Natural Computing (2021) 20:329-340
https://doi.org/10.1007/s11047-021-09842-6

=

Check for
updates

Counting infinitely by oritatami co-transcriptional folding

Kohei Maruyama' - Shinnosuke Seki'>

Accepted: 8 January 2021 /Published online: 11 March 2021

© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract

A fixed bit-width counter was proposed as a proof-of-concept demonstration of the oritatami model of cotranscriptional
folding [Geary et al., Proc. MFCS 2016, LIPIcs 58, 43:1-43:14], and it was embedded into another oritatami system that
self-assembles a finite portion of Heighway dragon fractal. In order to expand its applications, we endow this counter with
capability to widen bit-width at every encounter with overflow.

Keywords Theory of algorithmic molecular self-assembly - RNA cotranscriptional folding - Oritatami system -

Counting

1 Introduction

Counting is one of the most essential tasks for computing.
Nature has been counting billions of days using molecular
“circadian clockwork” which is “as complicated and as
beautiful as the wonderful chronometers developed in the
18th century” (McClung 2006). Nowadays, developments
in molecular self-assembly technology enable us to design
molecules to count. Evans has demonstrated a DNA tile
self-assembly system that counts accurately in-vitro in
binary from a programmed initial value until it overflows
(Evans 2014). In its foundational theory of molecular self-
assembly, such binary counters have been proved versatile,
being used to assemble shapes of particular size (Adleman
et al. 2001; Rothemund and Winfree 2000), towards self-
assembly of fractals (Masuda et al. 2018), and as an infinite
scaffold on which Turing machines can be simulated in

An extended abstract on this work was published as a short
paper in the proceedings of the 46th International Conference
on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2020, Limassol, Cyprus, January 20-24,
2020), Lecture Notes in Computer Science (LNCS) 12011,
pp. 566-575.

< Shinnosuke Seki
s.seki@uec.ac.jp

The University of Electro-Communications, 1-5-1
Chofugaoka, Chofu, Tokyo 1828585, Japan

Ecole Normale Supérieure de Lyon, 46 allée d’Italie,
69007 Lyon, France

parallel in the abstract tile-assembly model (Bryans et al.
2013; Lathrop et al. 2011), to name a few.

A fixed bit-width (finite) binary counter has been
implemented as a proof-of-concept demonstration of the
oritatami model of cotranscriptional folding (Geary et al.
2019). As shown in Fig. 1, an RNA transcript folds upon
itself while being transcribed (synthesized) from its cor-
responding DNA template strand. Geary, Rothemund, and
Andersen programmed a specific RNA rectangular tile
structure into a DNA template in such a way that the
corresponding RNA transcript folds cotranscriptionally
into the programmed tile structure with high probability in-
vitro at room temperatures (RNA origami) (Geary et al.
2014). An oritatami system folds a transcript of abstract
molecules called beads of finitely many types over the
2-dimensional triangular lattice cotranscriptionally
according to a rule set that specifies which types of
molecules are allowed to bind at unit distance. The tran-
script of the binary counter in Geary et al. (2019) is of

period 60 as © — @ —---— 69 — (0) —--- and its period is
divided semantically into two half-adder (HA) modules
A=@Q —-D— - —@ and C=6)—6)— - — @

and two structural modules B and D, which are sandwiched
by half-adder modules along the transcript as ABCD. While
being folded cotranscriptionally in zigzags, HA modules
increment the current counter value i by 1, which is ini-
tialized on a linear seed structure, alike the Evans’ counter,
whereas structural modules B and D align HA modules
properly and also make a turn at an end of the counter
value i; B guides the transcript from a zig to a zag (—)
while D does from a zag to a zig («—). This counter was

@ Springer

http://orcid.org/0000-0002-0276-3322
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-021-09842-6&domain=pdf
https://doi.org/10.1007/s11047-021-09842-6

K. Maruyama, S. Seki

Fig. 1 RNA origami. RNA polymerase enzyme (orange) synthesizes
the temporal copy (blue) of a gene (gray spiral) out of ribonucleotides
of four types 2, C, G, and U

embedded as a component of an oritatami system to self-
assemble an arbitrary finite portion of Heighway dragon
fractal (Masuda et al. 2018); it remembers how many turns
the dragon has made so far. Its applications are limited,
however, by lack of mechanism to detect an overflow, at
which its behavior is undefined and it gets nondetermin-
istic. In this paper, we shall endow this counter, or more
precisely, its structural module B, with the capability of
overflow detection and bit-width expansion thereof.

The oritatami model has been proven Turing universal
in Geary et al. (2018), where a universal Turing machine is
encoded as a seed and a period of transcript of an oritatami
system using 542 bead types via cyclic tag system, and the
number of bead types needed for the universality was
reduced to almost one-third (183 bead types) recently
(Pchelina et al. 2020) by an intrinsic simulation of 1-di-
mensional cellular automata (CA). It is hence no surprise
that oritatami systems can count even infinitely. In the
read-once-write-once models of computation such as ori-
tatami, abstract tile-assembly model (aTAM) (Rothemund
and Winfree 2000; Winfree 1998), and many others in
molecular self-assembly, however, what a computation
matters is not so much an output obtained conclusively but
rather a shape self-assembled in the course; the shape is
often the goal of computation in molecular self-assembly.
Unless being interlocked geometrically, the output cannot
wire to an input of another computation. The versatile
systems in oritatami (Geary et al. 2018; Pchelina et al.
2020) hence never discourage us to design a set of singly-
functional modules of simple enough shape to be wired,
preferably via a common interface. (Note that unless being
provided anyhow with random access memory, in molec-
ular self-assembly, the ability to count highly unlikely
suffices for Turing universality; c.f. Minsky 1967.)

