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Abstract
Nature is a great source of inspiration for solving complex problems in real-world. In this paper, a hybrid nature-inspired

algorithm is proposed for feature selection problem. Traditionally, the real-world datasets contain all kinds of features

informative as well as non-informative. These features not only increase computational complexity of the underlying

algorithm but also deteriorate its performance. Hence, there an urgent need of feature selection method that select an

informative subset of features from high dimensional without compromising the performance of the underlying algorithm.

In this paper, we select an informative subset of features and perform cluster analysis by employing a cross breed approach

of binary particle swarm optimization (BPSO) and sine cosine algorithm (SCA) named as hybrid binary particle swarm

optimization and sine cosine algorithm (HBPSOSCA). Here, we employ a V-shaped transfer function to compute the

likelihood of changing position for all particles. First, the effectiveness of the proposed method is tested on ten benchmark

test functions. Second, the HBPSOSCA is used for data clustering problem on seven real-life datasets taken from the UCI

machine learning store and gene expression model selector. The performance of proposed method is tested in comparison

to original BPSO, modified BPSO with chaotic inertia weight (C-BPSO), binary moth flame optimization algorithm, binary

dragonfly algorithm, binary whale optimization algorithm, SCA, and binary artificial bee colony algorithm. The conducted

analysis demonstrates that the proposed method HBPSOSCA attain better performance in comparison to the competitive

methods in most of the cases.

Keywords Binary artificial bee colony algorithm � Binary particle swarm optimization � Binary dragonfly algorithm �
Binary moth flame optimization � Binary whale optimization algorithm � Clustering indices � Feature selection �
Sine cosine algorithm

1 Introduction

The high dimensionality of the feature space is a major

concern in today’s day. Usually, there are so many irrele-

vant and redundant features in the datasets. These features

not only increase computational complexity but also

deteriorate performance of the underlying algorithms.

Therefore, feature selection is necessary to improve the

clustering performance, especially for data sets having very

large dimensions. With respect to different selection

strategies, feature selection methods are broadly catego-

rized into two categories: Filter Methods and wrapper

Methods.

Filter methods (Michaud 1997; Keogh and Mueen 2011;

Yang et al. 2015) are classifier independent features. It uses

a statistical measure to assign a relevance score to each

feature. The computed score is used to rank the features.

Here, the user-defined criterion is used to select the subset

of features from given high dimensional feature space. As

filter methods do not consider interaction with the learning

algorithm, it is comparatively faster than the wrapper

method. However, the accuracy is comparatively lower

than the wrapper algorithm (Fig. 1).

In contrast to filter methods, wrapper methods assess

relevance of features subset based on the learning algo-

rithm performance (Keogh and Mueen 2011; Yang et al.

2015; Srivastava et al. 2014; Dash et al. 2002). The filter
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method is comparatively faster than the wrapper methods;

their major drawback is that features are ranked indepen-

dently using some statistical measure. It does not consider

interaction of features during the feature selection process.

On the other hand, the wrapper method considers interac-

tion between features and then select the informative subset

of features from the original feature space. In this paper, we

propose a wrapper method for feature subset selection

(Fig. 2).

The selection of an informative subset of features can be

considered as a global combinatorial optimization problem

in which the optimum features subset is selected from a

high dimensional feature space. Nature inspired algorithms

(NIA) gain attention for optimization problem (Agarwal

and Mehta 2014). NIA is a mathematical formulation of the

living beings present in the environment. Researchers have

explored NIA such as genetic algorithm (GA) (Yang and

Honavar 1998), particle swarm optimization (PSO) (Xue

et al. 2013; Yang 2014), ant colony optimization (ACO)

(Yang 2014; Blum 2005; Ali et al. 2017; Ahmed 2005),

simulated annealing (SA) (Yang 2014), differential evo-

lution (DE) (Yang 2014; Ali et al. 2017), and bacterial

foraging optimization (BFO) (Chen et al. 2017) for feature

selection problem. As they consider interaction of the

learning algorithm for feature selection, they come under

the wrapper method.

Originally, PSO is proposed for continuous problem

(Kennedy 1995). Later, it is extended to solve discrete

problem (Kennedy and Eberhart 1997). The discrete ver-

sion of the PSO is named as binary particle swarm opti-

mization. The BPSO is used to solve a wide variety of

problems including feature selection (Cervante et al. 2012),

cryptography algorithms (Jadon et al. 2011), optimum

switching law of inverter (Wu et al. 2010), and classifica-

tion (Cervantes et al. 2005). Several algorithms have also

been developed to improve the performance of BPSO that

includes modified BPSO which adopts concepts of the

genotype–phenotype representation and the mutation

operator of genetic algorithms (Lee et al. 2008), mutation-

based binary particle swarm optimization (M-BPSO) for

multiple sequence alignment solving (Long et al. 2009),

improved binary particle swarm optimization to select the

small subset of informative genes (Mohamad et al. 2011),

density-based particle swarm optimization algorithm for

data clustering (Alswaitti et al. 2018), Particle Swarm

Clustering Fitness Evaluation with Computational Cen-

troids (Raitoharju et al. 2017), hybrid binary version of bat

and enhanced particle swarm optimization algorithm to

solve feature selection problems (Tawhid and Dsouza

2018), hybrid improved BPSO and cuckoo search for

review spam detection (Rajamohana and Umamaheswari

2017), and hybrid PSO with grey wolf optimizer

(HPSOGWO) (Singh and Singh 2017). In any case, origi-

nal BPSO (Kennedy 1995) effectively stick into neigh-

borhood optima because of single directional data sharing

system by the global best particle in the swarm. Chuang

et al. (2008), enhance BPSO by embedding two sorts of

chaotic maps, logistic maps and tent maps to evacuate

superfluous features and select an informative subset of

features. Here, they use a chaotic map to update the value

of inertia weight over the number of iterations. This step

helps the algorithm to avoid stagnation of the solution at a

local optimum solution. Selection of an informative subset

of features subset from high dimensional feature space and

improvement in the searching capability of the existing

NIA is still a great challenge in the area of optimization.

Mirjalili (2016a) was offered sine cosine algorithm

(SCA) which is a novel population based optimization

technique simply based on Sine and Cosine function. SCA

applied for exploitation and exploration phases in global

optimization functions. The sine cosine algorithm (SCA)

generates different initial random agent solutions using a

mathematical model based on sine and cosine functions

and requires them to fluctuate outwards or towards the best

possible solution.

Several new modified and hybrid variants of SCA

algorithm are developed after motivated of this meta-

heuristics by the researchers of different areas to improve

Fig. 1 Process of filter method

Fig. 2 Process of wrapper

method
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the convergence performance of SCA algorithm including

SCA integrated with differential evolution (Bureerat and

Pholdee 2017), Improved SCA based on levy flight (Li N

and Deng ZL 2017), Hybrid SCA with multi-orthogonal

search strategy (Rizk-Allah 2017), and hybrid back track-

ing search with sine cosine algorithm (SCA) (Turgut 2017).

The researchers are solved numerous real life problems

with the help of SCA algorithm including a novel sine

cosine algorithm for the feature selection (Hafez et al.

2016), solution of unit commitment problems (Kaur and

Prashar 2016), the gear train design problem (Rizk-Allah

2017), Welded beam design (Rizk-Allah 2017), Pressure

vessel design problem (Rizk-Allah 2017), Structural

Damage Detection (Bureerat and Pholdee 2017), and many

other biomedical and mechanical engineering problems.

In this study, we explore capability of NIA for feature

selection problem by introducing a hybrid NIA with the

combination of BPSO and SCA named as HBPSOSCA.

The proposed model HBPSOSCA integrates the explo-

ration capability of the SCA and exploitation capability of

the PSO to select an informative subset of features. Here,

the V-shaped transfer function is used to convert continu-

ous swarm intelligence technique to binary search space.

Next, the K-means algorithm is used to create clusters of

data points. The Silhouette Index (SI), Dunn Index (DI)

and Davies–Bouldin Index (DBI) are used for cluster

assessment. Seven real-life scientific datasets are taken

from the UCI machine learning archive and gene expres-

sion model selector (GEMS) to test effectiveness of the

proposed method compared to other competitive methods.

The comparative analysis is performed in terms of (1)

number of selected feature subsets and, (2) clustering

accuracy measured in terms of SI, DI, and DBI. The

comparative analysis of the HBPSOSCA method is com-

pared with state of the arts algorithm BPSO, modified

BPSO with chaotic inertia weight (C-BPSO), binary moth

flame optimization algorithm (BMFOA), binary dragonfly

algorithm (BDA), binary whale optimization algorithm

(BWOA), sine cosine algorithm (SCA), and binary artifi-

cial bee colony algorithm (Binary-ABC).

