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Abstract
The initial population in genetic programming (GP) should form a representative sample of all possible solutions (the

search space). While large populations accurately approximate the distribution of possible solutions, small populations tend

to incorporate a sampling error. This paper analyzes how the size of a GP population affects the sampling error and

contributes to answering the question of how to size initial GP populations. First, we present a probabilistic model of the

expected number of subtrees for GP populations initialized with full, grow, or ramped half-and-half. Second, based on our

frequency model, we present a model that estimates the sampling error for a given GP population size. We validate our

models empirically and show that, compared to smaller population sizes, our recommended population sizes largely reduce

the sampling error of measured fitness values. Increasing the population sizes even more, however, does not considerably

reduce the sampling error of fitness values. Last, we recommend population sizes for some widely used benchmark

problem instances that result in a low sampling error. A low sampling error at initialization is necessary (but not sufficient)

for a reliable search since lowering the sampling error means that the overall random variations in a random sample are

reduced. Our results indicate that sampling error is a severe problem for GP, making large initial population sizes necessary

to obtain a low sampling error. Our model allows practitioners of GP to determine a minimum initial population size so that

the sampling error is lower than a threshold, given a confidence level.

Keywords Sampling error � Initial supply � Genetic programming � Building blocks � Initial population � Ramped half-and-

half � Full � Grow � n-Grams

1 Introduction

In optimization, evaluating all solutions for a problem

instance (complete enumeration) is often too difficult,

expensive, or time-consuming (Rothlauf 2011). Therefore,

population-based heuristic search methods like genetic

programming (GP; Koza 1992) start with a small sample

taken from the set of all solutions and improve these

solutions through the application of variation operators and

selection.1

When using a sample, there are usually differences

between the properties of the statistical population and the

information obtained from the sample. These differences

are called errors (Lee et al. 2013). Non-systematic errors,

describing random variations caused by observing only a

subset of the statistical population are called sampling

error (Lee et al. 2013; Cochran 1977; Särndal et al. 1992).

The expected amount of sampling error can be reduced by

using larger samples (Lee et al. 2013; Cochran 1977;

Särndal et al. 1992).

Sampling error is a problem in evolutionary algorithms

(EAs), leading to unreliable search results due to random
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1 In statistical analysis, a (statistical) population is defined as a set of

objects of interest. Any subset of such a statistical population is a

sample (Lee et al. 2013; Cochran 1977). In GP, the (initial) sample of

solutions is usually also called a population. Thus, we use the terms

statistical population and GP population in this article to distinguish

between the two types of populations. The initial GP population is a

sample of the statistical population of possible solutions to a problem

instance.
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variations. The problem has been discussed in the genetic

algorithm (GA) literature. For example, Goldberg and

Segrest (1987) note that small initial populations in a

genetic algorithm (GA) can be problematic when relevant

building blocks (BBs) are not represented by the sample.2

Goldberg et al. (2001) and Reeves (1993) argue that an

initial supply of BBs is necessary for the search to allow for

the possibility that high-quality BBs will take over the

population in later generations (BB growth). Recent work

of Burlacu et al. (2015, 2018a, 2018b) evaluates this

hypothesis for GP. The authors show that building blocks

have a large influence on the evolutionary process. Thus, if

the sampling error in an initial GP population is large,

random variations can have a negative effect on the search

performance. In addition, having a low sampling error is

also relevant for estimation of distribution genetic pro-

gramming (EDA-GP), where standard GP variation oper-

ators such as crossover and mutation are replaced by model

building and sampling from the learned model (Kim et al.

2014; Shan et al. 2006). In EDA-GP algorithms, early

sampling errors are learned by the model and, as a con-

sequence, finding favorable solutions can be more difficult.

Therefore, we argue that an initial (EDA-)GP population

should form a representative sample of the statistical

population of possible solutions and that the sampling error

in the initial GP population should be low.

This article studies how the initial GP population size

affects the sampling error of subtree frequencies. We pre-

sent a model that estimates the minimum size of a GP

population that is required for a sampling error to be below

a certain value that can be specified a priori by a GP user.

Therefore, we first present a probabilistic model of the

expected frequencies of subtrees in GP populations ini-

tialized with full, grow, or ramped half-and-half (Koza

1992). We use n-grams of ancestors (Hemberg et al. 2012)

as a possible measure to describe subtrees in GP. An n-

gram of ancestors in a GP parse tree is the sequence of the

values represented by a node i and its n� 1 ancestor nodes

on the same branch (parent, grandparent, greatgrandparent,

etc.; Hemberg et al. 2012). The difference between the

expected and the observed frequencies of n-grams in a

sample is the sampling error. Thus, our model allows us to

measure and investigate sampling error in initial GP

populations.

Based on the model of the expected frequencies of n-

grams of ancestors, we present a model to estimate the size

of an initial GP population, given the desired degree of

sampling error and a confidence level. Our model allows

GP practitioners to estimate a minimum initial GP popu-

lation size in such a way that the sampling error is lower

than a threshold.

Furthermore, we empirically validate our model. First,

we measure the frequencies of subtrees in very large GP

populations and compare these with the expected fre-

quencies calculated with our model. As expected, there are

no differences between the expected and measured fre-

quencies for all BBs and thus, the reliability of our model is

good. Second, we use our model to estimate the GP pop-

ulation sizes for different desired degrees of sampling

error. Then, we sample (random) GP populations of the

respective estimated population sizes and compare the

resulting empirical sampling errors with our predictions.