The proposed counter is simple in number of bead types
used as well as length of its transcript period. It transcribes
®—@—---— (332 repetitively (needless to say, 132 bead
types), whereas the period of a transcript to simulate a
radius-r CA with Q states by the simplified Turing uni-

versal oritatami system (Pchelina et al. 2020) is of length
about 1‘3‘—2 Qf log, O,, where O, = 21082201 \whose value
cannot be smaller than % -4 > 189, obtained at Q = 1 and
r = 0, and rises significantly in order for CAs to be able to

compute as %-4~ 16> >48469 at Q=2 and r=1. A

@ Springer

periodic transcript is expected to be transcribed from a
circular DNA (Geary and Andersen 2014) but such a
template DNA sequence gets more costly to be synthesized
as it gets longer. The proposed counter folds in zigzags into
a logarithmically-widening trapezoid so that it cannot be
afforded at any scaling of Heighway dragon fractal. It
therefore does not truly enable to self-assemble this fractal.
The significance of this counter is rather to demonstrate
that an oritatami system can detect an overflow and change
its phase therein from counting to bit-expansion and back
(note that oritatami is not provided with any internal states;
see Sect. 2). This phase-transition capability should be
applicable, for example, to self-assemble the n x n square
in oritatami at a scale, starting from an O(logn)-size seed
encoding n, based on the system in aTAM for square self-
assembly (Rothemund and Winfree 2000); such a system
would make use of this capability rather to transition from
the binary counting phase to the phase to fill the remaining
n x (n — logn) rectangle while drawing the diagonal.
This paper is organized as follows. In Sect. 2, we pro-
vide basic notions and notation of oritatami system. The
infinite counter shall be explained into detail in Sect. 3. We
conclude this paper in Sect. 4 with a short discussion.

2 Preliminaries

Let X be a finite alphabet, whose elements should be
regarded as types of abstract molecule, or beads. A bead of
type a € 2 is called an a-bead. By 2* and X2“, we denote
the set of finite sequences of beads and that of one-way
infinite sequences of beads, respectively. The empty
sequence is denoted by A. Let w =b1by---b, € 2" be a
sequence of length n for some integer n and bead types
bi,...,b, € 2. The length of w is denoted by Iwl, that is,
|w| = n. For two indices i, j with 1 <i <j<n, we let w[i..j]
refer to the subsequence b;b;yi---bj_1b;; if i=j, then
wli..i] is simplified as w[i]. For k> 1, w[l..k] is called a
prefix of w.

Oritatami systems fold their transcript, which is a
sequence of beads, over the triangular grid graph T =
(V,E) cotranscriptionally. A directed path P = pip, -+ p,
in T is a sequence of pairwise-distinct points
DP1,D2,-- -, Pn € V such that {p;,p;11} € E for all 1 <i<n.
Its i-th point is referred to as P[i]. Now we are ready to
abstract RNA single-stranded structures in the name of
conformation. A conformation C (over X) is a triple
(P, w, H) of a directed path P in T, w € X* of the same
length as P, and a set of (hydrogen) bonds
HC {{i,j} | 1<i,i+2<j,{P[i],P[j]} € E}. This is to be
interpreted as the sequence w being folded along the path P
in such a manner that its i-th bead w[i] is placed at the i-th

Counting infinitely by oritatami co-transcriptional folding

331

b’ v

Fig. 2 Folding of a glider motif by a delay-3 deterministic oritatami

point P[i] and the i-th and j-th beads are bonded (by a
hydrogen-bond-based interaction) if and only if {i,j} € H.
The condition i 4+ 2 <j represents the topological restric-
tion that two consecutive beads along the path cannot be
bonded. A rule set R C X x X is a symmetric relation over
2, that is, for all bead types a,b € X, (a,b) € R implies
(b,a) € R. A bond {i,j} € H is valid with respect to R, or
simply R-valid, if (w[i],w[j]) € R. This conformation C is
R-valid if all of its bonds are R-valid. For an integer « > 1,
C is of arity o if it contains a bead that forms « bonds but
none of its beads forms more. By C<,(X), we denote the
set of all conformations over X whose arity is at most «; its
argument X is omitted whenever X is clear from the
context.

The oritatami system grows conformations by an oper-
ation called elongation. Given a rule set R and an R-valid
conformation C; = (P,w, H), we say that another confor-
mation C; is an elongation of C; by a bead b € X, written

as C| = bC,, if C; = (Pp,wb,H U H") for some point p €

V not along the path P and set H' C {{i,|w|+1}]1
<i<|w|,{P[i],p} € E, (wli],b) € R} of bonds formed by
the b-bead; this set H' can be empty. Note that C, is also R-
valid. This operation is recursively extended to the elon-
gation by a finite sequence of beads as: for any confor-

mation C, C N A*C; and for a finite sequence of beads
w € 2* and a bead b € X, a conformation C, is elongated

to a conformation C, by wb, written as C, wa*Cz, if
. . . R

there is a conformation C’ that satisfies C; — w*C’ and
c Lpe,.

