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Abstract
A core operator of evolutionary algorithms (EAs) is the mutation. Recently, much attention has been devoted to the study
of mutation operators with dynamic and non-uniform mutation rates. Following up on this area of work, we propose a
new mutation operator and analyze its performance on the (1 + 1) Evolutionary Algorithm (EA). Our analyses show that
this mutation operator competes with pre-existing ones, when used by the (1 + 1) EA on classes of problems for which
results on the other mutation operators are available. We show that the (1 + 1) EA using our mutation operator finds a
(1/3)-approximation ratio on any non-negative submodular function in polynomial time. We also consider the problem of
maximizing a symmetric submodular function under a single matroid constraint and show that the (1 + 1) EA using our
operator finds a (1/3)-approximation within polynomial time. This performance matches that of combinatorial local search
algorithms specifically designed to solve these problems and outperforms them with constant probability. Finally, we evaluate
the performance of the (1 + 1) EA using our operator experimentally by considering two applications: (a) the maximum
directed cut problem on real-world graphs of different origins, with up to 6.6 million vertices and 56 million edges and (b)
the symmetric mutual information problem using a four month period air pollution data set. In comparison with uniform
mutation and a recently proposed dynamic scheme, our operator comes out on top on these instances.

Keywords Evolutionary algorithms · Mutation operators · Submodular functions · Matroids

1 Introduction

Akey procedure of the (1+1)EA that affects its performance
is the mutation operator, i.e., the operator that determines at
each step how a potential new solution is generated. In the
past several years there has been a huge effort, both from a
theoretical and an experimental point of view, towards under-
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standing how this procedure influences the performance of
the (1+ 1) EA and which is the optimal way of choosing the
mutation rate (Eiben et al. 1999; Eiben and Smith 2003).

Themost commonmutation operator on n-bit strings is the
static uniform mutation operator. This operator, unif p, flips
each bit of the current solution independently with probabil-
ity p(n). This probability, p(n), is called staticmutation rate
and remains the same throughout the run of the algorithm.
Themost common choice for p(n) is 1/n; thus,mutated solu-
tions differ in expectation in one bit from their predecessors.
Witt (2005) shows that this choice of p(n) is optimal for all
pseudo-Boolean linear functions. Doerr et al. (2013) further
observe that changing p(n) by a constant factor can lead to
large variations in the overall run-time of the (1 + 1) EA.
They also show the existence of functions for which this
choice of p(n) is not optimal.

Static mutation rates are not the only ones studied in liter-
ature. Jansen and Wegener (2006) propose a mutation rate
which at time step t flips each bit independently with prob-
ability 2(t−1) mod (�log2 n�−1)/n. Doerr et al. (2017) observe
that this mutation rate is equivalent to a mutation rate of the
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form α/n, where α is chosen uniformly at random (u.a.r.)
from the set {2(t−1) mod (�log2 n�−1) | t ∈ {1, . . . , �log2 n�}}.
Doerr andWagner (2018a, b) have proposed a simple on-the-
fly mechanism that can approximate optimal mutation rates
well for two unimodal functions.

Doerr et al. (2017) notice that the choice of p(n) = 1/n is a
result of over-tailoring the mutation rates to commonly stud-
ied simple unimodal problems. They propose a non-static
mutation operator fmutβ , which chooses a mutation rate
α ≤ 1/2 from a power-law distribution at every step of the
algorithm. Their analysis shows that for a family of “jump”
functions introduced below, the run-time of the (1 + 1) EA
yields a polynomial speed-up when using fmutβ .

Friedrich, Quinzan, and Wagner (2018) propose a new
mutation operator, the cMut(p). This operator chooses at
each step, with constant probability p, to flip 1-bit of the
solution chosen uniformly at random. With the remaining
probability 1 − p, the operator chooses k ∈ {2, . . . , n} uni-
formly at random and flips k bits of the solution chosen
uniformly at random. This operator performs well in opti-
mizing pseudo-Boolean functions, as well as combinatorial
problems such as the minimum vertex cover and the maxi-
mumcut. Experiments suggest that this operator outperforms
the mutation operator of Doerr et al. (2017) when run on
functions that exhibit large deceptive basins of attraction,
i.e., local optima whose Hamming distance from the global
optimum is in Θ(n).

As EAs are used extensively in real world applications
(Dasgupta and Michalewicz 2013), it is important to extend
the theoretical analysis of their performance to the more gen-
eral classes of functions. To improve the performance of the
(1 + 1) EA in more complex landscapes, inspired by the
recent results of Doerr et al. (2017) and Friedrich, Quin-
zan, andWagner (2018) we propose a newmutation operator
pmutβ . Our operator mutates n-bit string solutions as fol-
lows. At each step, pmutβ chooses k ∈ {1, . . . , n} from a
power-law distribution. k bits of the current solution are cho-
sen uniformly at random and then flipped. During a run of the
(1 + 1) EA using pmutβ , the majority of mutations consist
of flipping a small number of bits, but occasionally a large
number, of up to n bit flips can be performed. In compari-
son to the mutations of fmutβ , the mutations of pmutβ have
a considerably higher likelihood of performing larger than
(n/2)-bit jumps.

Run-time comparison on artificial landscapes

In Sect. 3.1 we show that the (1 + 1) EA using pmutβ finds
the optimum of any function within exponential time. When
run on the OneMax function, the (1 + 1) EA with pmutβ
finds the optimum solution in expected polynomial time.

In Sect. 3.2 we consider the problem of maximizing the
jump function Jumpm,n(x), first introduced by Droste et al.

(2002). We show that for any value of the parameters m, n
with m constant or n − m, the expected run-time of the
(1+1) EA using pmutβ remains polynomial. This is not the
case for the (1 + 1) EA using unif p, for which Droste et al.
(2002) showed a run-time ofΘ(nm+n log n) in expectation.
Doerr et al. (2017) are able to derive polynomial bounds
for the expected run-time of the (1 + 1) EA using their
mutation operator fmutβ , but in their results they limit the
jump parameter to m ≤ n/2.

Optimization of submodular functions

Our main focus in this article is to study the performance
of the (1 + 1) EA when optimizing submodular functions.
Submodularity is a property that captures the notion of
diminishing returns. Thus submodular functions find appli-
cability in a large variety of problems. Examples include:
maximum facility location problems (Ageev and Sviridenko
1999), maximum cut and maximum directed cut (Goemans
and Williamson 1995), and restricted SAT instances (Håstad
2001). Submodular functions under a single matroid con-
straint arise in artificial intelligence and are connected to
probabilistic fault diagnosis problems (Krause and Guestrin
2007; Lee et al. 2009).

Submodular functions exhibit additional properties in
some cases, such as symmetry andmonotonicity. These prop-
erties can be exploited to derive run-time bounds for local
randomized search heuristics such as the (1+ 1) EA. In par-
ticular, Friedrich and Neumann (2015) give run-time bounds
for the (1 + 1) EA and GSEMO on this problem, assuming
either monotonicity or symmetry. Qian et al. (2018, 2017)
study the problem of maximizing (generalizations of) sub-
modular functions with multi-objective EAs.

We show (Sect. 5.1) that the (1 + 1) EA with pmutβ
on any non-negative, submodular function gives a 1/3-
approximation within polynomial time. This result matches
the performance of the local search heuristic of Feige et al.
(2011) designed to target non-negative, submodular func-
tions in particular. An example of a natural non-negative
submodular function that is neither symmetric nor monotone
is the utility function of a player in a combinatorial auction
(Lehmann et al. 2006). We further show (Sect. 5.2) that the
(1+1) EA outperforms the local search of Feige et al. (2011)
at least with constant probability (w.c.p.).