We find that our model accurately estimates the sampling

error. Our results indicate that the estimated sampling error

calculated with expected frequencies of n-grams is a good

proxy for the empirical variance of fitness values in our

experiments. Last, we recommend minimum population

sizes for benchmark problems that are often used in the

literature to avoid problems with sampling error. We make

our code publicly available in the form of a GP population

size calculator, so that users of GP can calculate population

sizes for other problem instances as well.3

In summary, our results indicate that sampling error is a

severe problem for GP, making large initial population

sizes necessary to obtain a low sampling error. Our model

allows to estimate a minimum population size that is

necessary to reduce sampling error to a given amount.

Lowering the sampling error means that the overall random

variations in a random sample are reduced. As a conse-

quence, the reliability of the results of a GP run increases

with larger population sizes.

In Sect. 2, we present a short summary of related work

on population sizing and BB supply in GAs and GP. In

Sect. 3 we describe initialization in GP with full, grow, and

ramped half-and-half and introduce our model of the

expected frequencies of n-grams of ancestors. Section 4

presents the model to estimate a GP population size, given

a threshold of sampling error and a confidence level. We

validate the proposed models in Sect. 5 with experimental

results and recommend minimum population sizes for

benchmark problems that are often used in the literature.

The article ends with concluding remarks.

2 BBs are defined by Goldberg (1989a, p. 41) as ‘‘short, low-order,

and highly fit schemata’’. A schema is defined as a similarity template

describing a subset of solutions within a population with similarities

at certain positions of the genotype (Goldberg 1989a; Holland 1975;

Goldberg 2002).

3 The calculator can be found at https://gitlab.rlp.net/schweim/

sampling-error-in-GP/.
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2 Related work

We summarize previous work on population sizing and BB

supply in GAs and GP. Some researchers (Goldberg et al.

1992, 2001; Goldberg and Segrest 1987) argue that a

successful GA needs to ensure a sufficient supply of rele-

vant BBs. An adequate supply of BBs can be ensured by

1. a high diversity in the BBs of the initial population

(spatial approach) and/or by

2. generating BB diversity during runtime, e.g., by

applying a suitable mutation operator (temporal

approach; Goldberg et al. 2001).

A spatial approach for GAs was first proposed by Holland

(1975). He discussed the issue of initial BB supply and

proposed a model to estimate the expected number of

observations of BBs in a population, given the size of the

population. Later, Goldberg (1989b) improved Holland’s

model. Reeves (1993) developed a model to estimate the

minimum population size needed to ensure the presence of

at least one instance of every BB. However, Reeves’ model

only considered BBs with a length of one. Therefore,

Goldberg et al. (2001) proposed a more general model that

also considers larger BBs of a fixed size.

Other work analyzed the probability that high-quality

BBs will take over the population in later generations (BB

growth). E.g., Holland proposed to use the two-armed

bandit problem to model the decision between competing

BBs (Holland 1973, 1975). Later models also considered

decision errors due to genetic drift (De Jong 1975) and

variance of BB fitness (collateral noise; Goldberg and

Rudnick 1991). The population sizing model presented in

(Goldberg et al. 1992) permits the inclusion of other

sources of decision errors to estimate population sizes that

minimize these errors. Harik et al. (1999) proposed a

model to predict the convergence quality of GAs based on

the size of the population. They considered the initial

supply of BBs as well as the selection of the best

BB(s) over competing BBs.

In summary, previous research on GAs found that the

initial supply of relevant BBs leads to improved BB growth

(Goldberg et al. 2001; Reeves 1993). However, at the

beginning of a search run, it is not known if a BB is rel-

evant or not. Therefore, the authors argue that the initial

GA population should be large enough to ensure that at

least one copy of each BB is present in the initial

population.

Following the GA literature, papers about population

sizing in GP focus on BB supply. In the context of GP, BBs

describe relationships between nodes in GP parse trees.

BBs in GP were usually defined as subtrees of a GP parse

tree (Poli and Langdon 1998; Poli 2001; Walsh and Ryan

1996; Koza 1992; O’Reilly and Oppacher 1994; Whigham

1995; Sastry et al. 2003, 2005; Hemberg et al. 2012). GP

subtrees can be described by using n-grams of ancestors

(Sastry et al. 2003, 2005; Hemberg et al. 2012). An n-gram

of ancestors in a GP parse tree is the sequence of the values

represented by a node i and its n� 1 ancestor nodes on the

same branch (parent, grandparent, greatgrandparent, etc.).

Hemberg et al. (2012) found that n-grams of ancestors

represent relevant relationships between nodes of a GP

parse tree.

Sastry et al. (2003) proposed a model of the initial

supply of BBs in GP based on n-grams of ancestors. The

authors estimate the population size required to ensure—

with a given error—the initial presence of at least one copy

of all possible BBs in the initial GP population. Sastry

et al. (2005) improved the population sizing model by

incorporating decision-making errors among competing

BBs in the population sizing model. However, both models

only hold for simple test problems and assume full trees,

binary functions, and knowledge about the size of the trees

(i.e., a given tree size distribution). Therefore, the models

are only generalizable to a limited extent (Sastry et al.

2003, 2005; Hemberg et al. 2012).

In the GP community, there is still a debate on the role

of building blocks. Following GA literature, O’Reilly and

Oppacher (1994) formulated a GP schema theorem and a

GP building block hypothesis. In their analysis they

focused on dynamic aspects of the search (i.e., BB growth).

They concluded that due to many reasons the probability of

the recombination of building blocks is difficult to predict.

This is identified as a major obstacle in formulating a

model to verify the GP building block hypothesis. Based on

their results they question whether building blocks are

relevant for GP.

The early GA as well as GP work on building blocks has

been criticized due to the strong assumptions that it

requires to work and the large simplifications that—at least

initially—were made. As a consequence, more recent work

(e.g., by Poli and McPhee 2003) proposed exact schema

theorems for GP that improve on previous definitions of a

schema. Since Poli and McPhee (2003) use a temporal

approach, we do not discuss the details but refer the

interested reader to the original article.