An oritatami system Z is a tuple (X, R, 5,0, 0, w), where
2 and R are defined as above, while the other elements are
a positive integer 0 called delay, a positive integer o called
arity, an initial R-valid conformation ¢ € C<,(%) called
the seed, and a (possibly infinite) transcript w € X* U X°,
which is to be folded upon the seed by stabilizing beads of
w one at a time so as to minimize energy collaboratively

with the succeeding 6—1 nascent beads. The energy of a
conformation C = (P, w, H), denoted by AG(C), is defined

system

to be —|H|; the more bonds a conformation has, the more
stable it gets. The set F(Z) of conformations foldable by
the system Z is recursively defined as: the seed o is in
F(&); and provided that an elongation C; of ¢ by the prefix
w[1..i] be foldable (i.e., Cy = o), its further elongation C;
by the next bead w[i + 1] is foldable if

R
C— *w[[+2...i+k]c/7 }
k< (3, (o= Cga

Civp € argmin - oo o) min{AG(C')
¢ Swli+1)C

(1)

Then we say that the bead w[i + 1] and the bonds it forms
are stabilized according to Ciy;. Note that an arity-o ori-
tatami system cannot fold any conformation of arity larger
than o. A conformation foldable by = is terminal if none of
its elongations is foldable by =. The oritatami system = is
deterministic if for all i >0, there exists at most one C;,
that satisfies (1). A deterministic oritatami system folds
into a unique terminal conformation.

Example 1 (Glider') See Fig. 2 for a delay-3 deterministic
oritatami system Z to fold a motif called a glider. Its
transcript is a repetition of a e bb' e @’ and its rule set R is
{(a,d"), (b,b")}.Its seed is colored in red. The first 3 beads,
a e b, are transcribed and elongate the seed in all possible
ways. The a-bead cannot bind or the second bead is inert
according to R. The third bead, b, can bind to the »’-bead in
the seed but for that, the a-bead must be located to the east
of the previous a’-bead,; it is thus stabilized there. Then the
next bead, &/, is transcribed. After the three steps, the third
bead, b, is stabilized, along with its bond with the &’'-bead,
yielding the rightmost glider of width 3 and height 3 in
Fig. 2. In the next 3 steps, the succeeding b’ e a’' folds alike
and results in a glider of width 4 and height 3. The glider
thus proceeds by unit distance per three beads and one
bond.

The glider is self-sustaining and has provided a solid
scaffold to oritatami systems (Demaine et al. 2018; Elonen
2016; Geary et al. 2018; Han and Kim 2018; Pchelina et al.

" A video to show how a glider folds can be found at https:/www.
dailymotion.com/video/x3cdj35, in which the Turing universal ori-
tatami system by Geary et al. (2018) is running at delay 3.

@ Springer

https://www.dailymotion.com/video/x3cdj35
https://www.dailymotion.com/video/x3cdj35

332

K. Maruyama, S. Seki

t
b
&
L G (= €—b— @ mx<€b— b— =
m T]
e e t— e s T IERE b\ <
L Ern - T [| &=
b\ Crm o
e € T e e t - T e <
— <—-t—<—P'—<\t <J
A\ S
~, o=t
&
s
> K “ Rl
(o T =

@ Springer

b

h> = —b
Rt f > TR —b
L b > Era e e —b
e - £ TR —b
& |, | AT e > rErar — b e
e f e = —b

b

QQQ
0,010
p s

Counting infinitely by oritatami co-transcriptional folding

<«Fig. 3 A brick automaton of the proposed infinite binary counter. 9
possible ways of folding the first several beads of a module being
transcribed are enumerated at the bottom with labels t, b, ..., and
transitions in the brick automaton are labeled with a corresponding
way of folding

2020). Counting infinitely in a zigzag manner requires a
self-sustaining structure in order to travel “in a vacuum,”
that is, in the absence of the previous zag above, while
widening bit-width at an overflow (see Figs. 11 and 12).
Thanks to the sparsity of bonds, gliders can be deformed so
easily for us to design multifunctional modules for the
proposed counter. However, the bond density does not
always determine the degree of functional extensibility;
indeed, parallelograms, based on which the fixed bit-width
counter (Geary et al. 2019) was designed, have turned out
to be highly functionally extensible (Geary et al. 2018;
Pchelina et al. 2020), in spite of relatively larger number of
bonds necessary.

3 Folding an infinite binary counter

In this section, we describe a delay-3, arity-5 deterministic
oritatami system to count infinitely. It employs 132 bead
types, and its transcript w is a repetition of 1-2-3- --- -
132. Its rule set is given in Sect. 3.6. The fixed bit-width
counter by Geary et al. (2019) operates at delay 4 under a
different dynamics, but it was modified in Masuda et al.
(2018) so as to run at delay 3 and under the more prevailing
dynamics (1) in the research of oritatami model.

3.1 General idea

Between two consecutive overflows, the proposed system
behaves in the same way as the fixed bit-width counter. Its
transcript folds in a zigzag manner macroscopically
(downward in figures throughout this paper). A zig, folding
from right to left, increments the current counter value by
1. The succeeding zag, folding from left to right, formats
the incremented counter value for the sake of next zig and
copies it downward. Unlike the existing counter, when a
zig encounters an overflow, it does not abort but rather
extends the bit-width of the current counter value by 1 bit.

