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Abstract
We classify rectangular DNA origami structures according to their scaffold and staples organization by associating a

graphical representation to each scaffold folding. Inspired by well studied Temperley–Lieb algebra, we identify basic

modules that form the structures. The graphical description is obtained by ‘gluing’ basic modules one on top of the other.

To each module we associate a symbol such that gluing of modules corresponds to concatenating the associated symbols.

Every word corresponds to a graphical representation of a DNA origami structure. A set of rewriting rules defines

equivalent words that correspond to the same graphical structure. We propose two different types of basic module

structures and corresponding rewriting rules. For each type, we provide the number of all possible structures through the

number of equivalence classes of words. We also give a polynomial time algorithm that computes the shortest word for

each equivalence class.

Keywords DNA origami � Rewriting systems � Jones monoid

1 Introduction

Self-assembly is a process where smaller components

(usually molecules) autonomously assemble to form a

larger structure. This process is essential in building

biomolecular structures and high order polymers (White-

sides and Boncheva 2002). Applications of self-assembly

range from electric circuits at nano level (Bhuvana et al.

2009; Eichen et al. 1998) to smart drug delivery systems

(Li et al. 2013; Verma and Hassan 2013). A well-known

self-assembly variant is the DNA origami system

introduced by Rothemund (2006). In DNA origami, a

single-stranded DNA plasmid, called the scaffold, outlines

a shape, while short DNA strands, called staples, connect

different parts of the scaffold, fixing the terminal rigid

structure. The top of Fig. 1 shows a segment of schematic

DNA origami where the scaffold is depicted by a black line

while staples are represented by colored lines with arrows.

Experimental results of several DNA origami shapes from

Rothemund’s original paper (Rothemund 2006) are shown

at the bottom of Fig. 1.

Theoretical approaches to analyze DNA origami have

been mainly focused on efficient sequence design of staples

as well as synthetic scaffolds that fold into the target shape

(Rothemund 2005; Veneziano et al. 2016). However, the

same outlined shape can be obtained by different scaffold

and staple organizations. In this paper, we use graphical

description to describe different scaffold/staple organiza-

tion within the same origami shape. We identify unit

building blocks (modules) for the graphical representations

whose composition (one on top of another) through con-

necting the corresponding staple/scaffold strands builds up

a larger structure. The unit blocks correspond to symbols in

an alphabet, and concatenation of symbols correspond to

composition of the modules. We observe that the unit

structures within DNA origami resemble the diagram rep-

resentation of the generators of the Jones monoid, a monoid
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variant of the well studied Temperley–Lieb algebras

(Borisavljević et al. 2002; Jones 1983; Kauffman 2001).

We assign symbols to the unit structures, and define

rewriting rules that provide equivalence of words corre-

sponding to their graphical representation equivalence.

Winfree et al. (2001) proposed word representation of

simple DNA tiles by modulization, but this is the first

approach to describe general DNA origami structures by

words. We propose two types of basic module structures

and their corresponding rewriting rules. For each type, we

provide the number of distinct equivalence classes of

words, which corresponds to the possible DNA origami

structures. We also compute the size of the shortest word

within each class.

An extended abstract of this work had been published in

the proceedings of the 18th International Conference on

Unconventional Computation and Natural Computation

(Garrett et al. 2019).

2 Preliminaries

An alphabet R is a non-empty finite set of symbols. A

word w ¼ w1w2 � � �wn 2 Rn is a finite sequence of n sym-

bols over R, and jwj ¼ n denotes the size of the word. We

use � to denote the empty word. A subword, or a factor, of

a word w ¼ w1w2 � � �wn is w0 ¼ wi � � �wj where

1� i� j� n. We use R� to denote the set of all words over

R. Concatenation of two words x and y is denoted by x � y,

or simply xy.

A word rewriting system ðR;RÞ consists of an alpha-

bet R and a set R � R� � R� of rewriting rules. In this

paper, both R and R are finite. R generates an equivalence

relation R̂ on R�. An element (x, y) of R is called a

rewriting rule, and is written as x $ y. In general, we

rewrite uxv as uyv for u; v 2 R� if ðx; yÞ 2 R, and denote

such rewriting by uxv $ uyv. For a sequence of

words u ¼ x1 $ x2 $ � � � $ xn ¼ v in a rewriting sys-

tem ðR;RÞ, we write u� v. We consider R̂ and denote an

equivalence class of a word w as [w]. A word w0 2 ½w� is

irreducible if jw0j � jw0j for all w0 2 ½w�. For an ordered

alphabet R, we use the lexicographically first irreducible

word ŵ of [w] as the representative word of [w]. We

consider the set of equivalence classes O. The reader may

refer to Book and Otto (1993) for more information about

word rewriting systems.

The Temperley–Lieb algebra has been extensively

studied in physics and knot theory (Kauffman 2001). A

monoid version of Temperley–Lieb algebras, called the

Jones monoid J n, has also been studied (Borisavljević

et al. 2002; Jones 1983; Lau and FitzGerald 2006). The

generators of J n are h1; . . .; hn	1 and satisfy three classes

of relations:

1. hihjhi ¼ hi for ji	 jj ¼ 1

2. hihi ¼ hi
3. hihj ¼ hjhi for ji	 jj 
 2

The generators and relations can be represented graph-

ically as in Fig. 2 (Lau and FitzGerald 2006). There are

n endpoints at the top and the bottom of graphical repre-

sentations of elements of J n. A generator hi connects the

ith and iþ1st top endpoints and the ith and iþ1st bottom

endpoints, while other endpoints are connected by vertical

lines. The generator h3 in J 5 is presented in Fig. 2a,

connecting the top 3rd and 4th and the bottom 3rd and 4th

points, respectively. Multiplication of two elements corre-

sponds to concatenation of diagrams, placing the diagram

of the first element on top of the second, and removing

closed loops. The relations 1, 2 and 3 can also be expressed

graphically as in Fig. 2b, d, respectively. Two elements in

the Jones monoid are equal if their graphical representa-

tions are equivalent, that is, they have the same set of top-

Fig. 1 (Top) A schematic representation of a DNA origami structure.

The scaffold is a black line and staples are colored lines with arrows.

(Bottom) Various shapes made by DNA origami. Both figures are

from Rothemund (2006). (Color figure online)

218 J. Garrett et al.

123



bottom connecting segments after deleting internal loops.