Recently, Burlacu et al. (2015, 2018a, 2018b) evaluated

the BB hypothesis for GP empirically. They performed

schema analyses on GP populations and identified sche-

mata with an above-average quality as well as an increas-

ing frequency in the populations over multiple generations.

They found that GP is able to effectively evolve BBs at

least for some problem instances.
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3 Expected frequencies of n-grams
of ancestors in initial GP populations

We present a model to calculate the expected frequencies

of n-grams of ancestors in GP populations initialized by the

GP initialization methods full, grow, and ramped half-and-

half. First, we introduce the relevant notation and describe

tree initialization in GP. Then, we develop a model of the

expected number of nodes representing functions and ter-

minals in a GP parse tree. Based on this, we model the

expected frequencies of n-grams of ancestors.

3.1 Initialization of GP populations

We describe the GP initialization methods full, grow, and

ramped half-and-half, using the following notation: The

leaf nodes of GP parse trees are terminals t from a terminal

set T (t 2 T) and all remaining nodes (‘‘inner nodes’’) are

functions f from a function set F (f 2 F) (Koza 1992; Poli

et al. 2008). Let a(f) be the arity (number of parameters) of

f 8 f 2 F. Then all nodes in a GP parse tree that represent

a function f have a(f) child nodes. Nodes representing a

terminal do not have any child nodes.

In full, grow, and ramped half-and-half, the user speci-

fies two hyperparameters that determine the depth of the

generated trees, where the tree depth is defined as the

length of the longest non-backtracking path from the root

of the tree to any tree node (Koza 1992). The user specifies

a minimum allowed tree depth dmin � 0 and a set of

allowed (maximum) tree depths D. When sampling a tree

with full, grow, or ramped half-and-half, we first randomly

sample a maximum tree depth dmax from D with uniform

probability (Koza 1992; Poli et al. 2008; Fortin et al.

2012). Note that dmax defines a maximum tree depth for one

particular tree that is sampled.

After dmax has been determined, a GP parse tree is

sampled. In full, grow, and ramped half-and-half, sampling

starts with the root node of the GP parse tree at depth 0. We

first decide whether the root node represents a function

f 2 F or a terminal t 2 T . If the root node represents a

function, the respective number of child nodes are created,

depending on the arity of the selected function. Sampling

continues by deciding for each child node if it represents a

function f 2 F or a terminal t 2 T . Afterwards, the

appropriate number of child nodes are created. This process

is repeated until no more decisions have to be made (all

leaf nodes of the GP parse tree represent terminals).

The probability for a node to represent either a function

or a terminal depends on the initialization method and the

depth d of the node in the GP parse tree. Similar to the tree

depth, the depth of a node is the length of the longest non-

backtracking path from the root to the respective node.

The full method creates GP parse trees where all nodes

with a depth d\dmax are only allowed to represent func-

tions f, randomly chosen with uniform probability from F.

Thus, all leaf nodes are sampled at depth dmax and represent

terminals (Koza 1992).4

Grow creates GP parse trees where the leaf nodes can be

sampled at different depths in the GP parse tree (Koza

1992). For each node with a depth d\dmin, a function f is

randomly chosen from F. After that, the nodes at depth

dmin � d\dmax are sampled and each of these nodes can

represent either a function or a terminal. If a terminal is

chosen, the sampling process stops for the respective

branch. For each node at depth d ¼ dmax, a terminal t is

randomly chosen from T. Therefore, a parse tree created

with grow can have a depth that is less than or equal to dmax

and greater than or equal to dmin.

Ramped half-and-half is a combination of full and grow

where half of the population is initialized with trees created

using full and half is initialized with trees constructed using

grow (Koza 1992).

3.2 Expected number of functions and terminals

We develop a model of the expected number of nodes

representing a specific type of function or terminal in a GP

parse tree. We begin by determining the probability that,

during initialization, a node will be selected to represent a

function. We assume the condition that either the parent

node represents a function or that we sample the root node.

Let dmin and dmax 2 D be the minimum and maximum

tree depth for a tree to be sampled. Furthermore, let d be

the depth of a node in the parse tree (0� d� dmax). Then, a

function is always sampled for all nodes with a depth

d\dmax in full and for all nodes with a depth d\dmin in

grow. Thus, the probability to sample a function is 1. In

grow, for all nodes where dmin � d\dmax, we sample a

function or a terminal from F [ T with uniform probability.

Therefore, the probability to sample a function in these

cases is the number of functions |F| divided by the overall

number of functions and terminals jF [ T j. In full and

grow, we always sample a terminal when d ¼ dmax with

uniform probability from T. Thus, at depth dmax, the

probability to sample a function is 0. The probability to

sample a function in F with the full method is

PfullðFÞ ¼
1 if 0� d\dmax;

0 if d ¼ dmax

�
ð1Þ

and with the grow method it is

4 Note that trees created by the full method should be described as

perfect trees with mixed arities. However, in line with the GP

literature, we will call trees created by the full method full trees.
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PgrowðFÞ ¼

1 if 0� d\dmin;

jFj
jF [ T j if dmin � d\d; and

0 if d ¼ dmax:

8>><
>>:

ð2Þ

In the following equations, we do not differentiate between

PfullðFÞ and PgrowðFÞ since the equations are the same for

both initialization methods. Therefore, we will use P(F) to

represent both possibilities.

Since all functions of the function set are sampled with

uniform probability, the expected number of child nodes

over all functions in F is the average function arity a,

which is defined as

a ¼ 1

jFj
X
f2F

aðf Þ: ð3Þ

Luke (2000) showed that EnodesðdÞ, the expected number of

nodes at depth d in a parse tree, is

EnodesðdÞ ¼
1 if d ¼ 0;

Enodesðd � 1ÞPðFÞa if 0\d� dmax:

�
ð4Þ

Thus, the number of nodes at a given depth d[ 0 in the GP

parse tree depends on

• Enodesðd � 1Þ, the number of nodes at depth d � 1,

• P(F), the conditional probability that these nodes

represent functions, and

• a, the expected number of child nodes of a node that

represents a function in F.