In Sect. 6 we consider the problem of maximizing a
symmetric submodular function under a single matroid con-
straint. Our analysis shows that the (1+ 1) EA using pmutβ
finds a 1/3-approximationwithin polynomial time. Our anal-
ysis can be easily extended to show that the same results apply
to the (1+ 1) EA when using the uniform mutation operator
or unif p.

Additionally we evaluate the performance of the (1 +
1)EAusingpmutβ experimentally on themaximumdirected
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Table 1 Upper bounds on the run-time for the (1+1)EAwithmutation
pmutβ with parameter β > 1. The expected run-time in the uncon-
strained case is given in Sect. 5.1, whereas the improved upper-bound
in Sect. 5.2. The expected run-time bounds for the (1 + 1) EA in the
constrained case are discussed in Sect. 6. Previous run-time bounds

for deterministic local search algorithms are discussed in Feige et al.
(2011) and Lee et al. (2009). We remark that local operations for the
deterministic local search correspond to favorable moves in the analysis
of the (1 + 1) EA, and they are the same unit of measurement

submodular
maximization

approximation
guarantee

deterministic local search single-objective evolutionary algorithm

Unconstrained 1
3 − ε

n O ( 1
ε
n3 log n

)
Fitness evaluations O ( 1

ε
n3 log

( n
ε

) + nβ
)

Fitness evaluations in expectation

O ( 1
ε
n3 + nβ

)
Fitness evaluations at least w.c.p.

Symmetric, under a single
matroid constraint

O ( 1
ε
n4 log n) local operations

{O ( 1
ε
n2 log n

ε

)

O ( 1
ε
n4 log n

ε

) Favorable moves in expectation

Fitness evaluations in expectation

cut problem, on real-world graphs of different origins, and
with up to 6.6 million vertices and 56 million edges. Our
experiments show that pmutβ outperforms unif p and the
uniform mutation operator on these instances. This analysis
appears in Sect. 7.1

To establish our results empirically, in Sect. 7.2 we con-
sider the symmetric mutual information problem under a
cardinality constraint. We consider an air pollution data set
during a fourmonth interval and use the (1+1)EA to identify
the highly informative random variables of this data set. We
observe that pmutβ performs better than the uniform muta-
tion operator and unif p for a small time budget and a small
cardinality constraint, but for a large cardinality constraint
all mutation operators have similar performance. This might
suggest that large jumps allow for speed-up, although single
bit-flips are sufficient to find a locally optimal solution.

A comparison of the previously known performance of
deterministic local search algorithms on submodular func-
tions and our results on the (1 + 1) EA can be found in
Table 1.

A preliminary version of this article was published at
PPSN 18 (Friedrich, Göbel, Quinzan, & Wagner, 2018). In
this article, we omit the results on the performance of the
(1 + 1) EA using pmutβ to find a minimum vertex cover
(MVC) on complete bipartite graphs, andwe extend the study

on the general class of submodular maximization problems.
Specifically, we extend the run-time analysis of (1 + 1) EA
using pmutβ , when optimizing non-negative submodular
functions (Sect. 5.2). Furthermore, we analyze the perfor-
mance of the (1 + 1) EA using pmutβ when maximizing
symmetric submodular functions under matroid constraints
(Sect. 6). Finally we extend the experimental study on the
maximum directed cut problem (Sect. 7.1) and perform a
new set of experiments on the Maximum Symmetric Mutual
Information problem (Sect. 7.2).

2 Preliminaries

2.1 The (1+ 1) EA andmutation rates

We study the run-time of the simple (1 + 1) Evolution-
ary Algorithm under various configurations. This algorithm
requires a bit-string of fixed length n as input. An offspring
is then generated by the mutation operator, an operator that
resembles asexual reproduction. The fitness of the solution
is then computed and the less desirable result is discarded.
This algorithm is elitist in the sense that the solution quality
never decreases throughout the process. Pseudo-code for the
(1 + 1) EA is given in Algorithm1.
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In the (1 + 1) EA the offspring generated in each itera-
tion depends on the mutation operator. The standard choice
for the Mutation(·) is to flip each bit of an input string
x = (x1, . . . , xn) independently with probability 1/n. In a
slightly more general setting, the mutation operator unif p(·)
flips each bit of x independently with probability p/n, where
p ∈ [0, n/2]. We refer to the parameter p as mutation rate.

Uniform mutations can be further generalized, by sam-
pling the mutation rate p ∈ [0, n/2] at each step according to
a given probability distribution. We assume this distribution
to be fixed throughout the optimization process. Among this
class of mutation rates, is the power-law mutation fmutβ of
Doerr et al. (2017). fmutβ chooses the mutation rate accord-
ing to a power-law distribution on [0, 1/2] with exponent
β. More formally, denote with X the r.v. (random variable)
that returns the mutation rate at a given step. The power-
law operator fmutβ uses a probability distribution Dβ

n/2 s.t.

Pr (X = k) = Hβ
n/2k

−β , where Hβ
� = ∑�

j=1
1
jβ

. The Hβ
� s

are known in the literature as generalized harmonic num-
bers. Interestingly, generalized harmonic numbers can be
approximated with the Riemann Zeta function as ζ(β) =
lim�→+∞ Hβ

� . In particular, harmonic numbers Hβ
n/2 are

always upper-bounded by a constant, for increasing problem
size and for a fixed β > 1. Note, however, that the values
ζ(β) change significantly depending on β. In fact, for β → 1
the Riemann Zeta function tends toward infinity, whereas for
β → +∞ it tends toward 1.

2.2 Non-uniformmutation rates

In this paper we consider an alternative approach to the non-
uniform mutation operators described above. For a given
probability distribution P = [1, . . . , n] → R the proposed
mutation operator samples an element k ∈ [1, . . . , n] accord-
ing to the distribution P , and flips exactly k-many bits in an
input string x = (x1, . . . xn), chosen uniformly at random
among all possibilities. This framework depends on the dis-
tribution P , which we always assume fixed throughout the
optimization process.

Based on the results of Doerr et al. (2017), we study a
specialization of our non-uniform framework that uses a dis-
tribution of the form P = Dβ

n . We refer to this operator
as pmutβ , and pseudocode is given in Algorithm 2. This

operator uses a power-law distribution on the probability of
performing exactly k-bit flips in one iteration. For x ∈ {0, 1}n
and all k ∈ {1, . . . , n},

Pr
(H (

x,pmutβ(x)
) = k

) = (Hβ
n )−1k−β. (1)

We remark that with this operator, for any two points x, y ∈
{0, 1}n , the probability

Pr
(
y = pmutβ(x)

)
only depends on their Hamming dis-

tance H (x, y).
Although both operators, fmutβ and pmutβ , are defined

in terms of a power-law distribution their behavior dif-
fers. We note that, for any choice of the constant β > 1
and all x ∈ {0, 1}n , Pr (H (

x, fmutβ(x)
) = 0

)
> 0, while

Pr
(H (

x,pmutβ(x)
) = 0

) = 0. We discuss the advantages
and disadvantages of these two operators in Sect. 3.

2.3 Submodular functions andmatroids

Submodular set functions intuitively capture the notion of
diminishing returns, i.e., the more you acquire the less your
marginal gain.More formally, the following definition holds.

Definition 1 A set function f : 2V → R≥0 is submodular
if it holds f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for all
S, T ⊆ V .

We remark that in this context V is always a finite set.
It is well-known that the defining axiom in Definition 1 is
equivalent to the requirement

f (S ∪ {x}) − f (S) ≥ f (T ∪ {x}) − f (T ), (2)

for all S, T ⊆ V such that S ⊆ T and x ∈ V \ S (Welsh
2010).

We say that a set function f : 2V → R≥0 is symmetric if
it holds f (S) = f (V \ S) for all S ⊆ V .

In some cases, feasible solutions are characterized as the
independent sets of a matroid with base set V , as in the fol-
lowing definition.