For any two words that have equivalent diagrams, one

word can be rewritten to the other using the sequence of

relations 1 to 3. In simplification of the DNA origami

structure, we take a similar approach where we only take

into account the endpoints of scaffolds and staples that are

visible at the top and the bottom borderline of the whole

structure. Thus, we use the Jones monoid as a base to

construct DNA origami words and corresponding rewriting

systems.

3 DNA origami words and rewriting systems

3.1 DNA origami words

We focus on rectangular DNA origami structures. They can

be formed by a variety of scaffold-strand folds and con-

necting staples. We introduce an algebraic way to distin-

guish these different folds yielding the same overall shape.

We use basic unit structures (modules) that build the shape

and associate symbols (generators) to these basic modules.

Based on graphical diagrams, and inspired by the Jones

monoid diagrams, we define equivalence of two origami

structures, and define corresponding rewriting rules that

realize the equivalence in the graphical diagrams.

In this schematics of the DNA origami structure, we

consider columns made of scaffolds, and staples that go

along the scaffolds as follows: there are places where two

adjacent scaffolds connect the two columns, and also pla-

ces where two adjacent staples connect the two columns. In

addition, because DNA is oriented, the scaffolds and sta-

ples have directions: adjacent scaffolds are anti-parallel,

and a staple is anti-parallel to a scaffold it connects to. A

graphical structure corresponding to DNA origami is thus

presented with types of directed segments and the corre-

sponding end-point connections. In addition, in order to

define composition of structures when some parts of the

structures are missing, we consider ‘virtual’ staples and

scaffold. We use s ¼ it (ib) to represent a point at the top

(bottom) of the ith column. We assume that scaffolds at the

ith column go upward if i is odd, and downward if i is even.

The structure of width n is defined as follows: To the

set En ¼ fit; ib j 1� i� ng of points, we associate two

partitions ðPc;QcÞ and ðPp;QpÞ where each set in the

partitions consists of n points. The partition ðPc;QcÞ is

associated to the scaffold strands and ðPp;QpÞ is associated

to the staples. We define a bijection from Pc to Qc which

we describe as a set of ordered pairs fðs; tÞ j s; t;2 Eng.

Each pair (s, t) corresponds to a line segment that starts at

point s and terminates at point t. This set of pairs is further

partitioned to ðRc;VcÞ. We call the line segments Rc real

scaffolds and Vc virtual scafolds. Similarly a bijection from

Pp to Qp represented by ordered pairs is partitioned to

ðRp;QpÞ where Rp is the set of real staples and Vp is the

set of virtual staples. Then a graphical structure is defined

as a tuple ðRc;Vc;Rp;VpÞ of four sets of pairs or four sets

of line segments. Note that such virtual scaffolds and sta-

ples are merely used as auxiliary tools for concise defini-

tion of concatenation of graphical structures, where the

resulting graphical structure is defined by a set of con-

nections of different types of scaffolds and staples—

otherwise, we may leave such virtual scaffolds and staples

empty, which might look more natural, but such emptiness

leads to introduction of complicated ‘extensions’ of scaf-

folds and staples aside from connections in the definition of

concatenation of graphical structures, and we choose to use

the former.

For given width n, we define basic modules and corre-

sponding generators Rn ¼ fai; bi j 1� i� n	 1g as an

alphabet for DNA origami words with the

order a1\ � � �\an	1\b1\ � � �\bn	1. We say that ai is

complementary to bi, and vice versa. For each generator ai,
bi, Table 1 shows the functions that describe their struc-

tures between the ith and the iþ1st columns. The four maps

that describe ai (resp. bi) are called units for ai (resp. bi).

(a) (b) (c) (d)

Fig. 2 Graphical representation of the Jones monoid J 5. a The generator h3. b The relation h1h2h1 ¼ h1. c The relation h1h1 ¼ h1. d The

relation h1h3 ¼ h3h1

Table 1 Units for generators of odd i’s (maps are inversed for even

i’s)

Rc Rp

ai ðib; itÞ; ðiþ1t; iþ1bÞ ðit; iþ1tÞ; ðiþ1b; ibÞ
bi ðiþ1t; itÞ; ðib; iþ1bÞ ðit; ibÞ; ðiþ1b; iþ1tÞ
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The units of the generators ai and bi (i ¼ 1; 2) are shown in

Fig. 3.

In addition to the units for each generator, we must also

define maps corresponding to the columns left of the ith

and right of the iþ1st column. Unlike the Jones monoid,

the choice of structure for these surrounding columns is not

trivial. We define three possible systems for this sur-

rounding structure through choices of real or virtual scaf-

folds and staples. The structure of each generator ci 2 Rn

has a context CðciÞ which consists of pairs ðkt; kbÞ and their

inverses where k 62 fi; iþ 1g. The context CðciÞ can have

real or virtual pairs. Depending on the choice of virtual

versus real context, there can be different structural

descriptions. Table 2 defines three situations that can be

used for three different descriptions of graphical structures

GmaxðnÞ, GmidðnÞ, GminðnÞ, each representing a possible choice

for the generator ci. We note that in GmaxðnÞ the con-

text CðciÞ has both Vc and Vp empty, i.e. the whole context

is real. In GmidðnÞ, the context CðciÞ has Vc ¼ ;, that is, the

scaffold context is real but the staple context is virtual. In

the case of GminðnÞ, the whole context CðciÞ is virtual. The

corresponding graphical structures of a2’s in different G’s

are shown in Fig. 4.

Concatenation of words and the corresponding graphical

structure is defined similarly as in the Jones monoid dia-

grams. Graphical structures that correspond to words in R�
n

are obtained by joining graphical structures of generators

as explained below. The graphical structure corresponding

to concatenation of two words is obtained by placing the

graphical structure of the first word on top of the graphical

structure of the second and connect the vertical lines that

meet. In the case of virtual staples or scaffolds the con-

nection follows the rule: If a real scaffold (staple) meets a

virtual scaffold (staple), then the virtual scaffold (staple)

becomes real. This process simulates the real structure

extending through the empty space represented by the

virtual structure.

