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Abstract
A fixed bit-width counter was proposed as a proof-of-concept demonstration of the oritatami model of cotranscriptional

folding [Geary et al., Proc. MFCS 2016, LIPIcs 58, 43:1-43:14], and it was embedded into another oritatami system that

self-assembles a finite portion of Heighway dragon fractal. In order to expand its applications, we endow this counter with

capability to widen bit-width at every encounter with overflow.

Keywords Theory of algorithmic molecular self-assembly � RNA cotranscriptional folding � Oritatami system �
Counting

1 Introduction

Counting is one of the most essential tasks for computing.

Nature has been counting billions of days using molecular

‘‘circadian clockwork’’ which is ‘‘as complicated and as

beautiful as the wonderful chronometers developed in the

18th century’’ (McClung 2006). Nowadays, developments

in molecular self-assembly technology enable us to design

molecules to count. Evans has demonstrated a DNA tile

self-assembly system that counts accurately in-vitro in

binary from a programmed initial value until it overflows

(Evans 2014). In its foundational theory of molecular self-

assembly, such binary counters have been proved versatile,

being used to assemble shapes of particular size (Adleman

et al. 2001; Rothemund and Winfree 2000), towards self-

assembly of fractals (Masuda et al. 2018), and as an infinite

scaffold on which Turing machines can be simulated in

parallel in the abstract tile-assembly model (Bryans et al.

2013; Lathrop et al. 2011), to name a few.

A fixed bit-width (finite) binary counter has been

implemented as a proof-of-concept demonstration of the

oritatami model of cotranscriptional folding (Geary et al.

2019). As shown in Fig. 1, an RNA transcript folds upon

itself while being transcribed (synthesized) from its cor-

responding DNA template strand. Geary, Rothemund, and

Andersen programmed a specific RNA rectangular tile

structure into a DNA template in such a way that the

corresponding RNA transcript folds cotranscriptionally

into the programmed tile structure with high probability in-

vitro at room temperatures (RNA origami) (Geary et al.

2014). An oritatami system folds a transcript of abstract

molecules called beads of finitely many types over the

2-dimensional triangular lattice cotranscriptionally

according to a rule set that specifies which types of

molecules are allowed to bind at unit distance. The tran-

script of the binary counter in Geary et al. (2019) is of

period 60 as - -_- - -_ and its period is

divided semantically into two half-adder (HA) modules

A = - - �_ - and C = - - �_ -

and two structural modules B and D, which are sandwiched

by half-adder modules along the transcript as ABCD. While

being folded cotranscriptionally in zigzags, HA modules

increment the current counter value i by 1, which is ini-

tialized on a linear seed structure, alike the Evans’ counter,

whereas structural modules B and D align HA modules

properly and also make a turn at an end of the counter

value i; B guides the transcript from a zig to a zag (,!)

while D does from a zag to a zig ( -). This counter was
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embedded as a component of an oritatami system to self-

assemble an arbitrary finite portion of Heighway dragon

fractal (Masuda et al. 2018); it remembers how many turns

the dragon has made so far. Its applications are limited,

however, by lack of mechanism to detect an overflow, at

which its behavior is undefined and it gets nondetermin-

istic. In this paper, we shall endow this counter, or more

precisely, its structural module B, with the capability of

overflow detection and bit-width expansion thereof.

The oritatami model has been proven Turing universal

in Geary et al. (2018), where a universal Turing machine is

encoded as a seed and a period of transcript of an oritatami

system using 542 bead types via cyclic tag system, and the

number of bead types needed for the universality was

reduced to almost one-third (183 bead types) recently

(Pchelina et al. 2020) by an intrinsic simulation of 1-di-

mensional cellular automata (CA). It is hence no surprise

that oritatami systems can count even infinitely. In the

read-once-write-once models of computation such as ori-

tatami, abstract tile-assembly model (aTAM) (Rothemund

and Winfree 2000; Winfree 1998), and many others in

molecular self-assembly, however, what a computation

matters is not so much an output obtained conclusively but

rather a shape self-assembled in the course; the shape is

often the goal of computation in molecular self-assembly.

Unless being interlocked geometrically, the output cannot

wire to an input of another computation. The versatile

systems in oritatami (Geary et al. 2018; Pchelina et al.