The rest of the paper is organized as follows: Sect. 2

describes the foundation of algorithms used as a part of this

paper. The detailed descriptions of proposed approach are

given in Sect. 3. The experimental results are presented in

Sect. 4 while the conclusions and future are presented in

Sect. 5.

2 Algorithms background

This section provides a background concerning the opti-

mization algorithms.

2.1 Binary particle swarm optimization (BPSO)

J. Kennedy and R. Eberhart propose Particle swarm opti-

mization (PSO) (Kennedy 1995; Kennedy and Eberhart

1997) in 1995. The PSO is a population-based stochastic

approach for solving continuous and discrete optimization

problems. The PSO optimization algorithm is inspired by

the flocking and schooling patterns of birds and fish. Here,

each particle is considered as a potential solution. Every

particle is associated with a fitness value, which is used to

assess worthiness of the solution compared to others. The

particle own best position is named as particle best solution

(pbest). The best-fitted solution of the entire swarm is

named as a global best solution (gbest). The movement of

particle is controlled by its own pbest position and the

gbest position of the swarm. Equations 1 and 2 show the

velocity and position update of the ith particle.

veldi t þ 1ð Þ ¼ veldi tð Þ þ e1r1 � pbestdi tð Þ � posdi tð Þ
� �

þ e2r2
� gbestd tð Þ � posdi tð Þ
� �

ð1Þ

posdi t þ 1ð Þ ¼ posdi tð Þ þ veldi t þ 1ð Þ ð2Þ

where d is the dimension of particle, t is the iteration, r1
and r2 are random numbers in the interim (0, 1), and e1 and

e2 are positive learning constants.

Originally, PSO is developed for continuous problem

while numerous optimization problems exist which are

discrete/binary in nature, for example, demand side man-

agement system (Agneessens et al. 2011), feature selection

(Behjat et al. 2014), Knapsack Problems (Bansal and Deep

2012). Kennedy (1995) extend the concept of PSO and

develop a binary version of PSO named as binary particle

swarm optimization (BPSO) to solve discrete/binary

problem. Here, a sigmoidal function Sig veldi
� �� �

is used to

convert position (refer Eq. 2) in binary search space (refer

Eq. 4) for BPSO. The sigmoidal function is a mathematical

function whose curve looks same as the shape of English

letter ‘S’. The sigmoid function is a kind of function that is

real-valued and differentiable. It is defined on all real

inputs and returns a positive derivative at every point of it.

Position and velocity of ith particle in case of BPSO

algorithm are computed by:

veldi t þ 1ð Þ ¼ w � veldi tð Þ þ e1r1 � pbestdi tð Þ � posdi tð Þ
� �

þ e2r2 � gbestd tð Þ � posdi tð Þ
� �

ð3Þ

Sig veldi
� �

¼ 1

1þ e�veldi
ð4Þ

posdi ¼
1 if rand\Sig veldi

� �

0 otherwise

�
ð5Þ
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where w is inertia weight, rand is an arbitrary number

chose in interim (0, 1), posdi is location of ith particle at

dimension d and Sig veldi
� �� �

indicates sigmoidal function.

The BPSO algorithm is good at exploitation, however, poor

at exploration.

2.2 Binary moth flame optimization algorithm
(BMFOA)

Seyedali Mirjalili proposes a new nature-inspired algo-

rithm named as Moth Flame Optimization (MFO) (Mirjalili

2015) in 2015 which is inspired by the navigation behavior

of moths known as transverse orientation, i.e., keeping a

fixed angle on a distant source of light for orientation. It is

a population-based swarm intelligence technique which

simulates the behaviour of moths at night. Moths attract

towards the moonlight or counterfeit lights made by peo-

ple. Here, a moth flies by using as a settled point with

respect to the moon which is an extremely powerful

instrument for traveling long separations in a straight way.

This system ensures that moths are flying in a straight line

in the light. When moths see a man-made light, they

maintain a similar angle with the light to fly in a straight

line causes a helical route for moths because such man-

made lights are very close contrasted with the moon. It

might be watched that the moth unsurprisingly meets

towards the light. Fundamental segments of MFO calcu-

lation are moths and flames. In the MFO algorithm, it is

acknowledged that the candidate solutions are moths and

the issue’s factors are the location of moths in the space.

The moths are real hunt specialists that move around the

search space. However, flames are in the best position of

moths that gets up until this point. As specified over that

this advancement calculation is propelled by exceptional

route technique, i.e., transverse introduction. The position

of every moth which is refreshed with respect to a flame is

mathematically defined as follows:

Mothi ¼ SP Mothi;Flame j
� �

ð6Þ

where Mothi shows the ith moth, Flame j demonstrates the

jth flame, and SP is the spiral function. The logarithmic

spiral function for the MFO algorithm is defined as

follows:

SP Mothi;Flame j
� �

¼ Disi �bI � cos 2pIð Þ þ Flame j ð7Þ

where Disi demonstrates separation of the ith moth for the

jth flame (refer Eq. (8)), b is a constant for characterizing

shape of the logarithmic spiral, and I is a random number

in [- 1, 1].

Disi ¼ Flame j �Mothi
�� �� ð8Þ

where Mothi indicates the ith moth, Flame j indicates jth

flame and Disi indicates separation between Mothi and

Flame j.

The parameter I [refer Eq. (7)] decides route of moth

around the flame (I = - 1 indicates nearest location to the

flame, while I = 1 demonstrates the uttermost). Exploration

and exploitation of the binary space can be ensured due to

the spiral equation which allows a moth to fly around a

flame. I is defined as a random number in [r, 1], where r

linearly decreased from - 1 to - 2 over the course of

iterations. According to Eq. (7), each moth is constrained

to move towards a flame that may incite adjacent perfect

stagnation. Flames must be arranged according to their

fitness values. The moths by then invigorate their situations

with respect to their relating flames. A versatile mechanism

for the number of flames (f no) has been proposed as in the

following formula due to the degradation in exploitation of

the best promising solutions:

f no ¼ round Nf � t � N
f � 1

T

� �
ð9Þ

where t is the present number of iteration, Nf is the max-

imum number of flames, and T is the total number of

iterations.

According to Mirjalili (2015), it can be determined that

local optima is high in MFO since MFO utilizes a popu-

lation of moths to perform optimization. Decreasing the

quantity of flames adjusts exploration and exploitation of

the search space. The convergence of the MFO algorithm is

ensured on the grounds that the moths always tend to

update their positions with respect to flames.

In binary search space, the location of moths is confined

to twofold factor, i.e., 0 or 1. Here, 1 shows the presence of

corresponding feature and 0 demonstrates the absence of

that feature. Sigmoidal function (Reddy et al. 2017)

Sig Moth t þ 1ð Þð Þ is used to change the location of each

moth which is invigorated in regards to a flame (refer

Eq. (6)) in continuous search space into the new position in

binary search space (refer Eq. (10)) for BMFOA.

Sig Moth t þ 1ð Þð Þ ¼ 1

1þ e� Moth tþ1ð Þð Þ ð10Þ

where Moth t þ 1ð Þ is the location update of the moth for

t þ 1ð Þth iteration.

In binary space, the position of every moth with respect

to a flame is computed (in binary search space) by the

given Eq.:

Mothi ¼ 1 if rand\Sig Moth t þ 1ð Þð Þ
0 otherwise

�
ð11Þ
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2.3 Binary dragonfly algorithm (BDFA)

Dragonfly algorithm (DFA) is introduced in 2015 by Mir-

jalili (2016b) inspired from dragonflies (small hunters that

eat almost all other small insects in nature). Dragonfly has

two main swarming behaviours which are the main inspi-

ration of DFA and these behaviours are: static and dynamic

swarming behaviours. Exploration and exploitation are two

important components of any NIA. In DFA, mathemati-

cally these behaviours are expressed by:

• Separation states to avoid the static collision from

another sub group of dragonflies. Mathematically, this

behaviour is defined by:

Ui ¼ �
XN

j¼1

pos� posj ð12Þ

where pos represents current location of an individual,

posj indicates jth neighbouring individual’s location,

and N is total quantity of neighbouring individuals.

• Alignment demonstrates matching of an individual’s

velocity to other neighbourhood individuals. Mathe-

matically, this behaviour is simulated by:

Oi ¼
PN

j¼1 velj

N
ð13Þ

where velj indicates velocity of jth neighbouring

individual.

