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Abstract
Quantum cellular automata are arrays of identical finite-dimensional quantum systems, evolving in discrete-time steps by

iterating a unitary operator G. Moreover the global evolution G is required to be causal (it propagates information at a

bounded speed) and translation-invariant (it acts everywhere the same). Quantum cellular automata provide a model/

architecture for distributed quantum computation. More generally, they encompass most of discrete-space discrete-time

quantum theory. We give an overview of their theory, with particular focus on structure results; computability and

universality results; and quantum simulation results.

Keywords Quantum walks � Dynamical systems

1 Introduction

Von Neumann provided the modern axiomatisation of

quantum theory in terms of the density matrix formalism

(von Neumann 1955) in 1955. He also invented the cellular

automata (CA) model of computation (von Neumann 1966)

in 1966, but never brought the two together. Feynman

suggested doing so (Feynman 1982, 1986) in 1986, just as

he was inventing the very concept of quantum computation

(QC).

Indeed, confronted with the inefficiency of classical

computers for simulating quantum physics, Feynman

(1982) realized that one ought to use quantum devices

instead. What better than a quantum system in order to

simulate another quantum system? Soon afterwards

(Feynman 1986) he introduced Quantum Cellular Auto-

mata (QCA) for two reasons. First because they constituted

a promising architecture for the implementation of quan-

tum simulation devices—as demonstrated nowadays with

cold atoms on optical lattices, integrated quantum optics or

superconducting qubits. Second, because the quantum

simulation of a quantum physical phenomena requires that

we are able to describe it ‘‘in terms of qubits’’. Most often,

this qubit description is obtained by formulating a discrete-

space discrete-time version of the original continuous

description of the phenomena—i.e. a QCA model for it.

Notice that your usual, numerical simulation of the

phenomena on a classical computer, would also require that

the phenomena be described ‘‘in terms of bits’’. But these

numerical schemes are not usually thought of as being

physically legitimate themselves, because they tend to be

unaesthetic or worse break fundamental symmetries. For

instance, applying finite-difference methods upon the par-

tial differential equation governing the propagation of a

particle, will typically break unitarity, making it unphysi-

cal. A QCA model, on the other hand, has to remain

physical, and unitary (with some work it may even retain

Lorentz-covariance). In this sense, QCA models may be

thought of as constituting physically legitimate descrip-

tions of the phenomena themselves. Moreover some are

way simpler and more explanatory than the original con-

tinuous description, as we shall see. Thus, the provision of

toy models for theoretical physics is another, strong reason

to study QCA.

Yet another strong reason lies at the heart of Theoretical

Computer Science with the basic question: What is a

computer, ultimately? Which key resources are granted to

us by nature, for the sake of computing? Tentative answers

to these questions have been obtained by abstracting away

from particles and forces, to reach formal models of

computation—such as the Turing machine. Turing machi-

nes used to be our best answer. Nowadays, however, spatial
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and quantum parallelism need be taken into account,

leading us to propose models of distributed quantum

computation. Amongst the different models of distributed

QC, QCA are of the most established. Just like CA, QCA

account for space ‘‘as we know it’’ (i.e. mostly euclidean).

Thus, they constitute a framework to model and reason

about problems in spatially-sensitive distributed Quantum

Computation (Mazoyer 1987). For instance we may won-

der, as we shall see, whether there exists an intrinsically

universal QCA, i.e. capable of simulating all others in a

spacetime-preserving manner; or whether QCA evolutions

are computable altogether.

A QCA is an array of identical finite-dimensional

quantum systems. The whole array evolves in discrete-time

steps by iterating a linear operator G. Moreover the global

evolution G is required to be translation-invariant (it acts

everywhere in the same way), causal (information cannot

be transmitted faster than some fixed number of cells per

time step), and unitary (the condition required by the

postulate of evolutions in quantum theory, akin to

reversibility). See Fig. 1. This style of definition is ‘ax-

iomatic’, in the sense that it characterizes QCA as the sole

mathematical object fulfilling a number of high-level

principles. It is the natural ‘quantization’ of the classical

definition (Schumacher and Werner 2004; Arrighi et al.

