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Abstract
Cluster analysis is one important field in pattern recognition and machine learning, consisting in an attempt to distribute a

set of data patterns into groups, considering only the inner properties of those data. One of the most popular techniques for

data clustering is the K-Means algorithm, due to its simplicity and easy implementation. But K-Means is strongly

dependent on the initial point of the search, what may lead to suboptima (local optima) solutions. In the past few decades,

Evolutionary Algorithms (EAs), like Group Search Optimization (GSO), have been adapted to the context of cluster

analysis, given their global search capabilities and flexibility to deal with hard optimization problems. However, given their

stochastic nature, EAs may be slower to converge in comparison to traditional clustering models (like K-Means). In this

work, three hybrid memetic approaches between K-Means and GSO are presented, named FMKGSO, MKGSO and

TMKGSO, in such a way that the global search capabilities of GSO are combined with the fast local search performances

of K-Means. The degree of influence of K-Means on the behavior of GSO method is evaluated by a set of experiments

considering both real-world problems and synthetic data sets, using five clustering metrics to access how good and robust

the proposed hybrid memetic models are.
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1 Introduction

In the past few decades, the amount of daily produced data

in electronic devices, such as smartphones, tablets, com-

puters, cars, GPS, smart TVs, Internet of Things applica-

tions, and so on, has increased exponentially, in such a way

that automatic and scalable computational systems are even

more required. To extract useful information from the large

data sets such systems are based on, it is impossible to rely

in human analysis only, once the need for precise and

reliable information in a short period of time has become

mandatory (Naldi and Campello 2014).

Data clustering is one of the most important and prim-

itive activities in pattern recognition, consisting in an

important mechanism for exploratory data analysis. Clus-

tering is characterized by an unsupervised attempt to cat-

egorize a set of data patterns in clusters, in such a way that

observations belonging in a same cluster are more close

related (according to their feature set) than observations

from different clusters. In clustering, no prior knowledge

about the data set at hand is required, so the clustering

models take decisions about how to group the observations

taking into consideration only the inner properties of such

observations. Clustering algorithms have been successfully

employed in many real-world applications, given their

flexibility and adaptability, in fields such as: Agriculture

(Rahamathunnisa et al. 2020), Data Mining (Sapkota et al.

2019), Ecology (Sreepathi et al. 2017), Image Under-

standing (Saraswathi and Allirani 2013; Wan et al. 2017;

Diderot et al. 2019; Wei et al. 2019), Medicine (Li et al.

2016; Bruse et al. 2017; Premalatha and Subasree 2017;

BEDDAD et al. 2019), Text Mining (Liu and Xiong 2011),

Web Services (Parimalam and Sundaram 2017), Wireless
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Sensors Networks (WSN) (Misra and Kumar 2016; Dhi-

viya et al. 2017; Masoud et al. 2019), and so on. An

interesting survey on data clustering algorithms can be

found in (Xu and Tian 2015).

From an optimization perspective, clustering is consid-

ered as a particular kind of NP-hard grouping problem. The

most popular clustering approaches are the partitional

clustering algorithms, which provide a partition of the data

set into a prefixed number of clusters (an input parameter

for the models). Each cluster is represented by its centroid

vector, and the clustering process is driven in an effort to

optimize a criterion function iteratively, by updating these

cluster centroids, seeking out to improve the quality of the

final solution (final partition) provided by the algorithm.

One of the most popular partitional clustering methods

is the K-Means algorithm (MacQueen et al. 1967).

Although traditional partitional clustering models are able

to promote fast convergence speeds, these methods are

known for their sensibility to the initial centroid position,

what may lead to weak solutions (i.e., the model may be

trapped in a local minimum point) if the algorithm starts in

a poor region of the problem space. Standard partitional

clustering approaches lack the mechanisms to escape from

local optima points, promoting local searches on the

problem space only.

Evolutionary Algorithms (EAs) have been increasingly

applied to solve a great variety of difficult problems, such

as hard functions optimization (He et al. 2009; Oliveira

et al. 2013; Pacifico and Ludermir 2014; Jain et al. 2019),

weights and architecture optimization in Neural Networks

(Silva et al. 2011; Idrissi et al. 2016; Darwish et al. 2020),

feature weighting and selection (Ramos and Vellasco 2018;

Taşci et al. 2018; Xu et al. 2020), and so on, given their

global search capability and their mechanisms to avoid

local optima points. In EAs, a set (population) of candidate

solutions (individuals) for the problem at hand is kept and

evolved according to a generational process, seeking out

the optimization of a criterion function (the fitness func-

tion). In EAs such as Genetic Algorithm (GA) (Holland

1992), Evolutionary Programming (EP) (Fogel et al. 1966;

Fogel 2009), Evolution Strategies (ES) (Rechenberg 1973;

Schwefel 1993) and Differential Evolution (DE) (Storn and

Price 1995, 1997), the searching scheme is driven by

operators that simulate biological processes like mutation,

recombination and selection. In this context, Swarm

Intelligence (SI) methods are extensions of EAs which

execute their search in an attempt to simulate self-orga-

nizing collective behavior of social animals, like swarming,

flocking and herding (Bonabeau et al. 1999). Examples of

SI algorithms are the Ant Colony Optimization (ACO)

(Dorigo et al. 1996), Particle Swarm Optimization (PSO)

(Kennedy and Eberhart 1995; Kennedy et al. 2001) and

Group Search Optimization (GSO) (He et al. 2006, 2009).

Table 1 presents some of the most recent and popular

algorithms from Evolutionary Computing literature. Inter-

esting texts in Evolutionary Computing can be found in

(Kennedy 2006; Simon 2013; Eiben and Smith 2015).

EAs have been increasingly applied in clustering

applications (Hruschka et al. 2009; Inkaya et al. 2016;

Canuto et al. 2018; Figueiredo et al. 2019), but, given their

stochastic nature, such techniques may be too slow to

converge in comparison to standard partitional clustering

algorithms. It is also known that, in general, evolutionary

algorithms local search mechanisms are not very much

effective (Ren et al. 2014).

To overcome this drawback, Hybrid Intelligence Sys-

tems (HISs) and Memetic Algorithms (MA) combining

evolutionary approaches and K-Means have been proposed

in literature, such that global searches performed by EAs

are complemented by local searches performed by

K-Means. Some examples of hybrid evolutionary systems

that use K-Means as a local searcher are found in (Ah-

madyfard and Modares 2008; Abdel-Kader 2010; Bhavani

et al. 2011; Pacifico and Ludermir 2018, 2019). But most

works in data clustering literature only employ K-Means

after the generational process of the selected EA is con-

cluded, which means that the best solution found by the EA

may already be trapped in a local minimum point, making

the application of K-Means sub-optimal (it will only

exploit the problem region that contains a local minimum).

To avoid such problem, in this work three hybrid memetic

algorithms are proposed, named FMKGSO, MKGSO and

TMKGSO, which combine the global search capabilities of

GSO with local search speed provided by K-Means, which

use K-Means (in different ways) to improve the population

of GSO during the generational process. GSO was pro-

posed as a method for continuous optimization problems

based on the behavior of social animals attempting to find

food resources, and, in the past few years, GSO has been

successfully applied in many real world applications (Chen

et al. 2014b; Krishnaprabha and Aloor 2014; Li et al.

2015; Pacifico et al. 2018), presenting competitive opti-

mization performances in comparison to other evolutionary

algorithms, such as GA, PSO, EP and ES.

The proposed approaches are implemented in an attempt

to comprehend the influence of K-Means on the behavior

of GSO when dealing with data clustering task, and, for

that, a testing bed consisting of 20 (twenty) real-world

problems (obtained from UCI Machine Learning Reposi-

tory - Asuncion and Newman 2007) and 10 synthetic data

sets is proposed. Five evaluation metrics from clustering

literature are employed to validate the quality of the

solutions achieved by the proposed models, and five par-

titional evolutionary algorithms are selected for compar-

ison purposes.
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This work is organized as follows. Firstly, some intro-

ductory concepts are introduced (Sect. 2), like K-Means

(Sect. 2.1), partitional evolutionary algorithms (Sect. 2.2)

and GSO (Sect. 2.3). After that, the proposed hybrid

memetic GSO approaches are explained (Sect. 3), followed

by the experimental evaluation (Sect. 4). Finally, some

conclusions and interesting trends for future works are

presented (Sect. 5).

2 Preliminaries

The baseline models adopted in this work are presented in

the following sections (Sects. 2.1, 2.2 and 2.3).

2.1 K-Means

K-Means (MacQueen et al. 1967) has been proposed as a

partitional clustering algorithm for continuous data, which

groups real-valued data vectors into a predefined number of

clusters. Consider a partition PC of a data set with N data

patterns (each data pattern is represented by a vector

xj 2 Rm, where j ¼ 1; 2; . . .;N) in C clusters, where C is a

required input parameter for the algorithm. Each cluster is

represented by its centroid vector gc 2 Rm (where

c ¼ 1; 2; . . .;C).

In K-Means, clusters are formed based on a dissimilarity

measure, the Euclidean distance [Eq. (1)]. For each itera-

tion (until a maximum number of iterations tmaxkmeans is

reached or another stopping criterion is satisfied), a new

cluster centroid vector is calculated, for each cluster, as the

mean of its current data vectors (i.e., the data patterns

currently assigned to the cluster). After that, the new par-

tition is formed, and each pattern is associated to the cluster

with the nearest centroid.

dðxj; gcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

k¼1

ðxjk � gckÞ2
s

ð1Þ

where

gc ¼
1

Nc

X

8xl2c
xl ð2Þ

where Nc is the number of patterns associated to cluster c.

The criterion function for K-Means is the Within-Cluster

Sum of Squares, given in Eq. (3).

JðPCÞ ¼
X

C

c¼1

X

8xj2c
dðxj; gcÞ ð3Þ

K-Means algorithm is presented in Algorithm 1.

Table 1 List of some natural-inspired population-based metaheuristics

Algorithm Acronym Main reference(s)

Genetic Algorithm GA (Holland 1992)

Evolutionary Programming EP (Fogel et al. 1966; Fogel 2006, 2009)

Evolution Strategies ES (Rechenberg 1973; Schwefel 1993)

Genetic Programming GP (Koza and Koza 1992)

Differential Evolution DE (Storn and Price 1995, 1997)

Ant Colony Optimization ACO (Dorigo et al. 1996)

Particle Swarm Optimization PSO (Kennedy and Eberhart 1995; Kennedy et al. 2001)

Harmony Search HS (Z.W et al. 2001; Geem 2010)

Artificial Fish Swarm Algorithm AFSA (Li 2002)

Bacterial Foraging Optimization Algorithm BFOA (Passino 2002)

Group Search Optimization GSO (He et al. 2006, 2009)

Artificial Bee Colony ABC (Karaboga and Basturk 2007)

Gravitational Search Algorithm GSA (Rashedi et al. 2009)

Firefly Algorithm FFA (Yang 2009a, b)

Backtracking Search Optimization BSA (Civicioglu 2013)

Grey Wolf Optimizer GWO (Mirjalili et al. 2014)

Sine-Cosine Algorithm SCA (Mirjalili 2016)

Whale Optimization Algorithm WOA (Mirjalili and Lewis 2016)

Grasshopper Optimization Algorithm GOA (Saremi et al. 2017)

Squirrel Search Algorithm SSA (Jain et al. 2019)
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2.2 Evolutionary algorithms for data clustering

In this section, we explain the most commonly adopted

representation schema for evolutionary algorithms, when

adapted as partitional clustering methods (Chen and Ye

2004).