• The property of an individual to incline towards

neighbouring mass center is known as Cohesion. It is

computed by:

Qi ¼
PN

j¼1 posj

N
� pos ð14Þ

where N is total number of neighbouring individuals,

pos denotes location of current individual, and posj
indicates location of jth neighbouring dragonfly.

• Attraction behaviour of dragonfly in the direction of

food source is computed as:

Vi ¼ posþ � pos ð15Þ

where posþ represents position of food source, and pos

represents position of current individual.

• Diversion behaviour from opponent is find as:

Zi ¼ pos� þ pos ð16Þ

where pos� represents location of enemy, and pos

represents location of current individual.

Overall artificial dragonflies consist of five behaviours

which are described above. In a continuous space, two

vectors are computed to update movement, and location of

these dragonflies, i.e., step (Dpos) and position (pos). The

step vector and the position vector are calculated as defined

in Eqs. (17) and (18).

Dpostþ1 ¼ uUi þ oOi þ qQi þ vVi þ zZið Þ þ wDpost
ð17Þ

where u is the division weight, Ui demonstrates partition of

ith individual, o is an alignment weight, Oi is separation of

ith individual, q is the cohesion weight, Qi is the cohesion

of ith individual, v is the sustenance factor, Vi is the food

source of the ith individual, z is the adversary factor, Zi is

the location of enemy of ith individual, w is an inertia

weight, and t is the iteration counter.

postþ1 ¼ post þ Dpostþ1 ð18Þ

where pos denotes the current location of an individual and

t is the current iteration.

Positions of DA are updated by adding step vectors

(similar to velocity vector of PSO) to the position vectors

in continuous searching space. In binary space, location of

BDFA (Mafarja et al. 2017) is represented in binary form,

i.e., 1 or 0 only without using step vector. A transfer

function is used according to Mirjalili and Lewis (2013)

and Saremi et al. (2015), to convert continuous space to a

binary search space without changing the structure of

swarm intelligence algorithm. Transfer function accepts

velocity (step) values as an input and returns a value in [0,

1], which determine likelihood of changing positions. The

transfer function is given below:

TF Dposð Þ ¼ Dpos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dpos2 þ 1

p

�����

�����
ð19Þ

postþ1 ¼
:post if r\TF Dpostþ!ð Þ
post otherwise

�
ð20Þ

where r is a random number in the interval of [0, 1].

According to Mirjalili and Lewis (2013) and Saremi

et al. (2015), the algorithm was well-appointed with five

parameters to control cohesion, alignment, separation,

attraction (towards food sources), and diversion (outwards

enemies) of individuals in the swarm. The convergence of

the artificial dragonflies towards optimal solutions in con-

tinuous and binary search spaces was also observed and

confirmed, which are because of the dynamic swarming

design behaviour.

2.4 Binary whale optimization algorithm (BWOA)

Whale Optimization Algorithm (WOA) (Mirjalili and

Lewis 2016) is introduced in 2016 by Mirjalili and Lewis.

Whales are an elegant living being. Humpback whales (one

of the largest whale) chase swarms of krill or little fishes

near the surface. The foraging is performed by creating

distinctive bubbles along a circle. However, Goldbogen
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et al. (2013) examine this conduct using label sensors.

WOA has two stages: the first stage is scanning arbitrarily

for prey which is exploration stage and the second stage is

enclosing a prey and spiral bubble-net attacking method

which is an exploitation phase.

Movement of whale around a prey is depicted in the

exploitation stage. Mathematical formulation of this step is

given by:

M~ ¼ G~:S�
!

tð Þ � S~ tð Þ
���

��� ð21Þ

S~ t þ 1ð Þ ¼ S�
!

tð Þ � H~:M~ ð22Þ

where t indicates current number of iteration, M shows

distance between whale and prey, S� demonstrates the best

solutions acquired up until this point, and S shows the

current solution. H and G represent the coefficient vectors

which is defined by:

H~ ¼ 2c~:g~� c~ ð23Þ

G~ ¼ 2:g~ ð24Þ

c~¼ 2� t
2

T
ð25Þ

where c gradually decreases from 2 to 0 and g is a random

vector in [0, 1], t is the current iteration, and T is the

maximum number of iterations.

The distance between the solution (S) and the best

solution (S�) causes the spiral shaped path which is com-

puted by:

S~ t þ 1ð Þ ¼ M~:ebI : cos 2pIð Þ þ S�
!

tð Þ ð26Þ

where b is the helix’s form of the spiral, and I is an

irregular number in [- 1, 1].

Shrinking encircling model or spiral model is simulated

by Eq. 5:

S~ t þ 1ð Þ ¼ S�
!

tð Þ � H~:M~ if rand\0:5

M~:ebI : cos 2pIð Þ þ S�
!

tð Þ if rand� 0:5

(

ð27Þ

where rand is a random number in uniform dissemination.

For exploration phase, the above approach can be uti-

lized to hunt for prey by variation of H vector. A vector H

with random values (greater than 1 or less than - 1) is

utilized to constrain a solution to move far away from the

best-known searched agent. It is computed by:

M~ ¼ G~:Srandm
			!� S~

���
��� ð28Þ

S~ t þ 1ð Þ ¼ Srandm
			!� H~:M~ ð29Þ

where Srandm is a random whale taken from the present

population.

For BWOA (Mafarja and Mirjalili 2017), the sigmoidal

function is used to map continuous value into a binary

value.

Sig S~ t þ 1ð Þ

 �

¼ 1

1þ e�S~ tþ1ð Þ
ð30Þ

Snew
		! ¼ 1 if rand\Sig S~ t þ 1ð Þ


 �

0 otherwise

(

ð31Þ

2.5 Sine cosine algorithm (SCA)

SCA is proposed in 2016 by Mirjalili (2016a) and Meshkat

and Parhizgar (2017). It is based on the functions of Sine

and Cosine for exploration and exploitation phases,

respectively. SCA starts with random solutions to swing

near or away the best possible solution using mathematical

expressions defined in Eq. 32. The cyclic condition of sine

and cosine enables a solution to be re-arranged around

other solution, which facilitates exploitation. In the

exploitation phase, however, there are gradual changes in

the random solutions, and random variations are consid-

erably less than those in the exploration phase.

In SCA, the position of solution is updated using Eq. 32:

postþ1
i

			!
¼

posti
		!

þ r3 � sin r4ð Þ � r5 � Lti � posti
		!���

��� if r6\0:5

posti
		!

þ r3 � cos r4ð Þ � r5 � Lti � posti
		!���

��� if r6 � 0:5

8
<

:

ð32Þ

where posti vector is the current position at tth iteration in

ith dimension, r3, r4, r5 are the random numbers, r6 are the

random number in [0, 1] and Li is targeted global optimal

solution.

r3 ¼ a� t
a

T
ð33Þ

where t is the current iteration, T is the total number of

iterations, and a is a constant.

The parameter r3 demonstrates the direction of move-

ment which could be either in the space between the

solution and goal or outside it. The parameter r4 is a ran-

dom number in [0, 2p] which exhibits how far the devel-

opment ought to be towards or outwards the objective and

parameter r5 shows an unpredictable weight for the

objective to emphasize (r5 [ 1) or deemphasize (r5 \ 1)

the irregular effect of objective in describing the partition.

Finally, the parameter r6 switches between the sine and

cosine segments in Eq. 32.

According to Mirjalili (2016a) and Meshkat and

Parhizgar (2017), it can be concluded that the mathematical

model of position update equation update the solutions

outwards or towards the goal point to ensure exploration

and exploitation of the search space, respectively. SCA can
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be a very appropriate option compared to the current

algorithms for solving different optimization problems.

3 Proposed method

In this paper, we explore capability of NIA for feature

selection problem. Traditionally, real-world datasets

include a large number of features. However, some of these

features are non-informative, redundant and noisy. These

features not only increase computational complexity of the

underlying algorithm but deteriorate its performance. In

literature different nature-inspired algorithms are proposed

for feature selection task (Diao and Shen 2015; Kumar

2018). In this paper, a new hybrid method HBPSOSCA is

proposed using BPSO and SCA to select an informative

subset of features. Here, the V-shaped transfer function is

used to convert continuous nature of an algorithm to bin-

ary. The movement of a particle in the BPSO algorithm is

improved using the sine–cosine algorithm. A detailed

description of each of the step is presented in the subse-

quent sections.