2008, 2011b). But contrary to its classical counterpart the

axiomatic definition did not immediately yield a straight-

forward way of constructing the instances of this model. A

great deal of effort has been dedicated towards under-

standing their structure, in terms of infinitely repeating

circuits of local, quantum gates (Arrighi et al. 2010, 2011a;

Arrighi and Grattage 2012b).

Roadmap We will tackle the above themes in a some-

what reversed order. We will start with the axiomatic

definition of QCA, the consequent structure theorems, their

origins, in Sect. 2. This will place us in a position to recall

the main universality results and consequences in com-

putability, in Sect. 3. QCA models of particle physics,

whether for the sake of quantum simulation or as toy

models for theoretical physics, will be discussed in Sect. 4.

Section 5 summarizes the progress QCA theory has made,

and some of the challenges that remain ahead.

Foreword I aimed to state the fundamental results of the

field in a mathematical manner, and then touch on the

many fascinating results around with just a word of

explanation—hoping to show how they relate to each other

and thereby draw a coherent picture. I favoured the logical

order over the chronological, and citations over long and

necessarily incomplete lists of surnames.

Even with more than 120 citations and in spite of my

best efforts, I realize that this remains to some extent a

personal account: I needed to select what seemed to be the

most significant contributions, and may still be unaware of

other great advances. Do get in touch if you have sugges-

tions for the subsequent versions. Whist writing I learnt

that a technically more comprehensive review on QCA was

being written (Farrelly 2019). Hopefully the two will

complement each other, updating (Wiesner 2008).

I needed to assume a certain knowledge of both the

foundations of CA theory, and the foundations of quantum

theory. Two great references for this purpose are Kari

(2005) and Nielsen and Chuang (2000), respectively.

2 Structure

2.1 State space

A Quantum Cellular Automata (QCA) is an n-dimensional

array of identical d-dimensional quantum systems. In other

words, each cell is a qudit, i.e. a normalised vector in the d-

dimensional complex space Cd. Since there are Zn such

cells, the overall state space should morally be something

like ‘‘H ¼ b
Z
Cd’’. Unfortunately this is not a Hilbert

space (e.g. the inner product may diverge), see e.g. (Niel-

sen and Chuang 2000) Sects. 2.1–2.2 for recaps on the

notions of inner products, Hilbert spaces and tensor prod-

ucts. If one is willing to switch from the Schrödinger pic-

ture to Heisenberg picture and pay the price of abandoning

Hilbert spaces for C�-algebras (Bratteli and Robinson

1987), then one can make sense of QCA over such a space

(Schumacher and Werner 2004). In Arrighi et al.

(2008, 2011b) we were able to develop a simpler alterna-

tive, which is to assume that basic configurations are

mostly empty. The equivalence between the two approa-

ches is given in Shakeel (2019).

Definition 1 (Configurations) Consider R a finite set,

called the alphabet, with 0 a distinguished element of R,
called the empty state. A configuration c over R is a

function c : Zn �! R, i.e. mapping ðii; . . .; inÞ to cii...in 2 R,
such that the set of the ðii; . . .; inÞ 2 Zn such that cii...in 6¼ 0,

is finite. The set of all configurations will be denoted CR or

just C.

Notice that C is countable. Thus, we can now consider

the Hilbert space of superpositions of configurations.

f f

Fig. 1 Axiomatic definition of a QCA: a translation-invariant unitary

operator, such that information does not propagate too fast. Each wire

carries a quantum system, time flows upwards
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Definition 2 (State space) The Hilbert space of configu-

rations is that having orthonormal basis fjcigc2C. It will be
denoted HC or just H.

2.2 QCA

The global evolution of a QCA is required to be transla-

tion-invariant, meaning that it acts everywhere in the same

way.