Figure 5 shows concatenation of a1b2 and a1 under

Gminð3Þ. Formally, the graphical structure of a word w ¼
w1w2 is defined as follows: Suppose Gðw1Þ ¼
ðRc1;Vc1;Rp1;Vp1Þ and Gðw2Þ ¼ ðRc2;Vc2;Rp2;Vp2Þ are

graphical structures of w1 and w2, respectively. The

graphical structure GðwÞ ¼ Gðw1w2Þ ¼ ðRc;Vc;Rp;VpÞ is

obtained with the following: The scaffold sets (Rc and Vc)

are obtained as follows (the staples follow an equivalent

procedure):

1. For all pairs in Rc1 [ Vc1, replace the subscript b by m.

2. For all pairs in Rc2 [ Vc2, replace the subscript t by m.

Fig. 3 Graphical representation of units of ai and bi (i ¼ 1; 2). Scaffolds

are represented by black lines and staples are represented by red dotted

lines. For better visibility, staples are shifted right. (Color figure online)

Table 2 Definition of three real and virtual scaffold and staple con-

texts for ci when i is odd. The maps are inversed for even i’s

k 62 fi; iþ 1g Rc Vc Rp Vp

GmaxðnÞ Odd k ðkb; ktÞ ðkt; kbÞ
Even k ðkt; kbÞ ðkb; ktÞ

GmidðnÞ Odd k ðkb; ktÞ ðkt; kbÞ
Even k ðkt; kbÞ ðkb; ktÞ

GminðnÞ Odd k ðkb; ktÞ ðkt; kbÞ
Even k ðkt; kbÞ ðkb; ktÞ

Fig. 4 Different graphical structures of a2’s in Gmaxð5Þ, Gmidð5Þ and

Gminð5Þ. Virtual scaffolds and staples are colored in gray

Fig. 5 Concatenation of a1b2 and a1 under Gminð3Þ
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3. Given set Rc1 [ Vc1 [ Rc2 [ Vc2, for each sequence

ðq0; q1Þ; ðq1; q2Þ; . . .; ðqm	1; qmÞ of pairs where points q0

and qm have subscripts t or b,

• if any of these pairs is in Rc1 [ Rc2, add ðq0; qmÞ to

Rc.

• Otherwise, add ðq0; qmÞ to Vc.

We observe that the composition of graphical structures is

associative, that is Gðw1w2w3Þ ¼ Gððw1w2Þw3Þ ¼ Gðw1

ðw2w3ÞÞ.
Figure 6 describes the concatenation process of scaf-

folds. We replace the subscripts for the bottom points of w1

and the top points of w2 by m, which denotes the middle

points in the concatenation. Then, connect pairs of scaf-

folds that meet in the middle. We regard the connected

scaffold to be virtual only if both original scaffolds were

virtual (step 4 (c)). Finally, we delete all pairs of scaffolds

whose endpoints are at the middle, this includes all internal

loops. Based on Tables 1 and 2, we define the

set G 2 fGmax;Gmid;Gming as the set of all graphical struc-

tures that can be constructed by concatenation of genera-

tors in the model G. We denote the graphical structure of a

word w under Gmax as GmaxðwÞ, and similarly define

GmidðwÞ and GminðwÞ.

3.2 DNA origami rewriting systems

It is straightforward that for any alphabet, given two words,

the graphical structure of their concatenation is unique.

Thus, if Gðw1Þ ¼ Gðw2Þ under a model G, we say w1 �w2

in G and define a rewriting rule w1 $ w2 between two

equivalent words. Due to difference of context structures,

rewriting rules for GmaxðnÞ, GmidðnÞ and GminðnÞ differ from

each other. For each structure, we find the set of basic

rewriting rules that generate the equivalence and analyze

the set of distinct equivalence classes.

3.2.1 Gmax(nÞ case

We first observe that all staples and scaffolds in GmaxðnÞ are

real. We observe that except for added directions, their

concatenation results in a bijection between scaffolds and

staples without lasting conflict of the directions. Moreover,

scaffolds in ai (and staples in bi) are straight and do not

affect the structure of scaffolds (staples) when concate-

nated. For convenience, we use c and d to represent an

arbitrary generator, and c to denote the complementary

generator of c. By concatenating generators we obtain the

following rules that form the set RmaxðnÞ (Fig. 7 shows the

inter-commutation rule):

1. (inter-commutation rule) cicj $ cjci
2. (idempotency rule) cici $ ci
3. (intra-commutation rule) cicj $ cjci for ji	 jj 
 2

4. (TL relation rule) cicjci $ ci for ji	 jj ¼ 1

We define the set OmaxðnÞ of equivalence classes based

on R̂maxðnÞ. We say that a rule is non-increasing if the right-

handed side word is not longer than the left-handed side

word. A sequence of rewriting rules with only non-in-

creasing rules is said to be a non-increasing rewriting.

We partition Rn into RðaÞn ¼ fa1; . . .; an	1g and

RðbÞn ¼ fb1; . . .; bn	1g. Using the inter-commutation rule,

we may rewrite any word w to wawb, where wa 2 R�
ðaÞn and

wb 2 R�
ðbÞn. We say that such a word wawb is in an inter-

commutation-free form. Also, using intra-commutation

rules, we may set additional conditions for

wa ¼ u1u2 � � � up, where ui ¼ ðajiaji	1 � � � akiÞ, jp is the

maximum subscript in wa, jiþ1 [ ji and kiþ1 [ ki for

1� i\p, and a similar condition for wb. Such wa and wb

are unique (Jones 1983), and we call such wawb a com-

mutation-free form of w.

We regard the graphical structure of a word as pairs of

scaffolds and staples, which can be seen as two indepen-

dent Jones monoid diagrams. Knowing that the relations 1

to 3 of the Jones monoid can sufficiently describe equiv-

alence of diagrams, we have the following theorem:

Theorem 1 For all w1;w2 2 R�
n , Gmaxðw1Þ ¼ Gmaxðw2Þ if

and only if w1 �w2 under R̂maxðnÞ . In other words, there

exists a bijection between GmaxðnÞ and OmaxðnÞ .

Fig. 6 Scaffold concatenation of Gðw1Þ and Gðw2Þ. Real scaffolds are represented by thick lines for better visibility
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Given n, the number of elements of J n is equal to the

Catalan number Cn ¼
1

nþ 1

2n
n

� �
(Lau and FitzGerald

2006), and the maximum size of an element in J n is
n2

4

� �

(Dolinka and East 2017; Jones 1983). Thus, the following

remark holds.

Remark 1 Given n, jOmaxðnÞj ¼
1

nþ 1

2n
n

� �� �2

, and the

maximum size of an irreducible word in OmaxðnÞ is 2
n2

4

� �
.

Since the graphical structures in GmaxðnÞ correspond to

products of two Jones monoid diagrams, we use the fol-

lowing Lemma to obtain the proposed optimization

algorithm.

Lemma 1 Given two elements w1;w2 2 J n where

jw2j � jw1j , there is a non-increasing rewriting w1 �w2.

Proof We recall the rewriting rules for J n.