3.1 Initialization of swarm

This Subsection discusses the very first step of the pro-

posed method, i.e., initialization of the swarm. Here, a

particle is represented in binary form of size n (as shown in

Fig. 3), where n represents the total number of features in

the dataset. Here, binary value 1 shows presence of cor-

responding feature and 0 depicts its absence. We work with

the population size of n. For this, the first swarm is ran-

domly initialized with the 2 n particles. Next, top n parti-

cles are selected from the 2 n particles with the assistance

of fitness value. A pictorial representation of a particle with

size n is presented in Fig. 3.

3.2 Clustering algorithm

Clustering is a process of grouping data points into clusters

based on defined criteria. Traditionally, clustering methods

are categorized into two categories; hierarchical clustering

(Xu and Tian 2015), partitional clustering (Xu and Tian

2015). Hierarchical clustering creates clusters either top to

bottom, known as divisive clustering or bottom to top

known as agglomerative clustering. Initially, a divisive

method considers each data point as a part of one cluster

and recursively divides the clusters based on defined

criteria. On the other hand, the agglomerative clustering

method considers each data point as individual clusters and

recursively merge the cluster based on defined criteria. On

the contrary, partitional clustering creates clusters of the

data point at one level.

In this paper, we use the K-mean partitional clustering

method. K-means clustering (Xu and Tian 2015; Jain and

Dubes 1988; Prakash and Singh 2012) is one of the most

commonly used partitional clustering techniques. Here, K

is the number of clusters. K-means works iteratively by

assigning each data point to one of the K clusters based on

some predefined measure. Traditionally, the Euclidian

distance measure is used for this purpose. The Euclidian

distance is calculated between the cluster center and data

point. The data point is assigned to the cluster from which

data point has a minimum distance. Next, each data point is

assigned to the cluster to which it has smaller Euclidian

distance from the cluster center. Assignment of data points

to the respective clusters and refinement of cluster centers

based on the average of the points assigned to the respec-

tive clusters are repeated until the termination criterion is

met.

3.3 Evaluation criteria/fitness function

In this subsection, a detailed description of Silhouette

Index is presented which is used to evaluate quality of

potential solution. The silhouette index is proposed by

Kaufman and Rousseeuw (2009) and Desgraupes (2013),

which show the similarity of a data point to its own cluster

as compared to its similarity with other clusters.

Consider a data point xi lies in a cluster, where p xið Þ be
the normal disparity of xi with every other datum inside a

similar group and f xið Þ be the most reduced normal dif-

ference of xi to some other group. Silhouette index Sil xið Þ
for a particular data point xi is numerically calculated as

follows:

Sil xið Þ ¼ f xið Þ � p xið Þ
max p xið Þ; f xið Þf g ð34Þ

The values of Silhouette index lies in the range [- 1, 1].

Here, high value shows that the data point well matched

with own and compared to other clusters.

3.4 Proposed algorithm

As mentioned in Sect. 1, the proposed HBPSOSCA algo-

rithm is a nature-inspired wrapper feature selection algo-

rithm. In this section, we present a detailed description of

1 2 3 4

1 0 0 0 … 1 1 0 … 1 0 1
Fig. 3 Particle representation
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the proposed method. Firstly, best n particles are selected

from the 2 n randomly generated particles based on fitness

value (for more details refer, Sect. 3.1). Each particle is the

potential solution in the search space. Next, K-means

clustering is applied to create clusters of data points on the

selected features subspace. Here, the particle’s quality is

evaluated using fitness function (refer Sect. 3.3). Swarm

gbest (best solution of the entire swarm) and pbest (indi-

vidual best solution) particles are selected from the current

population based on their fitness. During the iteration,

some particle gets stuck at a local optimum solution. We

use a replacement strategy to deal with this problem. This

strategy replaces a particle with the opposite solution if a

particle does not improve for the defined number of itera-

tions. Flowchart and algorithmic flow of the proposed

method are demonstrated in Fig. 4 and Algorithm 1,

respectively.

In this paper, an amalgamation of the BPSO with SCA

helps the algorithm to expand its searching capability and

locate the near global optimum solution. In SCA, if func-

tions of sine and cosine generate a value that is higher than

1 or smaller than - 1, then it signifies the exploration of

different areas within the search space. Likewise, if sine

and cosine functions generate a value within the range

between - 1 and 1 then it demonstrates that proficient

areas of search space are exploited. The SCA algorithm

effectively travels from exploration to exploitation utilizing

versatile range in the sine and cosine functions. In the

hybrid approach, the movement of a particle in the BPSO is

improved using the sine–cosine algorithm.

In this paper, we use a V-shaped function to change a

real-valued swarm intelligence system to a binary algo-

rithm without altering the knowledge of swarm. As per

Saremi et al. (2015), the V-shaped transfer functions [refer

Eq. (35)] are superior to S-shaped transfer functions since

they don’t constrain particles to take estimations of 0 or 1.

TF veldi t þ 1ð Þ
� �

¼ veldi t þ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðveldi t þ 1ð ÞÞ2

q

�������

�������
ð35Þ

For proposed HBPSOSCA, the accompanying new

technique for updating particle’s velocity and position is

utilized, respectively to refresh the position of particles in

twofold search spaces. Mathematical formulation of these

steps is given in Eqs. 36–39.

mov ¼ w � veldi tð Þ þ e1r1 � pbestdi tð Þ � posdi tð Þ
� �

þ e2r2
� gbestd tð Þ � posdi tð Þ
� �

ð36Þ
A ¼ r3 � sin r4ð Þ ð37Þ
B ¼ r3 � cos r4ð Þ ð38Þ

veldi t þ 1ð Þ ¼ A � movj j if rand\0:5
B � movj j if rand� 0:5

�
ð39Þ

where r1, r2 are random numbers in the interim (0, 1), r3
and r4 are also the random numbers, posdi is position of ith

particle at dimension d, and w is the inertia weight (Jain

et al. 2017; Bansal et al. 2011). The mathematical formu-

lation of inertia weight is presented in Eq. 40.

w ¼ wmin þ
t: wmax � wminð Þ

n:T
if t� n:T

wmax if n:T\t� T

8
<

:
ð40Þ

Here, the inertia weight is increased linearly in every

iteration and regulates the velocity of all particles. Here,

wmin is the initial value and wmax is final value of the inertia

weight, t represents current iteration, T is the total number

of iterations, and n is used to control the fraction of iter-

ations when w increases linearly from wmin to wmax. Here,

n ¼ 0:9 is used to achieve stronger exploration in initial

iterations and high exploitation in later iterations (Jain et al.

2017).

The parameter r3 shows the direction of movement that

can be either outside or space in between the solution and

destination. It is defined as follows:

r3 ¼ a� t
a

T
ð41Þ

where t is the current iteration, T is the total number of

iterations, and a is a constant.

The parameter r4 is an irregular number in [0, 2p]
demonstrates how far the development ought to be towards

or outwards the goal.

posdi ¼
1 if rand\TF vdi t þ 1ð Þ

� �

0 otherwise

�
ð42Þ

where posdi is the position of ith particle at dimension d,

rand is a random number, and TF is the V-shaped transfer

function. The mathematical formula is given in Eq. 35.
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Fig. 4 Flow of proposed

method
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4 Experimental results and discussions

4.1 Benchmark functions

Experiments are carried out over a set of 10 widely used

benchmark test functions listed in Appendix A. These

functions are taken from (Yao et al. 1999) each with dif-

ferent characteristics. Among these benchmarks, F1 to F3

are unimodal functions, F4 is the Rosenbrock function

which is a unimodal function for D = 2 and multimodal

function for D[ 3 (Shang and Qiu 2006), F5 is a step

function, F6 is a noisy quartic function, F7 to F10 are

multimodal functions.

4.2 Datasets and parameters setup

The effectiveness of the proposed method is demonstrated

using several experiments conducted on seven real-life

scientific datasets. The datasets are taken arbitrarily from

the UCI archive of machine learning and GEMS. The brief

description of the datasets is presented below. The

statistical details of used datasets are presented in Table 1

(Frank 2010; http://www.gems-system.org).

Ionosphere: This dataset is drawn from the Johns

Hopkins University. It comprises of 34 number of

features, and 351 number of occurrences belonging to

two distinct categories either good or bad. Out of 351

instances, 225 are good and rest 126 are bad occasions.

Breast Cancer Wisconsin: It is acquired from the

University of Wisconsin Hospitals Madison, Wisconsin,

USA. It consists of 9 features, and each one has ten

different values. There is 699 number of instances in

which 458 instances belong to the benign class, and the

remaining 241 instances belong to the malignant class.