2020) hence never discourage us to design a set of singly-

functional modules of simple enough shape to be wired,

preferably via a common interface. (Note that unless being

provided anyhow with random access memory, in molec-

ular self-assembly, the ability to count highly unlikely

suffices for Turing universality; c.f. Minsky 1967.)

The proposed counter is simple in number of bead types

used as well as length of its transcript period. It transcribes

��`� � � � ��132 repetitively (needless to say, 132 bead

types), whereas the period of a transcript to simulate a

radius-r CA with Q states by the simplified Turing uni-

versal oritatami system (Pchelina et al. 2020) is of length

about 142
3
Q2

r log2 Qr, where Qr ¼ 2dlog2ð2Q
2rþ1Þe, whose value

cannot be smaller than 142
3
� 4� 189, obtained at Q ¼ 1 and

r ¼ 0, and rises significantly in order for CAs to be able to

compute as 142
3
� 4 � 162� 48469 at Q ¼ 2 and r ¼ 1. A

periodic transcript is expected to be transcribed from a

circular DNA (Geary and Andersen 2014) but such a

template DNA sequence gets more costly to be synthesized

as it gets longer. The proposed counter folds in zigzags into

a logarithmically-widening trapezoid so that it cannot be

afforded at any scaling of Heighway dragon fractal. It

therefore does not truly enable to self-assemble this fractal.

The significance of this counter is rather to demonstrate

that an oritatami system can detect an overflow and change

its phase therein from counting to bit-expansion and back

(note that oritatami is not provided with any internal states;

see Sect. 2). This phase-transition capability should be

applicable, for example, to self-assemble the n� n square

in oritatami at a scale, starting from an Oðlog nÞ-size seed

encoding n, based on the system in aTAM for square self-

assembly (Rothemund and Winfree 2000); such a system

would make use of this capability rather to transition from

the binary counting phase to the phase to fill the remaining

n� ðn� log nÞ rectangle while drawing the diagonal.

This paper is organized as follows. In Sect. 2, we pro-

vide basic notions and notation of oritatami system. The

infinite counter shall be explained into detail in Sect. 3. We

conclude this paper in Sect. 4 with a short discussion.

2 Preliminaries

Let R be a finite alphabet, whose elements should be

regarded as types of abstract molecule, or beads. A bead of

type a 2 R is called an a-bead. By R� and Rx, we denote

the set of finite sequences of beads and that of one-way

infinite sequences of beads, respectively. The empty

sequence is denoted by k. Let w ¼ b1b2 � � � bn 2 R� be a

sequence of length n for some integer n and bead types

b1; . . .; bn 2 R. The length of w is denoted by |w|, that is,

jwj ¼ n. For two indices i, j with 1� i� j� n, we let w[i..j]

refer to the subsequence bibiþ1 � � � bj�1bj; if i ¼ j, then

w[i..i] is simplified as w[i]. For k� 1, w[1..k] is called a

prefix of w.

Oritatami systems fold their transcript, which is a

sequence of beads, over the triangular grid graph T ¼
ðV;EÞ cotranscriptionally. A directed path P ¼ p1p2 � � � pn
in T is a sequence of pairwise-distinct points

p1; p2; . . .; pn 2 V such that fpi; piþ1g 2 E for all 1� i\n.

Its i-th point is referred to as P[i]. Now we are ready to

abstract RNA single-stranded structures in the name of

conformation. A conformation C (over R) is a triple

(P, w, H) of a directed path P in T, w 2 R� of the same

length as P, and a set of (hydrogen) bonds

H 	
�
fi; jg

�� 1� i; iþ 2� j; fP½i
;P½j
g 2 E
�
. This is to be

interpreted as the sequence w being folded along the path P

in such a manner that its i-th bead w[i] is placed at the i-th

Fig. 1 RNA origami. RNA polymerase enzyme (orange) synthesizes

the temporal copy (blue) of a gene (gray spiral) out of ribonucleotides

of four types A, C, G, and U
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point P[i] and the i-th and j-th beads are bonded (by a

hydrogen-bond-based interaction) if and only if fi; jg 2 H.