1. hihi $ hi
2. hihj $ hjhi for ji	 jj 
 2

3. hihjhi $ hi for ji	 jj ¼ 1

Suppose w1;w2 2 J n, jw2j � jw1j and we can rewrite w1 as

w2. Let w0
1 be the last word in the sequence of rewriting

such that an increasing rule is applied to w0
1. If such w0

1

does not exist, then the whole rewriting is non-increasing.

Otherwise, we claim that there exists another sequence of

non-increasing rewriting from w0
1 to w2. Note that rule 2 is

the only rule that changes location of generators. More-

over, applying rules 1 or 3 on a word does not result in an

additional pair of generators that rule 2 can be applied.

• If the first rule is rule 1 (hi $ hihi), the resulting two

hi’s should be involved in non-increasing rule 1 or 3 in

the following sequence. The vertical sequence of

Fig. 8a shows an example of such sequences where

the left hi is used in rule 1 and the right hi is used in rule

3, where blue areas represent generators that hi can

switch the location with using rule 2. For such

sequences, we can always find another sequence

without increasing rules as the right sequence of

Fig. 8a.

• If the first rule is rule 3 (hi $ hihjhi for ji	 jj ¼ 1), the

resulting hj should be involved in non-increasing rule 1

or 3 in the following sequence. Without loss of

generality, we assume that j ¼ iþ 1. Since

hiþ1hi 6¼ hihiþ1, hj cannot be used in rule 1. The

vertical sequence of Fig. 8b shows an example of such

sequence where the middle hj ¼ hiþ1 is used in rule 3,

and blue areas represent generators that hiþ2 can switch

the location with. For such a sequence, we can always

find another non-increasing sequence as the right

sequence of Fig. 8b.

Fig. 7 Inter-commutation rewriting rule for Gmaxð3Þ

(a)

(b)

Fig. 8 Examples of sequences of rewriting rules that leads to the same

element, where one uses only non-increasing rules. a The first rule is

rule 1. b The first rule is rule 3
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We may continuously find an increasing rewriting in the

sequence and an alternate sequence of non-increasing

rewriting to w2. h

Theorem 2 Given a word w0 2 R�
n of size m , an irre-

ducible word in ½w0� can be obtained within Oðnm2Þ time.

Proof For a given w0, we rewrite w0 as w in the inter-

commutation-free form, which takes Oðm2Þ time. For each

i ¼ 1; . . .; n, determine whether one of the following con-

ditions in w holds and rewrite w accordingly:

1. If w ¼ v1civ2civ3 where v1; v2; v3 2 R�
n and v2 does not

have ciþ1; ci and ci	1, then rewrite w as v1v2civ3. This is

possible by the rule 3 and then 2.

2. If w ¼ v1civ2cjv3civ4 where v1; v2; v3; v4 2 R�
n, ji	 jj ¼

1 and v2; v3 do not have ciþ1; ci and ci	1, then rewrite w

as v1v2civ3v4. This is possible by the rule 3 and then 4.

It is straightforward that both rewritings are non-increas-

ing. For each i, the iteration checking whether w satisfies

the given form in the conditions 1 and 2 for ði; j ¼ iþ 1 or

i	 1Þ’s is done in O(m) time. It takes O(nm) time to do

one rewriting in 1 or 2, which decreases the size of the

word by one or two symbols. Thus, it takes at most Oðnm2Þ
to finish the whole process. For the final word w0, condi-

tions in 1 and 2 are no longer satisfied and there is no

sequence of non-increasing rewriting that decreases the

size of the word. Thus, w0 is irreducible by Lemma 1. h

3.2.2 Gmid(nÞ case

Similar to the GmaxðnÞ case, we have the following rewriting

rules:

1. (Inter-commutation) cicj $ cjci
2. (Idempotency) cici $ ci
3. (Intra-commutation) cicj $ cjci for ji	 jj 
 2

Due to the lack of default real staples in generators, we

cannot directly introduce the rewriting rule cicjci $ ci for

ji	 jj ¼ 1. For example, we cannot rewrite a1a2a1 as a1,

since a1a2a1 has a straight real staple at the third column

while a1 does not (see Fig. 9a). We introduce the span of a

word w as the set of columns spanðwÞ ¼
[

cjinw
fj; jþ 1g.

Lemma 2 Under GmidðnÞ , the span equals to the set of

columns where real staples exist.

Proof We can prove the statement by induction on the size

of the word. It is straightforward that the statement holds

for generators. Assume that the statement holds for all

jwj ¼ m. For a word w0 ¼ wci, if i and iþ 1 are both in

span(w), concatenation does not change the span and the

statement holds. If i or iþ 1 are not in span(w), then the

span has new columns, and the graphical structure of w0 has

real staples for these columns, which makes the statement

true. h

Directly from Lemma 2, it follows that two equivalent

words have the same span, and rewriting rules in the Jones

monoid can be applied when both sides have the same

span. For example, a1a2a1b2 $ a1b2 holds as in Fig. 9b

because b2 adds 3 to spanða1b2Þ and

spanða1a2a1b2Þ ¼ spanða1b2Þ. In general, we have the

following additional rewriting rules, where d 2 fa; bg and

v 2 R�
n:

4�. djvcici	1ci $ djvci if j ¼ i	 1 or i	 2

5�. djvciciþ1ci $ djvci if j ¼ iþ 1 or iþ 2

6�. cici	1civdj $ civdj if j ¼ i	 1 or i	 2

7�. ciciþ1civdj $ civdj if j ¼ iþ 1 or iþ 2

The symbol dj in the right hand side of rules 4� to 7�

ensures that the span of the two words is the same. Note

that fvg ¼ R�
n in rules 4� to 7� is infinite, but we prove that

fvg can be reduced to a finite set of words while main-

taining the equivalent rewriting system in Theorem 3. For

better description of such a subset, we define a zig-zag

(a)

(b)

Fig. 9 Examples of equivalence in Gmidð3Þ. a a1a2a1 6 � a1 b

a1a2a1b2 � a1b2
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word w 2 R�
n to be a word where each pair of adjacent

generators in w have adjacent indices. We call a maximal

subword of increasing (decreasing) indices as zig (zag). For

example, w ¼ a3a4a3a2a1a2 is a zig-zag word with a zig-

zag-zig sequence in the word: a3a4 being the zig, a4a3a2a1

being the zag, and a1a2 being the zig. Using rules 2 to 7�,
we can rewrite any zig-zag word that consists of single

generators type either in RðaÞn, or RðbÞn, as a zig-zag word

with at most three zigs or zags, which we call the zig-zag

normal form, or ZNF in short.