Let EtreeðdmaxÞ be the expected size of a parse tree, given a

maximum tree depth dmax. Then, EtreeðdmaxÞ is the sum of

the expected number of nodes EnodesðdÞ over all depths

0� d� dmax (Luke 2000):

EtreeðdmaxÞ ¼
Xdmax

d¼0

EnodesðdÞ: ð5Þ

Equation (5) calculates the expected tree size for one

particular tree depth dmax 2 D and therefore requires that

dmax has already been determined. dmax is uniformly sam-

pled from D and, therefore, the expected tree size over all

depths in D is the average expected tree size over the

possible (maximum) tree depths dmax 2 D

EtreeðDÞ ¼
P

dmax2D EtreeðdmaxÞ
jDj : ð6Þ

For all s 2 F, let EsðdÞ be the expected number of nodes

representing a function in a parse tree at depth d. Then,

analogously to the expected tree size, EsðdÞ can be deter-

mined by first multiplying EnodesðdÞ, the expected number

of nodes at depth d, by the probability P(F) that these

nodes represent functions. Then, we divide by |F| since all

functions in F are sampled with uniform probabilities.

Therefore,

EsðdÞ ¼ EnodesðdÞ
PðFÞ
jFj 8s 2 F: ð7Þ

Since a node represents either a function or a terminal, the

probability to sample a terminal from T for a node at a

given depth d is

PðTÞ ¼ 1� PðFÞ: ð8Þ

Terminals are sampled with uniform probability from T.

Thus—analogously to Eq. (7)—given a maximum tree

depth dmax 2 D, the expected number of nodes at depth d in

a parse tree, representing a terminal s 2 T , is

EsðdÞ ¼ EnodesðdÞ
PðTÞ
jT j 8 s 2 T : ð9Þ

We are interested in the expected number of nodes that

represent s in a particular depth interval of a parse tree. Let

Esðdmax; l; uÞ be the expected number of nodes representing

s in depths d in the parse tree where l� d� u. Then,

Esðdmax; l; uÞ is the sum of EsðdÞ, the expected number of

nodes representing s, over all depths l� d� u

Esðdmax; l; uÞ ¼
Xu
d¼l

EsðdÞ 8 s 2 F [ T : ð10Þ

Then, given a set of possible (maximum) depths D, the

expected number of nodes representing s 2 F [ T in a

parse tree is

EsðD; l; uÞ ¼
P

dmax2D Esðdmax; l; uÞ
jDj 8 s 2 F [ T ð11Þ

because depths are uniformly sampled from D.

Let Enode
s ðD; l; uÞ be the expected frequency of a node to

represent s 2 F [ T . Then Enode
s ðD; l; uÞ is the expected

number of nodes representing s in a parse tree, EsðD; l; uÞ,
divided by the expected tree size EtreeðDÞ:

Enode
s ðD; l; uÞ ¼ EsðD; l; uÞ

EtreeðDÞ
� ð12Þ

In ramped half-and-half, 50% of the trees are created by the

full method and 50% by the grow method (Koza 1992).

Thus, the expected number of nodes representing functions

and terminals in parse trees sampled with ramped half-and-

half can be calculated by averaging the respective equa-

tions for full and grow. For example, let Efull
s ðD; l; uÞ and

Egrow
s ðD; l; uÞ be the expected number of nodes representing

s 2 F [ T , calculated by using PfullðFÞ and PgrowðFÞ,
respectively. Then, the expected number of nodes repre-

senting s in a parse tree created with the ramped half-and-

half method is
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Erhh
s ðD; l; uÞ ¼ 1

2
Efull
s ðD; l; uÞ þ 1

2
Egrow
s ðD; l; uÞ: ð13Þ

3.3 Expected frequency of n-grams of ancestors

n-grams of ancestors can be described as follows. Each

node i of the GP parse tree represents a function f from the

function set F (f 2 F) or a terminal t from the terminal set

T (t 2 T). Let si be the function or terminal that is repre-

sented by an arbitrary node i in a parse tree. Furthermore,

let the nodes i� 1; i� 2; . . .; i� ðn� 1Þ be the ancestors

of the node i on the same branch in the parse tree and let

si�1; si�2; . . .; si�ðn�1Þ be the function values represented by

the respective nodes. Then an n-gram of ancestors in a

parse tree is the sequence of the node values si and the

values of its n� 1 ancestor nodes on the same branch

(parent, grandparent, great-grandparent, etc.; Hemberg

et al. 2012). Therefore, one specific n-gram of ancestors

can be expressed using an ordered list such as

½si; si�1; . . .; si�ðn�1Þ�. Root nodes do not have ancestor

nodes and for these cases the values of (non-existent)

ancestor nodes are defined as s ¼ £. This is done to also

represent root nodes as child nodes in some of the n-grams

of ancestors since root nodes are usually very important for

the semantics of a GP parse tree. The definition of n-grams

of ancestors in a GP parse tree implies that si 2 F [ T and

si�1; . . .; si�ðn�1Þ 2 F [ f£g. Therefore an n-gram in a GP

population can be expressed with an ordered list of the

form

½s1 2 F [ T ; s2 2 F [ f£g; . . .; sn 2 F [ f£g�: ð14Þ

All n-grams that are observed in a GP population together

form a multiset.5

Figure 1a shows an example of a GP parse tree sampled

by using the function set F ¼ fþg and the terminal set

T ¼ fxg. The respective n-grams of ancestors are visual-

ized for n ¼ 1 (Fig. 1b, c), for n ¼ 2 (Fig. 1d–f), and for

n ¼ 3 (Fig. 1g–j). The n-grams of ancestors shown in

Fig. 1b–j can also be expressed by using ordered lists. For

example, the 3-grams of ancestors are ½þ;£;£� (Fig. 1g),
½þ;þ;£� (Fig. 1h), ½x;þ;£� (Fig. 1i), and ½x;þ;þ�
(Fig. 1j). An n-gram of ancestors can occur several times

and at different positions within one individual. For

example, the 2-gram ½x;þ� has a frequency of 3 in the

exemplary parse tree.