The condition iþ 2� j represents the topological restric-

tion that two consecutive beads along the path cannot be

bonded. A rule set R 	 R� R is a symmetric relation over

R, that is, for all bead types a; b 2 R, ða; bÞ 2 R implies

ðb; aÞ 2 R. A bond fi; jg 2 H is valid with respect to R, or

simply R-valid, if ðw½i
;w½j
Þ 2 R. This conformation C is

R-valid if all of its bonds are R-valid. For an integer a� 1,

C is of arity a if it contains a bead that forms a bonds but

none of its beads forms more. By C� aðRÞ, we denote the

set of all conformations over R whose arity is at most a; its
argument R is omitted whenever R is clear from the

context.

The oritatami system grows conformations by an oper-

ation called elongation. Given a rule set R and an R-valid

conformation C1 ¼ ðP;w;HÞ, we say that another confor-

mation C2 is an elongation of C1 by a bead b 2 R, written

as C1�!
R

bC2, if C2 ¼ ðPp;wb;H [ H0Þ for some point p 2

V not along the path P and set H0 	
�
fi; jwj þ 1g

�� 1
� i\jwj; fP½i
; pg 2 E; ðw½i
; bÞ 2 R

�
of bonds formed by

the b-bead; this set H0 can be empty. Note that C2 is also R-

valid. This operation is recursively extended to the elon-

gation by a finite sequence of beads as: for any confor-

mation C, C�!R k�C; and for a finite sequence of beads

w 2 R� and a bead b 2 R, a conformation C1 is elongated

to a conformation C2 by wb, written as C1�!
R

wb�C2, if

there is a conformation C0 that satisfies C1�!
R

w�C0 and

C0 �!R bC2.

An oritatami system N is a tuple ðR;R; d; a; r;wÞ, where
R and R are defined as above, while the other elements are

a positive integer d called delay, a positive integer a called

arity, an initial R-valid conformation r 2 C� aðRÞ called
the seed, and a (possibly infinite) transcript w 2 R� [ Rx,

which is to be folded upon the seed by stabilizing beads of

w one at a time so as to minimize energy collaboratively

with the succeeding d�1 nascent beads. The energy of a

conformation C ¼ ðP;w;HÞ, denoted by DGðCÞ, is defined

to be �jHj; the more bonds a conformation has, the more

stable it gets. The set FðNÞ of conformations foldable by

the system N is recursively defined as: the seed r is in

FðNÞ; and provided that an elongation Ci of r by the prefix

w[1..i] be foldable (i.e., C0 ¼ r), its further elongation Ciþ1
by the next bead w½iþ 1
 is foldable if

Ciþ1 2 argmin C 2 C� as:t:

Ci�!
R

w½iþ 1
C

min
n
DGðC0Þ

���
C�!R �w½iþ2...iþk
C0;

k� d;C0 2 C� a

o
:

ð1Þ

Then we say that the bead w½iþ 1
 and the bonds it forms

are stabilized according to Ciþ1. Note that an arity-a ori-

tatami system cannot fold any conformation of arity larger

than a. A conformation foldable by N is terminal if none of

its elongations is foldable by N. The oritatami system N is

deterministic if for all i� 0, there exists at most one Ciþ1
that satisfies (1). A deterministic oritatami system folds

into a unique terminal conformation.

Example 1 (Glider1) See Fig. 2 for a delay-3 deterministic

oritatami system N to fold a motif called a glider. Its

transcript is a repetition of a � bb0 � a0 and its rule set R is

fða; a0Þ; ðb; b0Þg. Its seed is colored in red. The first 3 beads,
a � b, are transcribed and elongate the seed in all possible

ways. The a-bead cannot bind or the second bead is inert

according to R. The third bead, b, can bind to the b0-bead in
the seed but for that, the a-bead must be located to the east

of the previous a0-bead; it is thus stabilized there. Then the

next bead, b0, is transcribed. After the three steps, the third
bead, b, is stabilized, along with its bond with the b0-bead,
yielding the rightmost glider of width 3 and height 3 in

Fig. 2. In the next 3 steps, the succeeding b0 � a0 folds alike
and results in a glider of width 4 and height 3. The glider

thus proceeds by unit distance per three beads and one

bond.

The glider is self-sustaining and has provided a solid

scaffold to oritatami systems (Demaine et al. 2018; Elonen

2016; Geary et al. 2018; Han and Kim 2018; Pchelina et al.