Theorem 3 Rules 1 to 3 and 4� to 7� generate the same
equivalence relation on R� as rules 1 to 7 below where

v ¼ � , or v 2 R�
ðcÞn and cjvci in rules 4 and 5 ( civcj in

rules 6 and 7) is in ZNF.

4. cjvcici	1ci $ cjvci if j ¼ i	 1 or i	 2

5. cjvciciþ1ci $ cjvci if j ¼ iþ 1 or iþ 2

6. cici	1civcj $ civcj if j ¼ i	 1 or i	 2

7. ciciþ1civcj $ civcj if j ¼ iþ 1 or iþ 2

Proof Given rule 4�: w1 ¼ djvcici	1ci $ w2 ¼ djvci if j ¼
i	 1 or i	 2, here we prove that rule 4� can be replaced

with rules 4 to 7 to generate the same equivalence relation.

Similar simplification works for rules 5� to 7�, and we

focus on rule 4� in the proof. The proof consists of estab-

lishing three assumptions on d and v.

First, we prove that we may assume d ¼ c. If d ¼ c, we

can rewrite v as a concatenation of a prefix vc 2 R�
ðcÞn and a

suffix vd 2 R�
ðdÞn. Then,

djvcvdcici	1ci $ vcdjcici	1civd $ vcdjcivd $ djvcvdci ¼ djvci

, and vice versa.

Second, we prove that we may assume v 2 R�
ðcÞn. If

v 62 R�
ðcÞn, we can rewrite v as a concatenation of a

prefix vc 2 R�
ðcÞn and a suffix vc 2 R�

ðcÞn. Then,

cjvcvccici	1ci $ vccjvccici	1ci $ vccjvcci $
cjvcvcci ¼ cjvci, and vice versa.

Third, we prove the given statement under the previ-

ously proved assumptions d ¼ c and v 2 R�
ðcÞn, by induc-

tion on |v|. It is straightforward that the statement holds for

v ¼ �. For jvj ¼ 1, we may assume that v ¼ ch. According

to h, we have the following cases (see Fig. 10):

(1) If h[ jþ 1 or h\j	 1, we can switch ch and cj.
(2) If h ¼ jþ 1, then h ¼ i or i	 1.

(2-a) If h ¼ i, chci can be rewritten as ci.
(2-b) If h ¼ i	 1, cjchci is in ZNF.

(3) If h ¼ j, we can rewrite cjch as cj.
(4) If h ¼ j	 1, then h ¼ i	 2 or i	 3.

(4-a) If h ¼ i	 2, we may regard ch as new cj.
(4-b) If h ¼ i	 3, we can move ch to the right of

cici	1ci.

Then, assume that the claim holds for all v where

jvj �m. For jvj ¼ mþ 1, we will prove that we can rewrite

w1 to find a subword w0
1 ¼ cjv

0cici	1ci such that jv0j �m,

which leads to the induction hypothesis. Let cjp be the

maximal zig-zag prefix of cjvci, and assume that p 6¼ v. Let

ct be the last generator of p, and ch be the first generator

after p, which is in v. Let maxðcjpÞ (minðcjpÞ) be the largest

(smallest) index of generators in cjp. According to h, we

have the following cases (see Fig. 11):

(1) If h[ maxðcjpÞ þ 1, we can move ch to the left of

cj, which reduces the size of v by 1.

(2) If h ¼ maxðcjpÞ þ 1, since cjp is the maximal zig-

zag prefix of v, t 6¼ cmaxðcjpÞ. We consider two

cases:

(2-a) If j ¼ maxðcjpÞ, h ¼ jþ 1.

(2-a-i) If j ¼ i	 1, then the first

generator of p is ci	2, and

we may regard it as a new cj.
(2-a-ii) If j ¼ i	 2, then h ¼ i	 1,

and we may regard ch as a

new cj.

Fig. 10 Base case analysis when jvj ¼ 1
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(2-b) If j 6¼ maxðcjpÞ, then there exists the

rightmost subword ŵ ¼ cmaxðcjpÞ	1cmaxðcjpÞ

cmaxðcjpÞ	1 in cjp. We can move ch to the

right of ŵ, and reduce ŵch to cmaxðcjpÞch,

which reduces the size of v by 2.

(3) If minðcjpÞ� h� maxðcjpÞ, we consider four

cases:

(3-a) If minðcjpÞ ¼ maxðcjpÞ, p ¼ �, h ¼ j and

we may reduce cjch as cj, which reduces

the size of v by 1.

(3-b) If cjp has more than three zigs or zags, it

can be rewritten using rule 4 to 7, which

reduces the size of v by at least 2.

(3-c) If cjp has at most three zigs or zags,

(3-c-i) If j ¼ maxðcjpÞ or j ¼
minðcjpÞ or t ¼ maxðcjpÞ or

t ¼ minðcjpÞ, then cjp can be

rewritten using rule 4 to 7,

which reduces the size of

v by at least 2.

(3-c-ii) Otherwise, we can move ch
into cjp so that cjp has a

subword chcsch where

js	 hj ¼ 1, since cjp is the

maximal zig-zag prefix of

cjvci and ch cannot ’extend’

the zig-suffix or the zag-

suffix of cjp. Such subword

can be rewritten as ch, which

reduces the size of v by 2.

Fig. 11 Inductive step

DNA origami words, graphical structures and their rewriting systems 225

123



(4) If h ¼ minðcjpÞ 	 1, the case is similar to h ¼
maxðcjpÞ þ 1 case.

(5) If h\minðcjpÞ 	 1, we can move ch to the left of

cj, which reduces the size of v by 1.

When p ¼ v, ch ¼ ci. The case analysis is similar to the

above, but we cannot move ch to the left of cj, which breaks

the subword cici	1ci. Thus, we check the following two

cases such that we moved ch to the left of cj (see Fig. 12):

(1) If h ¼ i[ maxðcjpÞ þ 1, since j ¼ i	 1 or i	 2,

maxðcjpÞ ¼ i	 2.

(1-a) If t ¼ i	 2, we may regard ct as a new cj.
(1-b) If t� i	 3, we may move ct to the right of

cici	1ci, which reduces the size of v by 1.