The transcript of the proposed counter is periodic. Its
period 1-2-3- --- -132 is divided semantically into the
following four subsequences, called modules:

333
1-30 Format module or F; colored in green
31- 66 Left-Turn module or L; blue
67— 96 Half-Adder module or H; red
97-132 Right-Turn module or R; yellow

The transcript can be hence represented as (FLHR)" at the
modular level. Modules are to play their roles in expected
environments by folding into respective conformations
which should be pairwise-distinct enough to be distin-
guishable by other modules transcribed later. Such expec-
ted conformations are called a brick. For example, module
F encounters the four environments shown in Fig. 4 where
it takes the four bricks Fnt, Fnb, FO, and F1, respec-
tively. Here, by saying (an instance of) a module folds into
(or takes) a brick in an environment, what we actually
mean is that the rule set is designed so as for the transcript
of the module to interact with itself as well as with the
environment and fold deterministically into that brick
according to the dynamics (1). The whole system is
designed to guarantee that each module is transcribed only
in one of the environments it expects. This fact is illus-
trated in the brick automaton in Fig. 3, which describes
pairs of an environment and a brick as a vertex and tran-
sitions between them, introduced in Geary et al. (2019).
Since this automaton is closed, it suffices to test whether
for all pairs of an environment and a brick, the brick is
folded deterministically in the environment. This test has
been done in-silico using a simulator developed for this
project. This brick automaton and all the certificates can be
found at https://komaruyama.github.io/oritatami-infinit-
counter/.

Seed and Encoding. An initial counter value is encoded
in binary as by_1by_» - - - b1by on the seed in the following
format:

I

l

64—65—66— (
1

(WHaWREWES, WLbn)> Whin, (2)

where

Wyp =67—76—77—78—79—-88—-89—-90—-91-96,

wgp =97—102—-103—-108-109—-114—-115—-120—
—121-126—-127-132,

wpo =1-10-11-12-13-22-23-24-25-30,

wrp =1-22—-23-24-25—-26—-27—-28—-29-30,

Wirpn =31—-36—37—42—-43—-48—-49—-54—-55—-64—
—65—66.

@ Springer

https://komaruyama.github.io/oritatami-infinit-counter/
https://komaruyama.github.io/oritatami-infinit-counter/

334

K. Maruyama, S. Seki

None (Hn)

@D (D) (D) (DD (D4 @
oloYofofofofofofofofcle
D4 @) (9 20 (D) =3

None (Fnt)
0 (HOO,H11)

None (Hn)

ofofofofolofofofofolcle
© O) 0 DL DO @
None (Fnb)

1 (HO1, H10, He1)
[1

Fig. 4 All the four bricks of module F: The two bricks at the top, Fnt and Fnb, are for zigs while the others, FO and F1, are for zags. Fnb binds
to the zag above so weakly that it can fold even in the absence of such a zag, that is, at an overflow

| Lt Lbn Lbe |
050,0,0,0,0,0,0,0,0,0,0,0,0,

B O O=E) D) (=) O=E) 6) GG
| o fofofofolofofoofofofoto)e
=) D)) (D=5 D) D =)

nal

| L.t Lbn Lbe |
0,0.,0,0.0,0,0,0,0,0,0.0,.0,0.
0,000,010, 010,010,010, 00,0
0.0,010,00_010.010, 010 00,

OO0 0.0.0,0.0
Lcre dG@ 00 G

Turn Signal

Turn Signal

Fig. 5 All the five bricks of module L: Lt, Lbn, Lcrn, Lere, and
Lbe from top left to bottom right. In zigs, L folds into either Lt or
Lbn depending on where it starts, until the transcript reaches the left
end, where L folds either into Lcrn if the current counter value has

@ Springer

not been overflowed, or into Lbe at an overflow. In the case of
overflow, the next L folds into Lcre. In zags, L always folds into
Lbn

Counting infinitely by oritatami co-transcriptional folding

335

| 0(FO)
e G a0 0,0,0,0,0,0,0,0,0,0.

0 (FO)

CYC0 0 0 0 0 0 0 0 0 0

1 (F1)

Fig. 6 All the six bricks of module H: H00, HO1, H10, H11, Hel, and Hn
zigs, it folds into one of the other five bricks

| Rt Rb

132) (1275126) 1215120+ { 1155 114 | {1097 108 {1037 102 | 97 @ @ @
131) (128} {125) (122)-{119) (116} {113} {110} {107} {104} (101) (98 @ @ @
13075 129)+ 124 15 123 1185 117)+ { 11255 111) 1067 105 { 1007 99 @ @ @

Rt Rb
Lec
ofofofo
DD =D
Lec
ofefofo
D =D

Fig. 7 All the three bricks of module R: Rt, Rb, and Rcr. In zigs, R
folds into Rt or Rb, depending on how high it starts. In zags, R
always folds into Rb until the transcript reaches the right end, where
R folds into Rcr due to the four beads (boxed). Rcr is provided with

Rt

1307 129+ 1247 123 118 5 117 {1125 111 (1067 105) { 100

Rb

131) (128 (125) (122} {119} (116 {113} {110} {107} {104} {101

132) (1279126 {121 7 120) { 1157 114 {109 7 108+ 103 /77 102

130 7 129+ 124 5 123 118 5 117 { 112 % 111 (106" 105)| 100

Rb

131) (128 {125) (122)-{119) (116){113}-{110) {107} {104} {101

132) (12795126 (121 7 120+ 1157 114 {109 7 108+ 103 /77 102

W, WRb, WF0, WF1, and wyp, are sequences of bead types
exposed downward by modules H, R, F, L when they fold
into bricks Hn, Rb, F b;, Lbn, respectively, which can be
found in Figs. 6, 7, 4, and 5 . The seed consists of the