The expected frequency over all n-grams of ancestors

where the child node value is s1 and the ancestor node

values represent arbitrary functions in F is given by the

expected frequency of s1. The functions s2; . . .; sn are

picked with uniform probabilities, but can have different

arities. Nodes representing functions with higher arities

have more child nodes and therefore the expected fre-

quencies for n-grams where these functions are ancestor

nodes is also higher. Thus, to calculate the expected fre-

quency of an n-gram of ancestors ½s1; s2; . . .; sn� in a GP

parse tree, we first determine the expected frequency of s1
and weight this frequency by the arities of s2; . . .; sn.

We will explain this idea on the example of 1-grams, 2-

grams, and 3-grams. For the n-gram of ancestors

½s1; s2; . . .; sn�, let K½s1;s2;...;sn� be the expected frequency of s1
depending on the ancestor nodes s2; . . .; sn. Furthermore, let

W½s1;s2;...;sn� be a weighting factor, depending on the arities

of s2; s3; . . .; sn. Then, the expected frequency of an n-gram

½s1; s2; . . .; sn� in a parse tree is

E½s1;s2;...;sn� ¼ K½s1;s2;...;sn�W½s1;s2;...;sn�: ð15Þ

For n ¼ 1, K½s1� is independent from any ancestor nodes and

therefore can be calculated using Eq. (12):

K½s1� ¼ Enode
s1

ðD; 0; dmaxÞ: ð16Þ

1-grams do not take ancestor nodes into account and

therefore, W½s1� ¼ 1. Thus, we can calculate the expected

frequency for any 1-gram in a GP tree by

E½s1� ¼ K½s1� ¼ Enode
s1

ðD; 0; dmaxÞ: ð17Þ

A 2-gram of ancestors is the combination of the values

represented by a node and its ancestor node. Since the root

node of a GP parse tree has no ancestor nodes, we define

the value of a (non-existent) ancestor node as si�1 ¼ £.

The value of K½s1;s2� strongly depends on s2. If s2 ¼ £,

K½s1;s2� is the expected frequency of s1 in the root node

(d ¼ 0). Otherwise s1 has an ancestor node that represents

a function f 2 F and so s1 needs to be at a depth greater

than 0 in the tree (d� 1). Thus, using Eq. (12), we define

K½s1;s2� ¼
Enode
s1

ðD; 1; dmaxÞ if s2 2 F;

Enode
s1

ðD; 0; 0Þ if s2 ¼ £:

(
ð18Þ

If s2 is a function f 2 F, we need to weight K½s1;s2�,

depending on the arity of s2 compared to the arities of other

functions in F. Functions with higher arities have more

child nodes and therefore the expected frequencies for 2-

grams where these functions are parent nodes is also

higher. Let asum be the sum of all function arities of the

functions in the function set

asum ¼
X
f2F

aðf Þ: ð19Þ

Then W½s1;s2� is

5 A multiset is a set that allows multiple instances for each of its

elements.
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W½s1;s2� ¼
aðs2Þ
asum

if s2 2 F;

1 if s2 ¼ £:

8<
: ð20Þ

For the frequencies of 3-grams of ancestors we use

K½s1;s2;s3� ¼
Enode
s1

ðD; 2; dmaxÞ if s2; s3 2 F;

Enode
s1

ðD; 1; 1Þ if s22F; s3¼£;

Enode
s1

ðD; 0; 0Þ if s2¼£; s3¼£;

8><
>: ð21Þ

and

W½s1;s2;s3� ¼

aðs2Þaðs3Þ
asum

if s2; s3 2 F;

aðs2Þ
asum

if s2 2 F; s3 ¼ £;

1 if s2 ¼ £; s3 ¼ £:

8>>>><
>>>>:

ð22Þ

Expected frequencies of n-grams of ancestors with n[ 3

can be calculated analogously.

4 Estimating sampling error of n-grams
of ancestors in GP populations

The Cochran formula is a standard method in statistics to

estimate a minimum sample size N for a large statistical

population. The Cochran formula needs an estimate of the

relative frequency p of the property that is evaluated (e.g.,

the relative frequency of an n-gram of ancestors; Cochran

1977). In general, it is a problem to estimate p. In our case,

we already know the expected relative frequency of n-

grams of ancestors (see Sect. 3). However, we need to

assume that p is normally distributed (Cochran 1977).

Furthermore, we need to choose an acceptable confi-

dence level. For this, the Cochran formula uses z-scores of

a normal distribution. For example, if a confidence level of

95% is chosen, the corresponding z-score is 1.96.

Last, we define a desired margin r of the relative sta-

tistical error e, so that e� r, where e is the absolute dif-

ference between the expected frequency p and the

measured frequency p0 relative to p

e ¼ jp0 � pj
p

: ð23Þ

The Cochran formula (Cochran 1977) is

N ¼ z2ð1� pÞ
r2p

; ð24Þ

where p is the expected frequency, r is a margin of the

relative error, and the confidence level is determined by a

z-score.