Definition 2 Given a set V , a matroid
M = (V , I) with base set V consists of a collection of
subsets I of V with the following properties:
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• ∅ ∈ I;
• if T ∈ I, then S ∈ I for all subsets S ⊆ T ;
• if S, T ∈ I and |S| ≤ |T |, then there exists a point

x ∈ T \ S s.t. S ∪ {x} ∈ I.

From the axioms in Definition 2, it follows that two
maximal independent sets always have the same number of
elements. This number is called the rank of a matroid. It is
possible to generalize this notion, as in the following defini-
tion.

Definition 3 Consider a matroid M = (V , I). For any sub-
set S ⊆ V , the rank function r(S) returns the size of the
largest independent set in S, i.e., r(S) = argmax

T⊆S
{|T | : T ∈

I}.

2.4 Markov’s inequality

We introduce a basic probabilistic inequality that is useful
in the run-time analysis in Sect. 5.2. This simple tool is
commonly referred to as Markov’s Inequality. We use the
following variation of it.

Lemma 1 (Markov’s Inequality)Let X bea randomvariable,
where X ∈ [0, 1]. Then it holds

Pr (X ≤ c) ≤ 1 − E [X ]

1 − c
,

for all 0 ≤ c ≤ E [X ].

For a discussion of Lemma 1, see Theorem 3.1 in Mitzen-
macher and Upfal (2017).

2.5 Themultiplicative drift theorem

TheMultiplicativeDrift theorem is a powerful tool to analyze
the expected run-time of randomized algorithms such as the
(1+ 1) EA. Intuitively, for a fitness function f : 2V → R≥0

we view the run of the (1+1) EA as aMarkov chain {Xt }t≥0,
where Xt depends on the f -value reached at time-step t . The
Multiplicative Drift theorem gives an upper-bound on the
expected value of the first hitting time T = inf{t : Xt = 0},
provided that the change of the average value of the pro-
cess {Xt }t≥0 is within a multiplicative factor of the previous
solution. The following theorem holds.

Theorem 1 (Theorem 3 in Doerr et al. (2012)) Let {Xt }t≥0

be a random variable describing a Markov process over a
finite state space S ⊆ R. Let T be the random variable that
denotes the earliest point in time t ∈ N0 such that Xt = 0.
Suppose that there exist δ > 0, cmin > 0, and cmax > 0 such
that

• E[Xt − Xt+1 | Xt ] ≥ δXt ;

• Xt ∈ [cmin, cmax] ∪ {0};

for all t < T . Then it holds E[T ] ≤ 2
δ
ln

(
1 + cmax

cmin

)
.

3 Artificial landscapes

3.1 General upper bounds for the (1+ 1) EA

In this section we bound from above the run-time of the
(1+1) EA using the mutation operator pmutβ on any fitness
function f : {0, 1}n → R. It is well-known that the (1 +
1) EA using uniform mutation on any such fitness function
has expected run-time at most nn . This upper-bound is tight,
in the sense that there exists a function f s.t. the expected
run-time of the (1 + 1) EA using uniform mutation to find
the global optimum of f isΩ(nn) (Droste et al. 2002). Doerr
et al. (2017) prove that on any fitness function f : {0, 1}n →
R the (1+1) EA using the mutation operator fmutβ has run-

time at most O
(
Hβ
n/22

nnβ
)
. Similarly, we derive a general

upper bound on the run-time of the (1+1)EAusingmutation
pmutβ .

Lemma 2 On any fitness function f : {0, 1}n → R the (1 +
1) EA with mutation pmutβ finds the optimum solution after

expectedO
(
Hβ
n ennβ

)
fitness evaluations, with the constant

implicit in the asymptotic notation independent of β.

Proof Without loss of generality we assume n to be even.
We proceed by identifying a general lower bound on the
probability of reaching any point fromany other point. To this
end, let x, y ∈ {0, 1}n be any two points and let k = H (x, y)
be their Hamming distance. Then the probability of reaching
the point y in one iteration from x is

Pr
(
y = pmutβ(x)

) =
(
n

k

)−1

Pr
(H (

x,pmutβ(x)
) = k

)
.

From (1) we have that it holds Pr
(H (

x,pmutβ(x)
) = k

) =
(Hβ

n )−1k−β ≥ (Hβ
n )−1n−β for all choices of x ∈ {0, 1}n and

k = 1, . . . , n. Using a known lower bound of the binomial
coefficient we have that

(
n

k

)−1

≥
(

n

n/2

)−1

≥ (2e)−n/2 ≥ e−n,

from which it follows that Pr
(
y = pmutβ(x)

) ≥ (Hβ
n )−1

e−nn−β , for any choice of x and y. We can roughly estimate
run-time as a geometric distribution with probability of suc-
cess Pr

(
y = pmutβ(x)

)
. Hence, we conclude by taking the

inverse of the estimate above, which yields an upper-bound
on the probability of convergence on any fitness function. 
�

123



566 F. Quinzan et al.

We consider the OneMax function, defined as OneMax
(x1, . . . , xn) = ∑n

j=1 x j , for all input strings (x1, . . . , xn) ∈
{0, 1}n . This simple linear function of unitation returns the
number of ones in a pseudo-Boolean input string. The (1 +
1) EA with mutation operators unif p and fmutβ finds the
global optimum after O (n log n) fitness evaluations (Doerr
et al. 2017; Droste et al. 2002; Mühlenbein 1992). It can
be easily shown that the (1 + 1) EA with mutation operator
pmutβ achieves similar performance on this instance.

Lemma 3 The (1 + 1) EA with mutation pmutβ finds the

global optimumof theOneMax after expectedO
(
Hβ
n n log n

)

fitness evaluations, with the constant implicit in the asymp-
totic notation independent of β.

Proof We use the fitness level method outlined in Wegener
(2001). Define the levels Ai = {x ∈ {0, 1}n : f (x) = i},
and consider the quantities si = (n− i)(nHβ

n )−1, for all i =
1, . . . , n. Then each si is a lower-bound on the probability
of reaching a higher fitness in one iteration. Denote with
Tpmutβ ( f ) the run-time of the (1 + 1) EA with mutation
pmutβ on the function f =OneMax. By the fitness level
theorem, we obtain an upper-bound on the run-time as

Tpmutβ ( f ) ≤
n−1∑

i=0

1

si
≤ Hβ

n n
∫ n−1

0

dx

n − x
≤ Hβ

n n log n

and the claim follows. 
�

3.2 A comparison with static uniformmutations

Droste et al. (2002) defined the following jump function.

Jumpm,n(x) =
⎧
⎨

⎩

m + |x |1 if |x |1 ≤ n − m;
m + |x |1 if |x |1 = n;
n − |x |1 otherwise.

with |x |1 the function that returns the number of 1s in the
input string. For 1 < m < n this function exhibits a sin-
gle local maximum and a single global maximum. The first
parameter of Jumpm,n determines the Hamming distance
between the local and the global optimum, while the second
parameter denotes the size of the input. We present a general
upper-bound on the run-time of the (1+ 1) EA on Jumpm,n
with mutation operator pmutβ . Then, following Doerr et al.
(2017), we compare the performance of pmutβ with static
mutation operators on jump functions for all m ≤ n/2.

Lemma 4 Consider a jump function f = Jumpm,n with m ≤
n/2 and denote with Tpmutβ ( f ) the expected run-time of the
(1 + 1) EA using the mutation pmutβ on the function f .

Tpmutβ ( f ) = Hβ
n
(n
m

)O (
mβ

)
, where the constant implicit in

the asymptotic notation is independent of m and β.

Proof We use the fitness level method outlined in Wegener
(2001).
Define the levels Ai = {x ∈ {0, 1}n : f (x) = i} for all i =
1, . . . , n, and consider the quantities

si =

⎧
⎪⎨

⎪⎩

(n − i)(nHβ
n )−1, 0 ≤ i ≤ n − m − 1;

(n
m

)−1
(Hβ

n )−1m−β, i = n − m;
i(nHβ

n )−1, n − m + 1 ≤ i ≤ n − 1.