Once more, consider a partition PC of a data set with N

patterns xj 2 Rm (j ¼ 1; 2; . . .;N) in C clusters. Each

cluster is represented by its centroid vector gc 2 Rm

(c ¼ 1; 2; . . .;C). Each population individual Xi 2 Rn

(where n ¼ m� C) in population G represents C cluster

centroids at the same time, one for each cluster (Chen and

Ye 2004). For instance, if m ¼ 3 and C ¼ 5, each indi-

vidual will be a vector Xi 2 R, where the first three fea-

tures will represent the centroid g1, features 4-th to 6-th

will represent the centroid g2, features 7-th to 9-th will

represent the centroid g4, features 10-th to 12-th will rep-

resent the centroid g4, and the last three features (features

13-th to 15-th) will represent the centroid g5, just like in

Fig. 1.

The population of evolutionary algorithms is generally

initialized by a random process, but in the context of par-

titional data clustering, an initialization by the random

choice of C patterns from the data set in analysis to com-

pose the initial cluster centroids (just like in K-Means - see

Sect. 2.1), for each individual, leads to a faster exploration

of the problem search space.

As the fitness function, many works adopt the Within-

Cluster Sum of Squares [Eq. (3)] or some alternative

function that takes such criterion as its main component,

just like in (Chen and Ye 2004; Ahmadyfard and Modares

2008; Hruschka et al. 2009; Prabha and Visalakshi 2014;

Pacifico and Ludermir 2019, 2019b). But sometimes, dif-

ferent functions are adopted as the fitness function (Das

et al. 2007; Liu et al. 2011; Wong et al. 2011; He and Tan

2012; José-Garcı́a and Gómez-Flores 2016; Pacifico and

Ludermir 2016).

Once the initial population is obtained and the fitness

value for each individual X
ð0Þ
i in population G is com-

puted, the evolutionary operators for the selected evolu-

tionary algorithm are applied to the population, evolving

the cluster centroids represented by each individual

through a generational process, until a termination condi-

tion is reached. The global best individual found by the EA

is provided as the clustering solution. A generic evolu-

tionary algorithm for partitional data clustering is presented

in Algorithm 2.

Although EAs are able to find global solutions even

when dealing with complex optimization problems, the

searching process performed by such strategies may be to

slow, and in many applications (just like in Cui et al. 2005;

Abdel-Kader 2010; Ahmadi et al. 2010; Chen et al. 2014a;

Pacifico and Ludermir 2018, 2019), the EAs are hybridized

with K-Means in such a way that the EAs are used to find a

Fig. 1 Individual

representation: g1, g2, g3, g4 and
g5 are 3-dimensional cluster

centroids
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better set of starting points (i.e., cluster centroids) to

K-Means. Algorithm 3 illustrates such process.

2.3 Group search optimization

Group search optimization is inspired by animal social

searching behavior and group living theory. GSO employs

the Producer-Scrounger (PS) model as a framework. The

PS model was firstly proposed by Barnard and Sibly (1981)

to analyze social foraging strategies of group living ani-

mals. PS model assumes that there are two foraging

strategies within groups: producing (e.g., searching for

food); and joining (scrounging, e.g., joining resources

uncovered by others). Foragers are assumed to use pro-

ducing or joining strategies exclusively. Under this

framework, concepts of resource searching from animal

visual scanning mechanism are used to design optimum

searching strategies in GSO algorithm (He et al. 2009).

In GSO, the population G of S individuals is called

group, and each individual is called a member. In a n-

dimensional search space, the i-th member at the t-th

searching iteration (generation) has a current position X t
i

2 Rn and a head angle ati 2 Rn�. The search direction of

the i-th member, which is a vector D t
i(a

t
iÞ ¼ ðdti1; . . .; dtinÞ

can be calculated from ati via a polar to Cartesian coordi-

nate transformation:

dti1 ¼
Y

n�1

q¼1

cosðatiqÞ;

dtij ¼ sinðatiðj�1ÞÞ
Y

n�1

q¼1

cosðatiqÞ ðj ¼ 1; . . .; n� 1Þ;

dtin ¼ sinðatiðn�1ÞÞ

ð4Þ

A group in GSO consists of three types of members: pro-

ducers, scroungers and dispersed members (or rangers) (He

et al. 2009). The rangers are introduced by GSO model,

extending standard PS framework.

During each GSO search iteration, a group member

which has found the best fitness value so far (most

promising area form the problem search space) is chosen as

the producer (X p) (Couzin et al. 2005), and the remaining

members are scroungers or rangers. Standard GSO admits

only one producer in each iteration, but there are some

GSO variants that use multiple producers at the same time

(Junaed et al. 2013; Pacifico and Ludermir 2013).

The producer employs a scanning strategy (producing)

based on its vision field, generalized to a n-dimensional

space, which is characterized by maximum pursuit angle

hmax 2 Rn� and maximum pursuit distance lmax 2 R, given

by Eq. (5).

lmax ¼ U� Lk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

ðUk � LkÞ2
s

ð5Þ

where Uk and Lk denote the upper bound and lower bound

of the k-th dimension from the problem space, respectively.

In GSO, at the t-th iteration the producer X t
p will scan

laterally by randomly sampling three points in the scanning

field: one at zero degree [Eq. (6)], one in the right hand side

hypercube [Eq. (7)] and one in the left hand side hypercube

[Eq. (8)].

Xz ¼ Xt
p þ r1lmaxD

t
pðatpÞ ð6Þ

Xr ¼ Xt
p þ r1lmaxD

t
pðatp þ

r2hmax
2

Þ ð7Þ

Xl ¼ Xt
p þ r1lmaxD

t
pðatp �

r2hmax
2

Þ ð8Þ

where r1 2 R is a normally distributed random number

(mean 0 and standard deviation 1) and r 2 2 Rn� is a

uniformly distributed random sequence in the range (0, 1).

If the producer is able to find a better resource than its

current position, it will fly to this point; if no better point is

found, the producer will stay in its current position, then it

will turn its head to a new generated angle [Eq. (9)].

atþ1
p ¼ atp þ r2amax ð9Þ

where amax 2 R is the maximum turning angle.
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If after a 2 R iterations the producer cannot find a better

area, it will turn its head back to zero degree [Eq. (10)].

akþa
p ¼ akp ð10Þ

All scroungers will join the resource found by the producer,

performing scrounging strategy according to Eq. (11).

Xtþ1
i ¼ Xt

i þ r3 � ðXt
p � Xt

iÞ ð11Þ

where r 3 2 Rn is a uniform random sequence in the range

(0, 1) and � is the Hadamard product or the Schur product,

which calculates the entrywise product of two vectors.

The rangers will perform random walks through the

problem space (Higgins and Strauss 2004), according to

Eq. (12).

Xtþ1
i ¼ Xt

i þ liD
t
iðatþ1

i Þ ð12Þ

where

li ¼ ar1lmax ð13Þ

In GSO, when a member escapes from the search space

bounds, it will turn back to its previous position inside the

search space (Dixon 1959). Some studies considering

alternative treatments to deal with out-bounded population

individuals can be found in (Xu and Shu 2006; Silva et al.

2011; Pacifico et al. 2018).

GSO algorithm is presented in Algorithm 4.

GSO scrounging operator focuses the search performed

by the group in the most promising areas from the problem

space, corresponding to the main exploration/exploitation

strategy employed by many EAs (like crossover strategy in

Genetic Algorithms and particle movement in Particle

Swarm Optimization).

Producing and ranging are the main mechanisms

employed by GSO for escaping local minima points. When

the producer of one generation is trapped in a local mini-

mum point (situation in which all scroungers would be

trapped by following the producer, resulting in a premature

convergence of the group), producing operator may find a

better point in the search space, escaping from that local

minimum. Even if that situation does not happen so easily,

rangers will keep performing random walks that do not

depend on the results found by the producer, which may

lead to most promising areas than the ones found so far by

the whole group, evading local minima points.

Some works have already adapted GSO to the context of

partitional clustering, just like in (Pacifico and Ludermir

2014a, 2016, 2019b).

3 Proposed approaches

This section presents the proposed hybrid memetic GSO

and K-Means models, elaborated to test the influence of

K-Means when employed as a local searcher to improve

the capabilities of partitional Group Search Optimizer.

Three memetic algorithms are presented: FMKGSO,

MKGSO and TMKGSO. In this work, we opt to combine

GSO and K-Means due to some advantages promoted by

these algorithms, such as:

1. GSO has been proven to be a good global optimizer in

many real-world applications;

2. GSO presents good mechanisms to escape from local

optima points, represented by the producing behavior

of producers, and by the ranging behavior from

dispersed members;

3. Ranging and producing behaviors are also employed to

prevent the premature convergence of the group, that is

a known and hard to deal problem that affects some

global search natural-inspired metaheuristics, such as

Particle Swarm Optimization;

4. Standard GSO implements an effective mechanism to

prevent out-bounded members, avoiding individuals

that would not codify an actual solution to the problem

at hand, by extrapolating the problem search space

boundaries;

5. K-Means is a good local searcher, performing fast

exploitation on problem space regions.

The proposed models are described as follows.

Firstly, as in generic partitional framework for EAs (see

Sect. 2.2), for all three memetic algorithms, each group

member is represented as a continuous vector X i 2 Rn

(with n ¼ m� C), codifying C cluster centroids at the

same time, and at the t-th generation, X i will determine its

own partition X t
i:PC.
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For each algorithm, the initial population will be

obtained by the random selection of C patterns from the

data set being analyzed to compose each member X
ð0Þ
i .

After random initialization, each member X
ð0Þ
i has its fit-

ness value computed to determine the quality of the par-

tition X
ð0Þ
i :PC it represents, by associating each data

pattern x j to its closest centroid vector X
ð0Þ
i .g c in X

ð0Þ
i .

After that, GSO generational process is initialized. Each

memetic algorithm will employ K-Means for some degree

during its generational process to improve the quality of the

group.

As in standard GSO, for all three memetic approaches,

the generational process starts, in each generation t, by the

choice of the best member found so far (according to the

selected fitness function) as the producer X t
p. The producer

will perform producing operator as in standard GSO, by the

evaluation of three random points from its visual scanning

field [see Eqs. (6), (7) and (8)]. If a better point is found,

the X t
p will migrate to that point in the next generation.

The scrounging and ranging for the memetic approaches

will be executed following Eqs. (11) and (12), respectively.

After executing all standard GSO operators, each memetic

model will adopt K-Means to improve GSO group by

different ways, as described bellow.

