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Abstract
RNA cotranscriptional folding refers to the phenomenon in which an RNA transcript folds upon itself while being

synthesized out of a gene. Oritatami model is a computation model of this phenomenon, which lets its sequence (transcript)

of beads (abstract molecules) fold cotranscriptionally by the interactions between beads according to its ruleset. We study

the problem of designing a transcript that folds into the given conformation using the given ruleset, which is called the

transcript design problem. We prove that the problem is computationally difficult to solve (NP-hard). Then we design

efficient poly-time algorithms with additional restrictions on the oritatami system.

Keywords Oritatami system � Self-assembly � RNA cotranscriptional folding � Optimization

1 Introduction

A single-stranded RNA is synthesized sequentially from its

DNA template by an RNA polymerase enzyme (tran-

scription). The RNA transcript folds upon itself according

to the base pairing rule—(A, U) and (C, G)—with respect

to hydrogen bonds and gives rise to functional 3D-struc-

tures. Note that a synthesis direction and a rate at which

nucleotides are added allow an RNA to fold over a pre-

defined pathway into a non-equilibrium structure while

being transcribed (Xayaphoummine et al. 2007). This

phenomenon is called cotranscriptional folding. Namely,

we may understand cotranscriptional folding as a

consequence of finding local optima for a sliding window

on the transcript, not the global optimum conformation.

Cotranscriptional folding plays an important role in

algorithmic self-assembly. For example, Geary et al.

(2014) studied the architecture for RNA tiles (called RNA

origami) and proposed a method to design a single-stran-

ded RNA that cotranscriptionally folds into a target struc-

ture. Oritatami model (OM) is the first mathematical model

for algorithmic self-assembly by cotranscriptional fold-

ing (Geary et al. 2016). Given a sequence of molecules,

OM assumes that the sequence is transcribed linearly, and

predicts a geometric structure of the folding based on the

reaction rate of the folding. An oritatami system (OS) in

OM defines a sequence of beads (which is the transcript)

and a set of rules for possible intermolecular reactions

between beads. Here is how OS runs: Given a sequence of

beads, the system takes a single bead (we call a current

bead) together with a lookahead of a few succeeding beads,

and determines the best location of the current bead that

maximizes the number of possible interactions from a

possible transcription of the lookahead. The lookahead

represents the reaction rate of the cotranscriptional folding

and the number of interactions represents the energy level

(Fig. 1). Researchers designed several OSs including a

binary counter (Geary et al. 2019) and a Boolean formula

simulator (Han et al. 2018). It is known that OM is Turing

complete (Geary et al. 2018) and there are several methods

to optimize OSs (Han and Kim 2017; Han et al. 2017).
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The inverse of RNA folding is RNA design: given a

secondary structure, find a transcript that uniquely folds

into the input structure. If there are several possible fold-

ings that the transcript can fold, then all the others must

have higher energy levels than the input structure. We call

this problem the RNA design problem. Hofacker et al.

(1994) introduced the RNA design problem under non-

cotranscriptional folding, and the complexity of the prob-

lem is still unknown (Bonnet et al. 2018). The problem has

applications in pharmaceutical research, biochemistry,

synthetic biology or RNA nanostructures (Churkin et al.

2017; Hales et al. 2017). We consider the RNA design

problem of an OS. In particular, we consider the case when

we have the complete information about an OS including

the bead type alphabet, pairing ruleset, delay, arity, and its

final conformation except for beads on the conformation,

and we need to find the transcript that folds the target

conformation. Similar to the RNA design problem, this

problem can be useful in several applications. For example,

given a target structure and a generating system (OS), we

can determine whether or not the generating system can

produce the target structure and, if so, what is the correct

transcript that indeed produces the target structure.

For this problem, we assume that the target path is given

and the solution transcript should fold exactly into the

given path—this assumption is reasonable for ‘‘problem

solving’’ oritatami systems where the exact location of

each bead is critical in computation. For a more relaxed

version of the problem, we may want to find a transcript

that folds into the given shape, regardless of a path as long

as the path fills the shape. In this setting, the starting and

the ending point of the path are flexible. This problem is

called the geometric structure construction by OS, and

generalized OS design methods with fixed delays for

arbitrary shapes were proposed when upscaling of the

shape is allowed (Demaine et al. 2018; Han and Kim

2018). Those methods find a transcript with the fixed

condition (delay, arity, ruleset) for any given input shape,

but not for an arbitrary condition. If upscaling of the shape

is not allowed, the problem is still open.

We first propose a general parameterized algorithm to

solve the transcript design problem (TDP). We then tackle

the CTDP, a restricted version of TDP where the ruleset is

complementary. We prove that the CTDP is

computationally difficult (NP-hard). Yet we also show that

with a few restrictions on delay d, arity a and the size jHj
of the ruleset, we can solve the CTDP in linear time.

• We can solve CTDP with a fixed parameter linear

algorithm (Theorem 1).

• CTDP is NP-hard (Theorem 2).

• CTDP is NP-complete when d ¼ 3 and

jHj ¼ 3 (Theorem 3).

• CTDP can be solved in linear time when

d ¼ 1; jHj ¼ 1, a ¼ 1 or a� 4 (Lemmas 1 and 2).

• If we allow isomorphism to the seed, the ruleset size of

CTDP can be reduced to 27 while preserving

solvability (Lemma 3).