Definition 3 (Translation-invariance) Let sk denote the

translation operator along the kth dimension, i.e. the linear

operator over H which maps jci into jc0i, where jc0i is such
that for all ði1; . . .; inÞ, c0i1...ik ...in ¼ ci1...ikþ1...in . A linear

operator G over H is said to be translation-invariant if and

only if Gsk ¼ skG for every k.

Moreover, the global evolution of a QCA is required to

be causal, meaning that information propagates at a

bounded speed. In order to formulate this property, we

need to be able to speak of the state of a cell x at time t þ 1,

to say that it should only depend on the state of its

neighbours xþN at time t—where N is a fixed set of

vectors, which added to any x, lead to its neighbours. But in

order to speak of the state of a subsystem in quantum

theory we must switch to the density matrix formalism,

which is not so trivial—again see e.g. (Nielsen and Chuang

2000 Sect. 2.4). Summarizing, a density matrix represents a

probability distributions over pure states fpi; jwiig as the

corresponding convex sum of projectors q ¼
P

i pijwiihwij.
Thus, when pure states jwi evolve according to

jw0i ¼ Gjwi, density matrices q evolve according to

q0 ¼ GqGy. Then, the state of cell x ¼ ði1; . . .; inÞ at time

t þ 1 is obtained by tracing out all the of the other cells, i.e.

q0x ¼ Trxðq0Þ, with TrSð:Þ the linear operator such that

TrSðjcihdjÞ ¼ ðdc
S
;d

S
ÞjcSihdSj. Similarly, the state of its

neighbours xþN at time t is obtained by tracing out the

rest, i.e. qxþN ¼ Tr
xþN ðqÞ. We get :

Definition 4 (Causality) A linear operator G over H is

said to be causal with neighbourhood N � Zn if and only

if for any x 2 Zn there exists a function f such that for any

q over H, we have q0x ¼ f ðqxþN Þ; where q0 ¼ GqGy.

To a certain extent, this f may be thought of as the

equivalent of the local rule of a classical CA. However,

unlike for classical CA, this f does not straightforwardly

yield a local mechanism whereby q0 may be computed

from q, for two reasons. First, because f by itself is not

unitary (it maps many cells into one) and thus cannot be

considered to be physical. Second, because in quantum

theory, knowing the states q0x and q0y of cells x and y does

not entail knowing their joint states q0fx;yg—as these may be

entangled. Hence, unlike for classical CA, the following

axiomatic definition of QCA does not immediately yield a

straightforward way of constructing / enumerating all of

the instances of the model.

Definition 5 (QCA) A QCA is a linear operator over H
which is translation-invariant, causal and unitary.

We needed structure theorems in order to tame this

axiomatic definition, into a constructive one.

2.3 Structure theorems

From the above axiomatic definition of QCA, we were able

to eventually deduce that every QCA can be directly sim-

ulated by a finite depth quantum circuit of local unitary

gates, infinitely repeating across space (Arrighi et al.

2010, 2011a). In order to do so each cell of the QCA needs

be encoded into a doubled up cell.

Theorem 1 (Unitary plus causality implies localizability)

Arrighi et al. (2010, 2011a)

Let G be an n-dimensional QCA with alphabet R. Let Ex

be the isometry from HR to HR �HR which adds an

ancillary empty subcell at x, i.e. Exjwi ¼ j0i � jwi. This
mapping can be trivially extended to whole configurations,

yielding the mapping E : HCR ! H
CR2 . There exists an n-

dimensional QCA H with alphabet R2, such that HE ¼ EG,

where H admits the following multi-layer quantum circuit

representation:

H ¼ ðbSxÞð
Y

x

KxÞ

with

– Sx is the swap between the two subcells at x and hence

is local to x.

– Kxis ðGySxGÞ, which turns out to be local to the

neighbourhood xþN .

Proof Outline.

