77

12

1669 57

10

99

64

31

11

91

66

78

77

41

72

12

3742

38

60 81

1732

79

126

43

61

63 62

73

77

28

78

82

85

122

93

1641

24

75

59

124

5

9

35 2356

93

36

64

49

97

19

74

102

122

84

30

51

83

14

7

5

79

50

20

102

121379

80

33

34

65

69

94 58

61

63

45

67

4

127

45

64

81

24

42

94

21 10

98

1274373

51

60

88

9

130

30

32

29

83

15

78

59

70

96

132

67

70 124

49 48

8068 95

8

76

17

86

90

128

47

12552

129

66

91

128

84

1244

95

22

12

34

12

48

87

7

Carry=1 (overflow)

Turn Signal

Carry=1
1 (He1)

Fig. 11 (Left) Starting from the bottom, the Turn Signal above is too far for this L to fold into Lcrn. It rather folds into Lbe and initiates bit

expansion. (Right) Without anything around, the succeeding H folds into a glider (brick He1)

336 K. Maruyama, S. Seki

123

3.2 Brick level overview

Starting from the seed, this system cyclically transits four

phases: zig (), left carriage-return (,!), zag (!), and

right carriage-return (-). The prefix ðFLHRÞkF of the

transcript folds into the first zig (recall that k is the bit-

width of the initial count). In zigs in general, all the

instances of modules F and H fold into bricks of width 10

and height 3, while those of L and R fold into bricks of

width 12 and height 3. Zigs thus turn out to be a linear

structure of height 3. We can inductively observe that the i-

th instance of H in the prefix is transcribed right below bi�1
encoded on the seed in the format (2) so that the H can

‘‘read’’ bi�1. After the whole prefix has thus folded into the

first zig, the next L is transcribed right below Turn Signal,

which lets the L fold into a special brick for left carriage-

return if the zig ended at the top (this occurs unless

bk�1 ¼ bk�2 ¼ � � � ¼ b0 ¼ 1) (see Fig. 9). We should note

that this special brick Lcre is provided with another Turn

Signal for the sake of next left carriage-return (see Fig. 5).

Having been thus carriage-returned, the succeeding sub-

sequence ðHRFLÞkH of the transcript folds into the first

zag. Even in zags, F and H fold into bricks of width 10 and

height 3, while L and R fold into bricks of width 12 and

height 3. As a result, zags turn out also to be a linear

structure of height 3. More importantly, instances of H and

F are aligned thus vertically and alternately into columns

(see Figs. 8, 9, and 10), i-th of which from the right

propagates the (i�1)-th bit of the counter value downward.

After the whole subsequence has folded into the first zag,

an instance of R is transcribed and folded into a special

brick Rcr for right carriage-return due to the Turn Signal

125-124-123-122, which occurs also at the bottom of

Rcr (see Fig. 7) for the sake of next right carriage-return.

This amounts to one cycle of the phase transition.

3.3 Increment of the counter

In a zig, module H plays its primary role as a half-adder

and carry transfers through instances of others (F, L, and R)

from an instance of H to another for more significant bit.

Carry transfers as a height for modules to start. In zigs,

modules F, L, and R take the respective two bricks (Fnt

and Fnb for F, Lt and Lbn for L, and Rt and Rb for R;

see Figs. 4, 5, and 7), both of which start and end at the

same height: one at the top while the other at the bottom. A

zig is fed with carry by being forced to start at the bottom

by the last Rcr or the seed. Until an overflow, module H

encounters only four environments, which encode input 0

as wF0 or 1 as wF1 and carry or no-carry as of whether the

module starts at the bottom or top, where it takes H00,

H01, H10, and H11, respectively, as shown in Fig. 6 (Hxc

is folded when the input is x and the carry is given if c ¼ 1

or not otherwise).

Let us see how the subsequence ðFLHRÞkF folds into a

zig in order to count up; for k ¼ 1 and the current counter

value 0, see Fig. 8. The zig starts at the bottom, that is,

being carried, and the carry transfers through the first

instances of F and L in the way just explained toward the

first instance of H. This H is thus fed with carry and folds

into H01 if the bit encoded above is 0, as illustrated in

Fig. 8, or H11 if the bit is rather 1. H01 ends at the top,

corresponding to canceling the carry out. This absence of

carry transfers through the succeeding modules leftward.

As a result, the zig, or more precisely, the last instance of F

of the subsequence ends folding at the bottom if this

increment causes an overflow (Fig. 10), or at the top

otherwise (Fig. 8). An instance of L is to be transcribed

next. It folds either into Lcrn for carriage-return unless the

counter value is overflowed, or into Lbe at an overflow.