• In general, there is no lower bound for the ruleset size

where CTDP is always solvable (Lemma 4).

2 Preliminaries

Let w ¼ a1a2. . .an be a string over R for some inte-

ger n and bead types a1; . . .; an 2 R. The length |w| of w is

n. For two indices i, j with 1� i� j� n, we let w[i, j] be

the substring aiaiþ1. . .aj�1aj; we use w[i] to denote w[i, i].

We use wn to denote the catenation of n copies of w.

Oritatami systems operate on the triangular lattice T

with the vertex set V and the edge set E. A conformation

instance, or configuration, is a triple (P, w, H) of a directed

path P in T, w 2 R� [ RN, and a set H � fði; jÞ
�
� 1� i; iþ

2� j; fP½i�;P½j�g 2 Eg of hydrogen-bond-based interac-

tions (interactions for short). This is to be interpreted as the

sequence w being folded while its i-th bead w[i] is placed

on the i-th point P½i� 2 V along the path and there is an

interaction between the i-th and j-th beads if and only if

ði; jÞ 2 H. The fact that iþ 2� j implies that w[i] and

w½iþ1� cannot form an interaction, since they are cova-

lently bonded. Configurations ðP1;w1;H1Þ and ðP2;w2;H2Þ
are congruent provided w1 ¼ w2, H1 ¼ H2, and P1 can be

transformed into P2 by a combination of a translation, a

reflection, and rotations by 60	. The set of all configura-

tions congruent to a configuration (P, w, H) is called the

conformation of the configuration and denoted by

C ¼ ½ðP;w;HÞ�. We call w a primary structure of C.

beadinteraction

a

b
b

b b

bd

c e
(a, d), (c, e)

interaction rules

conformation

abbcbdbbe

⇒transcript

RNA Origami Oritatami System

Nucleotides Beads

Transcript
Sequence of beads
connected by a line

h-bonds between nucleotides Interactions

Cotranscriptional folding rate Delay

Resulting secondary structure Conformation

(a) (b)

Fig. 1 a Analogy between RNA

origami and oritatami system,

b visualization of oritatami

system and its terms
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A ruleset H � R
 R is a symmetric relation specifying

between which bead types can form an interaction. A

ruleset is complementary if for all a 2 R, there exists an

unique b 2 R such that ða; bÞ 2 H. For a complementary

ruleset, we denote the pairing bead type b as a. An inter-

action ði; jÞ 2 H is valid with respect to H, or simply H-

valid, if ðw½i�;w½j�Þ 2 H. We say that a conformation C is

H-valid if all of its interactions are H-valid. For an inte-

ger a� 1, C is of arity a if the maximum number of

interactions per bead is a, that is, if for any k� 1,
�
�fi j

ði; kÞ 2 Hg
�
�þ

�
�fj j ðk; jÞ 2 Hg

�
�� a and this inequality

holds as an equation for some k. By C� a, we denote the set

of all conformations of arity at most a.
Oritatami systems grow conformations by elongating

them under their own ruleset. For a finite conformation C1,

we say that a finite conformation C2 is an elongation of C1

by a bead b 2 R under a ruleset H, written as C1!
H

bC2, if

there exists a configuration (P, w, H) of C1 such that C2

includes a configuration ðP � p;w � b;H [ H0Þ, where p 2 V

is a point not in P and H0 � ði; jPjþ1Þ
�
� 1� i�

�

jPj � 1; fP½i�; pg 2 E; ðw½i�; bÞ 2 Hg. This operation is

recursively extended to the elongation by a finite sequence

of beads as follows: For any conformation C, C!H kC; and

for a finite sequence of beads w and a bead b, a confor-

mation C1 is elongated to a conformation C2 by w � b,
written as C1!

H
w�bC2, if there is a conformation C0 that

satisfies C1!
H

wC
0 and C0!H bC2.

An oritatami system (OS) is a 6-tu-

ple N ¼ ðR;w;H; d; a;Cr ¼ ½ðPr;wr;HrÞ�Þ, where H is a

ruleset, d� 1 is a delay, and Cr is an H-valid initial seed

conformation of arity at most a, upon which its transcript

w 2 R� [ Rx is to be folded by stabilizing beads of w one

at a time and minimize energy collaboratively with the

succeeding d� 1 nascent beads. The set FðNÞ of confor-

mations foldable by this system is defined recursively, as

follows: the seed Cr is in FðNÞ; then provided that an

elongation Ci of Cr by the prefix w[1 : i] is foldable (i.e.,

C0 ¼ Cr), its further elongation Ciþ1 by the next bead

w½iþ1� is foldable if

C2 2 argminC2EaðC1;x½1�Þ min DGðC0Þ
�
� C0 2 EaðC; x½2; d�ÞÞ

� �

;

ð1Þ

where DGðC0Þ is an energy function that assigns to C0 with
the negation of the number of h-interactions within C0 as
energy. Informally speaking, C2 is a conformation obtained

by elongating C1 by the bead x[1] such that the

beads x½1�; x½2�; . . .; x½d� create as many h-interactions as

possible. Then, we write C1,!
N

xC2, and the superscript N is

omitted whenever N is clear from the context. Through the

folding, the first bead of x is stabilized. A conformation

foldable by N is terminal if none of its elongations is

foldable by N. An OS is deterministic if, for all i, there

exists at most one Ciþ1 that satisfies (1). Namely, a deter-

ministic OS folds into a unique terminal conformation.