1. Show the equivalence between causality in the

Schrödinger picture (Definition 4) and causality in

the Heisenberg picture (Schumacher and Werner

2004), which states that if U is causal with neighbour-

hood N and A of a local operator Ax � I, then A0 ¼
UyAU is a local operator A0

xþN � I.

2. Extend G to act only on the right subcells, leaving the

left subcells unchanged. Apply the previous point to

obtain that each Kx is a local operator KxþN � I.

3. Notice that
Q

x Kx ¼ . . .GySxGG
ySxþ1G. . . ¼

Gyð
Q

x SxÞG. Thus
Q

x Kx computes G and swaps it

away to the left subcells.
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Remark that each Kx plays the role a local update

mechanism for the cell x, as it computes the future state of

that cell from the local information available at xþN , and

then puts it aside in the left subcell. It may alter cells

xþN for this purpose, but this is not a problem because

the Kx commute with one another.

This ‘direct simulation’ of QCA G by QCA H does

show that any QCA can be put into the form of a finite

depth quantum circuit, with local unitary gates K and S, up

to a simple encoding. Indeed, Kx and Ky can be done in

parallel whenever they do not overlap, i.e. when

xþN \ yþN ¼ £. In the N ¼ f0; 1g case, for

instance, the construction results in a 2n-layered circuit.

This N ¼ f0; 1g case may seem restrictive, but it is not.

Just like for CA (Ibarra and Jiang 1987), one can always

group the cells into supercells, relative to which the

neighbourhood reduces down to N ¼ f0; 1g.
The notion of ‘intrinsic simulation’ of a QCA G by a

QCA H is obtained by relaxing the notion of direct simu-

lation in two ways. First, by allowing for such groupings of

cells into supercells, yielding G0 and H0. Second, by

allowing H0 to be iterated k times before it directly simu-

lates G0. I.e. H intrinsically simulates G when H0k directly
simulates G0. The notion, made rigourous in Arrighi and

Grattage (2012a), allowed us to reach an even simpler

quantum circuit-form for QCA (Arrighi and Grattage

2012b).

Definition 6 (PQCA) An n-dimensional partitioned QCA

(PQCA) G is induced by a scattering unitary U taking a

hypercube of 2n cells into a hypercube of 2n cells, i.e.

acting over H�2n

R , and preserving quiescence, i.e.

Uj0. . .0i ¼ j0. . .0i. Let J ¼ ðb
2ZnUÞ over H and s ¼

s1. . .sn the diagonal translation. The induced global evo-

lution is J at even steps, and syJs at odd steps.

In other words, PQCA work by partitioning the grid of

cells into supercells, applying a local operation U on each

supercell, translating the partition along ð1. . .1ÞT , applying
U to the new macrocells, etc., as illustrated in Fig. 2. Of

course one can now change scale and take the view that

supercells are now cells, whose subcells are the former

cells. Then the data contained in each cell can be thought of

as being subdivided into 2n subcells, about to be sent

towards the ð�1. . .� 1ÞT direction. In this picture, a

PQCA is therefore the alternation of a ‘scattering step’

(where U gets applied on each cell) followed by an ‘ad-

vection step’ (where subcells get synchonously exchanged

with their corresponding cross-diagonal neighbour)—a

scheme which physicists refer to as Lattice Gas Automata.

Either way, PQCA suffer the small inconvenience that

homogeneity is now over two steps. For instance, in the

Lattice Gas Automata picture, the cells at time t þ 1=2 are

translated by ð1=2. . .1=2ÞT with respect to the cells at time

t. This can be fixed elegantly by doubling up the lattice like

a checkerboard, with black and white lattices ignoring each

other. Then PQCA recover full-translation invariance and

fall back within the class of QCA with neighbourhood

N ¼ f�1;þ1g � � � � � f�1;þ1g, i.e. QCA such that the

state of a cell depends only upon that of its diagonal

neighbours at the previous time step—but not on its own

previous state, see Fig. 5. We were able to prove the

following.