3.4 Bit-width expansion at an overflow

The fixed bit-width counter (Geary et al. 2019) cannot

handle a zig that ends at the bottom, that is, its behavior is

132

122

97

123124

120

125

108 109

126

127129

128

130

131

9747

123124

129

2

57

71

7

106

39

1319

114

1054

55

121

108 120

20

33

41

80

12 128

86

36

67

129

1

42

88

131

122

25

34

69

132

70 93

1038

38

40

73

112

130

60

66 91

105

92

124

6

16

99

11324

39

89

32

109

50

81

87

108

116

12713114

63 74

48

85

23

52

78 90

115

64

72

126

46

65

4

82

118

122

123

58

21

59

125

28

17

22

83

102

127

128

13015

35

68

30

1129

98

49

94

110

31

119

18

43

101

125

10937

75

126

76

104

6162

77 120

45

107

5

95

96

4451

79

100

27

132

53

56

84

26

117

97

111

Fig. 13 Counting from a non-coding seed. (Left) The simplest-possible seed that consists only of the boxed right Turn Signal. (Right) Starting

from this non-coding seed, the first period results in the counter value 1 in the 1-bit

Counting infinitely by oritatami co-transcriptional folding 337

123

undefined, that is, it gets nondeterministic, at an overflow.

In contrast, module L in this infinite counter is designed so

as to fold into Lbe in this situation in order to keep

counting up (Fig. 11). Observe that the dent on Turn Signal

made of 58, 63, and 64 is too far for module L, or more

precisely, for its beads 33 and 34 to interact with strongly

enough to fold into Lcrn. Lbe is a self-sustaining con-

formation (glider) so that it can fold even in a ‘‘void,’’

which occurs at that very moment. For the same reason, the

following instances of H, R, and F fold into self-sustaining

conformations He1, Rb, and Fnb, respectively (Figs. 11

and 12). Note that He1 is essentially the same as H00 but

exposes the opposite side downward, which will be inter-

preted as the leading bit 1 after expansion in the next zag.

When the next instance of L is transcribed, there is nothing

around. Nevertheless, it does not fold into Lbe but folds

into Lcre for carriage-return; how? It is guided by inter-

action between the beads 35, 36 along the transcript of L

and the Turn Signal 28-27-22 above Fnb (Figs. 5 and 12

). This signal is usually hidden geometrically by the pre-

vious zag, and hence, does no harm.

3.5 Formatting

The counter value has been successfully incremented but

the resulting value is not in the format (2) yet. A subse-

quence ðHRFLÞkH of the transcript folds into the next zag,

where k is the bit width of the incremented counter value.

In this zag, instances of F play their primary role to format

the 1-bit output by module H (recall that instances of H and

F are aligned vertically and alternately) so as to expose the

incremented counter value in the format (2) for the next

zig. Both of the bricks of L for carriage-return, i.e., Lcrn

and Lcre, end at the bottom so that zags start at the bot-

tom. All modules start and end at the bottom in zags; note

that nothing has to be transferred between modules. That is,

instances of H, L, and R fold into Hn, Lbn, and Rb,

respectively. Below the brick Hxc, an instance of F folds

into Fy, where y ¼ ðxþ cÞ mod 2.

3.6 Rule set

The rule set of the proposed counter consists of the fol-

lowing 377 rules:

(1,6), (13,72), (29,32), (65,68), (88,93),

(1,74), (13,81), (29,33), (65,69), (89,93),

(1,75), (14,18), (29,40), (65,84), (91,130),

(1,77), (14,29), (29,60), (67,131), (91,96),

(1,80), (14,30), (29,69), (67,72), (92,96),

(1,81), (15,28), (30,32), (67,84), (93,130),

(1,84), (15,39), (30,33), (67,88), (93,132),

(1,93), (15,72), (30,39), (68,72), (94,99),

(2,21), (15,76), (30,40), (68,83), (95,97),

(3,130), (15,81), (30,60), (68,84), (95,98),

(3,131), (15,90), (31,36), (68,87), (96,130),

(3,64), (15,91), (31,65), (69,130), (96,132),

(3,65), (16,21), (32,35), (69,131), (97,102),

(3,84), (16,27), (32,36), (70,75), (97,108),

(3,91), (16,38), (32,37), (70,81), (97,126),

(3,93), (16,39), (32,38), (70,87), (98,102),

(3,95), (16,71), (32,56), (71,74), (98,106),

(4,21), (16,72), (32,57), (71,75), (98,107),

(4,83), (17,20), (33,35), (71,81), (98,108),

(4,84), (17,21), (33,47), (71,86), (99,106),

(4,9), (17,26), (33,48), (71,87), (99,127),

(5,20), (17,27), (33,61), (72,79), (99,129),

(5,8), (17,70), (33,63), (72,80), (100,105),

(5,85), (17,88), (33,64), (73,78), (101,104),

(5,9), (18,25), (34,39), (73,80), (101,124),

(5,90), (18,27), (34,45), (73,81), (101,125),

(5,91), (18,67), (34,46), (73,84), (102,123),

(6,15), (18,69), (34,47), (73,88), (103,108),

(6,19), (18,70), (34,58), (74,77), (103,113),

(6,81), (18,71), (34,63), (74,78), (103,114),

(6,82), (18,72), (34,64), (74,83), (103,122),

(6,83), (18,88), (35,39), (74,84), (103,123),

(6,84), (19,24), (36,43), (74,87), (104,107),

(6,91), (19,26), (36,44), (75,132), (104,108),

(6,92), (19,71), (36,45), (75,83), (104,113),

(7,12), (19,81), (36,60), (75,96), (104,115),

(7,13), (20,23), (36,64), (76,81), (106,111),

(7,18), (20,24), (37,42), (76,87), (107,109),

(7,83), (21,37), (37,43), (76,93), (107,110),

(7,89), (22,27), (38,41), (76,95), (108,124),

(8,11), (22,28), (38,42), (77,80), (108,125),

(8,12), (22,36), (38,43), (77,81), (109,114),

(8,18), (22,75), (40,45), (77,86), (109,120),

(8,73), (22,76), (40,58), (77,87), (109,123),

(8,78), (22,78), (41,43), (77,92), (110,113),

(8,87), (23,26), (41,44), (77,93), (110,114),

(9,17), (23,27), (41,45), (78,127), (110,119),

(9,72), (23,28), (41,57), (78,132), (110,120),

(9,73), (23,73), (42,54), (78,99), (111,117),

(9,83), (23,74), (42,56), (79,84), (112,117),

338 K. Maruyama, S. Seki

123

(9,86), (23,75), (43,48), (79,88), (113,116),

(9,87), (24,71), (44,47), (79,90), (113,117),

(10,15), (24,72), (44,48), (79,96), (114,122),

(10,67), (25,30), (45,51), (79,97), (115,120),

(10,79), (25,60), (46,51), (79,98), (116,120),

(10,81), (25,69), (47,49), (80,83), (118,121),

(10,85), (25,73), (47,50), (80,84), (118,123),

(11,14), (26,29), (47,51), (80,88), (119,121),

(11,15), (26,30), (48,50), (80,89), (119,122),

(11,64), (26,31), (49,53), (80,95), (119,123),

(11,66), (26,65), (49,54), (80,96), (120,123),

(11,78), (26,66), (52,57), (81,132), (121,126),

(12,33), (26,69), (55,60), (81,89), (122,126),

(12,61), (26,70), (58,63), (81,96), (124,129),

(12,63), (26,71), (59,62), (82,87), (125,127),

(12,64), (26,72), (59,63), (82,93), (125,128),

(12,65), (27,35), (60,66), (82,94), (125,129),

(12,66), (27,36), (60,69), (82,95), (126,129),

(12,77), (27,64), (61,66), (83,86), (126,130),

(12,78), (27,66), (61,67), (83,87), (127,129),

(12,81), (27,67), (61,68), (83,92), (127,132),

(12,88), (27,68), (61,69), (83,93), (128,130),

(13,18), (27,69), (62,65), (84,131), (128,131),

(13,30), (28,33), (62,66), (84,93), (128,132).

(13,31), (28,35), (64,69), (85,130),

(13,32), (28,60), (64,85), (85,90),

(13,33), (29,31), (65,67), (86,90),

4 Conclusion

In this paper, we have expanded the existing finite binary

counter by equipping it with a function of bit expansion at

an overflow. This capability of handling overflows enables

the system to launch at a simplest possible seed that

encodes nothing but a Turn Signal for the first right car-

riage-return as long as the system starts counting from 0

(see Fig. 13).

The infinite counter was used to simulate countably

many Turing machines in parallel for proving the unde-

cidability of problems on aTAM in Bryans et al. (2013);

Lathrop et al. (2011). The inherent sequentiality of ori-

tatami prevents the proposed counter from being utilized

alike or at least makes such applications highly non-trivial.