Connectionist Bench: This dataset is developed in

Allied-Signal Aerospace Technology Center. There are

60 number of features in this dataset and 208 number of

instances which belongs to two different classes (rock

and mines). In this, 97 instances belong to rock, and

remaining instances belong to mines.

Statlog: It has 18 features and 946 instances which is

divided into four classes. The 226 instances belong to

Algorithm 1: The proposed HBPSOSCA 
INPUTS: Number of particles (swarm size);

Number of iteration;
K Number of clusters;
Variable count, max_count;

OUTPUT: gbest and subset of informative features;

Algorithm:

1) Introduce population of swarm of size 2 randomly in binary search space and select 
best particles from swarm (Refer, Subsection 3.1);

2) For each particle do
3) Assess particle fitness by fitness function (Silhouette Index (Eq. 34));
4) Instate pbest;
5) End for
6) Select gbest (best particle among pbest in the swarm);
7) While maximum iteration is not reached do
8) For each particle do
9) Update its velocity and position by utilizing Eq(s) 39-42;
10) Evaluate fitness of new updated particle;
11) If (fitness  of prev. particle > fitness of  new particle) do
12) Increment the value of count variable;
13) Else
14) set count value to zero;
15) If (count > max_count) do
16) Re-instate the particle or perform supplement of that particle;
17) Set count value to zero;
18) End if
19) End if
20) Update pbest of particle;
21) End for
22) Update gbest accordingly;
23)End while
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van, 240 instances belong to saab, 240 instances belong

to bus, and the remaining 240 instances belong to Opel.

Parkinson: It is acquired from the Max Little of the

University of Oxford. It has 23 features and 195

instances. The 147 instances belong to Parkinson cate-

gory, and the remaining 48 belongs healthy.

9_Tumors: The dataset comes from a study of 9 human

tumor types: NSCLC, colon, breast, ovary, leukemia,

renal, melanoma, prostate, and CNS. There are 60

samples, each of which contains 5726 genes.

Leukemia2: The dataset has 72 samples, each of which

contains 11,225 features. These samples categorized into

AML, ALL, and mixed-lineage leukemia (MLL).

4.3 Parameter setting

The parameters have a large impact on optimizing per-

formance. In BPSO, particle’s position and velocity are

initialized randomly. Here, the position is in the form of 1

or 0 and velocity is in the range of - 6 to 6, and parameters

e1 (0� e1) and e2 (e2 � 2) are the weighting (acceleration/

learning) coefficients for the personal best and global best

positions respectively. In Chaotic-BPSO, tent map is

preferable to logistics map according to Kennedy and

Eberhart (1997). Therefore, the inertia weight parameter is

set at to 0.48 for CBPSO. In BMFO, parameter b is a

constant value which is used to define shape of the loga-

rithmic spiral when position (refer Eq. (7)) of moth is

updated. In BDFA, parameter w is the inertia weight which

is used in updating the movement of the dragonfly (refer

Eq. (17)) and its value varies from 0.9 to 0.2. In BWOA,

parameter b is a constant value which is used to define

shape of the logarithmic spiral when position of the whale

is updated (refer Eq. (26)). In SCA, parameter a (refer

Eq. (33)) is used to compute direction of movement which

could be either in the space between the arrangement and

objective or outside it. In artificial bee colony, the number

of bees is the main factor that affects the speed and quality

of the algorithm. In HBPSOSCA, parameters e1 and e2 are

the acceleration coefficients used in BPSO, parameters

wmin and wmax are the initial and final values of the inertia

weight used in finding the linearly increasing inertia

weight, i.e., w [refer Eq. (40)]. The parameter max_count

is used to re-initialize the particular particle randomly or by

taking the complement of that particle if the particle does

not change its position for defined number of iteration. The

Table 1 Datasets description

Dataset Number of cluster Number of features Number of samples

Ionosphere 2 34 351

Breast Cancer Wisconsin (BCW) 2 9 699

Connectionist Bench (Sonar, Mines vs. Rocks) 2 60 208

Statlog (Vehicle Silhoettes) 4 18 946

Parkinson 2 23 195

9_Tumors 9 5726 60

Leukemia2 3 11,225 72

Table 2 Parameter settings

Algorithm Parameters Value

BPSO Population size (swarm size) 50

e1 and e2 1.5

[velmin, velmax] [- 6, 6]

T (number of iterations) 150

Chaotic-BPSO Population size (swarm size) 50

T (number of iterations) 150

e1 and e2 1.5

Initial inertia weight 0.48

BMFO No. of search agents (moths) 50

b (spiral’s shape) 1.0

T (number of iterations) 150

BDFA Population 50

T (number of iterations) 150

w 0.9 to 0.2

BWOA Population 50

T (number of iterations) 150

b (spiral’s shape) 1.0

SCA Population 50

T (number of iterations) 150

A 2

Binary ABC Population 50

T (number of iterations) 150

HBPSOSCA Population size (swarm size) 50

e1 and e2 1.5

wmax 0.9

wmin 0.4

T (number of iterations) 150

max_count 10

n 0.9

a 2
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parameter n varies in 0� n� 1. It is used to control portion

of iterations where inertia weight increments straightly

from wmin and wmax. Here, n = 0.9 [refer Eq. (40)] is used

to achieve stronger exploration in initial iterations and high

exploitation in later iterations, and parameter a [refer

Eq. (41)] is used to compute direction of movement which

could be either in the space between the arrangement and

objective or outside it. Tabulated summary of the param-

eters adopted in this paper for eight different algorithms

namely, BPSO, BMFO, BDFA, BWOA, and HBPSOSCA

is presented in Table 2.

4.4 Dunn Index and Davies–Bouldin Index

Silhouette Index (SI), Dunn Index (DI) and Davies–Boul-

din Index (DBI) are used to evaluate the quality of created

clusters. The higher value of SI (refer Sect. 3.3) and DI,

and a lower value of DBI represents better quality of

cluster.

DI is proposed in 1974 by Desgraupes (2013) and

Bezdek and Pal (1995) that measure maximum cluster

diameter and relate it to the minimum cluster distance to

judge the clustering performance. DI is calculated by

dividing minimum distance between clusters by maximum

size of clusters. Therefore, high value of distances between

clusters and low value of cluster sizes indicates high value

Table 3 The comparative analysis of BPSO, C-BPSO, BMFO, BDFA, BWOA, SCA, Binary-ABC, and HBPSOSCA on Benchmark Functions

F1–F10

Function BPSO C-BPSO BMFO BDFA BWOA SCA Binary-ABC HBPSOSCA

F1

Mean 9.5411 10.1450 23.8187 13.6173 5.2400 2.4120 22.0660 2.1473

SD 0.4096 0.3703 0.4758 2.4929 1.1288 0.1705 1.1375 0.2203

F2

Mean 9.2974 10.2464 23.9813 11.2940 6.4200 2.2407 21.6920 2.1341

SD 0.4253 0.3157 0.3652 2.9564 0.8354 0.1741 0.8724 0.3216

F3

Mean 160.9358 180.8801 483.4647 269.79 155.3867 37.2620 438.0480 33.1313

SD 6.5366 8.7939 8.5697 38.0267 29.6846 3.3939 20.0694 7.9122

F4

Mean 1.1141 eþ03 1.1739 eþ03 1.7128 eþ03 1.4531 eþ03 217.1800 416.9060 1.9848 eþ03 156.3193

SD 29.9715 30.3347 42.2886 192.1704 0 41.2802 83.0103 26.6875

F5

Mean 9.4483 10.0278 23.9440 12.3187 8.1467 2.3607 22.2707 1.9175

SD 0.3503 0.3381 0.5597 2.8085 1.8724 e�15 0.1384 0.9200 0.2485

F6

Mean 161.7552 182.3258 481.7741 41.2212 118.9141 36.0881 433.6432 6.1027

SD 11.3762 5.5510 7.3281 113.1499 1.1579 3.1750 25.4729 1.5730

F7

Mean 1.6734 eþ04 1.6734 eþ04 1.6736 eþ04 1.6738 eþ04 1.6727 eþ04 1.6736 eþ04 1.6747 eþ04 1.6733 eþ04

SD 0.3419 0.2780 0.3743 1.5369 22.4397 0.7677 0.4836 0.2019

F8

Mean 9.4702 10.1709 24.0533 13.2473 7.1200 2.3547 21.8020 2.1327

SD 0.4195 0.3226 0.4479 2.8708 0.1232 0.1213 0.7693 0.2340

F9

Mean 1.8526 1.8979 2.8684 2.1322 1.7424 0.5544 2.7508 0.1391

SD 0.0455 0.0380 0.0153 0.1501 1.0314 0.0261 0.0948 0.0304

F10

Mean 0.2661 0.2727 0.7199 0.2547 0.1668 0.0596 0.5834 0.0506

SD 0.0134 0.0089 0.0123 0.0702 0.2440 0.0043 0.0260 0.0085

Bold entries show the best performance recorded with the respective model
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(g) (h)

Fig. 5 Comparison of performance over 10 runs for 10 benchmark functions a F1, b F2, c F3, d F4, e F5, f F6, g F7, h F8, i F9, j F10
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of DI, leading to increased clustering efficiency. DI for m

clusters is denoted as follows:

DI ¼
min
1� i� j�md Ci;Cj

� �

max
1� k�mDk

ð43Þ

where d Ci;Cj

� �
is the distance among clusters i and j and

Dk denotes the maximum distance between clusters.