Thus, if we take a sample of size N, the value of p will

be in the interval

½pð1� rÞ; pð1þ rÞ� ð25Þ

with a probability equal to the confidence level. For

example, we decide to use a confidence level of 95%

(z ¼ 1:96) and it is known that p ¼ 7% of a statistical

population have the respective property; the desired level

of precision is r ¼ 10%. Then, using Eq. (24), we estimate

N ¼ 5103:84. As a result, if we take a random sample of

size N, with a probability of 0.95 we measure p with

0:063� p� 0:077 (Pð0:063� p� 0:077Þ ¼ 0:95).

The decision for a confidence level and a relative error

is, to some extent, arbitrary (Cochran 1977). Values widely

used in the literature and also recommended by Cochran

(1977) are a confidence level of at least 95% (z� 1:96) and

a relative error of not more than 5%. Estimated sample

sizes calculated by using these values have a high precision

and a high confidence. Given the expected frequency of an

n-gram (Sect. 3.3) as the value for p, we can estimate the

size of a GP population.

So far, we are only able to estimate the necessary GP

population size for one n-gram. However, in a GP popu-

lation, we typically expect a large number of different n-

grams. Therefore, we have more than one statistical item,

for which we need to estimate a proper sample size. For

such a case, Cochran recommends to first identify the most

important items and afterwards estimate the sample size

separately for each of these items. Then, Cochran’s prag-

matic recommendation is to simply select the largest esti-

mate for a sample size of any of the items (Cochran 1977).

Fig. 1 Exemplary GP parse tree (a) with the corresponding n-grams of ancestors for n ¼ 1 (b, c), n ¼ 2 (d–f), and n ¼ 3 (g–j)
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5 Experiments

We empirically validate our model of expected n-gram

frequencies and the model of the estimated sampling error

in a GP population. Furthermore, we recommend popula-

tion sizes for some widely used benchmark problem

instances.

5.1 Frequencies of n-grams of ancestors

First, we validated the model of the expected frequencies

of n-grams of ancestors in GP parse trees. We initialized

five different large GP populations, each with a size of

100,000,000 individuals, measured the resulting frequen-

cies for all n-grams of ancestors, and compared them with

the expected frequencies calculated with our model.

The GP populations were initialized with ramped-half-

and-half because it includes both, trees initialized with full

and grow. The minimum tree depth was set to different

values (dmin 2 f0; 1; 2; 3; 4g) for each of the five popula-

tions to take into account different scenarios. The set of

allowed maximum tree depths used is

D ¼ fdmax 2 N0jdmin � dmax � 4g. We used three different

terminals and four different functions to be able to create a

large variety of different trees. The function set included

two functions with an arity of one, a binary function, and a

ternary function. Since we do not evolve the initial popu-

lation, it is not necessary to define a fitness function,

variation operators, or a selection method.

We measured the error for n-gram frequencies with n 2
f1; 2; 3g in each of the five GP populations. The results are

presented in Table 1. The table shows the mean and

maximum relative error by dmin and n. The mean relative

error is the mean over the relative errors for each n-gram

frequency, measured separately for each value of n in the

respective populations. Analogously, the maximum relative

error was measured.

The values shown in Table 1 indicate that both, the

mean and maximum relative error, are very small in all

settings as expected. The error is larger for larger values of

n. This is expected, since the population size is constant in

all experiments, but there are much more different 3-grams

than there are 1-grams. We used Pearson’s chi-squared test

to investigate the null hypothesis that the expected and

measured frequencies of n-grams of ancestors are statisti-

cally different in their distributions. The p-values are very

high (p � 0:05), strongly indicating that the expected and

measured n-gram frequencies are not statistically different

in their distributions. Therefore, our model is able to reli-

ably estimate the expected frequencies for n-grams of

ancestors in large GP populations.

5.2 Sampling error

We estimate the GP population size for ramped half-and-

half with dmin ¼ 2, D ¼ f2; 3; 4; 5; 6g, desired margins of

sampling error r 2 f0:01; 0:05; 0:1g, and a confidence level
of 95% (z ¼ 1:96) based on the expected frequencies of

1-grams, 2-grams, and 3-grams, respectively. We used the

same function and terminal sets as in the first experiment

(three different terminals as well as two unary, one binary,

and a ternary function).

We calculated the expected n-gram frequencies of all n-

grams and used these to estimate the respective expected

population sizes. Note that we estimate the GP population

size on the expected frequency of an n-gram per node (not

per parse tree) using Eq. (12). The result is an estimate of

the number of nodes. Since we want to obtain an estimate

of the population size, we divide the estimate number of

nodes by the expected tree size (which is the expected

number of nodes in one tree). From the resulting list of

estimated population sizes, we get three different values

that take the most important n-grams into account with

different degrees:

• The minimum estimated population size which corre-

sponds to the estimate based on the highest expected

frequency of all n-grams (max),

• the mean of the five lowest estimated population sizes

which is based on the five most frequent n-grams (top

5),

Table 1 Mean and maximum relative error for different values of dmin

and n; high p-values indicate that expected and measured n-gram
frequencies are of the same statistical distribution

dmin n Mean relative error Maximum relative error p value

0 1 6:0� 10�5 1:1� 10�4 0.9599

1 1 4:0� 10�5 9:0� 10�5 0.9087

2 1 4:0� 10�5 7:0� 10�5 0.9051

3 1 4:0� 10�5 7:0� 10�5 0.9594

4 1 6:0� 10�5 1:0� 10�4 0.8329

0 2 1:2� 10�4 5:0� 10�4 0.9999

1 2 1:0� 10�4 3:0� 10�4 0.9984

2 2 1:3� 10�4 5:0� 10�4 0.8941

3 2 1:5� 10�4 5:2� 10�4 0.9542

4 2 2:3� 10�4 7:6� 10�4 0.998

0 3 2:4� 10�4 1:4� 10�3 1

1 3 2:5� 10�4 1:4� 10�3 1

2 3 3:4� 10�4 1:4� 10�3 0.9844

3 3 4:5� 10�4 2:6� 10�3 0.9996

4 3 5:4� 10�4 2:3� 10�3 1
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• and the median over the population size estimates

(median).