Figure 2 illustrates an example of an OS with delay 3,

arity 4, complementary ruleset fða; aÞg and tran-

script w ¼ aaaaaaaaa; in (a), the system tries to stabilize

the first bead a of the transcript, and the elongation P1

gives 2 interactions, while the elongation P2 gives 4 in-

teractions, which is the most stable one. Thus, the first

bead a is stabilized according to the location in P2. In

(b) and (c), P2 is the most stable elongation and a’s are

stabilized according to P2. As a result, the terminal con-

formation is given as in (d). Note that the system grows the

terminal conformation straight without external interac-

tions, and we can use an arbitrary prefix of ðaaaaaaÞ� to

construct a conformation of an arbitrary length. This

example is called a glider (Geary et al. 2019) and used in

Sect. 3.1.

Conformations C1 and C2 are isomorphic if there exist

an instance ðP1;w1;H1Þ of C1 and an instance ðP2;w2;H2Þ
of C2 such that P1 ¼ P2 and H1 ¼ H2. For two sets C1 and
C2 of conformations, we say that two sets are isomorphic if

there exists an one-to-one mapping C1 2 C1 ! C2 2 C2
such that C1 and C2 are isomorphic. We say that two ori-

tatami systems are isomorphic if they fold the isomorphic

set of foldable terminal conformations.

We define the transcript design problem (TDP).

Problem 1 (Transcript Design Problem (TDP)) Given an

alphabet R, a ruleset H, a delay d, an arity a, a

seed Cr ¼ ½ðPr;wr;HrÞ�Þ, a path P and a set H of inter-

actions, find a transcript w such that an

OS N ¼ ðR;w;H; d; a;CrÞ uniquely folds a terminal

conformation C ¼ ½ðP;w;HÞ�.1

The complementary transcript design problem (CTDP)

is a subproblem of the TDP in which an input ruleset is

required to be complementary.

3 Hardness of the TDP and the CTDP

We propose a generalized algorithm to solve the TDP, and

prove hardness of CTDP. We first introduce the concept of

the event horizon and its context, which will be used in the

rest of the paper.

By definition, the stabilization of a bead w[i] in a delay-

d OS is not affected by any bead whose distance from

w½i�1� is greater than dþ 1. On the triangular lattice, we

may draw a hexagonal border of radius dþ 1 from w½i�1�

1 For the hardness proof, we use the decision variant of TDP, which

determines whether or not such a transcript exists.
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to denote the set of points that may affect the stabilization,

and we call the hexagon the event horizon of w[i]. Note that

the event horizon can have at most 3ðdþ 1Þðdþ 2Þ beads
within, aside from w[i]. We call the already stabilized

beads within the event horizon, along with interactions, as

the event horizon context to represent the context used to

stabilize w[i]. Thus, if two beads w[i] and w[j] have the

same event horizon context, then w[i] and w[j] will be

stabilized at the same position with the same interactions,

considering a translation, a reflection or a rotation (see

Fig. 3.).

Now, we define the dependence distance of a TDP

instance.

Definition 1 Given a TDP instance ðR;H; d; a;Cr;P;HÞ,
we define the dependence distance of the TDP instance as

follows: Let w[i] be the bead on the ith point of P. For each

bead w[i], let ri be the smallest index such that while sta-

bilizing w[i], w½ri� is in the event horizon context of w[i].

We call max
1� i� jPj

ðiþ d� 1� riÞ the dependence distance

Namely, the dependence distance is the upper bound of

the distance between a bead w[i] and another

bead w[j] such that w[j] affects the stabilization of w[i].

Note that the distance is independent from the delay of the

system. Once the distance is bounded by a constant t, we

can incrementally construct a transcript while having

information of only t beads at a time, which results in the

following theorem.

Theorem 1 Given a TDP instance ðR;H; d; a;Cr;P;HÞ,
we can solve the TDP in OðjRjt 
 jPjÞ, where t is the

dependence distance of the TDP instance.

Note that this general algorithm is fixed parameter

linear.

Next, we show that the CTDP is NP-hard in a general

condition. We borrow the multi-chamber-gun construction

from Ota and Seki (2017) to reduce 1-IN-3-SAT to the

CTDP at a long delay. The 1-IN-3-SAT problem is a variant

of the 3SAT problem: Given m clauses C1; . . .;Cm where

each clause is a disjunction of exactly three literals,

determine whether or not there exists a truth assignment to

the variables occurring so that exactly one literal is true in

each clause. The seed of multi-chamber-gun shape encodes

the clauses of a given 1-IN-3-SAT instance. In order to go

through the cannon tube as specified by the target confor-

mation, the transcript must encode a satisfying assignment

of truth values (T/F) to n variables v1; v2; . . .; vn for each

of the m clauses in a uniform format like

ðx1;1x1;2. . .x1;nÞ; ðx2;1. . .x2;nÞ; . . .; ðxm;1. . .xm;nÞ. For all

1� i� n, the assignments to vi for every pair of the adja-

cent clauses are forced to be identical by chambers. The 1-

IN-3-SAT instance is thus reduced to a TDP instance, and in

fact, this reduction works with complementary ruleset.

Theorem 2 For all a� 1, the complementary transcript

design problem (CTDP) at arity a is NP-hard. It remains

NP-hard even if an input ruleset is restricted to be of size at

most 2.