1 (F1)

None (Hn)

from top left to bottom right. In zags, H always folds into Hn while in

this Turn Signal for the next right carriage-return. Note that Rb is not
bonded to the environment at all. That is, this module certainly folds
into Rb at an overflow

initial value encoded as (2), preceded by the sequence
58—59—-60—61—62—63 folded into a glider-shaped signal
for left turn, and succeeded by 97—108—
109—-120—-122—-123—---131—-132 that folds as the

@ Springer

336 K. Maruyama, S. Seki

@@%% ; 0 (FO) ,
Car =0<—vs»§) CY (D) (D) (D) (D) (Ia) (i) () (D) (D5) (Du5) (3) @=@=@=DD
mne\zsuzuvn&\nnoxg:y\mmx ss(@d&% ofofofofofofofofofofofofofolofofofofololo)e)
) (=) (=) (D) (D=2 l0tin) e (9l (rdtan) (idind) (o9 o\ (D) (D) @ <— Carry=71=2 =5 O =) @) o) =) (Do) O 2 _
— ry < Carry=1
1 (HO1)

Fig. 8 The first zig. The initial counter value O is encoded below the sequence of bead types which shall be interpreted as 1 in the next zag
seed in the format (2) with k = 1 (1-bit width). Being fed with carry, and reformatted, as a sum and cancels the carry
the zig increments the count. Module H outputs 1, or more precisely a

Turn Signal
OO 0 (FO)

U

D 78, (oo Yl Y02 o om0 22 Da0,0.,0.,0.,0.,0,0.,0,0,0,0.,0,0.,0.,0.0.0.0.0,0,0.0_0
— (242 (0 (D= - i -Carr =O«&) A D) (D) (D) () (eln) (o) ()elis) () (Do) (3 @D
\Carry ooe G G 636 G uslmwv}xlauu @ @e=1 (HO1 @Es o QQ@@@@@@@@@@@QQ@@@
) szﬂax&snﬂaﬁﬂss; D) &

o)e . ©
5 HH 5 BB 1D 1o 1o 1 CRO Carry=122 020 020 B0 B2 =0 B2 DD D B
Q@ e e) O) Q=) CrO-D-Q) Er-0-Q Q)

0RO >
OO O R) ()= @)) () () () o Y o= o e o7 o oo e N
D) =D D) == (D 1) () () i) o) b) (o) () L) () () () Y2) (DR
ofccic clo e iz "= 1="o1o.

Fig. 9 The first zag. A Turn Signal at the left end of the seed makes turn. In a zag, module F reads the output of module H from above and
module L folds into the brick Lcrn to turn and initiate the zag. This formats it for the sake of the next zig
brick is equipped with another Turn Signal for the sake of the next

@===)
() (=)
() (9 () O DD Cal OnOa®aOa® O 2a A A A CalaCalalaala O CalalalalalalaCalal
OO0 OO O

) o
nz127xzsmxzonsmmsmxmmz D ORI D) ()) () (D) (D) (D) () D)
> sfnfofofofofofo el iclr otz o o ololofo o 1(H01 M{efo ;

1) 1) o) (i) (i) i) 09mi) o9 NI RIS I
GG R CEEEE) &) 2) (1)

1\

o) (og(iog) (123)- (g

%) (09 @

O
oo lo ol ol loolofelofelofofofoletcI Y e o s
() =) =) =) =)) B) = D9 O &
QR (PR Q) PE-OQ OO FO-OQRQ
11 F1):
©

Cal : S & G CHE RS G GRS Be) @ D
C AREED) (0 (D) () (E) ((2) () (D) (B(3) (O(3) () (omlmmmnts
s @ Carry=1 @R FO= N+ Carry=1© &= B B & oo B Lo el =

Fig. 10 Overflow. When the carry has not been canceled out until the end of a zig, the Turn Signal is too far for the upcoming module, which is
L, to be folded into the brick Lcrn for turn

@@@
() (e ooe@e@@a
() & G DD DD DDA DD DD eeeeaea@aeae@

(Q () =)) (D () (i) OLOLOIOLO 010 La 010, 050,050,005

G XICLRE!

AHBHHBHH BB W

/

K CR GOl haiGhCCCCREREGEECECE L

Carry=1 (overflow)

SO\

Cgrry= 1 C;rry= 1 (overflow)

Fig. 11 (Left) Starting from the bottom, the Turn Signal above is too far for this L to fold into Lcrn. It rather folds into Lbe and initiates bit
expansion. (Right) Without anything around, the succeeding H folds into a glider (brick Hel)

Turn Signal
PEEE o epep
ororeiefofefofofofof:

OBL BB BBHLLY:

Fig. 12 The succeeding R and F also fold into respective glider-like The exposed 28-27-22 (boxed) triggers the folding of next L into a
bricks. (Left) This brick of F (Fnb) exposes Turn Signal 28-27-22 special brick (Lcre) for left carriage-return
(boxed), which is usually “hidden” under the previous zag. (Right)

module R folds into a brick Rcr (see Fig. 7). The seed is (non-coding, i.e., initial counter value 0) in Fig. 13, where
exemplified for k =1 and by =0 in Fig. 8 or for k=0 it is colored in purple.