In FMKGSO, the algorithm keeps track on the quality of

each member separately. For each new member X tþ1
i in the

t-th generation (after the execution of producing,

scrounging and ranging operators), determine its partition

X tþ1
i :PC by associating each data pattern x j to its closest

centroid vector X tþ1
i .g c. Compute X tþ1

i fitness. If X tþ1
i

has not been able to improve (in terms of the fitness value)

by a predefined number of consecutive generations

(tmaxkmeans), its cluster centroids are refined by the appli-

cation of tmaxkmeans K-Means steps. FMKGSO will only

apply K-Means to the members that are unable to improve

their partition for a period of time. This combination seeks

out to speed up the search performed by each member,

once GSO operators could present slow convergence rates,

just like in all EAs. K-Means execution can speed up

considerably the convergence rates of GSO members,

promoting a better exploration and exploitation of the

problem search space. The generational process executes

until a termination condition is met, and the final best

improved solution X tmax
p is returned. FMKGSO algorithm is

presented in Algorithm 5.

In MKGSO, after the determination of the new group by

the execution of producing, scrounging and ranging

operators, each member X tþ1
i will be improved by the

execution of exactly one K-Means step in each generation

before its fitness evaluation. All members are refined that

way, independently if GSO operators have been able to

improve or not. This operation seeks out to speedup the

exploitation performed by each GSO member, by aggre-

gating local information into GSO generational process

smoothly. After that, the partitions represented by each

member will be determined, and their fitness value will be

computed. The generational process executes until a ter-

mination condition is met, and the final best improved

solution X tmax
p is returned. MKGSO algorithm is presented

in Algorithm 6.
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The last proposed approach, TMKGSO, will apply K-

Means to each member after a period, for a limited number

of steps. After a prefixed number of generations (tmaxkmeans,

an input parameter for the algorithm), each new group

member Xtþ1
i (obtained by the application of producing,

scrounging or ranging operator) is refined by the applica-

tion of tmaxkmeans K-Means steps. By alternating some

executions of GSO and K-Means, the new groups are

improved by the interchanging of global and local infor-

mation, in such a way that when GSO is executing, its

operators will prevent the group from getting trapped in

local optma regions, promoting the global exploration of

the problem space, while during K-Means steps, the group

will be guided through fast local exploitations on the region

of the problem space where each member is placed. Each

algorithm will complement the search performed by the

other. The generational process executes until a termina-

tion condition is met, and the final best improved solution

X tmax
p is returned. TMKGSO algorithm is presented in

Algorithm 7.

By employing three different strategies to use K-Means

during GSO generational process, we can evaluate the

actual influence of that technique as a local searcher. In that

sense, in this work the total number of intended clusters

C is supposed to be known a priori (Niu et al. 2017), so no

other factors would influence on the behavior of the pro-

posed models. The automatic determination of the optimal

number of cluster for each problem is ongoing research,

and that issue will be addressed in a future work. For more

information on automatic clustering issue, please refer to

Das et al. (2007), José-Garcı́a and Gómez-Flores (2016),

Elaziz et al. (2019).

4 Experimental results

In this section, we test the clustering capabilities of the

proposed approaches, in comparison to other partitional

evolutionary algorithms from literature, by means of 20

(twenty) real-world and 10 synthetic data sets. All real-

world data sets are benchmark classification and clustering

problems acquired from UCI Machine Learning Repository

(Asuncion and Newman 2007). The selected real data set

features are shown in Table 2, presenting different degrees

of difficulties, such as unbalanced and overlapping classes,

different number of classes and features, and so on.
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The proposed synthetic data sets are split into to main

groups: Disp group (containing five data sets), where all

classes varies in relation to its degree of dispersion, from a

well-separated scenario (Disp01) to a scenario where all

classes present some degree of overlapping; Prox group

(containing five data sets), where the overlapping is

obtained by the approximation of class centers, from a

scenario where all class centers are well-split into the

problem search space (Prox01), to a scenario where all

class centers are close to each other (Prox05). The con-

figurations for the proposed synthetic data sets are pre-

sented in Table 3 and illustrated in Fig. 2.

For comparison purposes, five clustering measures are

employed: the Within-Cluster Sum of Squares [Eq. (3)],

the Intra-Cluster Distance [Dmax, Eq. (14)] and the Inter-

Cluster Separation [Dmin, Eq. (15)] (Wong et al. 2011), the

Weighted Quantization Error (Je2 , Eq. 16) (Esmin et al.

2008) and the Corrected Rand Index [CR, Eq. (17)] (Hu-

bert and Arabie 1985).

DmaxðPCÞ ¼ max
c¼1;...;C

f
X

8xj2c
dðxj; gcÞ=jNcjg ð14Þ

DminðPCÞ ¼ min
8c1;c2;c1 6¼c2

fdðgc1 ; gc2Þg ð15Þ

Je2ðPCÞ ¼
X

C

c¼1

½ð
X

8xj2c
dðpj; gcÞ=jNcjÞ � ðjNcj=NÞ� ð16Þ

The CR assesses the degree of similarity between an a

priori partition and a partition provided by the clustering

algorithm. Given that all data sets adopted in this work are

real-valued classification problems (i.e., all data patters are

labeled in each data set), CR represents a robust compar-

ison metric for clustering studies, since its analysis takes

into consideration only the relationships among the data

patterns from an a priori and an a posteriori partitions,

without taking into consideration the categories

themselves.

Considering a partition UR ¼ fu1; u2; . . .; uRg provided

by a clustering algorithm and an a priori partition defined

by classification VC ¼ fv1; v2; . . .; vCg, CR is defined as by

Eq. (17).

CR ¼ a� b

c� d
ð17Þ

where

a ¼
X

R

i¼1

X

C

j¼1

2
nij

� �

ð18Þ

b ¼ 2
n

� ��1
X

R

i¼1

2
ni:

� �

ð19Þ

c ¼ 1=2
X

R

i¼1

2
ni:

� �

þ
X

C

j¼1

2
n:j

� �

" #

ð20Þ

Table 2 Real-world data set

features
Data set Inst. Attr. Classes

Abalone 4177 8 3

Banknote authentication 1372 4 2

Blood transfusion 748 4 2

Cancer 699 9 2

Diabetes 768 8 2

E. coli 336 7 8

Glass 214 9 6

Heart 270 13 2

Image segmentation 2310 18 7

Ionosphere 351 34 2

Iris 150 4 3

Landsat satellite images 6435 36 7

Letter recognition 20000 16 26

Optical recognition 5620 64 10

Page blocks classification 5473 10 5

Pen-based recognition of handwritten digits (Pen-digits) 10992 16 10

Seeds 210 7 3

Waveform 5000 21 3

Wine 178 13 3

Yeast 1484 8 10
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d ¼ 2
n

� ��1
X

R

i¼1

2
ni:

� �

X

C

j¼1

2
n:j

� �

ð21Þ

where nij represents the number of objects that are in

clusters ui and vi; ni: indicates the number of objects in

cluster ui; n:j indicates the number of objects in cluster vj;

and n is the total number of objects. CR takes its values

from the interval [- 1,1], in which the value 1 indicates

perfect agreement between partitions, whereas values near

0 (or negatives) correspond to cluster agreement found by

chance (Arabie et al. 1996).

The evaluation criterion includes a rank system

employed through the application of Friedman hypothesis

test (Friedman 1937, 1940) for all the comparison clus-

tering measures. The Friedman test is a non-parametric

hypothesis test that ranks all algorithms for each data set

separately. If the null-hypothesis (all ranks are not

significantly different) is rejected, Nemenyi test (Nemenyi

1962) is adopted as the post-hoc test. According to

Nemenyi test, the performance of two algorithms are

considered significantly different if the corresponding

average ranks differ by at least the critical difference

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nalgðnalg þ 1Þ
6ndata

s

ð22Þ

where ndata represents the number of data sets, nalg repre-

sents the number of compared algorithms and qa are critical

values based on a Studentized range statistic divided by
ffiffiffi

2
p

(Demšar 2006). Since J, Je2 and Dmax are minimization

metrics (indicated by #), the best methods will obtain lower

ranks for the Friedman-Nemenyi test, while for Dmin and

CR (maximization metrics, indicated by "), the best meth-

ods will find higher average ranks for the Friedman-Ne-

menyi hypothesis test.

Table 3 Disp and Prox synthetic data sets description: each Disp and Prox data set consists of 1000 3-dimensional patterns, equally distributed

among 5 classes

Data set Classes Instances per class Total no. of instances Attributes lk (1 to 5) Rk (1 to 5)

Disp01 5 200 1000 3 (- 10, - 5, 0, 5, 10) (1, 1, 1, 1, 1)

Disp02 5 200 1000 3 (- 10, - 5, 0, 5, 10) (4, 1, 1, 1, 4)

Disp03 5 200 1000 3 (- 10, - 5, 0, 5, 10) (4, 1, 4, 1, 4)

Disp04 5 200 1000 3 (- 10, - 5, 0, 5, 10) (4, 4, 1, 4, 4)

Disp05 5 200 1000 3 (- 10, - 5, 0, 5, 10) (4, 4, 4, 4, 4)

Prox01 5 200 1000 3 (- 8, - 4, 0, 4, 8) (1, 1, 1, 1, 1)

Prox02 5 200 1000 3 (- 8, - 6, 0, 4, 8) (1, 1, 1, 1, 1)

Prox03 5 200 1000 3 (- 8, - 6, 0, 6, 8) (1, 1, 1, 1, 1)

Prox04 5 200 1000 3 (- 8, - 6, - 4, 6, 8) (1, 1, 1, 1, 1)

Prox05 5 200 1000 3 (- 8, - 6, - 4, - 2, 0) (1, 1, 1, 1, 1)

The mean l and covariance matrix R are the same for each attribute in each class, but varies from class to class (the values are presented from

class 1–5, respectively)

Fig. 2 Synthetic data sets representation: a–e Disp01 to Disp05, respectively, f–j Prox01-Prox05, respectively
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The proposed hybrid memetic GSO approaches are

compared to five other EAs: Genetic Algorithm (GA),

Differential Evolution (DE), Particle Swarm Optimization

(PSO), standard Group Search Optimization and Back-

tracking Search Optimization (BSA). The selected

approaches are state-of-the-art models from evolutionary

computing and data clustering literature, being successfully

applied in many applications recently: GA (Shi and Xu

2018; Akbari et al. 2019; Islam et al. 2019; Mortezanezhad

and Daneshifar 2019; Toman et al. 2020), DE (Wang 2018;

Li and Dong 2019; Cho and Nyunt 2020; Zhang and Cao

2020; Zhu et al. 2020), PSO (Souza et al. 2018; Wang

et al. 2018; Li et al. 2019; Pacifico and Ludermir 2019;

Miranda and Prudêncio 208), GSO (Pacifico and Ludermir

2018; Lin and Huang 2019; Pacifico and Ludermir 2019b;

Taj and Basu 2019; Abualigah 2020), and BSA (Latiff

et al. 2016; Günen et al. 2017; Li et al. 2019; Toz et al.

2019; Hassan and Rashid 2020).

All selected algorithms have been adapted as hybrid

partitional clustering models according to the schema

presented in Algorithm 3. In this work, all algorithms used

the Within-Cluster Sum of Squares [Eq. (3)] as the fitness

function, for simplicity, once our main objective is to

evaluate the impact of K-Means on the behavior of

memetic GSO, and not the influence of the fitness function

on the behavior of EAs. For that issue, please, refer to

Wong et al. (2011), Pacifico and Ludermir (2016).