Overall, we estimated 27 different population sizes

using the above settings. The used settings and the resulting

population size estimates are presented in Table 2. We can

see that the estimated population sizes for larger values of

n are much higher compared to smaller values of n (with

otherwise unchanged variables). This is expected since the

number of n-grams grows exponentially and thus, the

expected frequencies of these n-grams is lower, which then

leads to higher estimated population sizes. The desired

margin of error also has a high influence on the population

size estimates: high values of r lead to lower population

size estimates and vice versa.

If we take only the most important n-gram frequencies

into account (settings max and top 5), the estimated pop-

ulation sizes are lower compared to the setting median.

This is because in median many n-grams with low fre-

quencies are taken into account, resulting in large popu-

lation size estimates. The difference between the settings

can be large, e.g., in the case of 3-grams where the popu-

lation size estimates with median are about 5 times as high

as with max.

Next, we empirically analyzed the resulting error using

the estimated population sizes from Table 2. For each

estimate, we initialized 100 GP populations with the

respective population size and measured the resulting rel-

ative sampling error by comparing the measured with the

expected n-gram frequencies. In total, we initialized 2700

GP populations. The results are presented in Fig. 2.

Each of the 27 box plots visualizes the relative sampling

errors that were measured in 100 GP populations. In Fig. 2,

we differentiate between n-grams (columns), margin of

error r (rows), and the number of n-gram frequencies taken

into account when estimating the population size (each

horizontal axis). The vertical axes show the corresponding

Table 2 Estimated GP population sizes for 1-grams, 2-grams, and 3-

grams with different margins of error r 2 f0:01; 0:05; 0:1g

n Method r Estimated population

size

1 Max 0.1 107

1 Max 0.05 428

1 Max 0.01 10,691

1 Top 5 0.1 114

1 Top 5 0.05 453

1 Top 5 0.01 11,311

1 Median 0.1 123

1 Median 0.05 490

1 Median 0.01 12,241

2 Max 0.1 276

2 Max 0.05 1101

2 Max 0.01 27,508

2 Top 5 0.1 303

2 Top 5 0.05 1212

2 Top 5 0.01 30,297

2 Median 0.1 864

2 Median 0.05 3455

2 Median 0.01 86,368

3 Max 0.1 668

3 Max 0.05 2670

3 Max 0.01 66,748

3 Top 5 0.1 805

3 Top 5 0.05 3220

3 Top 5 0.01 80,482

3 Median 0.1 3080

3 Median 0.05 12,318

3 Median 0.01 307,940

max, top 5, and median indicate how many n-grams are taken into

account in the population size estimate. Furthermore, we use

z ¼ 1:96, ramped half-and-half, dmin ¼ 2, and D ¼ f2; 3; 4; 5; 6g

1−gram 2−gram 3−gram

r =
 0.01

r =
 0.05

r =
 0.1
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Fig. 2 Relative sampling error measured for 1-grams, 2-grams, and 3-

grams with different margins of error (r 2 f0:01; 0:05; 0:1g) indicated
by a red horizontal line. max, top 5, and median indicate how many n-
grams are taken into account in the population size estimate.

Furthermore, we use z ¼ 1:96, ramped half-and-half, dmin ¼ 2, and

D ¼ f2; 3; 4; 5; 6g

On sampling error in genetic programming 181

123



values of sampling error. The desired margin of error is

also depicted by a red line in each plot.

As expected, we can see that the majority of values is

below the margin of error. Interestingly, this is also the

case if we only take into account the most important n-

grams (settings max and top 5). For both of these cases, the

estimated and measured sampling error are close to each

other. When we estimate the GP population size using the

median, we take more n-grams with a lower frequency into

account. Therefore, we overestimate the GP population

size. This leads to a sampling error that is well below the

margin of error. In other words, it is only necessary to take

into account the most important n-gram frequencies, which

is in line with Cochran’s general recommendation

(Cochran 1977).

Our results show that the Cochran formula together with

the results of the model of expected n-gram frequencies

reliably estimate the GP population size for a desired

margin of error.

5.3 Variance of fitness values

We analyze the variance of fitness values in generation 0

for different population sizes of N 2
f10; 20; . . .; 100; 200; . . .; 1000; 2000; . . .;
10;000; 15;000; . . .; 30;000g for four benchmark problem

instances (McDermott et al. 2012)—6-Multiplexer, 11-

Multiplexer, Koza-1, and Pagie-1. These four problem

instances were chosen because their primitive sets are

widely known in the community and interesting differences

between the four primitive sets exist (e.g., different number

of functions, different arities of the functions, different

number of terminals). We use ramped half-and-half with

dmin ¼ 2 and D ¼ f2; 3; 4; 5; 6g. The results are presented

in Figs. 3 and 4. For the 6-Multiplexer (Fig. 3a) and the

11-Multiplexer (Fig. 3b) we plot the median, 25-, and

75-quartile of the mean fitness in generation 0 over

population sizes. Since there are infinite fitness values in

the symbolic regression problem instances, we plot the

median, 25-, and 75-quartile of the median fitness for

Koza-1 (Fig. 4a) and Pagie-1 (Fig. 4b). The x-axes are log-

scaled for better visibility of the results of small population

sizes. We can see that the variance of mean and median

fitness values is very high with small population sizes and

asymptotically gets lower with higher population sizes.