@ Springer

Counting infinitely by oritatami co-transcriptional folding

337

99

106~ 111 112117
98 107110 119 118,

96) 97 108109 — 120 121
130126 125 124 1237122
131 (129127

132128

Fig. 13 Counting from a non-coding seed. (Left) The simplest-possible seed that consists only of the boxed right Turn Signal. (Right) Starting
from this non-coding seed, the first period results in the counter value 1 in the 1-bit

3.2 Brick level overview

Starting from the seed, this system cyclically transits four
phases: zig («), left carriage-return (—), zag (—), and
right carriage-return («—). The prefix (FLHR)'F of the
transcript folds into the first zig (recall that k is the bit-
width of the initial count). In zigs in general, all the
instances of modules F and H fold into bricks of width 10
and height 3, while those of L and R fold into bricks of
width 12 and height 3. Zigs thus turn out to be a linear
structure of height 3. We can inductively observe that the i-
th instance of H in the prefix is transcribed right below b;_;
encoded on the seed in the format (2) so that the H can
“read” b;_;. After the whole prefix has thus folded into the
first zig, the next L is transcribed right below Turn Signal,
which lets the L fold into a special brick for left carriage-
return if the zig ended at the top (this occurs unless
bi—1 =br—r =---=by = 1) (see Fig. 9). We should note
that this special brick Lcre is provided with another Turn
Signal for the sake of next left carriage-return (see Fig. 5).
Having been thus carriage-returned, the succeeding sub-

sequence (HRFL)“H of the transcript folds into the first
zag. Even in zags, F and H fold into bricks of width 10 and
height 3, while L and R fold into bricks of width 12 and
height 3. As a result, zags turn out also to be a linear
structure of height 3. More importantly, instances of H and
F are aligned thus vertically and alternately into columns
(see Figs. 8,9, and 10), i-th of which from the right
propagates the (i—1)-th bit of the counter value downward.
After the whole subsequence has folded into the first zag,
an instance of R is transcribed and folded into a special
brick Rcr for right carriage-return due to the Turn Signal
125-124-123-122, which occurs also at the bottom of
Rer (see Fig. 7) for the sake of next right carriage-return.
This amounts to one cycle of the phase transition.

3.3 Increment of the counter

In a zig, module H plays its primary role as a half-adder
and carry transfers through instances of others (F, L, and R)
from an instance of H to another for more significant bit.
Carry transfers as a height for modules to start. In zigs,
modules F, L, and R take the respective two bricks (Fnt
and Fnb for F, L.t and Lbn for L, and Rt and Rb for R;
see Figs. 4, 5, and 7), both of which start and end at the
same height: one at the top while the other at the bottom. A
zig is fed with carry by being forced to start at the bottom
by the last Rcr or the seed. Until an overflow, module H
encounters only four environments, which encode input 0
as wgg or 1 as wp; and carry or no-carry as of whether the
module starts at the bottom or top, where it takes HOO,
HO01, H10, and H11, respectively, as shown in Fig. 6 (Hxc
is folded when the input is x and the carry is given if c = 1
or not otherwise).

Let us see how the subsequence (FLHR)*F folds into a
zig in order to count up; for k = 1 and the current counter
value 0, see Fig. 8. The zig starts at the bottom, that is,
being carried, and the carry transfers through the first
instances of F and L in the way just explained toward the
first instance of H. This H is thus fed with carry and folds
into HO1 if the bit encoded above is 0, as illustrated in
Fig. 8, or H11 if the bit is rather 1. HO1 ends at the top,
corresponding to canceling the carry out. This absence of
carry transfers through the succeeding modules leftward.
As a result, the zig, or more precisely, the last instance of F
of the subsequence ends folding at the bottom if this
increment causes an overflow (Fig. 10), or at the top
otherwise (Fig. 8). An instance of L is to be transcribed
next. It folds either into Lcrn for carriage-return unless the
counter value is overflowed, or into Lbe at an overflow.

3.4 Bit-width expansion at an overflow
The fixed bit-width counter (Geary et al. 2019) cannot

handle a zig that ends at the bottom, that is, its behavior is

@ Springer

338

K. Maruyama, S. Seki

undefined, that is, it gets nondeterministic, at an overflow.
In contrast, module L in this infinite counter is designed so
as to fold into Lbe in this situation in order to keep
counting up (Fig. 11). Observe that the dent on Turn Signal
made of 58, 63, and 64 is too far for module L, or more
precisely, for its beads 33 and 34 to interact with strongly
enough to fold into Lcrn. Lbe is a self-sustaining con-
formation (glider) so that it can fold even in a “void,”
which occurs at that very moment. For the same reason, the
following instances of H, R, and F fold into self-sustaining
conformations Hel, Rb, and Fnb, respectively (Figs. 11
and 12). Note that Hel is essentially the same as HOO but
exposes the opposite side downward, which will be inter-
preted as the leading bit 1 after expansion in the next zag.
When the next instance of L is transcribed, there is nothing
around. Nevertheless, it does not fold into Lbe but folds
into Lcre for carriage-return; how? It is guided by inter-
action between the beads 35, 36 along the transcript of L
and the Turn Signal 28-27-22 above Fnb (Figs. 5 and 12
). This signal is usually hidden geometrically by the pre-
vious zag, and hence, does no harm.