Theorem 2 (PQCA are intrinsically universal) Arrighi

and Grattage (2012b) Given any n -dimensional QCA G,

there exists an n-dimensional PQCA H which intrinsically

simulates G.

Proof Outline.

1. Space-group the cells of the QCA G so that its

neighbourhood is down to N ¼ f0; 1g � . . .� f0; 1g.
2. Apply Theorem 1, yielding 2n successive partitions for

applying the Kx in a non-overlapping way.

3. Devise a PQCA H, with appropriate ancillary systems

used to get the timing right, so that the scattering U

successively performs K translated by the vectors inN ,

according to the corresponding partition.

h

2.4 Advanced structure theorems

The Theorems of Sect. 2.3 show that QCA can be simu-

lated, in a spacetime-preserving manner, by multi-layer

Fig. 2 Left: Partitioned QCA with scattering unitary U. Each wire

represents a cell, cells are partitioned differently at odd and even time

steps. Alternatively one may think of pairs of wires as cells, but then

cell positions are translated by a half between each half-step. Middle:

The PQCA with scattering unitary U intrinsically simulates that with

scattering unitary V in four time steps. Right: An actual scheme to

perform such an intrinsic simulation between 1D PQCA
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quantum circuits, and that these can in turn be simulated by

PQCA. For RCA, an analogous result was given in Durand-

Lose (2001), Arrighi and Nesme (2011). Still, does it mean

that QCA are exactly multi-layer quantum circuits, or

PQCA? A number of researchers have been pursuing this

question. Our current knowledge of these issues varies

according to the spatial dimension. It helps to recall the

corresponding results on Reversible Cellular Automata

(RCA), as these are the classical counterparts of QCA.

In 1D, RCA are exactly the set of translation-invariant

two-layer circuits of reversible gates and partial shifts (Kari

1996). The analogous result holds true for 1D QCA, as we

can show that they are exactly the set of translation-in-

variant two-layered quantum circuits (Schumacher and

Werner 2004; Arrighi et al. 2008, 2011b). This leads to a

group theoretical classification of 1D QCA, called the

index theory (Gross et al. 2012)—a single number char-

acterizes the flux of information within the 1D QCA. Still,

1D QCA are not exactly PQCA (Meyer and Shakeel 2016).

In 2D, RCA are again exactly the set of translation-

invariant three-layer circuits of reversible gates and partial

shifts (Kari 1996). This analogous result holds true for,

translation-invariance left aside, for 2D QCA (Freedman

and Hastings 2019; Haah 2019). Still we were able to show

that 2D QCA are not exactly PQCA (Arrighi et al.

2008, 2011b), with a counter-example coming from RCA

(Kari 1999). This is taken a step further in Shakeel and

Love (2013), whose characterization of PQCA in terms of

inclusion of algebras actually works independent of the

spatial dimension.

Apart from this characterization of PQCA, little is

known in 3D and beyond. It is open whether RCA coincide

with the set of translation-invariant circuits of reversible

gates and partial shifts (Kari 1996). Again we do not know

whether the analogous result holds true for 3D QCA, but

Haah et al. (2018) holds the promises of a counter-exam-

ple: ‘‘either a nontrivial three-dimensional qudit QCA

exists or a nontrivial two-dimensional fermionic QCA

exists.’’ Let us take this opportunity to mention fermionic

QCA.

Intuitively, fermions are indistinguishable quantum

systems, such that permuting one for another does not

change anything but for a global, minus sign. Technically,

let ax denote the linear operator which annihilates the

fermion having spin a at x, let ayx be the corresponding

creation, and similarly for the other spins. The fermionic

commutation relations are

fax; ayg ¼ fbx; byg ¼ fax; byg ¼ fax; byyg
¼ fayx; byg ¼ 0; fax; ayyg ¼ fbx; byyg ¼ dx;yI

These indeed entail that ayxa
y
y ¼ �ayya

y
x, so that ayxa

y
x ¼ 0,

i.e. two identical fermions exclude each other. However,

these anticommutation relations between ax and ay for any

x and y also entail that ax is not actually local in the usual,

qubit sense. This leads to subtle differences between

computing with qubits and computing with fermions

(Mauro et al. 2014). A fermionic QCA is a quantum evo-

lution which is prescribed in terms of how the fermionic

operators evolve, rather than how qubit-local algebras

evolve, see for instance (Bisio et al. 2018; Haah et al.