Then each si is a lower bound for the probability of reaching a
higher fitness in one iteration from the level Ai . By the fitness
level theorem we obtain an upper bound on the run-time as

Tpmutβ ( f ) ≤
(
n

m

)
Hβ
n m

β +
n−m−1∑

i=0

nHβ
n

n − i
+

n−1∑

i=n−m+1

nHβ
n

i

≤
(
n

m

)
Hβ
n m

β + 2nHβ
n

∫ n

m

dx

x

=
(
n

m

)
Hβ
n m

β + 2nHβ
n ln

n

m
,

for any choice of β > 1. Since we have that 1 < m < n and
2 ≤ m ≤ n/2, then it follows that

2nHβ
n ln

n

m
≤ 2nHβ

n ln n ≤ 8Hβ
n

(
n

2

)
≤ 8Hβ

n

(
n

m

)
,

and the lemma follows. 
�

Note that the upper-bound on the run-time given in
Lemma 4 yields polynomial run-time on all functions
Jumpm,n with m constant for increasing problem size and
also with n − m constant for increasing problem size.

Following the analysis of Doerr et al. (2017), we can com-
pare the run-time of the (1 + 1) EA with mutation pmutβ
with the (1 + 1) EA with uniform mutations, on the jump
function Jumpm,n for m ≤ n/2.

Corollary 1 Consider a jump function f = Jumpm,n with
m ≤ n/2 and denote with Tpmutβ ( f ) the run-time of the (1+
1)EA using themutation pmutβ on the function f . Similarly,
denote with Topt( f ) the run-time of the (1+ 1) EA using the
best possible static uniformmutation on the function f . Then
it holds Tpmutβ ( f ) ≤ cmβ−0.5 Hβ

n Topt( f ), for a constant c
independent of m and β.

The result above holds because Theorem5.5 inDoerr et al.
(2017) prove that the best possible optimization time for a
static mutation rate a function f = Jumpm,n with m ≤ n/2
is lower-bounded as c

√
mTopt( f ).

123



Evolutionary algorithms and submodular functions… 567

4 Large jumps are useful

We give a concrete example of a combinatorial problem,
showing that large jumps are useful. We study the mini-
mum vertex cover problem (MVC) to this end. Given a graph
G = (V , E) MVC asks to find a set of vertices of mini-
mum size that includes at least one endpoint of every edge
of the graph. This problem appears on the famous list of NP-
complete problems by Karp (1972). For a fixed indexing on
the nodes of G, sets of vertices can be represented as bit-
strings x of length n = |V |. Here, a one in the i-th position
of x denotes that the i-th vertex is included in the correspond-
ing set of vertices, whereas a zero denotes that the i-th vertex
not included in that set. Following Friedrich et al. (2010) and
Oliveto et al. (2009), we use the (1+ 1) EA for theMVC, by
maximizing the fitness function f (x) = (n + 1)u(x) + |x |1,
where u(x) denotes the number of uncovered edges by x .

Our example consists of finding theminimumvertex cover
of a complete bipartite graphG. In a complete bipartite graph,
nodes can be partitioned into two sets V1 and V2. Each node
in V1 is connected to every node in V2 and each node in V2 is
connected to every node in V1. Furthermore, there is no edge
connecting two nodes in V1, or two nodes in V2.

TheMVC on a complete bipartite graph G offers an exam-
ple where there exists a deceptive local optimumwith a large
basin of attraction.This is the casewhen the partition {V1, V2}
of the nodes is such that |V1| = εn and |V2| = (1−ε)n, with
n1−δ ≤ ε ≤ 1/2 and δ > 0 a constant. In this case, the set V2
is a deceptive local optimum. If the (1 + 1) EA reaches this
set, then a jump of n bit-flips is required to reach the global
optimum V1, since any smaller jump will lower the fitness
f . For this reason, the (1+ 1) EA with the standard uniform
mutation has exponential expected run-time, as discussed in
(Friedrich et al. 2010, Theorem 5). However, we prove that
the (1 + 1) EA with mutation pmutβ yields expected poly-
nomial run-tie on this instance. Or analysis also yields an
improvedupper-boundover theO (

nβ2εn
)
expected run-time

of Doerr et al. (2017), which they prove for the (1 + 1) EA
with fmutβ , on this MVC instance with ε ≤ 1/3. First, we
note that the following lemma holds.

Lemma 5 The (1 + 1) EA with mutation operator pmutβ
finds a minimum vertex cover set in time O

(
Hβ
n n log n

)
.

This lemma follows from Theorem 2 in Friedrich et al.
(2010). In fact, the proof technique developed in Friedrich
et al. (2010) for this theorem uses single bit-flips only, and it
trivially extends to ourmutation operator, taking into account
that the probability of performing a single bit-flip with the
pmutβ operator is H−β

n .
Note that the minimum vertex cover found by the (1 +

1) EA as in Lemma 5 is not necessarily a solution to the
MVC. In the case of a complete bipartite graphG as described
earlier, Lemma 5 gives the expected run-time until the (1+

1) EA reaches either the set V1 or the set V2, which are the
only minimum vertex cover sets of G. The following lemma
ensures that the (1+ 1) EA finds the solution for theMVC in
polynomial time, on complete bipartite graphs.

Lemma 6 The (1+1)EAwithmutationoperatorpmutβ finds

a minimum vertex cover in time O
(
Hβ
n (n log n + nβ)

)
.

Proof FromLemma5, the (1+1)EAfinds aminimumvertex

cover afterO
(
Hβ
n n log n

)
expected run-time. This solution

consists either of the set V1 or the the set V2. If the (1 +
1) EA finds the solution V1, then the claim holds. Suppose
that the (1+1) EA finds the solution V2. Then an n bit-flip is
sufficient to escape V2 and jump to the global optimum V1.
The probability of an n-bit flip to occur is (Hβ

n )−1n−β , and
the expected run-time of this bit-flip to occur is Hβ

n nβ . The
lemma follows 
�

5 The unconstrained submodular
maximization problem

We study the problem of maximizing a non-negative sub-
modular function f : 2V → R≥0 with no side constraints.
More formally, we study the problem

argmaxC⊆V f (C). (3)

This problem isAPX-complete. That is, this problem isNP-
hard and does not admit a polynomial time approximation
scheme (PTAS), unless P = NP (Nemhauser and Wolsey
1978).

We denote with opt any solution of Problem (3), and we
denote with n the size of V .

5.1 A general upper-bound on the run-time

We prove that the (1 + 1) EA with mutation pmutβ is a
(1/3 − ε/n)-approximation algorithm for Problem 3. In our
analysis we assume neither monotonicity nor symmetry. We
approach this problem by searching for (1+α)-local optima,
which we define below.

Definition 4 Let f : 2V → R≥0 be any submodular function.
A set S ⊆ V is a (1 + α)-local optimum if it holds (1 +
α) f (S) ≥ f (S \ {u}) for all u ∈ S, and (1 + α) f (S) ≥
f (S ∪ {v}) for all v ∈ V \ S, for a constant α > 0.

This definition is useful in the analysis because it makes
possible to prove that either (1 + α)-local optima or their
complement always yield a good approximation of the global
maximum, as in the following theorem.

Theorem 2 (Theorem 3.4 in Feige et al. (2011)) Consider a
non-negative submodular function f : 2V → R≥0 and let S
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be a (1 + α)-local optimum as in Definition 4. Then, 2(1 +
nα) f (S) + f (V \ S) ≥ opt.