DBI is an evaluation scheme introduced in 1979 by

Desgraupes (2013) and Davies and Bouldin (1979). It is the

ratio between the within cluster distances and the between

cluster distances and the average overall the clusters. The

value of DB varies between 0 and 1. The lower value of

DBI denotes best partitions of the data point. It is calcu-

lated as follows:

DB ¼ 1

m

Xm

i¼1

Di ð44Þ

where m is the number of clusters and Di is defined as:

Di ¼ max
j 6¼i Rij ð45Þ

Rij ¼
Pi þ Pj

lij
ð46Þ

lij ¼ EU CIi;CIj
� �

ð47Þ

Pi ¼
1

jjCijj
X

X2Ci

EUðX;CIiÞ ð48Þ

where Rij denotes clustering efficiency (refer Eq. (46)),

distinction between ith and jth clusters is lij (refer

Eq. (47)), within cluster distribution of ith cluster is

denoted as Pi (refer Eq. (48)), EU x; yð Þ is the Euclidean

separation amongst x and y, center of cluster Ci is CIi and

jjCijj is the convention for Ci.

4.5 Simulation results on benchmark functions

The mean and standard deviations of function values

obtained by original BPSO, C-BPSO, BMFO, BDFA,

BWOA, SCA, Binary-ABC, and HBPSOSCA for 150

iterations for 10 independent runs are given in Table 3. It is

evident from Table 3 that the HBPSOSCA method attains

better performance compared to competitive methods in

most of the cases.

Graphical summary of the proposed algorithm in com-

parison to the competitive methods BPSO, C-BPSO,

BMFO, BDFA, BWOA, SCA, and Binary ABC is pre-

sented in Fig. 5. Here, the fitness value recorded over the

number of runs for each algorithm is reported in Fig. 5.

The Fig. 5 demonstrates that the proposed method is con-

sistent over the number of run in comparison to competi-

tive methods in most of the case. This behavior depicts

stability of the proposed method in comparison to com-

petitive methods.

4.6 Simulation results on real-life datasets

In this subsection, we perform comparative analysis of all

models for feature selection problem. The higher value of

SI and DI represents better performance whereas lower

value of DBI specifies better performance. The statistical

results of 10 independent runs, obtained by HBPSOSCA

and competitive methods are presented in Tables 4, 5 and

6. Furthermore, we measured the Wilcoxon test for all the

algorithms and the results are presented in Tables 7, 8, 9,

10, 11, 12 and 13.

The data obtained from 10 runs is plotted in Fig. 6 to

analyze the consistency and overall performance of

HBPSOSCA. For the ionosphere dataset, the performance

of proposed HBPSOSCA method is higher than the com-

petitive methods with 92.7% average accuracy as shown in

Fig. 6a. For BCW dataset, the performance of proposed

(i) (j)

Fig. 5 continued
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Table 4 The results recorded with the BPSO, C-BPSO, BMFO, BDFA, BWOA, SCA, Binary ABC, and HBPSOSCA with 10 independent runs

on seven real-life benchmark datasets in term of SI

Algorithms Dataset Average length of selected features Average SI Best SI Worst SI Standard deviation

BPSO Ionosphere 4.0333 0.6102 0.6132 0.6067 0.0020

BCW 2.0000 0.8581 0.8669 0.8464 0.0073

CB 18.1722 0.5697 0.5832 0.5626 0.0069

Vehicle 8.1325 0.8111 08147 0.8059 0.0026

Parkinson 2.6093 0.9441 0.9590 0.9354 0.0089

9_Tumors 2.8890e?03 0.2143 0.2196 0.2116 0.0028

Leukemia2 5.6196e?03 0.6256 0.6596 0.5979 0.0165

Chaotic BPSO Ionosphere 7.5667 0.5856 0.5912 0.5828 0.0026

BCW 2.0000 0.8749 0.8760 0.8737 9.9195e-04

CB 21.7351 0.5338 0.5432 0.5183 0.0072

Vehicle 6.6821 0.8082 0.8108 0.8041 0.0022

Parkinson 3.3113 0.9459 0.9459 0.9459 1.0937e-05

9_Tumors 2.8666e?03 0.3670 0.3762 0.3588 0.0056

Leukemia2 5.5675e?03 0.8591 0.8596 0.8584 4.3881e-04

BMFO Ionosphere 21.8267 0.4075 0.3637 0.3536 0.0257

BCW 5.3800 0.7579 0.7601 0.7532 0.0021

CB 38.4867 0.3579 0.3637 0.3536 0.0234

Vehicle 11.4400 0.6109 0.4156 0.4020 0.0296

Parkinson 13.0800 0.7823 0.7941 0.7715 0.0087

9_Tumors 3.6465e?03 0.1415 0.1466 0.1376 0.0030

Leukemia2 7.2229e?03 0.3205 0.3280 0.3130 0.0051

BDFA Ionosphere 17.7733 0.2064 0.2649 0.1964 0.0263

BCW 2.3000 0.5871 0.6202 0.5697 0.0118

CB 28.0933 0.2405 0.2649 0.1964 0.0123

Vehicle 6.6067 0.2463 0.2277 0.1817 0.0286

Parkinson 11.3400 0.5073 0.5161 0.4998 0.0055

9_Tumors 2833 0.0944 0.1102 0.0717 0.0101

Leukemia2 5604 0.0345 0.2833 - 0.0624 0.1030

BWOA Ionosphere 28.1800 0.5783 0.6099 0.5097 0.0213

BCW 2.0267 0.8701 0.8769 0.8615 0.0058

CB 22.2800 0.5364 0.6099 0.5097 0

Vehicle 8.3133 0.8372 0.6086 0.5605 0.0080

Parkinson 5.8067 0.9349 0.9459 0.9159 0.0129

9_Tumors 2.9149e?03 0.2213 0.2213 0.2213 5.8514e-17

Leukemia2 6.0829e?03 0.8029 0.8029 0.8029 0

SCA Ionosphere 4.2067 0.8378 0.8591 0.7990 0.0213

BCW 2.0067 0.8409 0.8782 0.8175 0.0232

CB 9.3733 0.7825 0.7980 0.7505 0.0140

Vehicle 4.0267 0.8273 0.8659 0.8207 0.0136

Parkinson 3.0000 0.9543 0.9572 0.9523 0.0020

9_Tumors 1.6526e?03 0.2665 0.2859 0.2487 0.0106

Leukemia2 3.6262e?03 0.7599 0.8152 0.6209 0.0807

Binary ABC Ionosphere 17.5733 0.4073 0.4221 0.3857 0.0118

BCW 4.9000 0.6677 0.7471 0.5011 0.0701

CB 30.8267 0.3920 0.4017 0.3816 0.0079

Vehicle 7.6533 0.6292 0.6606 0.5989 0.0189

Parkinson 15.9267 0.8698 0.9209 0.8280 0.0278

9_Tumors 2.8651e?03 0.0603 0.0654 0.0528 0.0043

Leukemia2 5.6533e?03 0.2461 0.3354 0.1724 0.0670
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Table 4 (continued)

Algorithms Dataset Average length of selected features Average SI Best SI Worst SI Standard deviation

HBPSOSCA Ionosphere 2.2400 0.9270 0.9366 0.8809 0

BCW 2.0000 0.8786 0.8800 0.8771 0.0010

CB 2.5629 0.9041 0.9366 0.8809 0.0237

Vehicle 3.5629 0.8461 0.9751 0.8303 0.0013

Parkinson 2.1325 0.9613 0.9647 0.9589 0.0020

9_Tumors 188.6644 0.8006 0.8556 0.7421 0.0330

Leukemia2 932.6980 0.9073 0.9781 0.8237 0.0486

Table 5 The results recorded with the BPSO, C-BPSO, BMFO, BDFA, BWOA, SCA, Binary ABC, HBPSOSCA with 10 independent runs on

seven real life benchmark datasets in term of DI

Algorithms Dataset Average length of selected features Average DI Best DI Worst DI Standard deviation