To further analyze the variance of fitness values over

population sizes, we plot the quartile coefficient of dis-

persion (QCD) (Figs. 5, 6). The QCD is calculated using

the first (Q1) and third (Q3) quartiles of the data set:

QCD ¼ Q3 � Q1

Q3 þ Q1

: ð26Þ

High values of the QCD indicate that the data has large

variance. Similar to the results in Figs. 3 and 4, we cal-

culate the QCD of the mean fitness (Fig.5) and median

fitness (Fig. 6). For comparison, we plot the estimated

sampling error calculated by using the five highest expec-

ted frequencies of 1-, 2-, and 3-grams for each of the

population sizes. To estimate the error we use the Cochran

formula (Eq. 24) and transform it to

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ð1� pÞ

Np

s
� ð27Þ

For a better comparison, we chose the scales in such a way

that the QCD starts at about the same point as the estimated

sampling error using expected 2-gram frequencies. In

Figs. 5 and 6 we can see that the decrease of the QCD is

analogous to the decrease of the estimated sampling error.

Using Pearson’s correlation coefficient, we measure the

correlation between estimated sampling errors and QCD

for estimates with 1-, 2-, and 3-grams on all four problem

instances. The correlation coefficients are between 0.992

and 0.999, indicating a strong correlation. This means that

the estimated sampling error calculated with expected

Fig. 3 Median, 25-, and 75-quartile of the mean fitness in generation 0 over population sizes
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frequencies of n-grams is a good proxy for the empirical

variance of fitness values in our experiments. Thus, the

variance of mean/median fitness values is a proper indi-

cator of sampling error.

5.4 Estimated GP population sizes for common
benchmark problem instances

We use our models to recommend reasonable population

sizes for eight widely used benchmark problem instances

(McDermott et al. 2012). In general, we used the function

Fig. 4 Median, 25-, and 75-quartile of the median fitness in generation 0 over population sizes

Fig. 5 QCD of the mean fitness in generation 0 and estimated error of 1-, 2-, and 3-grams over population sizes

Fig. 6 QCD of the median fitness in generation 0 and estimated error of 1-, 2-, and 3-grams over population sizes
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and terminal sets proposed by the authors of the bench-

marks. However, in our analysis we ignored ephemeral

random constants, e.g., used in (Pagie and Hogeweg 1997).

Furthermore, in the model of expected frequencies, we

used dmin ¼ 2 and D ¼ f2; 3; 4; 5; 6g. In the sampling error

model, we used r ¼ 0:05, z ¼ 1:96 (confidence level of

95%), and the estimates are based on the five highest

expected 2- and 3-gram frequencies (top 5).

The results are presented in Table 3. The estimated

population sizes using expected 2-gram frequencies are

between 337 and 3440. Using expected 3-gram frequen-

cies, the estimated population sizes are between 839 and

12,180.

Practitioners are usually faced with strict CPU time

constraints. As a result, there is a trade-off between either

choosing a larger population size or running the search for

more generations. The population sizes indicated by our

model help to make an informed decision of the population

size. Increasing the population size beyond the indicated

size would not help much. Instead, it would be better to

increase the number of generations.

6 Conclusions

We developed a model of the expected frequencies of n-

grams of ancestors in GP. We used the model of expected

n-gram frequencies and Cochrans formula to determine a

minimum size of an initial GP population, given a desired

degree of sampling error and a confidence level. Then, we

used our models to estimate initial GP population sizes for

common benchmark problems, giving a recommendation

to avoid sampling error. Furthermore, we find that the es-

timated sampling error calculated with expected frequen-

cies of n-grams is a good proxy for the empirical variance

of fitness values in our experiments. Last, we find for

selected benchmark problems that the initial population

sizes should be between 800 and 12,200, depending on the

problem instance to reduce the amount of sampling error

below 5%.

Our results show that GP and variants like EDA-GP

benefit from high population sizes to avoid problems with

sampling error. However, our model does not consider

that—in addition to BBs being present—these BBs have an

effect on the fitness (i.e., by definition introns do not

influence fitness; Sastry et al. 2003).

Furthermore, our analysis focuses on subtree frequen-

cies, where subtrees are represented by n-grams of ances-

tors. Other forms of n-grams could be interesting as well,

e.g., n-grams that use sibling nodes (Hemberg et al. 2012).

Also, it could be relevant to analyze other population

statistics to evaluate whether our initial population is suf-

ficiently representative (i.e., has a low sampling error).

Examples are the distribution of tree depths or the distri-

bution of tree shapes.

Of course, GP search is not only influenced by the initial

population but also by other factors. Therefore, exploring a

combination of our initialization model and an adaptive

population size approach, e.g., the one presented by Hu and

Banzhaf (2009), is promising.

We cannot guarantee a certain solution quality with our

model as competing BBs or expressions are not considered.

Thus, future studies need to extend our models, taking

variation and selection into account (temporal models).

Table 3 Estimated GP population sizes for common benchmark problem instances (r ¼ 0:05, z ¼ 1:96, ramped half-and-half, estimates are

based on the five highest expected 2- and 3-gram frequencies)

Benchmark name Number of functions Number of

terminals

Estimated population size

(n ¼ 2)

Estimated population size

(n ¼ 3)

Koza-1 (Koza 1992) 4 unary, 4 binary 1 1911 9980

Nguyen-1–Nguyen-10 (Uy et al.

2011)

4 unary, 4 binary 2 3440 12,180

Pagie-1 (Pagie and Hogeweg

1997)

4 binary 2 636 2672

Keijzer-1–Keijzer-15 (Keijzer

2003)

3 unary, 2 binary 2 3129 7536

6-Multiplexer (Koza 1992) 1 unary, 2 binary, 1

ternary

6 1219 3771

11-Multiplexer (Koza 1992) 1 unary, 2 binary, 1

ternary

11 1327 4289

Intertwined Spirals (Koza 1992) 1 unary, 4 binary, 1

quaternary

2 527 1779

Artificial Ant (Koza 1992) 2 binary, 1 ternary 3 337 839
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