From Theorem 2, it follows that with α ≤ ε/n2, then either
S or V \ S is a (1/3 − ε/n)-approximation of the global
maximum of f . It is possible to construct examples of sub-
modular functions that exhibit (1+ ε/n2)-local optima with
arbitrarily bad approximation ratios. Thus, (1 + ε/n2)-local
optima alone do not yield any approximation guarantee for
Problem (3), unless the fitness function is symmetric.

We can use Theorem 2 to estimate the run-time of the
(1+ 1) EA using mutation pmutβ to maximize a given sub-
modular function. Intuitively, it is always possible to find a
(1 + ε/n2)-local optimum in polynomial time using single
bit-flips. It is then possible to compare the approximate local
solution S with its complement V \ S by flipping all bits in
one iteration.

We do not perform the analysis on a given submodu-
lar function f directly, but we consider a corresponding
potential function g f ,ε instead. Intuitively, we introduce an
additive term in the fitness function f , to ensure that the ini-
tial solution is always lower-bounded by a positive constant.
This assumption allows us to obtain a good upper-bound on
the expected run-time. We define potential functions as in
the following lemma.

Lemma 7 Consider a non-negative submodular function
f : 2V → R≥0. Consider the function g f ,ε(U ) = f (U ) +
ε opt

n , for all U ⊆ V . The following conditions hold

(1) g f ,ε(U ) is submodular.
(2) g f ,ε(U ) ≥ ε opt/n, for all subsets U ⊆ V .
(3) Suppose that a solution U ⊆ V is a δ-approximation for

g f ,ε, for a constant 0 < δ < 1. Then U is a (δ − ε/n)-
approximation for f .

Proof (1) The submodularity of g f ,ε(U ) follows immedi-
ately from the fact that f (U ) is submodular, together with
the fact that the term εopt/n is constant. (2) The property
follows directly from the definition of g f ,ε(U ), together with
the assumption that f is non-negative. (3)Fix a subsetU ⊆ V
that is an δ-approximation for g f ,ε. Then we have that

g f ,ε(U ) ≥ δ

(
opt + ε

opt

n

)
⇒ f (U )

≥ δ

(
opt + ε

opt

n

)
− ε

opt

n
.

It follows that

f (U ) ≥ δopt − (1 − δ)ε
opt

n
≥ δopt − ε

opt

n
,

where the last inequality follows from the assumption that
0 < δ < 1. The lemma follows. 
�

Using potential functions and their properties, we can prove
the following result.

Theorem 3 The (1+1) EA with mutation pmutβ is a (1/3−
ε/n)-approximation algorithm for Problem (3). Its expected
run-time is O ( 1

ε
n3 log n

ε
+ nβ

)
.

Proof We prove that for all ε > 0, the (1 + 1) EA with
mutation pmutβ finds a (1/3 − ε/n)-approximation of g f ,ε

(as in Lemma 7) within expected O ( 1
ε
n3 log n

ε
+ nβ

)
fit-

ness evaluations. We then use this knowledge to conclude
that the (1 + 1) EA with mutation pmutβ finds a (1/3 −
2ε/n)-approximation of f withinO (

nβ + 1
ε
n3 log n

ε

)
fitness

evaluations and the theorem follows.
We divide the run-time into two phases. During Phase 1,

the (1+1)EAfinds a solution that is at least a (1+ε/n2)-local
optimumof g f ,ε. During Phase 2 the algorithmfinds a (1/3−
ε/n)-approximation of the global optimum of g f using the
heavy-tailed mutation. Phase 2 uses the fact that the solution
found in Phase 1 is at least a (1+ ε/n2)-local optimum. If a
solution found in Phase 1 is a (1+α)-local optimumwithα ≤
ε/n2, then this only results into an improved approximation
guarantee (see Theorem 2).

Phase 1 Let xt be the solution found by the (1+ 1) EA at
time step t , for all t ≥ 0. Then for any solution xt it is always
possible to make an improvement of (1 + ε/n2)g f ,ε(xt ) on
the fitness in the next iteration, by performing a single bit-
flip, unless xt is already a (1 + ε/n2)-local optimum. We
refer to any single bit-flip that yields such an improvement
of a fitness as a favorable bit-flip.We give an upper-bound on
the number of favorable bit-flips k to reach a (1+ε/n2)-local
optimum, by solving the following inequality

(
1 + ε

n2

)k
ε
opt

n
≤ opt + ε

opt

n
⇔

(
1 + ε

n2

)k ≤ n

ε
+ 1,

where we have used for the initial solution x0, g f ,ε(x0) ≥
εopt/n (see Lemma 7(2)). By taking the logarithm on both
sides and solving this inequality on k, it follows that the
(1 + 1) EA with mutation pmutβ reaches a (1 + ε/n2)-

local maximum after at most k = O ( 1
ε
n2 log n

ε

)
favorable

bit-flips. Since the probability of performing a single chosen
bit-flip is at least (Hβ

n )−1n−1 = Ω(1/n), then the expected
waiting time for a favorable bit-flip to occur isO (n), we can
upper-bound the expected run-time in this initial phase as
O ( 1

ε
n3 log n

ε

)
.

Phase 2Assume that a (1+ε/n2)-local optimum has been
found. Then by Theorem 2 it follows that either this local
optimum or its complement is a (1/3− ε/n)-approximation
of the global maximum. Thus, if the solution found in phase
1 does not yield the desired approximation ratio, an n-bit
flip is sufficient to find a (1/3 − ε/n)-approximation of the
global optimum of g f . The probability of this event to occur

is at least (Hβ
n )−1n−β = Ω(n−β) by (1). After an additional
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phase of expectedO (
nβ

)
fitness evaluations, the (1+1) EA

with mutation pmutβ reaches the desired approximation of
the global maximum. 
�

5.2 An improved upper-bound on the run-time

We prove that the (1 + 1) EA with mutation pmutβ yields
an improved upper-bound on the run-time over that of The-
orem 3, at least with constant probability. This upper-bound
yields an improvement over the run-time analysis of a stan-
dard deterministic Local Search (LS) algorithm (Feige et al.
2011, Theorem 3.4), at least with constant probability. To
this end, we exploit a well-known property of submodular
functions, by which randomly chosen sets yield a constant-
factor approximation of the optimal solution. More formally,
the following theorem holds.

Theorem 4 (Theorem 2.1 in Feige et al. (2011)) Let f :
2V → R≥0 be a submodular function, and denote with
R ⊆ V a set chosen uniformly at random. Then E [ f (R)] ≥
opt/4.

We exploit this result to obtain an improved upper-bound on
the run-time. Intuitively, the initial solution sampled by the
(1+1) EA yields a constant-factor approximation guarantee
at least with constant probability. We can use this result to
prove the following theorem.

Theorem 5 The (1 + 1) EA with mutation pmutβ finds a
(1/3 − ε/n)-approximation algorithm for Problem (3) after
O ( 1

ε
n3 + nβ

)
fitness evaluations at least with constant prob-

ability (w.c.p.).

Proof This proof is similar to that of Theorem 3. We denote
with xt a solution reached by the (1+1)EA at time step t .We
first prove that the definition of submodularity implies that
with high probability the initial solution x0 yields a constant-
factor approximation guarantee.We then perform a run-time
analysis as in Theorem 3, by counting the expected time
until the fittest individual is chosen for selection, and a local
improvement of at least (1+ε/n2) is made, assuming that the
initial solution yields a constant-factor approximation guar-
antee.

Denote with R ⊆ V a set chosen uniformly at random and
fix a constant δ > 1. We combine Theorem 4 with Lemma
1, by choosing X = f (R)/opt and obtain,

Pr
(
f (R) ≤ 1

4δ
opt

)
= Pr

(
X ≤ 1

4δ

)
≤ 1 − 1/4

1 − 1/4δ
= 3δ

4δ − 1
,

where the last inequality follows by applying Theorem 4 and
the linearity of expectation to the r.v. X = f (R)/opt, to
obtain that E [X ] ≥ 1/4. We have that

Pr
(
x0 >

1

4δ
opt

)
≥ 1 − Pr

(
f (R) ≤ 1

4δ
opt

)
≥ 1 − 3δ

4δ − 1
.