BPSO Ionosphere 25.0397 0.1379 0.3105 0.1119 0.0162

BCW 6.0132 0.1770 0.1770 0.1770 0.0376

CB 30.8940 0.3480 0.3703 0.3272 0.0689

Vehicle 10.8609 0.5012 0.8443 0.2011 0.2175

Parkinson 19.5033 0.3409 0.3409 0.3409 0.1472

9_Tumors 2.8893e?03 0.5510 0.5728 0.5425 0.0108

Leukemia2 6.1238e?03 0.7044 0.8235 0.6171 0.0632

Chaotic BPSO Ionosphere 18.6689 0.0975 0.0993 0.0949 0.0015

BCW 6.9404 0.1741 0.1746 0.1735 3.6457e-04

CB 31.4437 0.2790 0.2838 0.2695 0.0040

Vehicle 9.6490 0.2950 0.3184 0.2751 0.0127

Parkinson 2.5430 0.3513 0.3513 0.3513 5.2872e-08

9_Tumors 2.8133e?03 0.4950 0.5036 0.4824 0.0065

Leukemia2 5.5576e?03 1.5373 1.5427 1.5317 0.0030

BMFO Ionosphere 23.0067 0.0939 0.0980 0.0910 0.0026

BCW 5.7867 0.1729 0.1770 0.1628 0.0053

CB 38.8200 0.2662 0.2900 0.2450 0.0092

Vehicle 11.1933 0.2058 0.2442 0.1713 0.4827

Parkinson 14.8067 0.3409 0.3409 0.3409 1.0790 e-06

9_Tumors 3.6822e?03 0.4084 0.4159 0.4037 0.0034

Leukemia2 7.1904e?03 0.4107 0.4287 0.3973 0.0085

BDFA Ionosphere 21.2733 0.0296 0.0357 0.0239 0.0068

BCW 4.2000 0.0516 0.0570 0.0486 0.0032

CB 26.0533 0.0607 0.0703 0.0467 0.0074

Vehicle 2.9600 0.0334 0.0405 0.0244 0.0048

Parkinson 14.8133 0.0108 0.0130 0.0081 0.0016

9_Tumors 2834 0.3221 0.3400 0.3026 0.0136

Leukemia2 5662 0.2215 0.3412 0.1872 0.0462

BWOA Ionosphere 27.6133 0.1046 0.1046 0.1046 1.4628 e-17

BCW 6.0867 0.1770 0.1770 0.1770 2.9257 e-17

CB 32.2600 0.2985 0.3071 0.2876 5.5814 e-17

Vehicle 12.2200 0.2647 0.2786 0.2483 5.8514 e-17

Parkinson 19.9667 0.3409 0.3409 0.3409 0

9_Tumors 3.2932e?03 0.5400 0.5400 0.5400 0

Leukemia2 4.0762e?03 0.7654 0.7654 0.7654 1.1703e-16
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Table 5 (continued)

Algorithms Dataset Average length of selected features Average DI Best DI Worst DI Standard deviation

SCA Ionosphere 13.2400 0.1040 0.1055 0.1004 0.0016

BCW 6.2867 0.1692 0.1739 0.1684 0.0017

CB 21.3067 0.2917 0.3035 0.2801 0.0065

Vehicle 7.8133 0.2284 0.2496 0.2184 0.0091

Parkinson 13.2933 0.3409 0.3409 0.3409 3.5692 e-07

9_Tumors 2.2772e?03 0.5143 0.5258 0.5051 0.0068

Leukemia2 3.5778e?03 0.7537 0.7890 0.7104 0.0260

Binary ABC Ionosphere 20.9667 0.0648 0.0709 0.0614 0.0028

BCW 4.1533 0.0753 0.0805 0.0709 0.0031

CB 29.0800 0.1320 0.1611 0.1150 0.0139

Vehicle 13.4200 0.0727 0.0896 0.0529 0.0107

Parkinson 4.3600 0.2322 0.3215 0.0977 0.0836

9_Tumors 2.9178e?03 0.3663 0.3732 0.3596 0.0053

Leukemia2 5.5821e?03 0.3111 0.3357 0.2839 0.0186

HBPSOSCA Ionosphere 12.2450 0.1436 0.2131 0.1089 0.0309

BCW 5.7067 0.1770 0.1770 0.1770 2.9257 e-17

CB 11.7947 0.5342 0.6705 0.3158 0.0922

Vehicle 2.2318 1.9029 3.0612 0.3531 0.9707

Parkinson 14.2367 0.3409 0.3409 0.3409 5.6413 e-10

9_Tumors 2.2312e?03 0.6019 0.6878 0.5061 0.0863

Leukemia2 6.0090e?03 0.7923 0.8866 0.6828 0.0835

Table 6 The results recorded with BPSO, C-BPSO, BMFO, BDFA, BWOA, SCA, and Binary ABC with 10 independent runs on seven real-life

benchmark datasets in term of DBI

Algorithms Dataset Average length of selected features Average DBI Best DBI Worst DBI Standard deviation

BPSO Ionosphere 13.7550 0.4076 0.2960 0.4790 0.4843

BCW 2.0000 0.4046 0.4046 0.4046 0.1357

CB 8.2914 0.3612 0.2575 0.3996 0.5335

Vehicle 9.2318 0.2689 0.2584 0.3582 0.2311

Parkinson 2.6358 0.3513 0.3513 0.3513 0.1865

9_Tumors 2.8437e?03 1.2174 1.3379 1.1403 0.0639

Leukemia2 5.5800e?03 0.4942 0.4852 0.5044 0.0066

Chaotic BPSO Ionosphere 8.2980 0.8413 0.6997 0.8981 0.0627

BCW 1.9868 0.4057 0.4046 0.4067 6.8361e-04

CB 21.8013 0.9725 0.9725 0.9725 0

Vehicle 9.6490 0.2950 0.3184 0.2751 0.0127

Parkinson 2.5430 0.3513 0.3513 0.3513 5.2872e-08

9_Tumors 2.9017e?03 1.0080 0.4935 1.7777 0.4577

Leukemia2 5.5783e?03 0.4946 0.4918 0.4971 0.0017

BMFO Ionosphere 21.4267 0.2967 0.2521 0.3237 0.0368

BCW 5.1933 0.3134 0.2881 0.3237 0.0486

CB 38.0200 1.3745 1.3131 1.4308 0.0361

Vehicle 11.2867 0.4014 0.3970 0.4094 0.0044

Parkinson 13.6400 0.3513 0.3513 0.3513 2.8570e-06

9_Tumors 3.6878e?03 1.9514 1.9111 1.9819 0.0222

Leukemia2 7.2183e?03 1.5994 1.5648 1.6283 0.0163
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method is higher than BPSO, BMFO, BDFA, SCA, and

binary ABC methods as shown in Fig. 6b and also pro-

posed method achieves a little bit better average accuracy

with 87.86% than an average accuracy of C-BPSO and

BWOA, i.e., 87.49% and 87.01% respectively. For CB

dataset, the proposed method performs best as compared to

other methods with 90.41% average accuracy. For Statlog

dataset, the performance of BWOA and HBPSOSCA is

nearly same up to four iterations. After 4th iterations,

performance of the proposed method is higher than BWOA

and other method with 84.61% average accuracy as shown

in Fig. 6d. For Parkinson dataset, SCA performed better

with average accuracy 95.43% with respect to other

methods, but the proposed method achieves better average

accuracy as shown in Fig. 6e as compared to stated

methods with 96.13% average accuracy. Figure 6f shows

performance of the proposed method for the 9_Tumors

dataset with other methods used in this thesis. This fig-

ure describes that proposed method achieves higher per-

formance as compared to other methods with 80.06%

average accuracy. For Leukemia2 dataset, the proposed

method achieves 90.73% average accuracy which is

Table 6 (continued)

Algorithms Dataset Average length of selected features Average DBI Best DBI Worst DBI Standard deviation