1 A video to show how a glider folds can be found at https://www.

dailymotion.com/video/x3cdj35, in which the Turing universal ori-

tatami system by Geary et al. (2018) is running at delay 3.
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Fig. 2 Folding of a glider motif by a delay-3 deterministic oritatami system
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2020). Counting infinitely in a zigzag manner requires a

self-sustaining structure in order to travel ‘‘in a vacuum,’’

that is, in the absence of the previous zag above, while

widening bit-width at an overflow (see Figs. 11 and 12 ).

Thanks to the sparsity of bonds, gliders can be deformed so

easily for us to design multifunctional modules for the

proposed counter. However, the bond density does not

always determine the degree of functional extensibility;

indeed, parallelograms, based on which the fixed bit-width

counter (Geary et al. 2019) was designed, have turned out

to be highly functionally extensible (Geary et al. 2018;

Pchelina et al. 2020), in spite of relatively larger number of

bonds necessary.

3 Folding an infinite binary counter

In this section, we describe a delay-3, arity-5 deterministic

oritatami system to count infinitely. It employs 132 bead

types, and its transcript w is a repetition of 1-2-3- � � � -
132. Its rule set is given in Sect. 3.6. The fixed bit-width

counter by Geary et al. (2019) operates at delay 4 under a

different dynamics, but it was modified in Masuda et al.

(2018) so as to run at delay 3 and under the more prevailing

dynamics (1) in the research of oritatami model.

3.1 General idea

Between two consecutive overflows, the proposed system

behaves in the same way as the fixed bit-width counter. Its

transcript folds in a zigzag manner macroscopically

(downward in figures throughout this paper). A zig, folding

from right to left, increments the current counter value by

1. The succeeding zag, folding from left to right, formats

the incremented counter value for the sake of next zig and

copies it downward. Unlike the existing counter, when a

zig encounters an overflow, it does not abort but rather

extends the bit-width of the current counter value by 1 bit.

The transcript of the proposed counter is periodic. Its

period 1-2-3- � � � -132 is divided semantically into the

following four subsequences, called modules:

1– 30 Format module or F; colored in green

31– 66 Left-Turn module or L; blue

67– 96 Half-Adder module or H; red

97–132 Right-Turn module or R; yellow

The transcript can be hence represented as ðFLHRÞ� at the
modular level. Modules are to play their roles in expected

environments by folding into respective conformations

which should be pairwise-distinct enough to be distin-

guishable by other modules transcribed later. Such expec-

ted conformations are called a brick. For example, module

F encounters the four environments shown in Fig. 4 where

it takes the four bricks Fnt, Fnb, F0, and F1, respec-

tively. Here, by saying (an instance of) a module folds into

(or takes) a brick in an environment, what we actually

mean is that the rule set is designed so as for the transcript

of the module to interact with itself as well as with the

environment and fold deterministically into that brick

according to the dynamics (1). The whole system is

designed to guarantee that each module is transcribed only

in one of the environments it expects. This fact is illus-

trated in the brick automaton in Fig. 3, which describes

pairs of an environment and a brick as a vertex and tran-

sitions between them, introduced in Geary et al. (2019).

Since this automaton is closed, it suffices to test whether

for all pairs of an environment and a brick, the brick is

folded deterministically in the environment. This test has

been done in-silico using a simulator developed for this

project. This brick automaton and all the certificates can be

found at https://komaruyama.github.io/oritatami-infinit-

counter/.

Seed and Encoding. An initial counter value is encoded

in binary as bk�1bk�2 � � � b1b0 on the seed in the following

format:

64�65�66�
Y0

i¼k�1

�
wHnwRbwFbiwLbn

�
 !

wHn; ð2Þ

where

wHn ¼67�76�77�78�79�88�89�90�91�96;
wRb ¼97�102�103�108�109�114�115�120�

�121�126�127�132;
wF0 ¼1�10�11�12�13�22�23�24�25�30;
wF1 ¼1�22�23�24�25�26�27�28�29�30;
wLbn ¼31�36�37�42�43�48�49�54�55�64�

�65�66:

bFig. 3 A brick automaton of the proposed infinite binary counter. 9

possible ways of folding the first several beads of a module being

transcribed are enumerated at the bottom with labels t, b, ..., and

transitions in the brick automaton are labeled with a corresponding

way of folding
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wHn, wRb, wF0, wF1, and wLbn are sequences of bead types

exposed downward by modules H, R, F, L when they fold

into bricks Hn, Rb, F bi, Lbn, respectively, which can be

found in Figs. 6, 7, 4, and 5 . The seed consists of the

initial value encoded as (2), preceded by the sequence

58�59�60�61�62�63 folded into a glider-shaped signal

for left turn, and succeeded by 97�108�
109�120�122�123� � � � 131�132 that folds as the
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always folds into Rb until the transcript reaches the right end, where