(2) Since j ¼ i	 1 or i	 2, h ¼ i cannot be less than

minðcjpÞ 	 1.

h

Thus the rules 4� to 7� reduce to the following rewriting

rules for v 2 R�
ðcÞn such that either v ¼ �, or cjvci is in ZNF

in rule 4 and 5 ( civcj in rule 6 and 7):

4. cjvcici	1ci $ cjvci if j ¼ i	 1 or i	 2

5. cjvciciþ1ci $ cjvci if j ¼ iþ 1 or iþ 2

6. cici	1civcj $ civcj if j ¼ i	 1 or i	 2

7. ciciþ1civcj $ civcj if j ¼ iþ 1 or iþ 2

Comparing the rewriting rules with RmaxðnÞ, rules 4 to 7 are

extensions of rule 4 of RmaxðnÞ, but the ruleset stays to be

finite. Note that if a zig-zag word that consists of single

generators type has more than three zigs or zags, it can be

successfully reduced to a ZNF word using rules 2 to 7.

For given n, let the set RmidðnÞ of rewriting rules consist

of the above seven kinds of rules for 1� i; j� n. As

observed, since there are only finitely many words in ZNF,

the set RmidðnÞ is finite. Then OmidðnÞ ¼ R�
n=R̂midðnÞ.

Theorem 4 For all w1;w2 2 R�
n , Gmidðw1Þ ¼ Gmidðw2Þ if

and only if w1 �w2 under R̂midðnÞ . In other words, there

exists a bijection between GmidðnÞ and OmidðnÞ.

Proof Note that if w1 �w2 under R̂midðnÞ, then Gmidðw1Þ ¼
Gmidðw2Þ from definitions of rewriting rules. If Gmaxðw1Þ ¼
Gmaxðw2Þ and spanðw1Þ ¼ spanðw2Þ, then Gmidðw1Þ ¼
Gmidðw2Þ from Lemma 2. Moreover, if Gmaxðw1Þ ¼
Gmaxðw2Þ and spanðw1Þ 6¼ spanðw2Þ, then Gmidðw1Þ 6¼
Gmidðw2Þ from Lemma 2. Thus, Gmidðw1Þ ¼ Gmidðw2Þ if

and only if Gmaxðw1Þ ¼ Gmaxðw2Þ and spanðw1Þ ¼
spanðw2Þ. From Theorem 1, the set of the following

(general) rules are sufficient to describe equivalence under

GmaxðnÞ when v1; v2 2 R�
n.

(i) v1cicjv2 $ v1cjciv2

(ii) v1ciciv2 $ v1civ2

(iii) v1cicjv2 $ v1cjciv2 for ji	 jj 
 2

(iv) v1cicjciv2 $ v1civ2 for ji	 jj ¼ 1

In the proof, RmaxðnÞ denotes the set of these general rules.

Now, there exists a set P of pairs of words ðw1;w2Þ where

Gmaxðw1Þ ¼ Gmaxðw2Þ and Gmidðw1Þ ¼ Gmidðw2Þ, a set H

of pairs of words ðw3;w4Þ where Gmaxðw3Þ ¼ Gmaxðw4Þ
and Gmidðw3Þ 6¼ Gmidðw4Þ, and another set N of pairs of

words ðw5;w6Þ where Gmaxðw5Þ 6¼ Gmaxðw6Þ and

Gmidðw5Þ 6¼ Gmidðw6Þ. The sets P, H, N are disjoint and

P [ H [ N ¼ R�
n � R�

n. Now, RmaxðnÞ can be partitioned into

two sets Rdiff and Rsame, where all rules in Rdiff have dif-

ferent span for two sides and all rules in Rsame have the

same span for two sides. Then, the following statements

hold:

1. For a pair ðw1;w2Þ 2 P, there exists a sequence of

rewriting that rewrites w1 as w2 only using rules in

Rsame: For a pair ðw1;w2Þ 2 P, from Lemma 1, there

exists a sequence of non-increasing rewriting that

rewrite w1 as w2 given jw2j � jw1j. We observe that the

only rules that change the size of the word are rules (ii)

and (iv). Rule (ii) does not change the span, and non-

increasing rules in rule (iv) do not increase the size of

the span. Since w1 �w2 in GmidðnÞ, spanðw1Þ ¼
spanðw2Þ. Thus, there exists a sequence of rewriting

that rewrites w1 as w2 only using rules in Rsame.

2. For a pair ðw3;w4Þ 2 H, all sequences of rewriting that

rewrite w3 as w4 have a rule from Rdiff . In other words,

we cannot rewrite w3 as w4 only using rules in Rsame.

3. For a pair ðw5;w6Þ 2 N, w5 cannot be rewritten as w6

using Rsame, since Rsame � RmaxðnÞ.

Based on these statements, we can claim that a

pair ðw1;w2Þ is in P if and only if w1 �w2 under R̂same.

Rules (i) to (iii) from RmaxðnÞ have the same span for the

both sides, and they are in Rsame. For rule (iv) from RmaxðnÞ,
Fig. 12 Inductive step when p ¼ v
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the subset of the rules where both sides have the same span

is rules 4 to 7 in RmidðnÞ. Thus, R̂midðnÞ ¼ R̂same and

Gmidðw1Þ ¼ Gmidðw2Þ if and only if w1 �w2 under R̂midðnÞ.

h

We compute the number of equivalence classes of words

in OmidðnÞ. We use a binary string of length n to represent

the graphical structures in GmidðnÞ such that the ith bit equals

1 if and only if the ith staple and the ith scaffold is a

straight line. Each binary string is uniquely determined

with a tuple ða1; b1; . . .; ak; bkÞ where ai (bi) represents the

number of ith consecutive 0’s (1’s). For example, the 8-bit

binary string 00111000 corresponds to a tuple (2, 3, 3, 0).

In particular, the bit 0 corresponds to (1, 0) and the bit 1 to

(0, 1). Let N0 ¼ N [ f0g. The set of tuples corresponding

to binary strings of length n is

denoted Tn ¼ fp ¼ ða1; b1; . . .; ak; bkÞ j k
 1;

for all i; ai; bi 2 N0 and
Pk

i¼1 ðaiþ biÞ ¼ ng. Note that

Tn is the set of partitions of n in 2k summands.

Theorem 5 Given n 2 N0 , for each tuple p 2[
1� i� n

Ti , let DðpÞ 2 N0 be recursively defined as

follows:

• for p 2 T0, Dð0; 0Þ ¼ 1.

• for p 2 T1, DðpÞ ¼ 1 if p ¼ ð0; 1Þ and DðpÞ ¼ 0 if

p ¼ ð1; 0Þ.
• for p ¼ ða1; b1; . . .; ak; bkÞ 2 Tn, ðn[ 0Þ we have

DðpÞ ¼
Yk

i¼1
Dðai; 0Þ.