Proof We reduce an instance of 1-IN-3-SAT with n vari-

ables v1; v2; . . .; vn and m clauses C1;C2; . . .;Cm to an

instance of the CTDP for some n� 3 and m� 1. Assume

that the 1-IN-3-SAT instance is free from negative literal; the

problem remains NP-hard under this assumption (Garey

and Johnson 1979). The CTDP instance employs the four

bead types �; y;P;N and the complementary rule-

set H ¼ fð�; yÞ; ðP;NÞg. Here we set its arity to 2; the

reduction will turn out to be modifiable for the other arity

easily, which we shall explain at the end of this proof. Its

delay is set to 8nþ 16. Its seed is colored in red in Fig. 4.

Figure 4 illustrates the i-th block of the final conforma-

tion of the reduced CTDP instance. The block consists of

the winding central tube, nþ 1 upper chambers, and the

same number of lower chambers. The final conformation

consists of the m blocks (first one to the m-th) catenated

next to each other via their central tubes in this order from

left to right, and the transcript goes through the central tube

from left to right as drawn by the thick black arrow. The i-

th clause Ci contains exactly 3 positive literals. The first

aa

P1

P2
P2

(a) (b)

P1

P2

(c)

P1

(d)

⇒

Fig. 2 An example OS with delay 3 and arity 4. Filled and unfilled circles represent bead types a and a, respectively. The seed is colored in red,

elongations are colored in blue, and the stabilized beads and interactions are colored in black. (Color figure online)
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lower chamber of the i-th block encodes this clause by

setting n ‘‘literal’’ beads ‘i;1; ‘i;2; . . .; ‘i;n as ‘i;j ¼ N if vj 2
Ci or ‘k;j ¼ � otherwise.

See beads along the wall of the central tube determine

the type of almost all beads of the transcript. Note that if

the type of a bead is determined by complementarity if it is

bonded to another with fixed bead type. For example, the

second bead of the transcript in Fig. 4 must be of type

P because it is bonded to an N-bead (in the figure, it is

indexed but this is simply for the reference from this

proof). How about beads free from bonds? By definition,

when being stabilized, a bead is to be bonded to an adjacent

bead that has not formed a bonds yet as long as the

ruleset allows. We can find a bead on the transcript that is

not bonded in the final conformation but is surrounded by a

�, P, and y-beads; such beads must be of type P. Likewise,

if a bead is surrounded by �, P, and N without being

bounded, then it must be of type �. If a bead is surrounded

by � and y without being bonded, it can be of type P or

w[i]

w[j]

Fig. 3 Two same event horizon contexts when d ¼ 2 and we have two

bead types (black and white circles). The current bead, pointed by an

arrow, is stabilized at the same position in both event horizon contexts

Pi−1,2
Pi,1

N

N

Pi,1N

N

N

Pi,1 N

xi,1

xi,1

xi,2

N P

N = i,1

xi,1

N = i,2

xi,2

N

P N

y

N

xi+1,1

xi,1

N

N

P

Pi+1,1

P

N

xi+1,2

xi,2

Pi+1,1

N

N

P

y

P N

P

Pi,2

N

NN

P

xi,2

P

N

N

NPi+1,1

xi+1,1

N

xi+1,2

Pi+1,1

P

N

N

N

N

P

Fig. 4 The i-th block of the final conformation for the proof of Theorem 2. The thick arrow shows how the transcript is supposed to fold, and

thinner lines show other possible foldings. (Color figure online)
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N. In this way, we can infer that the transcript must be of

the form w1w2. . .wm, where

wi ¼ �5P �5 xi;1 �7 xi;2 �7 � � � �7 xi;n �7 P

for some xi;j 2 fP;Ng for all 1� i�m and 1� j� n. The

length of wi is 8nþ 12. Let us call xi;j’s variable beads.

Note that d ¼ jwij þ 4.

Now we show that in order for the transcript to fold into

the final conformation deterministically, it must satisfy the

following two conditions:

1. For all 1� i�m, if Ci ¼ vi1 _ vi2 _ vi3 for some

1� i1\i2\i3 � n, then exactly one of the

xi;i1 ; xi;i2 ; xi;i3 is P and the other two are N. Namely,

for each clause, we assign exactly one positive

variable.

2. For all 1� j� n, x1;j ¼ x2;j ¼ . . . ¼ xm;j. Namely, vari-

able assignments are the same across all clauses.

Suppose the OS has folded w correctly up to the end of

wi�1, that is, up to Pi�1;2 in Fig. 4. The nascent fragment

then is wi�4. The two N’s of the first upper chamber pulls

this fragment upward by strength 2. The two N’s at the end

of the block pulls it through the central tube rightward. Any

chamber but the first upper or lower can pull it inward just

by strength at most 1 because at this time the bead Piþ1;2

has not been transcribed yet. Thus, in order to stabilize the

next �-bead downward, the first lower chamber must pull it

inward by strength at least 3. The two N’s of this chamber

forms two bonds with Pi;1. This chamber is equipped with

the other three N’s, as already mentioned, and they are

capable of binding as long as the corresponding variable

bead is not N but P. This corresponds to the condition that

at least one of the literals must be satisfied.