In the following, for a fixed constant δ > 1, we perform the
run-time analysis as in Theorem 3 conditional on the event
A = {x0 > opt/4δ}, which occurs at least w.c.p.

Again, we divide the run-time into two phases. During
phase 1, the (1 + 1) EA finds a (1 + ε/n2)-local optimum
of f . During phase 2 the algorithm finds a (1/3 − ε/n)-
approximation of the global optimum of f using the heavy-
tailed mutation.

Phase 1 For any solution xt it is always possible to make
an improvement of (1 + ε/n2) f (xt ) on the fitness in the
next iteration, by adding or removing a single element—
the favorable bit-flip, unless xt is already a (1 + ε/n2)-local
optimum. Again, we give an upper-bound on the number of
favorable bit-flips k to reach a (1+ ε/n2)-local optimum, by
solving the following equation

(
1 + ε

n2

)k opt
4δ

≤ opt ⇐⇒
(
1 + ε

n2

)k ≤ 4δ,

from which it follows that the (1 + 1) EA with mutation
pmutβ reaches a (1+ε/n2)-localmaximumafter atmost k =
O ( 1

ε
n2

)
favorable moves. Since the probability of perform-

ing a single chosen bit-flip is at least (Hβ
n )−1n−1 = Ω(1/n),

then the expectedwaiting time for a favorable bit-flip to occur
is O (n), we can upper-bound the expected run-time in this
initial phase as O ( 1

ε
n3

)
.

Phase 2 In applying the heavy-tailed mutation we con-
clude: If the solution found in Phase 1 does not yield the
desired approximation ratio, a n-bit flip is sufficient to find
a (1/3 − ε/n)-approximation of the global optimum of
f . The probability that this event will occur is at least
(Hβ

n )−1n−β = Ω(n−β) by (1). After an additional phase
of expected O (

nβ
)
fitness evaluations the (1 + 1) EA with

mutation pmutβ performs an n-nit flip, thus reaching the
desired approximation ratio. 
�

6 Symmetric submodular functions under a
matroid constraint

In this section we consider the problem ofmaximizing a non-
negative submodular function f : 2V → R≥0 under a single
matroid constraint M = (V , I). More formally, we study
the problem

argmaxC∈I f (C). (4)

We denote with opt any solution of Problem (4), and we
denote with n the size of V . Note that this definition of opt
differs from that of Sect. 5.
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We approach this problem, by maximizing the following
fitness function

z f (C) =
{
f (C) if C ∈ I;
r(C) − |C | otherwise; (5)

with r the rank function as in Definition 3. If a solution C is
unfeasible, then z f (C) returns a negative number, whereas
if C is feasible, then z f (C) outputs a non-negative number.

When studying additional constraints on the solution
space the problem becomes more involved, so we require
a different notion of local optimality.

Definition 5 Let f : 2V → R≥0 be a submodular function,
let M = (V , I) be a matroid and let α > 0. A set S ∈ I is
a (1 + α)-local optimum if the following hold.

• (1 + α) f (S) ≥ f (S \ {u}) for all u ∈ S;
• (1+α) f (S) ≥ f (S∪{v}) for all v ∈ V \S s.t. S∪{v} ∈ I;
• (1 + α) f (S) ≥ f ((S \ {u}) ∪ {v}) for all u ∈ S and

v ∈ V \ S s.t. (S \ {u}) ∪ {v} ∈ I.

We prove that, in the case of a symmetric submodular func-
tion, a (1 + α)-local optimum as in Definition 5 yields a
constant-factor approximation ratio. To this end, we make
use of the following well-known result.

Theorem 6 (Theorem1 inLee et al. (2009))LetM = (V , I)

be a matroid and I , J ∈ I be two independent sets. Then
there is a mapping π : J \ I → (I \ J ) ∪ {∅} such that

• (I \ {π(b)}) ∪ {b} ∈ I for all b ∈ J \ I ;
• ∣∣π−1(e)

∣∣ ≤ 1 for all e ∈ I \ J .

Based on the work of Lee et al. (2009), the following lemma
holds. Our lemma differs in that, since we assume symmetry,
the analysis significantly simplifies and it requires no divide
and conquer. Furthermore, since side constraints consist of
a single matroid, we need only to search for (1+ ε/n2)-local
optima, instead of (1 + ε/n4)-local optima.

Lemma 8 Consider a non-negative symmetric submodular
function f : 2V → R≥0, a matroid M = (V , I) and let S
be a (1 + ε/n2)-local optimum as in Definition 5. Then S is
a (1/3 − ε/n)-approximation for Problem (4).

Proof Fix a constant ε > 0 and a set C ∈ I. Consider a
mapping π : C \ S → (S \C) ∪ {∅} as in Theorem 6. Since
S is a (1 + ε/n2)-local optimum it holds

(
1 + ε

n2

)
f (S) ≥ f ((S \ {π(b)}) ∪ b); (6)

for all b ∈ C \ S. Thus, it holds

f (S ∪ {b}) − f (S)

≤ f ((S \ {π(b)}) ∪ {b}) − f (S \ {π(b)})
≤

(
1 + ε

n2

)
f (S) − f (S \ {π(b)}),

where the first inequality follows from (2), and the second
one follows from (6). Summing these inequalities for each
b ∈ C \ S and using submodularity as in (2) we obtain,

f (S ∪ C) − f (S)

≤
∑

b∈C\S
[ f (S ∪ {b}) − f (S)]

≤
∑

b∈C\S

[(
1 + ε

n2

)
f (S) − f (S \ {π(b)})

]
.

Consider a given order of the elements in b ∈ C \ S, i.e.,
C \ S = {b1, . . . , bk}. Then it holds

∑

b∈C\S

[(
1 + ε

n2

)
f (S) − f (S \ {π(b)})

]

=
k∑

j=1

[ f (S) − f (S \ {π(b j )})] + k
ε

n2
f (S)

≤
k∑

j=2

f

⎛

⎝(S ∩ C)

j⋃

�=1

{π(b�)}
⎞

⎠

−
k∑

j=2

f

⎛

⎝(S ∩ C)

j−1⋃

�=1

{π(b�)}
⎞

⎠

+ f ((S ∩ C) ∪ {π(b1)}) − f (S ∩ C)

+ k
ε

n2
f (S) ≤

(
1 + ε

n

)
f (S) − f (S ∩ C)

where the first inequality follows from (2) and the second
inequality follows by taking the telescopic sum together with
the fact that k ≤ n. Thus, it follows that

2
(
1 + ε

n

)
f (S) ≥ f (S ∪ C) + f (S ∩ C),

Since f is symmetric, f (S) = f (V \ S) and we have that,

3
(
1 + ε

n

)
f (S) ≥ f (S) + f (S ∪ C) + f (S ∩ C)

≥ f (C \ S) + f (C ∩ S) ≥ f (C).

The claim follows by choosing C = opt. 
�
We use Lemma 8 to perform a run-time analysis of the (1+
1)EA.We consider the case of thepmutβ mutation, although
our proof easily extends to the standard uniformmutation and
fmutβ . We experimentally compare these operators in Sect.
7.2.We perform the analysis by estimating the expected run-
time until a (1 + ε/n2)-local optimum is reached and apply
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Lemma 8 to obtain the desired approximation guarantee. Our
analysis yields an improved upper-bound on the run-time
over that of Friedrich and Neumann (2015). The following
theorem holds.

Theorem 7 The (1+1) EA with mutation pmutβ is a (1/3−
ε/n)-approximation algorithm for Problem (4). Its expected
run-time is O ( 1

ε
n4 log n

ε

)
.