• for n[ 1, we have Dð0; nÞ ¼ 1 and

Dðn; 0Þ ¼ 1

nþ 1

2n

n

� �� �2

	
X

p2Tnnfðn;0Þg
DðpÞ:

Then, jOmidðnÞj is given as

jOmidðnÞj ¼ dðnÞ ¼
X
p2Tn

DðpÞ � xðpÞð Þ 	 n;

where xða1; b1; . . .; ak; bkÞ ¼

• ðb1 þ 1Þ if k ¼ 1,

• ðb1 þ 1Þ �
Yk	1

i¼2

biðbi þ 1Þ
2

þ 1

� �
� ðbk þ 1Þ if

k 6¼ 1; a1 ¼ 0,

•
Yk	1

i¼1

biðbi þ 1Þ
2

þ 1

� �
� ðbk þ 1Þ if k 6¼ 1; a1 [ 0.

Proof Figure 13 enumerates representative words in

Omidð3Þ. We observe that the set of representative words in

OmidðnÞ is a superset of the set of representative words in

OmaxðnÞ. Graphically, we observe that GmidðnÞ is a superset

of the set of a pair of diagrams of J n, where we regard one

as scaffolds and the other as staples. In particular, when a

consecutive set of columns adjacent to the span is occupied

with both real straight scaffold and staple, there also exists

a structure with virtual straight staples in these columns as

in Fig. 14.

We can classify graphical structures in GmaxðnÞ by using a

binary b of length n, where the ith digit has 1 if the ith

column has both straight scaffold and staple, and 0

otherwise. The set of binaries of length n has bijection

with the set Tn previously defined. Thus, let D(p) be the

number of equivalence classes of words whose graphical

structures correspond to p 2 Tn. It is straightforward that

Dð0; 1Þ ¼ 1 and Dð1; 0Þ ¼ 0. To calculate

Dða1; b1; . . .; ak; bkÞ, columns that has 1’s in the binary

has only one case (straight scaffold and staple), so we need

to multiply all Dðai; 0Þ’s. For Dða1; 0Þ, once we know all

D(p) where p 2 Ta1
, we can calculate Dða1; 0Þ using the

fact that

jGmaxða1Þj
2 ¼ 1

a1 þ 1

2a1

a1

� �� �2

¼
X
p2Ta1

DðpÞ:

For each D(p), we calculate the number of distinct graph-

ical structures in GmidðnÞ. Suppose we have j consecutive 1’s

at the start or the end of the binary that corresponds to p.

For such sequence, we can have jþ 1 distinct sets of virtual

straight staples. When we have j consecutive 1’s between

two consecutive 0’s, there are
X j

i¼1
iþ 1 ¼ jðjþ 1Þ

2
þ 1

Fig. 13 The set of representative words in Omidð3Þ. Gray headers

represent representative words corresponding to elements in J 3, and

the thick box represents the set of representative words in Omaxð3Þ

Fig. 14 Since the third and the

fourth columns of a1a2a3a2a1

are occupied with both real

straight scaffold and staple, we

also have structures where the

staple at the fourth column is

virtual (a1a2a1) and staples at

the third and the fourth columns

are virtual (a1)
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distinct sets of virtual straight staples. The number of cases

for each consecutive 1’s should be multiplied, which

results in x(p) in the Theorem. The only exception for this

calculation is D(0, n) case, where we have real straight

scaffolds and staples for all columns. The only word that

corresponds to the structure is the empty word �, and we

need to subtract n from Dð0; nÞ � xð0; nÞ ¼ nþ 1, which

results in the formula in the theorem. Figure 15 shows how

we count the number of cases for each D(p).

To justify the counting of virtual staples cases, we claim

the following statement: For a graphical structure in GmidðnÞ,

let ti be 1 if the ith column has real straight scaffold and

straight staple, and 0 otherwise. Then, a set of maximal

consecutive columns with real straight scaffolds and

staples should be adjacent to the ith column where ti ¼ 0,

as in Fig. 16a. In other words, there is no set of maximal

consecutive columns with real straight scaffolds and

staples where both ends are adjacent to straight scaffolds

with straight virtual staples, as in Fig. 16b. We prove the

statement by induction on the size of the word. It is

straightforward that the statement holds for the generators.

Assume that the statement holds for all jwj ¼ m. For a

word w0 ¼ wci, we observe that a column in the graphical

structure of w0 can have a virtual straight staple only if it

had a virtual straight staple in the graphical structure of w.

Thus, if i or iþ 1 is in span(w), the statement holds since

the columns that have virtual straight staples do not

change. If i and iþ 1 are not in span(w), we insert the unit

of the generator in a set of consecutive columns with

straight scaffolds and virtual staples. In that case, concate-

nation does not create columns that have straight scaffolds

and real staples, and the statement holds. h

For each graphical structure in GmaxðnÞ, we may assign a

unique binary number of size n, where the ith digit is 1 if

the ith column has both straight vertical scaffolds and

staples, and 0 otherwise. Then, D(p) is the number of

graphical structures in GmaxðnÞ whose assigned binary

number corresponds to p. In particular, the sum of all D(p)

for p 2 Tn is equal to the square of the nth Catalan number

by Remark 1. For each p, the term x(p) gives the number of

possible combinations of virtual straight staples within the

segment of the graphical representation that consist of only

vertical straight lines.

The sequence d(n) for 1� n� 10 is 1, 4, 31, 253, 2247,

21817, 227326, 2499598, 28660639, 339816259. It is not

listed in the OEIS (https://oeis.org/) list of sequences, and

the non-recursive formula of d(n) is still open.

Theorem 6 An upper bound of the size u(n) of an irre-

ducible word in OmidðnÞ is given by 2n	1 for n
 2.

Proof There exists a representative word wawb 2 OmidðnÞ
in an inter-commutation-free form where

jwaj ¼ jwbj ¼
n2

4

� �
, and uðnÞ
 n2

4

� �
. Aside from wawb,

we may have representative words in OmidðnÞ that exploit

rules 4 to 7, not satisfying the condition that cicjci is

Fig. 15 A graphical structure corresponding to p ¼ ð0; 3; 2; 3; 3; 4Þ,
and calculation of D(p) and x(p). The binary that corresponds to the

structure is stated on the structure. For consecutive 1’s in the binary,

we may have arbitrary consecutive virtual staples within, which is

counted by purple arrows to calculate x(p). (Color figure online)

(a)

(b)

Fig. 16 The set of maximal consecutive columns with real straight

scaffolds and staples is represented by a blue box. a The set is

adjacent to the ith column with ti ¼ 0 on the left. b Both ends are

adjacent to straight scaffolds with straight virtual staples, which is

impossible. (Color figure online)
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reduced to ci when ji	 jj ¼ 1. Namely, we may rewrite ci
in a word w as cicjci and have a distinct word if staples in

the resulting word occupy at least one new column.