All algorithms run in a MATLAB 7.6 environment.

Thirty independent tests have been executed for each data

set, and all evolutionary methods have started with the

same initial population in each test, obtained by a random

process, as explained in Sect. 2), as a manner to guarantee a

fair evaluation and comparison among the selected tech-

niques. Also, once the computational costs have been

evaluated in terms of the average execution time of each

model in each data set, each algorithm has been run and

tested in a computer with an i7-7700K CPU, NVIDIA

GeForce GTX 1060 6GB GPU and 32 GB RAM, inde-

pendently (one algorithm each time), and no other pro-

grams, but the Operating System, were executed during the

tests, granting the same environmental conditions to each

method. For all tests, the adopted number of clusters C is

equal to the number of classes per data set.

The hyperparameters for each evolutionary algorithm

are presented in Table 4, and have been obtained from the

literature: GA (Abdel-Kader 2010), DE (Das et al. 2007),

PSO (Abdel-Kader 2010; Pacifico and Ludermir 2019),

GSO (He et al. 2009; Pacifico and Ludermir 2014a, 2018),

and BSA (Civicioglu 2013). The population size (S) and

the maximum number of generations (tmax) have been

chosen after a trial-and-error process, using values from

Pacifico and Ludermir (2018),Pacifico and Ludermir

(2019) as the staring point. Once the selected approaches

did not improve significantly with higher population sizes

nor higher number of generations, we kept the same

parameter values as presented in Pacifico and Ludermir

(2018), Pacifico and Ludermir (2019) to perform the cur-

rent evaluation, once the computational costs associated

with such parameters may grow very fast for high param-

eter values. The maximum number of K-Means executions

(tmaxkmeans) has been obtained from Pacifico and Ludermir

(2018).

4.1 Discussion

The discussion is divided into three parts: first, we evaluate

the experimental results for the real-world data sets (Sect.

4.1.1), followed by the evaluation on the experiments using

the synthetic data sets (Sect. 4.1.2); An overall evaluation

is also performed, based on the Friedman-Nemenyi

hypothesis tests and the computational costs (in terms of

the average execution times) obtained by each model (Sect.

4.1.3).

Table 4 Hyperparameters for each EA

Algorithm Parameter Value

All EAs tmax 100

S 20

GA-k-means Crossover rate 0.8

Mutation rate 0.5

Selection rate 0.5

tmaxkmeans 100

DE-k-means F 80%

Crossover rate 0.9

tmaxkmeans 100

PSO-k-means c1 2.0

c2 2.0

w 0.9 to 0.4

tmaxkmeans 100

BSA-k-means Mixrate 1

F 3N(0, 1)

tmaxkmeans 100

GSO-based approaches Scroungers rate 0.8

hmax p=a2

a0 p=4

amax hmax/2

GSO-k-means tmaxkmeans 100

FMKGSO and TMKGSO tmaxkmeans 10
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4.1.1 Real-world data sets

The experimental results for the real-world data sets are

presented from Tables 5, 6, 7, 8, 9. The best results for

each metric in each data set are bold faced.

In an empirical analysis, we can observe that the pro-

posed hybrid memetic GSO approaches are able to find

better values in relation to the fitness function (J) in most

cases than hybrid partitional models that only use K-Means

to refine the best solution found by the generational process

of the EA. As illustrated in Fig. 3, sometimes the com-

parison hybrid partitional approaches are too slow while

performing the global search that the only significant

improvement is obtained after the generational process,

when their final solution is refined by K-Means method

(which presents fast local search capabilities). Fig. 3 also

showed that even the use of just one K-Means step during

the generational process for each member (MKGSO

approach) is enough to improve significantly the conver-

gence speed of GSO. The empirical analysis also showed

that the hybrid memetic GSO models are more stable than

the comparison hybrid partitional EA and K-Means

algorithms.

The overall evaluation on the real-world problems

obtained by the Friedman-Nemenyi hypothesis tests

(Table 10) showed that the proposed memetic approaches

are able to find clusters that are, in average, better repre-

sented by their final centroids (according to J and Je2
indices), the final clusters are more similar to the actual

classes (CR index), and the clusters are well-split in the

problem space (according to Dmin). The hypothesis tests

also showed that, although MKGSO and TMKGSO use

about the same number of K-Means steps for each member

on current experimentation, MK-GSO presented more

smooth convergence rates than TMKGSO, what may help

MKGSO to avoid local minima points, but yet according to

the current set of experiments, the performance of

TMKGSO has been considered significantly better than the

average results for MKGSO (in terms of the optimization

of the fitness function - J).

According to the Friedman-Nemenyi tests, considering

all five clustering metrics, the best results have been found

by TMKGSO, followed by MKGSO and FMKGSO (sec-

ond and third places, respectively).

When considering the average execution time obtained

by each method in each data set (Table 11), we can see that

FMKGSO and TMKGSO (which use K-Means refinements

only in determined conditions) presented average times

compatible with the other state-of-the-art EAs from the

literature. By the other hand, MKGSO presented average

execution times about four times higher than the other

evaluated approaches, what may limit its applications when

the data set is big (in terms of the number of data patterns).

Such limitation may have occurred due to the fact that such

method uses K-Means calls in each generation for each

individual of the population, requiring many calls for

allocation and deallocation of computational resources by

the compiler.

4.1.2 Synthetic data sets

The results for both sets of synthetic data sets are presented

from Tables 12, 13, 14, 15, 16. The best results for each

metric in each data set are bold faced.

The empirical analysis considering both Disp and Prox

sets showed that all algorithms have been significantly

affected when the degree of class overlapping increased,

specially when the class overlapping has been obtained by

approximating the class centers of distribution (Prox data

sets). In spite of that, the memetic approaches have been

able, once again, to find the best average performances and

degree of stability among all approaches. In particular,

FMKGSO was able to find the best values for almost all

tests, considering the five evaluation metrics, showing its

capabilities and competitiveness. Fig. 4 illustrates the

obtained partitions for each algorithm.

Considering the ranks provided by Friedman-Nemenyi

hypothesis test (Table 17), the memetic approaches have

found the best values for all evaluated indices. Although, in

an overall analysis on the synthetic data sets, FMKGSO has

been able to present ranks slightly better then the ranks of

MKGSO, the Friedman-Nemenyi tests showed that there is

no statistical significantly differences between FMKGSO

performance and the performances of MKGSO (their dif-

ferences are not greater than the Critical Distance), so both

memetic algorithms are considered to have achieved the

best results together. TMKGSO has been capable of

reaching the third place on the evaluation considering the

synthetic approaches, but, for all five clustering metrics,

this method has found better performances than all the

selected state-of-the-art comparison approaches, reinforc-

ing the advantages of memetic models.

The evaluation considering the average execution times

for each model showed that (Table 18) showed that, once

more, FMKGSO and TMKGSO computational costs, in

terms of time, are close to the computational costs of state-

of-the-art algorithms, but MKGSO, although presenting

better performances when considering the clustering met-

rics than the non-memetic comparison approaches, is still a

little bit slower in execution.

4.1.3 Overall evaluation

At this point, an overall evaluation considering both the

real-world and synthetic data sets is provided. For that, an
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evaluation based on the Friedman-Nemenyi hypothesis

tests considering all data sets (real and synthetic) is per-

formed (Table 19). By considering both sets of data sets,

we can have a better understanding on the behavior of all

selected algorithms (hybrid partitional approaches, and

hybrid memetic partitional approaches) when dealing with

either controlled and uncontrolled testing scenarios,

showing how robust such approaches actually are.

The overall analysis ranked TMKGSO as the best

approach among all the tested algorithms, considering the

rank values for all metrics, followed by FMKGSO and

MKGSO, respectively. The overall evaluation showed that

including some K-Means during the generational process

of EAs is quite advantageous (the memetic approach), and

it is a preferred strategy than only use K-Means only to

refine the best solution found so far by the EAs. Consid-

ering the selected five clustering metrics, we can concluded

that, for the current testing bed, the memetric approaches

are able to find final solutions with clusters that are, in

average, better represented by their centroids vectors (ac-

cording to J and Je2 indices), more similar to the actual

classes (CR index), more compact (according to Dmax

index), and well-split in the problem space in relation to

each other (according to Dmin). The proposed memetic

Table 6 Experimental results for real-world data sets: correct Rand index (CR")

Data set GA-k-means DE-k-means PSO-k-

means

GSO-k-

means

BSA-k-

means

FMKGSO MKGSO TMKGSO

Abalone 0.1211 ±

0.017

0.1181 ±

0.014

0.1211 ±

0.017

0.1284 ±

0.010

0.1194 ±

0.013

0.1331 ± 0 0.1331 ± 0 0.1331 ± 0

Banknote

authentication

0.0485 ± 0 0.0485 ± 0 0.0485 ± 0 0.0485 ± 0 0.0485 ± 0 0.0485 ± 0 0.0485 ± 0 0.0485 ± 0

Blood transfusion 0.0777 ±

0.004

0.0795 ± 0 0.0777 ±

0.004

0.0795 ± 0 0.0776 ±

0.003

0.0795 ± 0 0.0795 ± 0 0.0795 ± 0

Cancer 0.8391 ± 0 0.8391 ± 0 0.8391 ± 0 0.8391 ± 0 0.8391 ± 0 0.8391 ± 0 0.8391 ± 0 0.8391 ± 0

Diabetes 0.0744 ± 0 0.0744 ± 0 0.0744 ± 0 0.0744 ± 0 0.0744 ± 0 0.0744 ± 0 0.0744 ± 0 0.0744 ± 0