Proof We perform the analysis assuming that a fitness func-
tion as in (5) is used. We divide the run-time in two phases.
During phase 1 the (1 + 1) EA finds a feasible solution,
whereas in phase 2 it finds a (1+ε/n2)-local optimum, given
that an independent set has been found.

Phase 1: Assuming that the initial solution is not an inde-
pendent set then the (1 + 1) EA maximizes the function
r(C) − |C | until a feasible solution is found. This is equiva-
lent to minimizing the function |C | − r(C). We estimate the
run-time using the multiplicative drift theorem (Theorem 1).
Denote with xt a solution found by the (1 + 1) EA after
t steps, consider the Markov chain Xt = |xt | − r(xt ) and
consider the first hitting time T = min{t : Xt = 0}. Then it
holds Xt ∈ {0} ∪ [1, n]. Moreover, since the probability of
removing a single chosen bit-flip from the current solution
is (nHβ

n )−1, we have, E
[
Xt − Xt+1 | Xt

] ≥ Xt

(nHβ
n )

. Theo-

rem 1 now yields, E [T ] ≤ 2nHβ
n log(1 + n). We conclude

that we can upper-bound the run-time in this initial phase as
O (n log n).

Phase 2: We estimate the run-time in this phase with
the multiplicative increase method. Assuming that a feasible
solution is reached, then all subsequent solutions are feasible,
since z f (C) ≥ 0 for all feasible solutions and z f (C) < 0 for
all infeasible solutions.

To estimate the run-time in this phase we do not perform
the analysis on f directly but we consider the potential func-
tion g f ,ε from Lemma7 (recall that in this case opt is not the
global optimum of f , but the highest f -value among all fea-
sible solutions). We prove that for all ε > 0, the (1 + 1) EA
with mutation pmutβ finds a (1/3− ε/n)-approximation of

g f ,ε(S) = f (S) + opt
ε
, within expected O ( 1

ε
n4 log n

ε

)
fit-

ness evaluations. We apply Lemma 7(3) and conclude that
the (1 + 1) EA with mutation pmutβ finds a (1/3 − 2ε/n)-

approximation of f withinO ( 1
ε
n4 log n

ε

)
fitness evaluations.

Denote with yt the solution found by the (1 + 1) EA at
time step t + �, for all t ≥ 0, with � the number of steps
in Phase 1. In other words, y0 is the first feasible solution
found by the (1 + 1) EA, and yt is the solution found after
additional t steps. Again, the solutions yt are independent
sets for all t ≥ 0. For any solution yt it is always possible to
make an improvement of (1+ε/n2)g f ,ε(yt ) on the fitness in
the next iteration, by adding or removing a single vertex, or
by swapping two bits, unless yt is already a (1+ ε/n2)-local
optimum. Again, we refer to any single bit-flip or swap that

yields such an improvement of a fitness as favorable move.
We give an upper-bound on the number of favorable moves k
to reach a (1+ε/n2)-local optimum, by solving the following
equation

(
1 + ε

n2

)k
ε
opt

n
≤ opt + ε

opt

n
⇔

(
1 + ε

n2

)k ≤ n

ε
+ 1,

where we have used for the initial solution y0, g f ,ε(y0) ≥
εopt/n (see Lemma 7(2)). From solving the inequality it
follows that the (1+ 1) EA reaches a (1+ ε/n2)-local max-
imum after at most k = O ( 1

ε
n2 log n

ε

)
favorable moves.

Since the probability of performing a single chosen bit-flip
or a swap is at least H−β

n 2−βn−2, then the expected waiting
time for a favorable bit-flip to occur is at mostO (

n2
)
, hence

we can upper-bound the expected run-time in Phase 2 as
O ( 1

ε
n4 log n

ε

)
. 
�

We remark that a similar result hold for the (1+1) EA using
uniform and fmutβ .

7 Experiments

7.1 Themaximum directed cut problem

Given a directed graphG = (V , E), we consider the problem
of finding a subset U ⊆ V of nodes such that the sum of the
outer edges of U is maximal. This problem is the maximum
directed cut problem (Max-Di-Cut) and is a known to be NP-
complete.

For each subset of nodesU ⊆ V , consider the setΔ(U ) =
{(e1, e2) ∈ E : e1 ∈ U and e2 /∈ U } of all edges leaving U .
We define the cut function f : 2V −→ R≥0 as

f (U ) = |Δ(U )| . (7)

The Max-Di-Cut can be approached by maximizing the cut
function as in (7). Note that this function is non-negative.
Moreover, it is always submodular and, in general, non-
monotone (Feige et al. 2011; Friedrich and Neumann 2015).
Hence, this approach to the Max-Di-Cut can be formalized
as in Problem (3) in Sect. 5.

We select the 123 large instances used by Wagner et al.
(2017); the number of vertices ranges from about 379 to over
6.6 million, and the number of edges ranges from 914 to over
56 million. All 123 instances are available online (Rossi and
Ahmed 2015).

The instances come from a wide range of origins. For
example, there are 14 collaboration networks (ca-*, from
various sources such as Citeseer, DBLP, and also Holly-
wood productions), five infrastructure networks (inf-*), six
interaction networks (ia-*, i.e., about email exchange), 21
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Table 2 Average ranks (based on mean cut size) at t = 10 000 and
t = 100 000 iterations (lower ranks are better)

Average rank

Mutation t = 10, 000 t = 100, 000

fmut1.5 4.1 5.9

fmut2.5 5.7 4.6

fmut3.5 6.6 4.0

pmut1.5 2.4 3.0

pmut2.5 3.0 1.8

pmut3.5 4.0 1.1

unif1 2.1 6.7

general social networks (soc-*, i.e., Flickr, LastFM, Twit-
ter, Youtube), 44 subnets of Facebook (socfb-*, mostly from
different American universities), and 14 web graphs (web-
*, showing the state of various subsets of the Internet at
particular points in time).We take these graphs and runAlgo-
rithm1 with seven mutation operators: fmutβ and pmutβ
with β ∈ {1.5, 2.5, 3.5} and unif1.1 We use an intuitive
bit-string representation based on vertices, and we initialize
uniformly at random. Each edge has a weight of 1.

For each instance-mutation pair, we perform 100 inde-
pendent runs (100000 evaluations each) and with an overall
computation budget of 72 hours per pair. Out of the initial 123
instances 67 finish their 100 repetitions per instance within
this time limit.2 We report on these 67 in the following. We
use the average cut size achieved in the 100 runs as the basis
for our analyses.

Firstly, we rank the seven approaches based on the aver-
age cut size achieved (best rank is 1, worst rank is 7). Table2
shows the average rank achieved by the different mutation
approaches. unif1 performs best at the lower budget and
worst at the higher budget, which we take as a strong indica-
tion that few bit-flips are initially helpful to quickly improve
the cut size, while more flips are helpful later in the search to
escape local optima. At the higher budget, both fmutβ and
pmutβ perform better than unif1, independent of the param-
eter chosen. In particular,pmutβ clearly performs better than
fmutβ at both budgets, however, while pmutβ with β = 1.5
performs best at 10 000 iterations, pmutβ with β = 3.5 per-
forms best when the budget is 100 000 iterations.

To investigate the relative performance difference and
the statistical significance thereof, we perform a Nemenyi
two-tailed test (see Fig. 1). This test performs all-pairs com-

1 In contrast to our earlier work (Friedrich, Göbel, et al., 2018), we are
comparing against unif1, which performs at least one flip, thus making
it a fairer comparison.
2 Source categories of the 67 instances: 2x bio-*, 6x ca-*, 5x ia-*, 2x
inf-*, 1x soc-*, 40x socfb-*, 4x tech-*, 7x web-*. The largest graph is
socfb-Texas84 with 36364 vertices and 1590651 edges.

parisons on Friedman-type ranked data. The results are as
expected and consistent with the average ranks reported in
Table2.