3.5 Formatting

The counter value has been successfully incremented but
the resulting value is not in the format (2) yet. A subse-
quence (HRFL)kH of the transcript folds into the next zag,
where k is the bit width of the incremented counter value.
In this zag, instances of F play their primary role to format
the 1-bit output by module H (recall that instances of H and
F are aligned vertically and alternately) so as to expose the
incremented counter value in the format (2) for the next
zig. Both of the bricks of L for carriage-return, i.e., Lcrn
and Lcre, end at the bottom so that zags start at the bot-
tom. All modules start and end at the bottom in zags; note
that nothing has to be transferred between modules. That is,
instances of H, L, and R fold into Hn, Lbn, and Rb,
respectively. Below the brick Hxc, an instance of F folds
into Fy, where y = (x 4+ ¢) mod 2.

3.6 Rule set

The rule set of the proposed counter consists of the fol-
lowing 377 rules:

(1,6), (13,72), (29,32), (65,68), (88,93),
(1,74), (13,81), (29,33), (65,69), (89,93),
(1,75), (14,18), (29,40), (65,84), (91,130),
(1,77), (14,29), (29,60), (67,131), (91,96),
(1,80), (14,30), (29,69), (67,72), (92,96),
(1,81), (15,28), (30,32), (67,84), (93,130),
(1,84), (15,39), (30,33), (67,88), (93,132),

@ Springer

(1,93), (15,72), (30,39), (68,72), (94,99),
2.21), (15,76), (30,40), (68,83), (95,97),
(3,130), (15,81), (30,60), (68,84), (95,98),
(3,131), (15,90), (31,36), (68,87), (96,130),
(3,64), (15,91), (31,65), (69,130), (96,132),
(3,65), (16,21), (32,35), (69,131), (97,102),
(3,84), (16,27), (32,36), (70,75), (97,108),
(3,91), (16,38), (32,37), (70,81), (97,126),
(3,93), (16,39), (32,38), (70,87), (98,102),
(3,95), (16,71), (32,56), (71,74), (98,106),
@20, (16,72), (32,57), (71,75), (98,107),
(4,83), (17,20), (33,35), (71,81), (98,108),
(4,84), (17.21), (33,47), (71,86), (99,106),
(4,9), (17,26), (33,48), (71,87), (99,127),
(5,20), (17,27), (33,61), (72,79), (99,129),
(5,8), (17,70), (33,63), (72,80), (100,105),
(5,85), (17,88), (33,64), (73,78), (101,104),
(5,9), (18,25), (34,39), (73,80), (101,124),
(5,90), (18,27), (34,45), (73,81), (101,125),
(5,91), (18,67), (34,46), (73,84), (102,123),
(6,15), (18,69), (34,47), (73,88), (103,108),
(6,19), (18,70), (34,58), (74,77), (103,113),
6,81), (18,71), (34,63), (74,78), (103,114),
(6,82), (18,72), (34,64), (74,83), (103,122),
(6,83), (18,88), (35,39), (74,84), (103,123),
(6,84), (19,24), (36,43), (74,87), (104,107),
6,91), (19,26), (36,44), (75,132), (104,108),
(6,92), (19,71), (36,45), (75,83), (104,113),
(7,12), (19,81), (36,60), (75,96), (104,115),
(7,13), (20,23), (36,64), (76,81), (106,111),
(7,18), (20,24), (37,42), (76,87), (107,109),
(7,83), (21,37), (37.43), (76,93), (107,110),
(7,89), (22,27), (38,41), (76,95), (108,124),
8,11), (22,28), (38,42), (77,80), (108,125),
(8,12), (22,36), (38,43), (77.81), (109,114),
(8,18), (22,75), (40,45), (77,86), (109,120),
(8,73), (22,76), (40,58), (77,87), (109,123),
(8,78), (22,78), (41,43), (77,92), (110,113),
(8,87), (23,26), (41,44), (77,93), (110,114),
9,17), (23,27), (41,45), (78,127), (110,119),
(9,72), (23,28), (41,57), (78,132), (110,120),
9,73), (23,73), (42,54), (78,99), (111,117),
(9,83), (23,74), (42,56), (79,84), (112,117),

Counting infinitely by oritatami co-transcriptional folding

339

(9,86), (23,75), (43,48), (79,88), (113,116),
9,87), (24,71), (44.47), (79,90), (113,117),
(10,15), (24,72), (44.48), (79,96), (114,122),
(10,67), (25,30), (45,51), (79,97), (115,120),
(10,79), (25,60), (46,51), (79,98), (116,120),
(10,81), (25,69), (47,49), (80,83), (118,121),
(10,85), (25,73), (47,50), (80,84), (118,123),
(11,14), (26,29), (47,51), (80,88), (119,121),
(11,15), (26,30), (48,50), (80,89), (119,122),
(11,64), (26,31), (49,53), (80,95), (119,123),
(11,66), (26,65), (49,54), (80,96), (120,123),
(11,78), (26,66), (52,57), (81,132), (121,126),
(12,33), (26,69), (55,60), (81,89), (122,126),
(12,61), (26,70), (58,63), (81,96), (124,129),
(12,63), (26,71), (59,62), (82,87), (125,127),
(12,64), (26,72), (59,63), (82,93), (125,128),
(12,65), (27,35), (60,66), (82,94), (125,129),
(12,66), (27,36), (60,69), (82,95), (126,129),
12,77, (27,64), (61,66), (83,86), (126,130),
(12,78), (27,66), (61,67), (83,87), (127,129),
(12,81), (27,67), (61,68), (83,92), (127,132),
(12,88), (27,68), (61,69), (83,93), (128,130),
(13,18), (27,69), (62,65), (84,131), (128,131),
(13,30), (28,33), (62,66), (84,93), (128,132).
(13,31), (28,35), (64,69), (85,130),

(13,32), (28,60), (64,85), (85,90),

(13,33), (29,31), (65,67), (86,90),

4 Conclusion

In this paper, we have expanded the existing finite binary
counter by equipping it with a function of bit expansion at
an overflow. This capability of handling overflows enables
the system to launch at a simplest possible seed that
encodes nothing but a Turn Signal for the first right car-
riage-return as long as the system starts counting from 0
(see Fig. 13).