E. coli 0.4116 ±

0.055

0.4056 ±

0.047

0.4223 ±

0.052

0.4169 ±

0.052

0.4102 ±

0.053

0.4297 ±

0.019

0.4629 ±

0.047
0.4373 ±

0.030

Glass 0.2452 ±

0.029

0.2571 ±

0.023

0.2452 ±

0.029

0.2565 ±

0.020

0.2492 ±

0.025

0.2530 ±

0.008

0.2539 ±

0.006

0.2589 ±

0.006

Heart 0.0289 ±

0.001

0.0291 ±

0.001

0.0289 ±

0.001

0.0288 ±

0.001

0.0293 ±

0.001

0.0302 ± 0 0.0302 ± 0 0.0302 ± 0

Image

segmentation

0.3586 ±

0.049

0.3609 ±

0.045
0.3586 ±

0.049

0.3596 ±

0.054

0.3526 ±

0.048

0.2867 ±

0.048

0.3377 ±

0.042

0.3422 ±

0.053

Ionosphere 0.1749 ±

0.002

0.1695 ±

0.032

0.1747 ±

0.002

0.1755 ±

0.002

0.1752 ±

0.002

0.1776 ± 0 0.1776 ± 0 0.1776 ± 0

Iris 0.7205 ±

0.006

0.7210 ±

0.007

0.7205 ±

0.006

0.7182 ±

0.005

0.7191 ±

0.005

0.7302 ± 0 0.7302 ± 0 0.7302 ± 0

Landsat satellite

images

0.4975 ±

0.0591

0.4979 ±

0.0497

0.4938 ±

0.0678

0.5084 ±

0.0507

0.4895 ±

0.070

0.5666 ±

0.0081
0.5395 ±

0.0346

0.5377 ±

0.0238

Letter recognition 0.1328 ±

0.004

0.1314 ±

0.006

0.1334 ±

0.005
0.1327 ±

0.004

0.1330 ±

0.006

0.1317 ±

0.003

0.1309 ±

0.004

0.1324 ±

0.003

Optical recognition 0.6142 ±

0.058

0.6360 ±

0.045
0.6142 ±

0.058

0.6108 ±

0.053

0.6500 ±

0.071

0.5699 ±

0.049

0.5656 ±

0.049

0.6068 ±

0.047

Page blocks

classification

0.0480 ±

0.041

0.0491 ±

0.039
0.0205 ±

0.035

0.0221 ±

0.026

0.0131 ±

0.019

0.0178 ±

0.021

0.0176 ±

0.020

0.0152 ±

0.015

Pen-digits 0.5504 ±

0.038

0.5414 ±

0.035

0.5541 ±

0.033
0.5499 ±

0.036

0.5514 ±

0.036

0.5375 ±

0.016

0.5415 ±

0.029

0.5519 ±

0.029

Seeds 0.7152 ±

0.003

0.7139 ±

0.003

0.7152 ±

0.003

0.7149 ±

0.003

0.7160 ±

0.002

0.7166 ± 0 0.7166 ± 0 0.7166 ± 0

Waveform 0.2536 ± 0 0.2536 ± 0 0.2536 ± 0 0.2536 ± 0 0.2536 ± 0 0.2536 ± 0 0.2536 ± 0 0.2536 ± 0

Wine 0.3662 ±

0.011

0.3711 ± 0 0.3662 ±

0.011

0.3711 ± 0 0.3645 ±

0.013

0.3711 ± 0 0.3711 ± 0 0.3711 ± 0

Yeast 0.1350 ±

0.0133

0.1323 ±

0.0132

0.1347 ±

0.0164

0.1354 ±

0.0147

0.1334 ±

0.0156

0.1460 ±

0.0039

0.1498 ±

0.0058
0.1470 ±

0.0058
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approaches have also been able to find the best stability

throughout the experimentation, reinforcing their

reliability.

For the current testing bed, the best hybrid model has

been the TMKGSO approach, which executes some

K-Means steps after a prefixed number of generations for

each group member, which either has found good perfor-

mances, according to the clustering indices, and has been

able to execute with a computational cost, in terms of

average execution time, close to what is expected from any

Evolutionary Algorithm from current state-of-the-art. By

the other hand, although able to find good average per-

formances, MKGSO approach has been quite slow in its

execution, what may represent a limitation. But, if time is

not the main concern when a new data clustering system is

proposed, MKGSO would still be a better choice than non-

memetic approaches, once it still preserves GSO good

global searching capabilities and K-Means fast conver-

gence speed, so the designer of such system should have

this trade-off in mind when making the decision.

Table 7 Experimental results for real-world data sets: weighted quantization error (J#e2 )

Data set GA-k-means DE-k-means PSO-k-

means

GSO-k-

means

BSA-k-

means

FMKGSO MKGSO TMKGSO

Abalone 2.4191 ±

0.071

2.3979 ±

0.024

2.4191 ±

0.071

2.3847 ±

0.025

2.4076 ±

0.020

2.3677 ± 0 2.3677 ± 0 2.3677 ± 0

Banknote

authentication

32.106 ± 0 32.106 ± 0 32.106 ± 0 32.106 ± 0 32.106 ± 0 32.106 ± 0 32.106 ± 0 32.106 ± 0

Blood

transfusion
9.08� 105 ±

5.83� 103
9 � 06� 105

± 0
9.08� 105 ±

5.83� 103
9 � 06� 105

± 0
9.07� 105 ±

4.23� 103
9 � 06� 105

± 0
9 � 06� 105

± 0
9 � 06� 105

± 0

Cancer 0.3483 ± 0 0.3483 ± 0 0.3483 ± 0 0.3483 ± 0 0.3483 ± 0 0.3483 ± 0 0.3483 ± 0 0.3483 ± 0

Diabetes 6695.8 ± 0 6695.8 ± 0 6695.8 ± 0 6695.8 ± 0 6695.8 ± 0 6695.9 ±

0.251
6695.8 ± 0 6695.8 ± 0

E. coli 0.0449 ±

0.002

0.0446 ±

0.002

0.0447 ±

0.002

0.0441 ±

0.002

0.0445 ±

0.002

0.0412 ±

0.0001
0.0418 ±

0.0009

0.0413 ±

0.0002

Glass 1.7405 ±

0.106

1.7044 ±

0.135

1.7405 ±

0.106

1.6983 ±

0.114

1.7692 ±

0.115

1.9592 ±

0.204

1.7281 ±

0.141

1.6097 ±

0.066

Heart 2034.5 ±

0.047
2034.5 ±

0.047
2034.5 ±

0.047
2034.6 ±

0.047
2034.5 ±

0.043

2034.5 ± 0 2034.5 ± 0 2034.5 ± 0

Image

segmentation

6435.9 ±

867.5

6324.7 ±

744.7

6435.9 ±

867.5

6616.2 ±

1074.9

6525.9 ±

986.6

6567.5 ±

455.7

6273.2 ±

477.3

6063.9 ±

222.2

Ionosphere 6.8928 ±

0.0001
6.9711 ±

0.428

6.8929 ±

0.0001
6.8928 ±

0.0001
6.8928 ±

0.00006

6.8928 ± 0 6.8928 ± 0 6.8928 ± 0

Iris 0.5257 ±

0.00001
0.5257 ±

0.00001
0.5266 ±

0.0013

0.5257 ±

0.00001
0.5256 ±

0.00001

0.5257 ± 0 0.5257 ± 0 0.5257 ± 0

Landsat satellite

images

2379.5 ±

51.14

2363.2 ±

29.74

2383.4 ±

57.65

2372.4 ±

45.57

2396.8 ±

65.87

2333.9 ±

5.609
2355.1 ±

26.30

2357.5 ±

19.91

Letter

recognition

31.022 ±

0.213

31.049 ±

0.179

30.993 ±

0.217

31.005 ±

0.229

31.002 ±

0.200

30.623 ±

0.064
30.864 ±

0.178

30.817 ±

0.192

Optical

recognition

666.47 ±

9.538

665.05 ±

13.13
666.47 ±

9.538

667.58 ±

11.20

661.57 ±

7.652

692.93 ±

1.107

694.88 ±

20.65

672.33 ±

11.75

Page blocks

classification
6.08� 106 ±

2.57� 106
3.72� 106 ±

9.35� 105
4.34� 106 ±

1.69� 106
4.22� 106 ±

1.12� 106
3.82� 106 ±

7.16� 105
3.69� 106 ±

8.95� 105
3.29� 106 ±

1.02� 106
2 � 96� 106

±

8:77� 105

Pen-digits 4619.3 ±

77.58

4594.1 ±

100.7

4610.2 ±

75.39

4619.0 ±

74.58

4617.5 ±

98.40

4528.3 ±

93.61
4566.0 ±

80.69

4566.9 ±

43.77

Seeds 2.7991 ±

0.0034

2.7998 ±

0.0035

2.7991 ±

0.0034

2.7986 ±

0.0031

2.7986 ±

0.003

2.7968 ± 0 2.7968 ± 0 2.7968 ± 0

Waveform 26.624 ± 0 26.624 ± 0 26.624 ± 0 26.624 ± 0 26.624 ± 0 26.624 ± 0 26.624 ± 0 26.624 ± 0

Wine 13558.4 ±

545.6

13318.5 ± 0 13558.4 ±

545.6

13318.5 ± 0 13607.6 ±

588.2

13318.5 ± 0 13318.5 ± 0 13318.5 ± 0

Yeast 0.0320 ±

0.0017

0.0327 ±

0.0022

0.0322 ±

0.0016

0.0312 ±

0.0003

0.0322 ±

0.0016

0.0305 ±

0.0001
0.0306 ±

0.0002
0.0307 ±

0.0003
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5 Conclusions

This paper presented an evaluation on the behavior of

partitional Group Search Optimization when employing

K-Means algorithm as a local search operator, to deal with

data clustering problem. In that sense, three hybrid

memetic algorithms are proposed (FMKGSO, MKGSO and

TMKGSO), which use different ways to combine GSO and

K-Means in an attempt to improve GSO population during

the generational process of the method. Although K-Means

is easily trapped in local optima points, it is known that it

would represent a good local searcher when combined to

global search metaheuristics, like evolutionary algorithms.

Also, GSO, which is known to present good global

searching capabilities and mechanisms to escape from local

optima points, would benefit considerably by adopting

K-Means to speedup the algorithm convergence when

dealing with data clustering problems.

To evaluate the proposed methods, five state-of-the-art

partitional clustering evolutionary algorithms are tested:

Table 8 Experimental results for real-world data sets: intra-cluster distance (D#
max)

Data set GA-k-means DE-k-means PSO-k-

means

GSO-k-

means

BSA-k-

means

FMKGSO MKGSO TMKGSO

Abalone 6.8652 ±

0.501

6.6643 ±

0.352
6.8652 ±

0.501

6.8051 ±

0.279

6.7650 ±

0.484

6.7044 ± 0 6.7044 ± 0 6.7044 ± 0

Banknote

authentication

35.978 ± 0 35.978 ± 0 35.978 ± 0 35.978 ± 0 35.978 ± 0 35.978 ± 0 35.978 ± 0 35.978 ± 0

Blood

transfusion
3.93� 106 ±

1.68� 105
3 � 86� 106

± 0

3.93� 106 ±

1.68� 105
3 � 86� 106

± 0

3.91� 106 ±

1.33� 105
3 � 86� 106

± 0
3 � 86� 106

± 0
3 � 86� 106

± 0

Cancer 0.8050 ± 0 0.8050 ± 0 0.8050 ± 0 0.8050 ± 0 0.8050 ± 0 0.8050 ± 0 0.8050 ± 0 0.8050 ± 0