The next branching is after the first two beads of wi are

stabilized. The nascent fragment then is ð�2Þ�1
wi �5 P. The

P at the end of this fragment lets the first upper and lower

chambers of the next block pull this fragment inward by

strength 4. Any other chamber of this block can pull it

inward by strength at most 3 because none of the variable

beads of wiþ1 has not been transcribed. Thus, if this

fragment were pulled toward the first lower chamber by

strength 4 or more, then the next bead would be stabilized

downward, that is, incorrectly. Thus, at least two of

xi;i1 ; xi;i2 ; xi;i3 must be N. As a result, exactly one of them

must be P.

Having proved the necessity of the first condition, we

now see the remaining chambers impose the second. After

the second branch, the transcript cannot help but fold

correctly until it reaches the third branch, at the entrance of

the second upper chamber. The nascent fragment then is

�3xi;1. . .Piþ1;1 �4 xiþ1;1. It is still pulled toward the next

block by strength 4. The chamber above pulls it inward by

strength at most 4 because all but its four beads are � and

P beads and N beads are not next to each other along the

transcript. Its N’s can bind to Piþ1;1. The P and the other

N of the chamber would pull the fragment inward with two

more bonds, i.e., 4 in total, if xi;1 ¼ N and xiþ1;1 ¼ P. Thus,

in order to stabilize the next bead upward, xi;1 ¼ N and

xiþ1;1 ¼ P must not hold. Likewise, the next lower chamber

prevents xi;1 ¼ P and xiþ1;1 ¼ N. As a result, xi;1 and xiþ1;1

must be assigned with the same bead type (P or N). h

3.1 Graph-theoretic approach to the CTDP

In the CTDP, since the ruleset is complementary, we may

say that each bead type belongs to a rule in the ruleset.

When the path P and the set H of interactions are given,

we can retrieve necessary dependence conditions between

two adjacent beads according to three different cases:

1. If two beads are connected with an interaction: Two

beads should belong to the same rule.

2. If two beads are connected with a path: There is no

necessary condition between two beads.

3. If there is no relationship between two beads: Two

beads should not belong to the same rule, or two beads

should have the same type.

We call these conditions static dependence (s-dependence

in short), since these conditions are derived from the given

path and the set of interactions, which do not include

dynamics of stabilization of beads. From the first condition,

if one of two beads is already stabilized or in the seed, we

can find the bead type for the other bead. Moreover, if a set

of beads are connected with interactions, one bead in the

set determines bead types for the rest in the set. Therefore,

we may regard this set of beads as a dependent set of beads.

Each set should have one representative bead that repre-

sents the bead type assignment for all beads in the set, and

additional information to find the transcript can be repre-

sented by the relationship between these representative

beads. It takes O(|w|) time to retrieve dependent sets from

the given path and the set of interactions. When there exists

an odd length cycle of interactions, we can immediately tell

that the answer to the CTDP is no. Aside from this case,

since each dependent set uses bead types that belong to one

rule, we may represent each rule by a distinct color and

regard the CTDP as a variant of the graph coloring problem

(Fig. 5).

There exists another category of conditions called

dynamic dependence (d-dependence in short), which

include dynamics of stabilization of beads. While stabi-

lizing each bead of the transcript, there should exist one

elongation of length d that is used to stabilize the current

bead at the designated point. Also, for all elongations that

are not used to stabilize the current bead at the designated
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point, the number of interactions should be less than the

number of interactions from the most stable elongation. For

each possible bead type assignment for beads within the

event horizon context, we can determine the possible bead

type assignment for the current bead. According to

dynamic dependence, there may exist some dependent sets

that should have interactions with each other, and thus can

be merged.

Now, we prove that the CTDP is NP-complete even for

delay 3.

Theorem 3 The CTDP is NP-complete when d ¼ 3 and

jHj ¼ 3.

Proof Once a proper transcript is given, we can check

whether the given transcript successfully folds along the

given path with the given set of interactions within

O(|w|) time. Thus, the problem is NP.

We prove that the problem is NP-hard, using the

reduction from the planar 3-coloring problem (Garey and

Johnson 1979). Suppose that we are given a planar graph

with n vertices. We can embed the graph on a square grid

graph of size Oðn2Þ (Harel and Sardas 1998). An edge in

the original planar graph is represented by a set of vertical

and horizontal edges on the square grid graph.

The basic idea is to construct a path that spans the

square grid graph horizontally using zigs and zags. We will

represent a vertex from the original planar graph by a

dependent set of beads connected with interactions, and an

edge by a boundary between two dependent sets. We will

force the adjacent dependent sets assign bead types from

different rules.

We use the glider in Fig. 2 as a basic module, since it

uses only 2 complementary bead types. We assume that we

start to span the square grid graph from the northeast

corner. We combine 24 beads in one zig and adjacent zag

as one module to represent one vertex of the square grid as

in Fig. 6. Note that all vertices are connected with

interactions. The same paths are used to represent a

horizontal edge of the square grid, and a vertical edge of

the square grid is represented by interactions between two

modules.

First, we present the module for a vertical edge of the

square grid. If the edge does not represent an edge from the

original graph, then the upper vertex module and the lower

vertex module should be connected by interactions as in

Fig. 7a. If the edge represents an edge from the original

graph, bead types from different rules should be assigned

for the upper vertex module and the lower vertex module

respectively. Thus, there should be no interaction between

the upper vertex module and the lower vertex module, as in

Fig. 7b. In the red circle, a bead in the lower vertex module

has no interaction with both complementary bead types in

the upper vertex module, and they are not connected by the

path either. This forces the assignment of bead types from

different rules for the upper vertex module and the lower

vertex module respectively.