Given an irreducible word v of size l(v), let s(v) be the

size of the span of v. Then,
sðvÞ

2
� lðvÞ� uðsðvÞ 	 1Þ holds

when v 6¼ �. Now, suppose for a word v ¼ vavb in an inter-

commutation-free form, we want to continuously rewrite ci
as cicjci as far as possible while making the resulting words

distinct. Let va ¼ ai1 � � � aip and vb ¼ bj1 � � � bjq . If va ¼ �,

there exists a longer word a1vb which is distinct. Thus,

without loss of generality, we may assume that va; vb 6¼ �.

Now, for the word v, lðvÞ ¼ lðvaÞ þ lðvbÞ and

max ðsðvaÞ; sðvbÞÞ� sðvÞ� sðvaÞ þ sðvbÞ. Each rewriting

of ci to cicjci increases s(v) by 1 and l by 2, and such

rewriting becomes impossible once s(v) becomes n.

Without loss of generality, we assume that sðvaÞ
 sðvbÞ.
Then, we may have at most n	 sðvaÞ number of rewriting

steps, which results in a word of

size lðvaÞ þ lðvbÞ þ 2ðn	 sðvaÞÞ ¼ 2n	 2sðvaÞþ
lðvaÞ þ lðvbÞ� 2n	 2sðvaÞ þ 2uðsðvaÞ 	 1Þ. Since uðnÞ

n2

4

� �
, increases as sðvaÞ increases. For sðvaÞ ¼ n,

uðnÞ� 2n	 2nþ 2uðn	 1Þ ¼ 2uðn	 1Þ. From uð2Þ ¼ 2,

we have the upper bound uðnÞ ¼ 2n	1. h

The bound in Theorem 6 is not tight, and the exact size

of a maximum irreducible word is open.

Theorem 7 Given a word w0 2 ½w0� 2 OmidðnÞ of size m ,

we can find an irreducible word of ½w0� within Oðnm2Þ
time.

The proofs of Lemma 1 and Theorem 2 work similarly

for Theorem 7. We first rewrite w0 as w in the inter-com-

mutation-free form. Then we repeatedly find one of the

following conditions in w if possible and rewrite

w accordingly:

1. If w ¼ v1civ2civ3 where v1; v2; v3 2 R�
n and v2 does not

have ciþ1, ci and ci	1, then rewrite w as v1v2civ3.

2. If w ¼ v1civ2ciþ1v3civ4 where v1; v2; v3; v4 2 R�
n, v2; v3

do not have ciþ1, ci and ci	1, there exists diþ1 in v1 or

v4, or diþ2 in v1; v2; v3 or v4, then rewrite w as

v1v2civ3v4.

3. If w ¼ v1civ2ci	1v3civ4 where v1; v2; v3; v4 2 R�
n, v2; v3

do not have ciþ1, ci and ci	1, there exists di	1 in v1 or

v4, or di	2 in v1; v2; v3 or v4, then rewrite w as

v1v2civ3v4.

3.3 Concluding remarks

We have proposed modules and corresponding generators

for DNA origami structures, defined concatenation of

words and rewriting rules, and analyzed equivalence clas-

ses based on graphical equivalence. One model that we

have not discussed is GminðnÞ. For GminðnÞ, seven types of

rewriting rules for GmidðnÞ hold. Moreover, we may prove

that Theorem 4 holds for GminðnÞ using the similar proof. It

turns out that there is bijection between GmidðnÞ and GminðnÞ,

and OmidðnÞ ¼ OminðnÞ.

Note that the set of words in the first row of Fig. 13 is

bijective with the set of distinct elements in the ‘‘modified’’

Jones monoid corresponding to the staple structure,

assuming that there are two types (real and virtual) of lines

in the graphical representation. However, Omidð3Þ is not a

bijection of the cross product of the original Jones monoid

(for scaffolds) and such modified Jones monoid (for sta-

ples), since b1 and b2 also have virtual staples.

Graphical structures corresponding to generators ai’s
and bi’s in Fig. 3 describe crossing of scaffolds and staples

in DNA origami well, while using only two types of gen-

erators. Here we explore possible further development of

generators that are more plausible to DNA origami.

The first observation on the current generators is that

they are vertically and horizontally symmetric (without

directions), which causes the graphical structure to always

have a cup-shaped fragment of a real scaffold at the top as

in Fig. 17a. DNA origami does not have such fragments at

the border of the structure, which leads us to revise gen-

erators to define such borders. Figure 17b proposes four

different generators that are used to substitute a1. In these

generators, we introduce asymmetric structures that can be

used to construct borders of the structure. We may define

generators for b similarly. Under the assumption that we

use the same concatenation procedure, for a graphical

structure that corresponds to a1, we can make an arbitrary

number of scaffolds and staples virtual by concatenation of

four new generators as in Fig. 17c. Now, suppose we define

the rewriting system based on equivalence under such

generators. For each pair of diagrams of J n, we have 2n

staples and scaffolds which can become virtual. From

analysis similar to the proof of Theorem 5, the size of the

set of equivalence classes becomes

1

nþ 1

2n
n

� �� �2

	1

 !
� 22n þ 1. The set of rewriting

rules that are sufficient to describe equivalence under such

generators is open.

The second observation on the current generators is that

we do not consider which side of the scaffold the staple is

on. In the DNA origami structure, staples can be on the left
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or the right of the scaffold, and these two cases are dis-

tinguished. Moreover, for two adjacent staples at the

opposite side of the same scaffold, they either disconnect

or connect by crossing the scaffold. To model this obser-

vation, we may introduce revised graphical structures for a
and b as in Fig. 18a. Staples are either at the left or the

right of the scaffold, and some staple ends are extending

which can be connected to other staples regardless of the

side. We assume that two adjacent staples can be connected

except when two are non-extending ends and at the

opposite side. This additional condition for staple con-

nection changes some of the commutation rewriting

rules—for example, a1b1=b1a1 as in Fig. 18b. Algebraic

analysis on relations based on such generators is done by

Garrett et al. (2019). The set of rewriting rules that are

sufficient to describe equivalence under such generators is

still open.
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