Diabetes 1 � 68� 104

± 0
1 � 68� 104

± 0
1 � 68� 104

± 0
1 � 68� 104

± 0
1 � 68� 104

± 0
1 � 68� 104

± 11.56
1 � 68� 104

± 0
1 � 68� 104

± 0

E. Coli 0.1029 ±

0.015
0.1048 ±

0.018

0.1118 ±

0.019

0.1069 ±

0.016

0.1083 ±

0.017

0.1330 ± 0 0.1307 ±

0.013

0.1330 ± 0

Glass 9.0743 ±

1.639

9.2814 ±

1.764

9.0743 ±

1.639

7.9628 ±

2.163

8.6093 ±

1.730

8.4604 ±

1.825

7.3165 ±

0.912
7.4499 ±

1.109

Heart 2718.0 ±

2.542
2718.5 ±

2.425
2718.0 ±

2.542
2718.0 ±

2.323
2718.9 ±

2.423

2720.7 ± 0 2720.7 ± 0 2720.7 ± 0

Image

segmentation

231386.2 ±

58399.2

235047.8 ±

54517.2

231386.2 ±

58399.2

213276.6 ±

75049.5

222034.2 ±

68870.5

183540.4 ±

60964.4
206166.7 ±

57345.6
209843.8 ±

51638.3

Ionosphere 10.547 ±

0.0127

10.505 ±

0.2394
10.546 ±

0.0126

10.550 ±

0.0127

10.548 ±

0.012

10.561 ± 0 10.561 ± 0 10.561 ± 0

Iris 0.6488 ±

0.004

0.6485 ±

0.004

0.6488 ±

0.004

0.6504 ±

0.003

0.6497 ±

0.003

0.6423 ± 0 0.6423 ± 0 0.6423 ± 0

Landsat satellite

images

5769.5 ±

1306.0

5729.4 ±

1424.2

5738.7 ±

1364.3

5678.1 ±

1309.2

6343.7 ±

1548.2

4726.1 ±

6.984
5383.9 ±

1105.2

5507.9 ±

1033.7

Letter

recognition

48.858 ±

1.816

49.113 ±

2.401

48.541 ±

2.159
48.644 ±

2.008

49.019 ±

2.272

48.739 ±

0.639

49.035 ±

1.715

48.682 ±

1.439

Optical

recognition

800.70 ±

51.17

781.49 ±

46.10
800.70 ±

51.17

795.23 ±

49.98

772.15 ±

20.07

829.63 ±

66.73

827.20 ±

64.67

798.93 ±

44.25

Page blocks

classification
1.20� 109 ±

4.42� 107
6:28� 108 ±

3:31� 108
1.18� 109 ±

0

1.16� 109 ±

1.42� 108
1.18� 109 ±

0

1.01� 109 ±

3.27� 108
8.30� 108 ±

3.84� 108
6.76� 108 ±

3.65� 108

Pen-digits 6534.3 ±

427.0

6358.0 ±

438.2
6455.9 ±

463.5

6560.1 ±

427.8

6490.3 ±

451.4

6411.8 ±

262.2

6423.8 ±

377.0

6525.4 ±

484.0

Seeds 3.0182 ± 0 3.0182 ± 0 3.0182 ± 0 3.0182 ± 0 3.0182 ± 0 3.0182 ± 0 3.0182 ± 0 3.0182 ± 0

Waveform 27.140 ± 0 27.140 ± 0 27.140 ± 0 27.140 ± 0 27.140 ± 0 27.140 ± 0 27.140 ± 0 27.140 ± 0

Wine 27559.4 ±

3196.2
28956.4± 0 27559.4 ±

3196.2
28956.4± 0 27364.0 ±

3253.5

28956.4± 0 28956.4± 0 28956.4± 0

Yeast 0.0638 ±

0.0107

0.0598 ±

0.0082
0.0681 ±

0.0161

0.0662 ±

0.0118

0.0305 ±

0.0043

0.0931 ±

0.0127

0.0980 ± 0 0.0907 ±

0.0150
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GA, DE, PSO, standard GSO and BSA. As a current and

usual practice in data clustering literature, the comparison

approaches are hybridized with K-Means in such a way

that their best final solutions are refined by K-Means after

the generational process, so we could access the actual

influence of such technique on the behavior of EAs.

The experimental testing bed adopted in this work

included 20 real-world and 10 synthetic data sets. To

access the potential of the proposed memetic models, five

clustering metrics have been employed (within-cluster sum

of squares, correct Rand index, weighted quantization

error, intra-cluster distance and inter-cluster separation),

and the experimental analysis has been obtained by means

of both an empirical analysis, and by an overall evaluation

obtained through the application of a rank system consid-

ering the Friedman-Nemenyi hypothesis tests on each

clustering metric.

Table 9 Experimental results for real-world data sets: inter-cluster separation (D"
min)

Data set GA-k-means DE-k-means PSO-k-means GSO-k-

means

BSA-k-means FMKGSO MKGSO TMKGSO

Abalone 12.272 ±

1.314

12.654 ±

0.800

12.272 ±

1.314

12.538 ±

0.734

12.401 ±

1.065

12.926 ± 0 12.926 ± 0 12.926 ± 0

Banknote

authentication

149.38 ± 0 149.38 ± 0 149.38 ± 0 149.38 ± 0 149.38 ± 0 149.38 ± 0 149.38 ± 0 149.38 ± 0

Blood

transfusion
9 � 61� 106

±

8 � 40� 105

9.27� 106 ±

0
9 � 61� 106

±

8 � 40� 105

9.27� 106

± 0
9 � 54� 106

±

6 � 65� 105

9.27� 106

± 0.057

9.27� 106

± 0

9.27� 106

± 0

Cancer 2.3366 ± 0 2.3366 ± 0 2.3366 ± 0 2.3366 ± 0 2.3366 ± 0 2.3366 ± 0 2.3366 ± 0 2.3366 ± 0

Diabetes 5 � 00� 104

± 0
5 � 00� 104

± 0
5 � 00� 104

± 0
5 � 00� 104

± 0
5 � 00� 104

± 0
5 � 00� 104

± 0.0001
5 � 00� 104

± 0
5 � 00� 104

± 0

E. coli 0.0450 ±

0.007

0.0462 ±

0.009

0.0486 ±

0.010

0.0472 ±

0.010

0.0459 ±

0.006

0.0512 ±

0.0003

0.0539 ±

0.007
0.0516 ±

0.004

Glass 2.2558 ±

1.747

2.7011 ±

0.960

2.2558 ±

1.747

2.8926 ±

1.530

2.4239 ±

1.155

6.6358 ±

4.960
3.2817 ±

0.066

3.2733 ±

0.125

Heart 6643.5 ±

34.85

6650.0 ±

35.45

6643.5 ±

34.85

6640.3 ±

34.96

6657.3 ±

33.94

6683.5 ± 0 6683.5 ± 0 6683.5 ± 0

Image

segmentation

8732.9 ±

1575.8

8793.0 ±

1076.8

8732.9 ±

1575.8

8904.6 ±

1330.5

8491.9 ±

1401.4

10740.8 ±

1678.7
9098.7 ±

1032.1

9179.6 ±

789.3

Ionosphere 9.4467 ±

0.005

11.117 ±

9.143
9.4464 ±

0.005

9.4479 ±

0.005

9.4472 ±

0.004

9.4519 ± 0 9.4519 ± 0 9.4519 ± 0

Iris 3.2079 ±

0.015

3.2089 ±

0.015

3.2079 ±

0.015

3.2026 ±

0.011

3.2047 ±

0.012

3.2299 ± 0 3.2299 ± 0 3.2299 ± 0

Landsat

satellite

images

4054.4 ±

387.6

4097.7 ±

300.3

4057.7 ±

407.9

4050.0 ±

363.7

3947.5 ±

432.8

4290.3 ±

423.6
4174.8 ±

225.9

4214.5 ±

131.8

Letter

recognition

24.711 ±

2.504

23.533 ±

3.363

24.742 ±

2.466

24.912 ±

1.955

24.288 ±

3.441

26.951 ±

0.726
25.133 ±

2.200

25.773 ±

2.355

Optical

recognition

435.01 ±

163.3

410.02 ±

107.7

435.01 ±

163.3

443.51 ±

159.3

449.38 ±

159.7

646.48 ±

151.1
645.66 ±

151.8
486.11 ±

185.4

Page blocks

classification
1.97� 107 ±

1.71� 107
1 � 87� 108

±

2 � 05� 108

1.08� 107 ±

6.18� 106
2.38� 107

± 1.88�
107

1.17� 107 ±

7.54� 106
4.60� 107

± 9.03�
107

4.42� 107

± 8.87�
107

3.90� 107

± 8.36�
107

Pen-digits 5334.6 ±

1261.6

6096.3 ±

1639.2

5158.1 ±

1109.4

5407.8 ±

1375.5

5520.1 ±

922.0

6477.1 ±

882.0
6115.9 ±

1300.3

5705.8 ±

1316.9

Seeds 13.377 ±

0.0367

13.388 ±

0.0412
13.377 ±

0.0367

13.375 ±

0.0368

13.370 ±

0.032

13.353 ± 0 13.353 ± 0 13.353 ± 0

Waveform 52.632 ± 0 52.632 ± 0 52.632 ± 0 52.632 ± 0 52.632 ± 0 52.632 ± 0 52.632 ± 0 52.632 ± 0

Wine 83986.4 ±

24870.4

73087.8 ± 0 83986.4 ±

24870.4

73087.8 ± 0 85486.2 ±

25291.7
73087.8 ±

0.0005

73087.8 ± 0 73087.8 ± 0

Yeast 0.0300 ±

0.0038

0.0286 ±

0.0035

0.0305 ±

0.0033

0.0301 ±

0.0032

0.0305 ±

0.0043

0.0311 ±

0.0008
0.0304 ±

0.0023

0.0296 ±

0.0020
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The experimental results showed that, when K-Means is

executed within the generational process of GSO at least by

a few steps, it is able to aggregate more local information

than when it is adopted only to improve the final solution

found so far by an EA, speeding up the exploration/ex-

ploitation promoted by the memetic system. EAs are

known to present slow convergence speeds, so when

K-Means is only employed after the generational process

of the EA, given K-Means lack of recovering mechanisms

from local optima points, the final solution found by the

hybrid model may still be in a region of the problem space

that do not contain the global optimum point, so K-Means

will still be trapped in such region.

All memetic approaches have been able to improve the

comparison approaches, and the best evaluated memetic

combination between K-Means and GSO (according to the

Friedman-Nemenyi ranks and the evaluation on the aver-

age execution times) has been achieved when K-Means

executes for a limited number of steps, for each population

individual, after a prefixed number of GSO generations

(TMKGSO algorithm), followed by FMKGSO (where

individuals are improved by K-Means only if they fail to

improve for a prefixed number of consecutive generations).