The real significance of this counter in practice is that it can

be embedded into a large-scale system as a counting

module that can transition at an overflow into another

phase, which does not have to do bit-expansion. A two-

phase oritatami system to self-assemble the n� n square is

under construction; starting from an Oðlog nÞ-size seed on

which an initial counter value is encoded, it first counts up

to 2log n while drawing the diagonal, and at an overflow, it

changes the direction of counting at 90 degrees and keeps

just drawing diagonally until the diagonal reaches the right

end of the counter. It is preferable to optimize this counter

in these applications, for example, by reducing bead types,

shortening the period, or simplifying its rule set, though

such optimization problems are computationally hard in

general (Han and Kim 2019; Ota and Seki 2017).

Acknowledgements This work is supported in part by KAKENHI

Grant-in-Aid for Challenging Research (Exploratory) No. 18K19779,

for Scientific Research (B) No. 20H04141, and Scientific Research

(C) No. 20K11672, and JST Program to Disseminate Tenure Track-

ing System No. 6F36, both granted to S. S.

References

Adleman L, Chang Q, Goel A, Huang M.D (2001) Running time and

program size for self-assembled squares. In: Proceedings of

STOC 2001, ACM. pp 740–748

Bryans N, Chiniforooshan E, Doty D, Kari L, Seki S (2013) The

power of nondeterminism in self-assembly. Theory Comput

9:1–29

Demaine ED, Hendricks J, Olsen M, Patitz MJ, Rogers TA,

Schabanel N, Seki S, Thomas H (2018) Know when to fold

’em: Self-assembly of shapes by folding in oritatami. In:

Proceedings of DNA24. LNCS, vol. 11145, pp 19–36. Springer

Elonen A (2016) Molecular folding and computation. Bachelor Thesis

Evans CG (2014) Crystals that Count! Physical Principles and

Experimental Investigations of DNA Tile Self-Assembly. Ph.D.

thesis, Caltech

Geary C, Andersen ES (2014) Design principles for single-stranded

RNA origami structures. In: Proceedings of DNA 20. LNCS, vol.

8727, pp 1–19. Springer

Geary C, Étienne Meunier P, Schabanel N, Seki S (2018) Proving the

Turing universality of oritatami cotranscriptional folding. In:

Proceedings of ISAAC 2018. LIPIcs, vol. 123, pp. 23:1–23:13

Geary C, Étienne Meunier P, Schabanel N, Seki S (2019) Oritatami:

A computational model for molecular co-transcriptional folding.

Int. J. Mol. Sci. 20(9):2259 (preliminary version published in
MFCS 2016)

Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded

architecture for cotranscriptional folding of RNA nanostructures.

Science 345(6198):799–804

Han YS, Kim H (2018) Construction of geometric structure by

oritatami system. In: Proceedings of DNA24. LNCS, vol. 11145,

pp 173–188. Springer

Han YS, Kim H (2019) Ruleset optimization on isomorphic oritatami

systems. Theor Comput Sci 785:128–139

Lathrop JI, Lutz JH, Patitz MJ, Summers SM (2011) Computability

and complexity in self-assembly. Theory Comput Syst

48(3):617–647

Masuda Y, Seki S, Ubukata Y (2018) Towards the algorithmic

molecular self-assembly of fractals by cotranscriptional folding.

In: Proceedings of CIAA 2018. LNCS, vol. 10977, pp 261–273.

Springer

McClung CR (2006) Plant circadian rhythms. The Plant Cell

18:792–803

Counting infinitely by oritatami co-transcriptional folding 339

123

Minsky M (ed.) (1967) Computation: Finite and Infinite Machines.

Prentice-Hall, Inc

Ota M, Seki S (2017) Ruleset design problems for oritatami systems.

Theor Comput Sci 671:26–35

Pchelina D, Schabanel N, Seki S, Ubukata Y (2020) Simple intrinsic

simulation of cellular automata in oritatami molecular folding

model. In: Proc. LATIN 2020. LNCS, vol. 12118, pp 425–436.

Springer

Rothemund PWK, Winfree E (2000) The program-size complexity of

self-assembled squares (extended abstract). In: Proceedings of

STOC 2000, ACM. pp 459–468

Winfree E (1998) Algorithmic Self-Assembly of DNA. Ph.D. thesis,

Caltech

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

340 K. Maruyama, S. Seki

123

	Counting infinitely by oritatami co-transcriptional folding
	Abstract
	Introduction
	Preliminaries
	Folding an infinite binary counter
	General idea
	Brick level overview
	Increment of the counter
	Bit-width expansion at an overflow
	Formatting
	Rule set

	Conclusion
	Acknowledgements
	References