Next, we present the module for a horizontal edge of the

square grid. If the edge does not represent an edge from the

original graph, we can use the same module as the vertex

module. If the edge represents an edge from the original

graph, we need to embed two horizontally dependent sets

in the module. Figure 7c shows the module for two

horizontal edges of the square grid, where the blue line is

the borderline between two dependent sets. While folding

in a glider path, the module successfully embeds two

dependent sets. In the red line, a bead in the right

Fig. 5 Finding dependent sets. The seed is colored in red, and the

dependent sets are colored in blue. (Color figure online)

Fig. 6 A module that represent a vertex of the square grid
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dependent set has no interaction with both complementary

bead types in the left dependent set, and they are not

connected by the path either. This forces the assignment of

bead types from different rules for two dependent sets.

Lastly, we present the module for turns of zigs and zags,

which should also represent a vertical edge of the square

grid. If the edge does not represent an edge from the

original graph, then the upper vertex module and the lower

vertex module should be connected by interactions as in

Fig. 8a. If the edge represents an edge from the original

graph, there should be no interaction between the upper

vertex module and the lower vertex module, as in Fig. 8b.

In the red circle, a bead in the lower vertex module has no

interaction with both complementary bead types in the

upper vertex module, and they are not connected by the

path either. This forces the assignment of bead types from

different rules for the upper vertex module and the lower

vertex module respectively.

We have successfully transformed a vertex in the

original graph to a dependent set of beads, and an edge

to a boundary between adjacent dependent sets, and forced

that adjacent dependent sets should have bead types from

different rules. Thus, we can color the original graph with

three colors if and only if we can find a bead type

assignment that satisfies s-dependence using three com-

plementary rules. Moreover, for all cases, if s-dependence

in a module is satisfied, so is d-dependence—regardless of

the possible context, the module folds as a desired

conformation. Thus, this bead type assignment implies a

transcript that can be an answer for the reduced CTDP

instance. h

4 Delay-1 CTDP

Knowing that the TCP and the CTDP are NP-hard, we now

try to find sufficient conditions that make the CTDP solvable

in polynomial time. Here, we focus on the case where d ¼ 1.

Delay-1 CTDP is essentially different from the general

CTDP. In the general CTDP, while stabilizing a bead,

(b)(a) (c)

Fig. 7 a The module that represents the lack of a vertical edge, b the module representing the presence of a vertical edge, c the module

representing the presence of a horizontal edge. (Color figure online)
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interactions in the most stable elongation may not appear in

the terminal conformation if they are not from the current

bead. Such interactions are called phantom interactions.

However, when d ¼ 1, there is no phantom interaction and

we can explicitly count the number of interactions that are

needed to stabilize each bead—the number of interactions

that the current bead has inH. This explicit information helps

us determine bead type relationships resulting from d-de-

pendence, and design linear time algorithms to solve the

CTDP under specific conditions.

Lemma 1 We can solve the CTDP in O(|w|) time when

d ¼ 1, jHj ¼ 1 and a� 4.

Proof We start from writing s-dependence conditions

between two adjacent beads in Sect. 3.1 when jHj ¼ 1.

1. If two beads are connected with an interaction: Two

beads are of different types.

2. If two beads are connected with a path: There is no

necessary condition between two beads.

3. If there is no relationship between two beads: Two

beads have the same type.

Note that both the first and the third conditions uniquely

determine the bead type of one based on the other.

If the delay of the system is 1, for each bead b1 to

stabilize, there are two different cases (See Fig. 9):

1. Stabilization by interactions: The bead is stabilized

deterministically by at least one interaction with

neighbors on the conformation. In this case, the bead

may be stabilized at another point without these

interactions.

2. Stabilization by geometry: The bead is stabilized

deterministically by geometric constraints. In this case,

the possible interactions that the current bead may have

do not change the stabilization point.

In both cases, while stabilizing the bead b1, the bead

should have at least one already stabilized bead b2, where

two beads are connected with an interaction (the first

condition of s-dependence) or there is no relationship

between them (the third condition of s-dependence).

Otherwise, the system becomes nondeterministic or the

bead cannot stabilize at the designated point. Since a� 4,

b2 can have up to 4 interactions aside from two neighbor-

ing beads on the path, and if ðb1; b2Þ 2 H, b1 and b2 always

have an interaction.

The first and the third conditions of s-dependence make

the bead type assignment unique if the bead type of one of

two beads is fixed. Therefore, for each bead, there exists

unique bead type assignment resulting from the first or the

third condition with an adjacent (already known) bead.

Moreover, in both cases, since we are aware of all beads

within the event horizon context, we can check that

d-dependences are satisfied online: in other words, whether

(a)

(b)

Fig. 8 The module for a turn. a The module does not represent a

vertical edge, b The module represents a vertical edge. (Color

figure online)

(a) (b)

b1 b1

b2

b2

Fig. 9 Two cases when a� 4. We assume that there are two types of

beads: a black circle and a white circle. The current bead to stabilize

is represented by a black square. a Stabilization by interactions,

b Stabilization by geometry
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the current bead is stabilized as desired or not. Thus, the

total runtime to find a transcript is O(|w|). h

Lemma 2 We can solve the CTDP in O(|w|) time when

d ¼ 1, jHj ¼ 1 and a ¼ 1.