R folds into Rcr due to the four beads (boxed). Rcr is provided with

this Turn Signal for the next right carriage-return. Note that Rb is not

bonded to the environment at all. That is, this module certainly folds

into Rb at an overflow
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module R folds into a brick Rcr (see Fig. 7). The seed is

exemplified for k ¼ 1 and b0 ¼ 0 in Fig. 8 or for k ¼ 0

(non-coding, i.e., initial counter value 0) in Fig. 13, where

it is colored in purple.
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3.2 Brick level overview

Starting from the seed, this system cyclically transits four

phases: zig ( ), left carriage-return (,!), zag (!), and

right carriage-return ( -). The prefix ðFLHRÞkF of the

transcript folds into the first zig (recall that k is the bit-

width of the initial count). In zigs in general, all the

instances of modules F and H fold into bricks of width 10

and height 3, while those of L and R fold into bricks of

width 12 and height 3. Zigs thus turn out to be a linear

structure of height 3. We can inductively observe that the i-

th instance of H in the prefix is transcribed right below bi�1
encoded on the seed in the format (2) so that the H can

‘‘read’’ bi�1. After the whole prefix has thus folded into the

first zig, the next L is transcribed right below Turn Signal,

which lets the L fold into a special brick for left carriage-

return if the zig ended at the top (this occurs unless

bk�1 ¼ bk�2 ¼ � � � ¼ b0 ¼ 1) (see Fig. 9). We should note

that this special brick Lcre is provided with another Turn

Signal for the sake of next left carriage-return (see Fig. 5).

Having been thus carriage-returned, the succeeding sub-

sequence ðHRFLÞkH of the transcript folds into the first

zag. Even in zags, F and H fold into bricks of width 10 and

height 3, while L and R fold into bricks of width 12 and

height 3. As a result, zags turn out also to be a linear

structure of height 3. More importantly, instances of H and

F are aligned thus vertically and alternately into columns

(see Figs. 8, 9, and 10 ), i-th of which from the right

propagates the (i�1)-th bit of the counter value downward.

After the whole subsequence has folded into the first zag,

an instance of R is transcribed and folded into a special

brick Rcr for right carriage-return due to the Turn Signal

125-124-123-122, which occurs also at the bottom of

Rcr (see Fig. 7) for the sake of next right carriage-return.

This amounts to one cycle of the phase transition.

3.3 Increment of the counter

In a zig, module H plays its primary role as a half-adder

and carry transfers through instances of others (F, L, and R)

from an instance of H to another for more significant bit.

Carry transfers as a height for modules to start. In zigs,

modules F, L, and R take the respective two bricks (Fnt

and Fnb for F, Lt and Lbn for L, and Rt and Rb for R;

see Figs. 4, 5, and 7 ), both of which start and end at the

same height: one at the top while the other at the bottom. A

zig is fed with carry by being forced to start at the bottom

by the last Rcr or the seed. Until an overflow, module H

encounters only four environments, which encode input 0

as wF0 or 1 as wF1 and carry or no-carry as of whether the

module starts at the bottom or top, where it takes H00,

H01, H10, and H11, respectively, as shown in Fig. 6 (Hxc

is folded when the input is x and the carry is given if c ¼ 1

or not otherwise).

Let us see how the subsequence ðFLHRÞkF folds into a

zig in order to count up; for k ¼ 1 and the current counter

value 0, see Fig. 8. The zig starts at the bottom, that is,

being carried, and the carry transfers through the first

instances of F and L in the way just explained toward the

first instance of H. This H is thus fed with carry and folds

into H01 if the bit encoded above is 0, as illustrated in

Fig. 8, or H11 if the bit is rather 1. H01 ends at the top,

corresponding to canceling the carry out. This absence of

carry transfers through the succeeding modules leftward.

As a result, the zig, or more precisely, the last instance of F

of the subsequence ends folding at the bottom if this

increment causes an overflow (Fig. 10), or at the top

otherwise (Fig. 8). An instance of L is to be transcribed

next. It folds either into Lcrn for carriage-return unless the

counter value is overflowed, or into Lbe at an overflow.