Across the 67 instances, the achieved cut sizes vary signif-
icantly (see Table3). For example, the average gap between
the worst and the best approach is 42.1% at 10000 itera-
tions and it still is 7.4% at 100000 iterations. Also, when we
compare the best fmutβ and pmutβ configurations (as per
Table3), then we can see that (i) pmutβ is better or equal
to fmutβ , and (ii) the performance advantage of pmutβ over
fmutβ is 2.3% and 0.8% on average, with a maximum of
4.7% and 6.3%t, i.e., for 10 000 and 100 000 evaluations.

To investigate the extent to which mutation performance
and instance features are correlated, we perform a 2D pro-
jection using a principal component analysis of the instance
feature space based on the features collected from Rossi and
Ahmed (2015). We then consider the performance of the
seven mutation operators at a budget of 100,000 evaluations,
and we visualize it in the 2D space (see Fig. 2). In these
projections, the very dense cluster in the top left is formed
exclusively by the socfb-* instances, and the ridge from the
very top left to the bottom left is made up of (from top to bot-
tom) ia-*, tech-*, web*, and ca-* instances. The “outlier” on
the right is web-BerkStan, due to its extremely high values
of the average vertex degree, the number of triangles formed
by three edges (3-cliques), themaximum triangles formed by
an edge, and the maximum i-core number, where an i-core
of a graph is a maximal induced subgraph and each vertex
has degree at least i .

Interestingly, the performance seems to be correlated with
the instance features and thus, indirectly, with their origin.
For example, we can see in Fig. 2g that unif1 does not reach
a cut size that is within 1% of the best observed average
for many of the socfb-* instances (shown as many black
dots in the tight socfb*-cluster). In contrast to this, pmut3.5’s
corresponding Fig. 2f shows only red dots, indicating that it
always performs within 1% of the best-observed.

Lastly, we summarize the results in Fig. 2h based on the
concept of instance difficulty. Here, the color denotes the
number of instances that achieve a cut size within 1% of the
best observed average. Interestingly, many ia-*, ca-*, web-
* and tech-* instances are solved well by many mutation
operators. In contrast to this, many socfb-* instances are
blue, meaning that are solved well by just very few muta-
tion operators—in particular, by our pmut3.5.

7.2 The symmetric mutual information problem

We study an instance of the general feature selection prob-
lem: Given a set of observations, find a subset of relevant
features (variables, predictors) for use in model construction.

We consider the following framework. Suppose that n
time series X (1), . . . , X (n) are given, each one representing a
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Fig. 1 Critical Distance (CD) diagram based on a Nemenyi two-tailed test using the average rankings. CD (top left) shows the critical distance.
Distances larger than CD correspond to a statistical significant difference in the ranking. Relationships within a critical distance are marked with
a horizontal bar

Table 3 Summary of cut-size
differences. “total” refers to the
gap between the best and worst
performing mutation out of all
seven. The two highlighted pairs
compare the best fmutβ and
pmutβ values listed in Table2

t = 10k t = 100k
Total pmut1.5 vs fmut1.5 Total pmut3.5 vs fmut3.5

Min gap 0.8% 1.1% 0.0% 0.0%

Mean gap 13.0% 2.3% 1.9% 0.8%

Max gap 42.1% 4.7% 7.4% 6.3%

Fig. 2 Mutation operator footprints (a–g): instances are marked red if
the mutation are at most 1% away from the best-observed performance.
Instance difficulty (h): the color encodes the number of algorithms that

performwithin 1% of the oracle performance. Note: a principal compo-
nent analysis is used for the projection of the instances from the feature
space into 2D
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Fig. 3 Solution quality achieved by the (1+ 1) EA with various muta-
tion rates on a fitness function as in (9), for fixed cardinality constraint
k, and varying time budget. We consider the (1 + 1) EA with uniform

mutation, pmutβ and fmutβ with β = 1.5, 2.5, 3.5. Each dot corre-
sponds to the sample mean of 100 independent runs

sequence of temporal observations. For each sequence X (i),
define the corresponding temporal variation as a sequence
Y (i) with Y (i)

j = X (i)
j − X (i)

j−1.

We perform feature selection of the variables Y (i), assum-
ing that the joint probability distribution p(Y (1), . . . ,Y (n))

is Gaussian. Specifically, given a cardinality constraint k, we
search for a subset S ∈ [n] of size at most k s.t. the corre-
sponding series χS := {Y (i) : i ∈ S} are optimal predictors
for the overall variation in the model. Variations of this set-
ting are found in many applications (Singh et al. 2009; Zhu
and Stein 2006; Zimmerman 2006).

Weuse themutual information as an optimization criterion
for identifying highly informative random variables among
the {Y (i)} (Caselton and Zidek 1984). For a subset S ∈ [n],
we define the corresponding mutual information as

MI (S) = −1

2

∑

i

(1 − ρ2
i ), (8)

where the ρi are the canonical correlations between χS and
χV \S . It is well-known that the mutual information as in (8)
is a symmetric non-negative submodular function (Krause
et al. 2008). Note also that a cardinality constraint k is equiva-
lent to a matroid constraint, with independent sets all subsets
S ∈ [n] of cardinality at most k. Hence, this approach to
feature selection consists ofmaximizing a non-negative sym-
metric submodular function under a matroid constraint, as in
Problem (4). Following the framework outlined in Sect. 6, we
approach this problem by maximizing the following fitness
function

zMI(S) =
{
MI (S) if |S| ≤ k;
k − |S| otherwise; (9)

We apply this methodology to perform feature selection
on an air pollution dataset (Rhode and Muller 2015)3. This
dataset consists of hourly air NO2 data from over 1500 sites,
during a four month interval April 5-August 5, 2014.

For a fixed cardinality constraint k = 200, . . . , 850, we
let the (1+ 1) EA with various mutation rates run for a fixed
time budget at 1K, 2.5K, and 5K fitness evaluations. For
each set of parameters, we perform 100 runs and take the
sample mean over all resulting fitness values. We consider
the (1 + 1) EA with uniform mutation, pmutβ and fmutβ
with β = 1.5, 2.5, 3.5. The results are displayed in Fig. 3.

We observe that for a small time budget and small k, heavy
tailed-mutations outperform the standard uniform mutation
and the fmutβ . We observe that for large k all mutation oper-
ators achieve similar performance. These results suggest that
for a small time budget, and small k, larger jumps are bene-
ficial, whereas standard mutation operators may be sufficient
to achieve a good approximation of the optimum, given more
resources.

We remark that Krause et al. (2008) show that it is pos-
sible to use a simple greedy algorithm to maximize the
function MI (S) as in (8), if this function is ε-approximately
monotone. Here, the constant ε of the approximate mono-
tonicity depends on the discretization level of locations, and it
affects the approximation guarantee. While in various appli-
cations it is reasonable to assume that ε is bounded, there are
instance classes of submodular functions that are not approx-
imately monotone (Lee et al. 2009). Without approximate
monotonicity, the greedy algorithm yields poor performance.
However, our (1+1)EA,whichuses the properties of approx-
imately local optimal solutions, maintains a constant-factor
approximation guarantee on functions that are not approxi-
mately monotone.

3 This dataset is publicly available at www.berkleyearth.org.
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8 Conclusions

In the pursuit of optimizers for complex landscapes that
arise in industrial problems, we have identified a new muta-
tion operator. This operator allows for good performance of
the classical (1 + 1) EA when optimizing not only simple
artificial test functions, but the whole class of non-negative
submodular functions and symmetric submodular functions
under a matroid constraint. As submodular functions find
applications in a variety of natural settings, it is interesting
to consider the potential utility of heavy tailed operators as
building blocks for optimizers of more complex landscapes,
where submodularity can be identified in parts of these land-
scapes.
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