Fig. 3 Average convergence graph for the best solution found so far X t
p for a Abalone, b E. coli, c Glass, d Image segmentation, e Page blocks

classification, f Yeast

Table 10 Overall evaluation on

real-world data sets: average

Friedman–Nemenyi ranks (and

position) for each metric. The

best results are bold faced

Algorithm J# CR" J#e2 D#
max D"

min
Total

GA-k-means 141.0858 (8) 112.6358 (6) 141.0883 (8) 121.0775 (5) 106.7317 (7) 34

DE-k-means 130.5425 (4) 115.8492 (5) 130.5425 (4) 111.9875 (1) 116.8375 (4) 18

PSO-k-means 138.2092 (7) 111.3783 (8) 138.2092 (7) 121.4925 (6) 105.0050 (8) 36

GSO-k-means 132.0817 (5) 117.3917 (4) 132.0783 (5) 118.5375 (2) 108.2017 (5) 21

BSA-k-means 136.5800 (6) 112.1883 (7) 136.5792 (6) 120.5900 (4) 106.9175 (6) 29

FMKGSO 95.6808 (2) 127.4767 (2) 95.7883 (2) 125.5967 (8) 148.2208 (1) 15

MKGSO 100.6042 (3) 132.1517 (3) 100.6300 (3) 124.8192 (7) 136.4942 (2) 18

TMKGSO 89.2158 (1) 134.9283 (1) 89.0842 (1) 119.8992 (3) 135.5917 (3) 9

The critical distance is CD = 2.3477
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It means that interchange between the global search offered

by EA operators and the local search promoted by

K-Means (i.e., the memetic framework) may represent a

robust approach to explore and exploit the problem search

space, leading to better optimization performances. By the

other hand, the use of just one K-Means step for each

Table 11 Average execution times for the real-world data sets (in seconds)

Data set GA-k-means DE-k-means PSO-k-means GSO-k-means BSA-k-means FMKGSO MKGSO TMKGSO

Abalone 3.2324 3.1665 3.1848 3.7053 3.2208 3.2161 11.993 2.2860

Banknote authentication 0.6849 0.6814 0.6726 0.8054 0.6885 0.7939 2.5665 0.6990

Blood transfusion 0.3938 0.3792 0.3808 0.4633 0.3883 0.3616 1.4789 0.2945

Cancer 0.4844 0.4633 0.4654 0.5878 0.4986 0.4299 1.8070 0.4041

Diabetes 0.5166 0.4940 0.4947 0.6159 0.5155 0.5596 1.8619 0.5105

E. coli 0.5914 0.5820 0.5820 0.8138 0.7540 1.4727 3.0436 0.9399

Glass 0.3681 0.3524 0.3547 0.5540 0.5159 0.6873 1.8540 0.5448

Heart 0.2361 0.2202 0.2214 0.3206 0.2607 0.2866 0.9268 0.2626

Image segmentation 6.2777 6.3355 6.2147 8.2467 7.3594 10.891 21.707 7.0738

Ionosphere 0.4540 0.4443 0.4522 0.7103 0.6920 0.5505 1.8175 0.5118

Iris 0.1545 0.1413 0.1473 0.2002 0.1546 0.2267 0.6869 0.1886

Landsat satellite images 47.173 47.168 47.064 55.600 50.703 85.043 152.46 53.855

Letter recognition 254.40 254.61 253.51 294.70 263.82 553.67 809.80 334.92

Optical recognition 105.40 106.37 106.07 129.77 129.52 169.31 343.48 100.96

Page blocks classification 7.2430 7.8097 6.9642 8.0242 8.0102 11.203 24.978 7.1443

Pen-digits 52.908 52.925 52.971 61.555 54.205 87.005 174.22 55.801

Seeds 0.2066 0.1930 0.1937 0.2777 0.2206 0.2795 0.8892 0.2312

Waveform 9.8666 9.8409 9.8524 11.496 10.095 11.378 33.455 9.7679

Wine 0.2291 0.2132 0.2155 0.3475 0.3063 0.3398 0.9966 0.2940

Yeast 3.1202 3.0142 3.0257 3.6732 3.3673 8.0542 11.848 4.5985

Table 12 Experimental results for synthetic data sets: within-cluster sum of squares (J#)

Data

set

GA-k-means DE-k-means PSO-k-means GSO-k-means BSA-k-means FMKGSO MKGSO TMKGSO

Disp01 3232.8 ±

1320.6

3468.9 ±

1815.9

2991.7 ± 0 2991.7 ± 0 3241.3 ±

1367.3

2991.7 ± 0 2991.7 ± 0 2991.7 ± 0

Disp02 7138.9 ±

1831.8

7820.9 ±

2646.7

7125.8 ±

1781.2

6905.3 ±

1355.5

7631.2 ±

2525.1

6657.8 ± 0 6657.8 ± 0 6657.8 ± 0

Disp03 8756.5 ±

1791.9

8602.0 ±

1646.6

8402.1 ±

1275.0

8363.8 ±

1065.8

8386.2 ±

1187.7

8169.1 ± 0 8169.1 ± 0 8169.1 ± 0

Disp04 9809.4 ±

1395.1

10904.6 ±

2466.6

9442.8 ± 0 10173.1 ±

1893.8

9825.9 ±

1458.2

9442.8 ± 0 9442.8 ± 0 9442.8 ± 0

Disp05 11942.3 ±

1042.3

12706.0 ±

2175.1

11752.0 ± 0 11937.5 ±

1015.7

11923.7 ±

940.7

11752.0 ±

0
11752.0 ± 0 11752.0 ± 0

Prox01 3407.4 ±

1186.0

3700.9 ±

1569.1

3095.8 ± 0 3095.8 ± 0 3251.8 ±

854.7

3095.8 ± 0 3095.8 ± 0 3095.8 ± 0

Prox02 3226.4 ± 526.8 3266.2 ± 545.1 3188.9 ±

508.8

3227.1 ± 528.0 3382.9 ±

577.1

2887.3 ± 0 2887.3 ± 0 2924.7 ±

205.2

Prox03 3304.6 ± 594.8 3530.1 ± 544.2 3266.1 ±

498.6

3267.0 ± 500.0 3393.3 ±

553.7

2919.8 ± 0 2987.5 ±

257.8

2956.1 ±

199.0

Prox04 3078.7 ± 446.8 3156.4 ± 460.2 3060.6 ±

411.5

3066.8 ± 422.3 2920.8 ±

240.9

2841.9 ± 0 2868.0 ±

143.1

2983.6 ±

327.1

Prox05 2725.4 ±

0.2862
2773.5 ± 182.9 2725.4 ±

0.2564
2725.3 ±

0.2300
2725.4 ±

0.2785
2725.2 ± 0 2725.2 ± 0 2725.2 ± 0
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individual from the population in each generation

(MKGSO approach), represented the worst combination for

the memetic models, in terms of computational costs

(measured by the average execution time), but such com-

bination still kept the good performances of all other

evaluated memetic approaches (FMKGSO and TMKGSO),

Table 13 Experimental results for synthetic data sets: correct Rand index (CR")

Data

set

GA-k-means DE-k-means PSO-k-means GSO-k-means BSA-k-means FMKGSO MKGSO TMKGSO

Disp01 0.9902 ±

0.0536

0.9805 ±

0.0741

1.0000 ± 0 1.0000 ± 0 0.9906 ±

0.0512

1.0000 ±

0
1.0000 ± 0 1.0000 ± 0

Disp02 0.9598 ±

0.0682

0.9321 ±

0.1036

0.9601 ±

0.0669

0.9685 ±

0.0500

0.9435 ±

0.0889

0.9777 ±

0
0.9777 ± 0 0.9777 ± 0

Disp03 0.9462 ±

0.0993

0.9615 ±

0.0671

0.9695 ±

0.0499

0.9677 ±

0.0582

0.9696 ±

0.0512

0.9775 ±

0
0.9775 ± 0 0.9775 ± 0

Disp04 0.9370 ±

0.0800

0.8743 ±

0.1412

0.9580 ± 0 0.9157 ±

0.1097

0.9368 ±

0.0805

0.9580 ±

0
0.9580 ± 0 0.9580 ± 0

Disp05 0.9469 ±

0.0613

0.9081 ±

0.1154

0.9581 ± 0 0.9454 ±

0.0691

0.9469 ±

0.0610

0.9581 ±

0
0.9581 ± 0 0.9581 ± 0

Prox01 0.9765 ±

0.0893

0.9616 ±

0.1000

1.0000 ± 0 1.0000 ± 0 0.9925 ±

0.0409

1.0000 ±

0
1.0000 ± 0 1.0000 ± 0

Prox02 0.8923 ±

0.1178

0.8839 ±

0.1211

0.9007 ±

0.1138

0.8923 ±

0.1179

0.8605 ±

0.1255

0.9681 ±

0
0.9681 ± 0 0.9597 ±

0.0463

Prox03 0.8533 ±

0.1294

0.8021 ±

0.1255

0.8588 ±

0.1191

0.8596 ±

0.1179

0.8386 ±

0.1213

0.9416 ±

0
0.9253 ±

0.0622

0.9326 ±

0.0495

Prox04 0.8298 ±

0.1068

0.8068 ±

0.1164

0.8276 ±

0.1103

0.8287 ±

0.1050

0.8594 ±

0.0839

0.8874 ±

0
0.8781 ±

0.0509

0.8433 ±

0.1005

Prox05 0.8452 ±

0.0055

0.8288 ±

0.0567

0.8435 ±

0.0051

0.8420 ±

0.0064

0.8453 ±

0.0052

0.8459 ±

0
0.8459 ± 0 0.8459 ± 0

Table 14 Experimental results for synthetic data sets: weighted quantization error (J#e2 )

Data

set

GA-k-means DE-k-means PSO-k-means GSO-k-means BSA-k-means FMKGSO MKGSO TMKGSO

Disp01 3.2328 ±

1.3206

3.4689 ±

1.8158

2.9917 ± 0 2.9917 ± 0 3.2413 ±

1.3673

2.9917 ±

0
2.9917 ± 0 2.9917 ± 0

Disp02 7.1389 ±

1.8318

7.8209 ±

2.6467

7.1258 ±

1.7812

6.9053 ±

1.3555

7.6312 ±

2.5251

6.6578 ±

0
6.6578 ± 0 6.6578 ± 0

Disp03 8.7565 ±

1.7919

8.6020 ±

1.6466

8.4021 ±

1.2750

8.3638 ±

1.0658

8.3862 ±

1.1877

8.1691 ±

0
8.1691 ± 0 8.1691 ± 0

Disp04 9.8094 ±

1.3951

10.905 ±

2.4666

9.4428 ± 0 10.173 ±

1.8938

9.8259 ±

1.4582

9.4428 ±

0
9.4428 ± 0 9.4428 ± 0

Disp05 11.942 ±

1.0423

12.706 ±

2.1751

11.752 ± 0 11.937 ±

1.0157

11.923 ±

0.9407

11.752 ±

0
11.752 ± 0 11.752 ± 0

Prox01 3.4074 ±

1.1860

3.7009 ±

1.5691

3.0958 ± 0 3.0958 ± 0 3.2518 ±

0.8547

3.0958 ±

0
3.0958 ± 0 3.0958 ± 0

Prox02 3.2264 ±

0.5268

3.2662 ±

0.5451

3.1889 ±

0.5088

3.2271 ±

0.5280

3.3829 ±

0.5771

2.8873 ±

0
2.8873 ± 0 2.9247 ±

0.2052

Prox03 3.3046 ±

0.5948

3.5301 ±

0.5442

3.2661 ±

0.4986

3.2670 ±

0.5000

3.3933 ±

0.5537

2.9198 ±

0
2.9875 ±

0.2578

2.9561 ±

0.1990

Prox04 3.0787 ±

0.4468

3.1564 ±

0.4602

3.0606 ±

0.4115

3.0668 ±

0.4223

2.9208 ±

0.2409

2.8419 ±

0
2.8680 ±

0.1431

2.9836 ±

0.3271

Prox05 2.7254 ±

0.0003
2.7735 ±

0.1829

2.7254 ±

0.0003
2.7253 ±

0.0002
2.7254 ±

0.0002
2.7252 ±

0
2.7252 ± 0 2.7252 ± 0
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showing its potential in terms of performance (considering

all five selected clustering metrics) when dealing with data

clustering problems, in comparison to all other state-of-the-

art non-memetic hybrid algorithms. In a future

investigation, some mechanisms, like a selection process

on the population individuals that would be improved by

K-Means in each GSO generation, would be performed in

an attempt to improve MKGSO computational costs.