The infinite counter was used to simulate countably
many Turing machines in parallel for proving the unde-
cidability of problems on aTAM in Bryans et al. (2013);
Lathrop et al. (2011). The inherent sequentiality of ori-
tatami prevents the proposed counter from being utilized
alike or at least makes such applications highly non-trivial.
The real significance of this counter in practice is that it can
be embedded into a large-scale system as a counting
module that can transition at an overflow into another
phase, which does not have to do bit-expansion. A two-
phase oritatami system to self-assemble the n x n square is

under construction; starting from an O(log n)-size seed on
which an initial counter value is encoded, it first counts up
to 2987 while drawing the diagonal, and at an overflow, it
changes the direction of counting at 90 degrees and keeps
just drawing diagonally until the diagonal reaches the right
end of the counter. It is preferable to optimize this counter
in these applications, for example, by reducing bead types,
shortening the period, or simplifying its rule set, though
such optimization problems are computationally hard in
general (Han and Kim 2019; Ota and Seki 2017).

Acknowledgements This work is supported in part by KAKENHI
Grant-in-Aid for Challenging Research (Exploratory) No. 18K19779,
for Scientific Research (B) No. 20H04141, and Scientific Research
(C) No. 20K11672, and JST Program to Disseminate Tenure Track-
ing System No. 6F36, both granted to S. S.

References

Adleman L, Chang Q, Goel A, Huang M.D (2001) Running time and
program size for self-assembled squares. In: Proceedings of
STOC 2001, ACM. pp 740-748

Bryans N, Chiniforooshan E, Doty D, Kari L, Seki S (2013) The
power of nondeterminism in self-assembly. Theory Comput
9:1-29

Demaine ED, Hendricks J, Olsen M, Patitz MJ, Rogers TA,
Schabanel N, Seki S, Thomas H (2018) Know when to fold
’em: Self-assembly of shapes by folding in oritatami. In:
Proceedings of DNA24. LNCS, vol. 11145, pp 19-36. Springer

Elonen A (2016) Molecular folding and computation. Bachelor Thesis

Evans CG (2014) Crystals that Count! Physical Principles and
Experimental Investigations of DNA Tile Self-Assembly. Ph.D.
thesis, Caltech

Geary C, Andersen ES (2014) Design principles for single-stranded
RNA origami structures. In: Proceedings of DNA 20. LNCS, vol.
8727, pp 1-19. Springer

Geary C, Etienne Meunier P, Schabanel N, Seki S (2018) Proving the
Turing universality of oritatami cotranscriptional folding. In:
Proceedings of ISAAC 2018. LIPIcs, vol. 123, pp. 23:1-23:13

Geary C, Etienne Meunier P, Schabanel N, Seki S (2019) Oritatami:
A computational model for molecular co-transcriptional folding.
Int. J. Mol. Sci. 20(9):2259 (preliminary version published in
MFCS 2016)

Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded
architecture for cotranscriptional folding of RNA nanostructures.
Science 345(6198):799-804

Han YS, Kim H (2018) Construction of geometric structure by
oritatami system. In: Proceedings of DNA24. LNCS, vol. 11145,
pp 173-188. Springer

Han YS, Kim H (2019) Ruleset optimization on isomorphic oritatami
systems. Theor Comput Sci 785:128-139

Lathrop JI, Lutz JH, Patitz MJ, Summers SM (2011) Computability
and complexity in self-assembly. Theory Comput Syst
48(3):617-647

Masuda Y, Seki S, Ubukata Y (2018) Towards the algorithmic
molecular self-assembly of fractals by cotranscriptional folding.
In: Proceedings of CIAA 2018. LNCS, vol. 10977, pp 261-273.
Springer

McClung CR (2006) Plant circadian rhythms. The Plant Cell
18:792-803

@ Springer

340

K. Maruyama, S. Seki

Minsky M (ed.) (1967) Computation: Finite and Infinite Machines.
Prentice-Hall, Inc

Ota M, Seki S (2017) Ruleset design problems for oritatami systems.
Theor Comput Sci 671:26-35

Pchelina D, Schabanel N, Seki S, Ubukata Y (2020) Simple intrinsic
simulation of cellular automata in oritatami molecular folding
model. In: Proc. LATIN 2020. LNCS, vol. 12118, pp 425-436.
Springer

@ Springer

Rothemund PWK, Winfree E (2000) The program-size complexity of
self-assembled squares (extended abstract). In: Proceedings of
STOC 2000, ACM. pp 459-468

Winfree E (1998) Algorithmic Self-Assembly of DNA. Ph.D. thesis,
Caltech

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Counting infinitely by oritatami co-transcriptional folding
	Abstract
	Introduction
	Preliminaries
	Folding an infinite binary counter
	General idea
	Brick level overview
	Increment of the counter
	Bit-width expansion at an overflow
	Formatting
	Rule set

	Conclusion
	Acknowledgements
	References