Proof When a ¼ 1, once a bead forms an interaction with

another, these two beads become inactive and cannot form

an interaction anymore. We call beads that are not binded

as active beads. For each bead b1 to stabilize, there are

three different cases (See Fig. 10.):

1. Stabilization by an interaction: The bead is stabilized

deterministically by exactly one interaction with a

neighbor on the conformation.

2. Stabilization by geometry, having an active neighbor:

The bead is stabilized deterministically by geometric

constraints. In addition, there exists at least one

neighboring bead which did not have an interaction

so far, which we call an active neighbor.

3. Stabilization by geometry, not having an active neigh-

bor: The bead is stabilized deterministically by

geometric constraints. In addition, all neighboring

beads have interactions already.

We propose an algorithm to assign a bead type for these

three cases.

1. Stabilization by geometry, not having an active neigh-

bor: Since there is no active neighbor, we may assign

an arbitrary bead type to the current bead at this

timestamp. Thus, we introduce a new bead type

variable viþ1, given the most recent bead type variable

vi, and assign the bead type variable to the current

bead.

2. Stabilization by geometry, having an active neighbor:

Similar to the second case when a� 4, we have a set of

active neighbors whose bead types (or variables) are

fixed. Based on the apparent interactions, we can

assign the unique bead type (or variable) to the current

bead, and may fix the bead type for a variable or merge

two variables based on relationships within the event

horizon context.

3. Stabilization by an interaction: Since the arity is 1, the

current bead should have an active neighbor with the

complementary bead type (or variable). Moreover, all

active neighbors of neighbors of the previous bead

except the stabilization point should have the same

bead type as the current bead (or variable). Thus, we

can assign the unique bead type (or variable) to the

current bead, and may fix the bead type for a variable

or merge two variables based on relationships within

the event horizon context.

Note that for all cases, there exists an unique bead type

(or variable) assignment for the current bead. Similar to the

a� 4 case in Lemma 1, we can check d-dependences are

satisfied online. Moreover, possible changes on the vari-

ables (fixing the bead type or merging two variables) while

stabilizing future beads do not change d-dependences and

still result in the same isomorphic conformation. Thus,

once we assign bead types (or variables) to the end of the

transcript, we may assign arbitrary bead types for variables,

and the resulting transcript always folds the conformation

isomorphic to the original one. The total runtime to find a

transcript is O(|w|). h

Here, we relieve the CTDP by allowing isomorphism for

the seed. Based on the relaxation, we claim that we may

reduce the size of the ruleset without changing solvability,

where the upper bound of the size of the ruleset is 27.

Lemma 3 Let P1 ¼ ðR;H; 1; 1;Cr;P;HÞ be an instance of
CTDP at delay 1 and arity 1. If jHj[ 27, one can con-

struct a ruleset H0 � H of size 27 and the seed C0
r over

RðH0Þ isomorphic to Cr, such that if P1 has a solution, then

the instance of CTDP P2 ¼ ðRðH0Þ;H0; 1; 1;C0
r;P;HÞ

does.

Proof We claim that the bead type of a bead is dependent

upon at most 26 other beads. Assume that the given

seed Cr consists of m beads and the path P consists of

n beads. We index the beads of Cr as

b�mþ1; b�mþ2; . . .; b�1; b0, where b�1 is connected to the

first bead of P. For convenience, we also index the beads

on P as b1; b2; . . .; bn, where bi ¼ w½i�.
We consider the relationship between two beads bi and

bj, where i\j and bi and bj have an interaction with each

other. Since a ¼ 1, the preceding bead bi must remain

active when it is stabilized. For that, bi may be a part of the

seed Cr, or there was only one empty neighbor of its

predecessor bi�1 so that bi was forced to be stabilized

without interactions (Third case of the proof for Lemma 2).

In the latter case, two of the neighboring beads of bi�1 can

affect the stabilization of bi. The bead bi can affect the

(a) (b) (c)

b1
b1 b1

Fig. 10 Three cases when a ¼ 1. We assume that there are two types

of beads: a black circle and a white circle. The current bead to

stabilize is represented by a black square. a Stabilization by an

interaction, b stabilization by geometry, having an active neighbor,

c stabilization by geometry, not having an active neighbor
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stabilization of another bead bk for any iþ 1� k\j. In

order for bk to be affected by bi, its predecessor bk�1 must

have been stabilized in the event horizon context of biþ1

(The black hexagons in Fig. 11). The event horizon context

has 19 points, 3 of which are to be stabilized by bi, bj, and

bj�1. Note that the two beads that can affect the stabiliza-

tion of bi are also in this event horizon context. Therefore,

there can be at most 16 beads which can affect the

stabilization of bi or whose stabilization can be affected by

bi. The bead bj is affected by at most 16 beads other than

bi, which are inside the event horizon context of bj (The red

hexagons in Fig. 11).

Now we have at most 32 beads that can be affected by bi
or affect bj, but we may reduce the number by geometric

constraints. Suppose we see all the neighbors of bj�1 except

bj. A bead at one of these neighbors, say p, if any, prevents

a bead at the other side of p from bj�1 from affecting bj.