Table 15 Experimental results for synthetic data sets: intra-cluster distance (D#
max)

Data

set

GA-k-means DE-k-means PSO-k-means GSO-k-means BSA-k-means FMKGSO MKGSO TMKGSO

Disp01 3.8415 ±

3.2624

4.4236 ±

4.4823

3.2458 ± 0 3.2458 ± 0 3.8622 ±

3.3763

3.2458 ±

0
3.2458 ± 0 3.2458 ± 0

Disp02 13.375 ±

3.4581

14.280 ±

4.2780

13.378 ±

3.4693

12.921 ±

2.4885

14.133 ±

4.4080

12.466 ±

0
12.466 ± 0 12.466 ± 0

Disp03 12.778 ±

1.9092

12.834 ±

2.6421

12.630 ±

2.5661

12.411 ±

1.3675

12.581 ±

2.3002

12.162 ±

0
12.162 ± 0 12.162 ± 0

Disp04 12.033 ±

1.9258

13.876 ±

4.0761
11.527 ± 0 12.576 ±

2.7213

12.225 ±

2.6688

11.527 ±

0

11.527 ± 0 11.527 ± 0

Disp05 13.070 ±

2.0900

14.538 ±

4.2234

12.689 ± 0 12.997 ±

1.6910

13.082 ±

2.1547

12.689 ±

0
12.689 ± 0 12.689 ± 0

Prox01 3.8775 ±

2.2080

4.7609 ±

3.7982

3.2974 ± 0 3.2974 ± 0 3.6763 ±

2.0760

3.2974 ±

0
3.2974 ± 0 3.2974 ± 0

Prox02 4.0095 ±

1.2998

4.1025 ±

1.3371

3.9165 ±

1.2543

4.0095 ±

1.2998

4.3813 ±

1.4055

3.1729 ±

0
3.1729 ± 0 3.2658 ±

0.5092

Prox03 3.9949 ±

1.3633

4.6991 ±

1.4728

3.9949 ±

1.3633

3.9949 ±

1.3633

4.3013 ±

1.4605

3.0491 ±

0
3.2318 ±

0.6953

3.1512 ±

0.5595

Prox04 3.5836 ±

1.0632

3.7080 ±

1.0301

3.5448 ±

0.9919

3.5292 ±

0.9737

3.1859 ±

0.4594

3.0354 ±

0
3.0927 ±

0.3139

3.3622 ±

0.7700

Prox05 2.8617 ±

0.0056

2.9290 ±

0.2535

2.8609 ±

0.0053

2.8612 ±

0.0055

2.8612 ±

0.0054

2.8574 ±

0
2.8574 ± 0 2.8574 ± 0

Table 16 Experimental results for synthetic data sets: inter-cluster separation (D"
min)

Data

set

GA-k-means DE-k-means PSO-k-means GSO-k-means BSA-k-means FMKGSO MKGSO TMKGSO

Disp01 70.431 ±

12.756

68.121 ±

17.653

72.760 ± 0 72.760 ± 0 70.417 ±

12.825

72.760 ±

0
72.760 ± 0 72.760 ± 0

Disp02 70.993 ±

17.191

64.584 ±

24.870

71.257 ±

16.153

73.106 ±

13.117

68.622 ±

21.143

75.501 ±

0
75.501 ± 0 75.501 ± 0

Disp03 65.536 ±

18.336

70.374 ±

12.010

69.540 ±

11.051

69.607 ±

10.889

69.506 ±

10.952

71.723 ±

0
71.723 ± 0 71.723 ± 0

Disp04 67.101 ±

13.943

55.316 ±

26.032

70.749 ± 0 62.980 ±

20.149

66.824 ±

14.937

70.749 ±

0
70.749 ± 0 70.749 ± 0

Disp05 71.039 ±

11.266

70.418 ±

15.102

73.096 ± 0 71.290 ±

9.8895

71.105 ±

10.899

73.096 ±

0
73.096 ± 0 73.096 ± 0

Prox01 44.267 ±

11.207

42.920 ±

13.593

47.211 ± 0 47.211 ± 0 47.235 ±

0.1302
47.211 ±

0
47.211 ± 0 47.211 ± 0

Prox02 9.9199 ±

4.5234

9.5492 ±

4.7216

10.244 ±

4.3635

9.8985 ±

4.5569

10.010 ±

8.1720

12.831 ±

0
12.831 ± 0 12.514 ±

1.7377

Prox03 8.9750 ±

4.0264

7.6806 ±

4.2878

8.9680 ±

4.0372

8.9385 ±

4.0787

9.0281 ±

4.0169

11.774 ±

0
11.205 ±

2.1630

11.497 ±

1.5176

Prox04 10.065 ±

3.2354

9.8634 ±

3.6289

9.6850 ±

3.6083

10.000 ±

3.4498

10.838 ±

2.4424

11.638 ±

0
11.365 ±

1.4917

10.253 ±

3.1510

Prox05 11.617 ±

0.0477

12.002 ±

1.5962
11.582 ±

0.0650

11.536 ±

0.0531

11.608 ±

0.0566

11.537 ±

0

11.537 ± 0 11.537 ± 0
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As future works, we intend to evaluate the influence of

the adopted distance function on the behavior of the pro-

posed memetic algorithms, so the proposed approaches

would be more robust to deal with clusters with different

formats and shapes, overcoming some limitations of the

standard Euclidean distance. Also, new fitness functions

will be introduced and tested, using a larger testing bed,

that will be obtained by the development of alternative

synthetic data set configurations and scenarios. Finally,

mechanisms for the automatic determination of the best

number of clusters will be implemented, in such a way that

such parameter would be estimated by the memetic evo-

lutionary model itself, instead of being provided as an a

priori input parameter to the algorithm.

Fig. 4 Results for Prox05 data set: a Original data set, b GA-k-means, c DE-k-means, d PSO-k-means, e GSO-k-means, f BSA-k-means,

g FMKGSO, h MKGSO, i TMKGSO

Table 17 Overall evaluation on

synthetic data sets: average

Friedman-Nemenyi ranks (and

position) for each metric. The

critical distance is CD = 3.3202.

The best results are bold faced

Algorithm J# CR" J#e2 D#
max D"

min
Total

GA-k-means 134.1333 (6) 119.8133 (6) 134.1333 (6) 126.6117 (6) 119.5967 (4) 24

DE-k-means 146.6967 (8) 106.8250 (8) 146.6950 (8) 138.5300 (8) 110.5567 (7) 39

PSO-k-means 127.0100 (4) 120.5133 (4) 127.0100 (4) 121.9817 (4) 119.0733 (5) 21

GSO-k-means 127.7867 (5) 110.0250 (7) 127.7883 (5) 125.5100 (5) 108.9217 (8) 30

BSA-k-means 136.6383 (7) 119.9783 (5) 136.6383 (7) 126.8050 (7) 118.5300 (6) 32

FMKGSO 95.7500 (1) 130.4500 (1) 95.7500 (1) 106.8500 (1) 130.2500 (1) 5

MKGSO 96.2650 (2) 129.9283 (2) 96.2650 (2) 107.2517 (2) 129.8117 (2) 10

TMKGSO 99.7200 (3) 126.4667 (3) 99.7200 (3) 110.4600 (3) 127.2600 (3) 15
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José-Garcı́a A, Gómez-Flores W (2016) Automatic clustering using

nature-inspired metaheuristics: a survey. Appl Soft Comput

41:192–213

Junaed A, Akhand M, Murase K, et al (2013) Multi-producer group

search optimizer for function optimization. In: 2013 Interna-

tional Conference on Informatics, Electronics and Vision

(ICIEV), pp. 1–4. IEEE

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (abc)

algorithm. J Global Optim 39(3):459–471

Kennedy J (2006) Swarm intelligence. Handbook of nature-inspired

and innovative computing. Springer, Berlin, pp 187–219

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural

Networks, 1995. Proceedings., IEEE International Conference

on, vol. 4, pp. 1942–1948. IEEE

Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence.

Kaufmann, San Francisco

Koza JR, Koza JR (1992) Genetic programming: on the programming

of computers by means of natural selection, vol 1. MIT press,

Cambridge

634 L. D. S. Pacifico et al.

123



Krishnaprabha R, Aloor G (2014) Group search optimizer algorithm

in wireless sensor network localization. In: 2014 International

Conference on Advances in Computing, Communications and

Informatics (ICACCI), pp. 1953–1957. IEEE

Latiff NA, Malik NNA, Idoumghar L (2016) Hybrid backtracking

search optimization algorithm and k-means for clustering in

wireless sensor networks. In: 2016 IEEE 14th Intl Conf on

Dependable, Autonomic and Secure Computing, 14th Intl Conf

on Pervasive Intelligence and Computing, 2nd Intl Conf on Big

Data Intelligence and Computing and Cyber Science and

Technology Congress (DASC/PiCom/DataCom/CyberSciTech),

pp. 558–564. IEEE

Li L, Liang Y, Li T, Wu C, Zhao G, Han X (2019) Boost particle

swarm optimization with fitness estimation. Nat Comput

18(2):229–247

Li L, Xu S, Wang S, Ma X (2016) The diseases clustering for multi-

source medical sets. In: 2016 International Conference on

Identification, Information and Knowledge in the Internet of

Things (IIKI), pp. 294–298. IEEE

Li T, Dong H (2019) Unsupervised feature selection and clustering

optimization based on improved differential evolution. IEEE

Access 7:140438–140450

Li Xl (2002) An optimizing method based on autonomous animats:

fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38

Li Yz, Zheng Xw, Lu Dj (2015) Virtual network embedding based on

multi-objective group search optimizer. In: 2015 10th Interna-

tional Conference on Broadband and Wireless Computing,

Communication and Applications (BWCCA), pp. 598–601.

IEEE

Li Z, Hu Z, Miao Y, Xiong Z, Xu X, Dai C (2019) Deep-mining

backtracking search optimization algorithm guided by collective

wisdom. Mathematical Problems in Engineering 2019

Lin CJ, Huang ML (2019) Efficient hybrid group search optimizer for

assembling printed circuit boards. AI EDAM 33(3):259–274

Liu F, Xiong L (2011) Survey on text clustering algorithm-research

present situation of text clustering algorithm. In: 2011 IEEE 2nd

International Conference on Software Engineering and Service

Science, pp. 196–199. IEEE

Liu Y, Wu X, Shen Y (2011) Automatic clustering using genetic

algorithms. Appl Math Comput 218(4):1267–1279

MacQueen J, et al (1967) Some methods for classification and

analysis of multivariate observations. In: Proceedings of the fifth

Berkeley symposium on mathematical statistics and probability,

vol. 1, pp. 281–297. California, USA

Masoud MZ, Jaradat Y, Zaidan D, Jannoud I (2019) To cluster or not

to cluster: A hybrid clustering protocol for wsn. In: 2019 IEEE

Jordan International Joint Conference on Electrical Engineering

and Information Technology (JEEIT), pp. 678–682. IEEE
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