3.4 Bit-width expansion at an overflow

The fixed bit-width counter (Geary et al. 2019) cannot

handle a zig that ends at the bottom, that is, its behavior is
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undefined, that is, it gets nondeterministic, at an overflow.

In contrast, module L in this infinite counter is designed so

as to fold into Lbe in this situation in order to keep

counting up (Fig. 11). Observe that the dent on Turn Signal

made of 58, 63, and 64 is too far for module L, or more

precisely, for its beads 33 and 34 to interact with strongly

enough to fold into Lcrn. Lbe is a self-sustaining con-

formation (glider) so that it can fold even in a ‘‘void,’’

which occurs at that very moment. For the same reason, the

following instances of H, R, and F fold into self-sustaining

conformations He1, Rb, and Fnb, respectively (Figs. 11

and 12 ). Note that He1 is essentially the same as H00 but

exposes the opposite side downward, which will be inter-

preted as the leading bit 1 after expansion in the next zag.

When the next instance of L is transcribed, there is nothing

around. Nevertheless, it does not fold into Lbe but folds

into Lcre for carriage-return; how? It is guided by inter-

action between the beads 35, 36 along the transcript of L

and the Turn Signal 28-27-22 above Fnb (Figs. 5 and 12

). This signal is usually hidden geometrically by the pre-

vious zag, and hence, does no harm.

3.5 Formatting

The counter value has been successfully incremented but

the resulting value is not in the format (2) yet. A subse-

quence ðHRFLÞkH of the transcript folds into the next zag,

where k is the bit width of the incremented counter value.

In this zag, instances of F play their primary role to format

the 1-bit output by module H (recall that instances of H and

F are aligned vertically and alternately) so as to expose the

incremented counter value in the format (2) for the next

zig. Both of the bricks of L for carriage-return, i.e., Lcrn

and Lcre, end at the bottom so that zags start at the bot-

tom. All modules start and end at the bottom in zags; note

that nothing has to be transferred between modules. That is,

instances of H, L, and R fold into Hn, Lbn, and Rb,

respectively. Below the brick Hxc, an instance of F folds

into Fy, where y ¼ ðxþ cÞ mod 2.

3.6 Rule set

The rule set of the proposed counter consists of the fol-

lowing 377 rules:

(1,6), (13,72), (29,32), (65,68), (88,93),

(1,74), (13,81), (29,33), (65,69), (89,93),

(1,75), (14,18), (29,40), (65,84), (91,130),

(1,77), (14,29), (29,60), (67,131), (91,96),

(1,80), (14,30), (29,69), (67,72), (92,96),

(1,81), (15,28), (30,32), (67,84), (93,130),

(1,84), (15,39), (30,33), (67,88), (93,132),

(1,93), (15,72), (30,39), (68,72), (94,99),

(2,21), (15,76), (30,40), (68,83), (95,97),

(3,130), (15,81), (30,60), (68,84), (95,98),

(3,131), (15,90), (31,36), (68,87), (96,130),

(3,64), (15,91), (31,65), (69,130), (96,132),

(3,65), (16,21), (32,35), (69,131), (97,102),

(3,84), (16,27), (32,36), (70,75), (97,108),

(3,91), (16,38), (32,37), (70,81), (97,126),

(3,93), (16,39), (32,38), (70,87), (98,102),

(3,95), (16,71), (32,56), (71,74), (98,106),

(4,21), (16,72), (32,57), (71,75), (98,107),

(4,83), (17,20), (33,35), (71,81), (98,108),

(4,84), (17,21), (33,47), (71,86), (99,106),

(4,9), (17,26), (33,48), (71,87), (99,127),

(5,20), (17,27), (33,61), (72,79), (99,129),

(5,8), (17,70), (33,63), (72,80), (100,105),

(5,85), (17,88), (33,64), (73,78), (101,104),

(5,9), (18,25), (34,39), (73,80), (101,124),

(5,90), (18,27), (34,45), (73,81), (101,125),

(5,91), (18,67), (34,46), (73,84), (102,123),

(6,15), (18,69), (34,47), (73,88), (103,108),

(6,19), (18,70), (34,58), (74,77), (103,113),

(6,81), (18,71), (34,63), (74,78), (103,114),

(6,82), (18,72), (34,64), (74,83), (103,122),

(6,83), (18,88), (35,39), (74,84), (103,123),

(6,84), (19,24), (36,43), (74,87), (104,107),

(6,91), (19,26), (36,44), (75,132), (104,108),

(6,92), (19,71), (36,45), (75,83), (104,113),

(7,12), (19,81), (36,60), (75,96), (104,115),

(7,13), (20,23), (36,64), (76,81), (106,111),

(7,18), (20,24), (37,42), (76,87), (107,109),

(7,83), (21,37), (37,43), (76,93), (107,110),

(7,89), (22,27), (38,41), (76,95), (108,124),

(8,11), (22,28), (38,42), (77,80), (108,125),

(8,12), (22,36), (38,43), (77,81), (109,114),

(8,18), (22,75), (40,45), (77,86), (109,120),

(8,73), (22,76), (40,58), (77,87), (109,123),

(8,78), (22,78), (41,43), (77,92), (110,113),

(8,87), (23,26), (41,44), (77,93), (110,114),

(9,17), (23,27), (41,45), (78,127), (110,119),

(9,72), (23,28), (41,57), (78,132), (110,120),

(9,73), (23,73), (42,54), (78,99), (111,117),

(9,83), (23,74), (42,56), (79,84), (112,117),
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(9,86), (23,75), (43,48), (79,88), (113,116),

(9,87), (24,71), (44,47), (79,90), (113,117),

(10,15), (24,72), (44,48), (79,96), (114,122),

(10,67), (25,30), (45,51), (79,97), (115,120),

(10,79), (25,60), (46,51), (79,98), (116,120),

(10,81), (25,69), (47,49), (80,83), (118,121),

(10,85), (25,73), (47,50), (80,84), (118,123),

(11,14), (26,29), (47,51), (80,88), (119,121),

(11,15), (26,30), (48,50), (80,89), (119,122),

(11,64), (26,31), (49,53), (80,95), (119,123),

(11,66), (26,65), (49,54), (80,96), (120,123),

(11,78), (26,66), (52,57), (81,132), (121,126),

(12,33), (26,69), (55,60), (81,89), (122,126),

(12,61), (26,70), (58,63), (81,96), (124,129),

(12,63), (26,71), (59,62), (82,87), (125,127),

(12,64), (26,72), (59,63), (82,93), (125,128),

(12,65), (27,35), (60,66), (82,94), (125,129),

(12,66), (27,36), (60,69), (82,95), (126,129),

(12,77), (27,64), (61,66), (83,86), (126,130),

(12,78), (27,66), (61,67), (83,87), (127,129),

(12,81), (27,67), (61,68), (83,92), (127,132),

(12,88), (27,68), (61,69), (83,93), (128,130),

(13,18), (27,69), (62,65), (84,131), (128,131),

(13,30), (28,33), (62,66), (84,93), (128,132).

(13,31), (28,35), (64,69), (85,130),

(13,32), (28,60), (64,85), (85,90),

(13,33), (29,31), (65,67), (86,90),

4 Conclusion

In this paper, we have expanded the existing finite binary

counter by equipping it with a function of bit expansion at

an overflow. This capability of handling overflows enables

the system to launch at a simplest possible seed that

encodes nothing but a Turn Signal for the first right car-

riage-return as long as the system starts counting from 0

(see Fig. 13).

The infinite counter was used to simulate countably

many Turing machines in parallel for proving the unde-

cidability of problems on aTAM in Bryans et al. (2013);

Lathrop et al. (2011). The inherent sequentiality of ori-

tatami prevents the proposed counter from being utilized

alike or at least makes such applications highly non-trivial.

The real significance of this counter in practice is that it can

be embedded into a large-scale system as a counting

module that can transition at an overflow into another

phase, which does not have to do bit-expansion. A two-

phase oritatami system to self-assemble the n� n square is

under construction; starting from an Oðlog nÞ-size seed on

which an initial counter value is encoded, it first counts up

to 2log n while drawing the diagonal, and at an overflow, it

changes the direction of counting at 90 degrees and keeps

just drawing diagonally until the diagonal reaches the right

end of the counter. It is preferable to optimize this counter

in these applications, for example, by reducing bead types,

shortening the period, or simplifying its rule set, though

such optimization problems are computationally hard in

general (Han and Kim 2019; Ota and Seki 2017).
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