The number of beads that can affect bj, denoted by dðbjÞ, is
thus at most 11. We can bound the number of beads that

can affect bi or be affected by bi, which we denote by dðbiÞ,
by 15. The successor biþ1 of bi is to be stabilized at one of

the neighbors of bi but the one for bj. Being thus stabilized

at a neighbor, say p0, biþ1 geometrically prevents bk from

being affected by bi if its predecessor bk�1 is stabilized at

the other side of p from bi. We call dðbiÞ þ dðbjÞ the

degree of dependence of the pair ðbi; bjÞ. Then the degree

of dependence of Cr is the maximum of the degree of

dependence of a pair ðbi; bjÞ such that bi is included in Cr

but bj is not.
2

We have proved that the degree of dependence of Cr is

at most 26. It is well known that we can color a graph with

d þ 1 colors, where d is the maximum degree of a vertex.

Here, we may regard each rule as a color. For each pair of

beads, we may consider the degree of dependence and

assign bead types from different rules for beads that are

dependent to the pair. Thus, it is sufficient to have the

ruleset of size 27 to color the transcript. h

If a CTDP instance has no answer, we may increase the

size of the ruleset and use additional bead types to find an

answer. Note that there exists a CTDP instance without an

answer, regardless of the size of the ruleset, as in Fig. 12.

Aside from these apparent contradictory cases, we prove

that there is no lower bound for the size of the ruleset

where we can always find a transcript for the CTDP.

Lemma 4 Given n� 3, there exists a CTDP instance P1 ¼
ðR;H; 1; 3;Cr;P;HÞ with jHj ¼ n such that there is no

answer for P1, but there exists a ruleset H0 � H of

size nþ 1 where the CTDP instance P2 ¼ ðR;H0;
1; 3;Cr;P;HÞ has an answer.

Proof Figure 13a shows a CTDP instance that satisfies the

lemma when n ¼ 3 and H ¼ fða; aÞ; ðb; bÞ; ðc; cÞg. The red
line is a seed, bead types in different rules are colored

differently, and complementary bead types are represented

by full and empty circles.

The first bead of the system is stabilized by geometry,

and since neighboring a and a are active, the first bead

should have a different type from both a and a. Let us use

the variable x to represent that bead type. Following the

s-dependences, we can assign bead types as in Fig. 13b.

Now, we consider d-dependences for a straight line of

beads at the last part of the transcript. While stabilizing the

first x on the line, which is denoted by a black empty circle,

the bead is stabilized by one interaction with x. However, it

may stabilize upper left if it can interact with either a or a.

Thus, x cannot be neither a or a. The same analysis holds

for the following x’s, which result in that x should be

bi bibj−1bj bi

bj−1

bj

bj−1

bj

Fig. 11 The region of the influence of bi at delay 1 and arity 1 in all the possible three cases modulo the reflectional symmetry along the line bi-

bj. (Color figure online)

2 This definition does not consider any pair both of whose beads are

included in Cr because such a pair is already inert at the beginning of

folding.
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different with all beads in the alphabet. This contradiction

can be solved if we add a new rule ðd; dÞ and assign x ¼ d.

This CTDP instance can be extended for arbitrary n, and

the lemma holds. h

5 Conclusions

The oritatami model is a computational model inspired by

RNA cotranscriptional folding, where an RNA transcript

folds upon itself while being synthesized out of a gene.

Given a set of rules and other conditions to fold a tran-

script, we proposed the transcript design problem (TDP) to

find a transcript that folds into the target conformation.

Here we revisit the result from the paper:

• We can solve CTDP with a fixed parameter linear

algorithm (Theorem 1).

• CTDP is NP-hard (Theorem 2).

• CTDP is NP-complete when d ¼ 3 and

jHj ¼ 3 (Theorem 3).

• CTDP can be solved in linear time when

d ¼ 1; jHj ¼ 1, a ¼ 1 or a� 4 (Lemmas 1 and 2).

• If we allow isomorphism to the seed, the ruleset size of

CTDP can be reduced to at most 27 while preserving

solvability (Lemma 3).

• In general, there is no lower bound for the ruleset size

where CTDP is always solvable (Lemma 4).

Note that we cannot claim that CTDP is in NP in general,

since d can be as large as |P| and the time to fold a given

transcript is Oð2djPjÞ, which is not polynomial in |P|.

We still have open problems mainly for complexity of

CTDP for different conditions. We have a NP-complete

condition for d ¼ 3 and a linear time solvable condition for

d ¼ 1, but the case d ¼ 2 remains open. Also, it is not clear

whether d ¼ 1 and a ¼ 2 or 3 condition allows polytime

solvability or not.

Since CTDP is NP-hard in general, finding a feasible

polynomial approximation algorithm for TDP would be

another main future work. Note that simulating a deter-

ministic OS takes Oð2dnÞ time where n is the length of the

transcript and d is the delay. Thus, simple simulation takes

time exponential to the delay, and we may assume that the

delay is given as a small constant in the TDP instance that

we want to solve. For the algorithm design, there is no

‘‘approximate’’ transcript that folds exactly into the target

conformation, and there might be no answer for the given

TDP instance. Thus, we should first propose a similarity

metric for two conformations, and design a polynomial

algorithm that finds a transcript that folds into a confor-

mation which is similar to the target conformation with the

similarity metric bound to the given threshold.
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a

a

aFig. 12 One case where there is

no answer for a CTDP instance,

regardless of the size of the

ruleset. The bead w[1] both has

and does not have an interaction

with a, which is a contradiction

a a b b c c

(a)

a a b b c c

x = a, a

x

x

(b)

Fig. 13 a A CTDP instance with n ¼ 3, b bead type assignment and

constraints for x. (Color figure online)
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