BDFA Ionosphere 16.8867 22.375 14.742 36.383 7.2495

BCW 2.0067 0.4046 0.4046 0.4046 0

CB 20.5400 0.4648 0.4001 0.5826 0.0732

Vehicle 8.8667 0.2918 0.2637 0.3291 0.0212

Parkinson 5.0467 0.3513 0.3513 0.3513 2.5809e-10

9_Tumors 2.8659e?03 2.4811 2.3381 2.5535 0.0551

Leukemia2 6.1308e?03 4.8836 4.7844 5.0287 0.0630

BWOA Ionosphere 16.0467 1.9234 1.7631 2.1573 2.3460e-16

BCW 4.0000 0.8782 0.8192 0.9075 1.1703e-16

CB 37.6600 1.9696 1.8445 2.1628 0

Vehicle 9.0867 1.2479 1.1077 1.4317 2.3406e-16

Parkinson 12.8533 0.9786 0.9171 0.9947 0

9_Tumors 4.2436e?03 2.5855 2.5059 2.7404 0.0690

Leukemia2 8.3635e?03 2.9038 2.7576 3.2958 0.1813

SCA Ionosphere 4.4400 0.4178 0.3574 0.4780 0.0478

BCW 2.0000 0.4046 0.4046 0.4083 0.0012

CB 8.9133 1.3552 1.3107 1.4451 0.0437

Vehicle 7.1258 0.3659 0.3627 0.3707 0.0022

Parkinson 2.9333 0.3513 0.3513 0.3513 3.4508e-06

9_Tumors 1.5022e?03 1.3520 1.2649 1.4017 0.0468

Leukemia2 3.6995e?03 0.5701 0.5166 0.6938 0.0633

Binary ABC Ionosphere 17.1133 0.3694 0.2311 0.4223 0.0691

BCW 2.0000 0.4032 0.3692 0.4094 0.0120

CB 4.5800 0.5338 0.4805 0.5850 0.0366

Vehicle 2.8133 0.2755 0.2636 0.2982 0.0107

Parkinson 2.3533 0.3513 0.3513 0.3513 2.6403e-07

9_Tumors 2.8847e?03 1.2358 1.1981 1.3040 0.0334

Leukemia2 5.6059e?03 0.5365 0.5320 0.5405 0.0030

HBPSOSCA Ionosphere 3.8800 0.2960 0.2960 0.2960 0.0894

BCW 2.0000 0.3046 0.3046 0.3046 0

CB 1.1000 0.2614 0.2575 0.2922 0.0466

Vehicle 6.5828 0.2596 0.2584 0.2629 0.0157

Parkinson 2.0000 0.3513 0.3513 0.3513 5.8514e-17

9_Tumors 21.3067 0.3425 0.2717 0.3929 0.0403

Leukemia2 92.4000 0.3243 0.2160 0.4293 0.0716
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comparatively higher than the competitive method as

shown in Fig. 6g. A possible reason of this improvement is

good exploration and exploitation of the given feature

space.

We can see that the score obtained by HBPSOSCA is

significantly better compared to other stated methods in

Tables 7, 8, 9, 10, 11, 12 and 13. The comparative per-

formance of BPSO, C-BPSO, BMFO, BWOA, SCA, bin-

ary ABC, and HBPSOSCA in term of number of selected

features is shown in Fig. 7. Here, the proposed method

HBPSOSCA selects 6.5882%, 22.2222%, 4.715%,

19.794%, 9.693%, 3.2949%, and 8.3091% of features for

Ionosphere, BCW, CB, Vehicle, Parkinson, 9_Tumors, and

Leukemia2 datasets, respectively, which is comparatively

Table 7 Wilcoxon test for ionosphere dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 1.8267 e-04 Significant

HBPSOSCA—C-BPSO 1.8267 e-04 Significant

HBPSOSCA—BMFO 1.8267 e-04 Significant

HBPSOSCA—BDFA 1.8267 e-04 Significant

HBPSOSCA—BWOA 1.8267 e-04 Significant

HBPSOSCA—SCA 0.0013 Significant

HBPSOSCA—Binary-ABC 1.8267 e-04 Significant

Table 8 Wilcoxon test for BCW dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 1.8165 e-04 Significant

HBPSOSCA—C-BPSO 1.8165 e-04 Significant

HBPSOSCA—BMFO 1.8165 e-04 Significant

HBPSOSCA—BDFA 1.8063 e-04 Significant

HBPSOSCA—BWOA 1.8165 e-04 Significant

HBPSOSCA—SCA 4.2880 e-04 Significant

HBPSOSCA—Binary-ABC 1.8165 e-04 Significant

Table 9 Wilcoxon test for CB dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 1.8267 e-04 Significant

HBPSOSCA—C-BPSO 1.8267 e-04 Significant

HBPSOSCA—BMFO 1.8267 e-04 Significant

HBPSOSCA—BDFA 1.8267 e-04 Significant

HBPSOSCA—BWOA 1.8267 e-04 Significant

HBPSOSCA—SCA 1.8267 e-04 Significant

HBPSOSCA—Binary-ABC 1.8267 e-04 Significant

Table 10 Wilcoxon test for vehicle dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 1.8267 e-04 Significant

HBPSOSCA—C-BPSO 1.8267 e-04 Significant

HBPSOSCA—BMFO 1.8267 e-04 Significant

HBPSOSCA—BDFA 1.8267 e-04 Significant

HBPSOSCA—BWOA 0.0539 e-04 Insignificant

HBPSOSCA—SCA 5.8284 e-04 Significant

HBPSOSCA—Binary-ABC 1.8267 e-04 Significant

Table 11 Wilcoxon test for Parkinson dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 2.4480 e-04 Significant

HBPSOSCA—C-BPSO 8.7450 e-05 Significant

HBPSOSCA—BMFO 1.8267 e-04 Significant

HBPSOSCA—BDFA 1.8267 e-04 Significant

HBPSOSCA—BWOA 1.6118 e-04 Significant

HBPSOSCA—SCA 1.8267 e-04 Significant

HBPSOSCA—Binary-ABC 1.8267 e-04 Significant

Table 12 Wilcoxon test for 9_Tumors dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 1.8267 e-04 Significant

HBPSOSCA—C-BPSO 1.8267 e-04 Significant

HBPSOSCA—BMFO 1.8267 e-04 Significant

HBPSOSCA—BDFA 1.8267 e-04 Significant

HBPSOSCA—BWOA 6.3864 e-05 Significant

HBPSOSCA—SCA 1.8267 e-04 Significant

HBPSOSCA—Binary-ABC 1.8165 e-04 Significant

Table 13 Wilcoxon test for Leukemia2 dataset

Optimizers Wilcoxon test value Comment

HBPSOSCA—BPSO 1.8267 e-04 Significant

HBPSOSCA—C-BPSO 0.0257 Significant

HBPSOSCA—BMFO 1.8267 e-04 Significant

HBPSOSCA—BDFA 1.8267 e-04 Significant

HBPSOSCA—BWOA 6.3864 e-05 Significant

HBPSOSCA—SCA 1.8267 e-04 Significant

HBPSOSCA—Binary-ABC 1.8267 e-04 Significant
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(c) (d)

(e) (f)

(g)

Fig. 6 Comparison of performance over 10 runs for seven datasets a Ionosphere, b BCW, c CB, d Vehicle, e Parkinson, f 9_Tumors,

g Leukemia2
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less than the other stated methods. It is clear from the

conducted analysis that the HBPSOSCA outperforms the

other methods in most of cases.

5 Conclusions and future directions

A feature selection method is used to select an informative

subset of features from high dimensional irrelevant,

redundant, and noisy feature space. The irrelevant, redun-

dant, and noisy feature not only increases computational

complexity but also deteriorate performance of the under-

lying algorithms. In this paper, a nature-inspired algorithm

is used to select an informative subset of features from

given feature space. Each algorithm has its own advantages

and disadvantage. We introduce a new hybrid method to

take advantage of one method and lessen the disadvantage

of others for feature selection task. Here, we integrate the

BPSO with the SCA, named as HBPSOSCA for this task.

The integration of the two algorithms provides global

search ability and local exploitation ability to the

HBPSOSCA by improving the movement of a particle in

the BPSO with the SCA. The proposed algorithm is tested

on ten benchmark test functions and seven well-known

scientific datasets. Experimental results show that the

proposed algorithm obtains the near global minimum

compared to other competitive nature-inspired algorithms

for most of the test functions. Moreover, it achieves better

clustering accuracy compare to the competitive methods

for all real-life datasets. The Wilcoxon Test confirms that

the results obtained by the HBPSOSCA are significantly

better than the competitive methods.

In the future, we intend to combine other feature

selection methods with the nature-inspired algorithm to

select an informative subset of features from high dimen-

sional space without much increasing computational com-

plexity of the algorithm. As the parameters’ value

significantly affects performance of the underlying algo-

rithm, we plan to develop a model to adaptively set the

parameter’s values.
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