2018). However, a direct analog of Theorem 1 still holds

for fermionic QCA (Farrelly and Short 2014). Moreover,

Farrelly (2015) shows that fermionic QCA and QCA

intrinsically simulate each other. In Arrighi et al. (2019),

the quantum evolution we describe is both a valid QCA and

a valid fermionic QCA : whilst the notion of locality dif-

fers, that of causality coincides.

Finally, let us mention that Theorem 1 cannot be gen-

eralized to Noisy QCA, i.e. causal TPCP-maps, as these

cannot always be simulated by finite-depth circuits of local

TPCP-maps. This is a direct consequence of Arrighi et al.

(2011c), were we showed that there can be no such struc-

ture theorems for classical, probabilistic CA.

2.5 Classical bijective CA, MPU

A reversible CA (RCA) is an invertible CA whose inverse

is also causal, i.e. whose inverse is a CA. Depending upon

the space of configuration which one considers, there may

be some invertible CA which are not RCA. This is the case

over C in particular, where F causal and invertible does not

entail that F�1 is causal. Expectedly when F�1 is not

causal, its linear extension into a unitary operator dF�1 over

H is not causal. Interestingly, however, it then turns out

that bF is not causal either, even though F was. In other

words, the linear extension of a perfectly valid invertible

CA F over C, may lead to a unitary operator bF over H
which fails to be a valid QCA. One way to think about this

is that for the update mechanism K ¼ bF
y
SbF of Theorem 1

to be local, the local operation S needs be conjugated by

causal operators, which may not be the case with

bF
y ¼ dF�1 . We gave a concrete example of this in Arrighi

et al. (2008, 2011b), which is defined as follows. Let

R ¼ f0; t; fg, and for all a 2 R define þ as the ‘exclusive

or’ tþ f ¼ f þ t ¼ t, aþ a ¼ a, extended so that

aþ 0 ¼ a, 0þ a ¼ 0. Now let F map the configuration

c ¼ � � � ci�1ciciþ1 � � � into the configuration

FðcÞ ¼ . . .ðci�1 þ ciÞðci þ ciþ1Þ. . .. One sees that F is both

bijective over C and causal, but that F�1 is not causal,

because a long subword ff. . .ff may either stem from a

similar subword ff. . .ff or from a subword tt. . .tt. It fol-

lows that the corresponding QCA is not causal. Indeed,

consider the two states
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jc�i ¼ 1ffiffi
2

p j. . .00i �
�
jff. . .ffi � jtt. . .tti

�
� j00. . .i

and their two images

jd�i ¼ j. . .00ff. . .fi � ðjfi � jti
ffiffiffi
2

p Þ � j00. . .i:

We can transmit information between arbitrarily distant

parties in just one step of bF as follows.

1. Prepare the state jcþi with the first non quiescent cell

in Alice’s lab in Paris and the last non quiescent cell

with Bob in New York.

2. Alice either leaves the state unchanged or performs a

local change by applying a phase gate Z to her cell,

changing jcþi into jc�i.
3. One step of bF is performed, leading to either jdþi or

jd�i.
4. Whether Alice performed Z or not has now led to a

perfectly measurable change from
jfiþjtiffiffi

2
p to

jfi�jtiffiffi
2

p for

Bob—despite him being arbitrarily far remote.

This infinite speedup is intuitively unphysical, and should

disallowed: bF is no QCA.

Notice that the above example would not work over the

space of infinite configurations C1, because F is non-in-

jective over that space: the infinite configurations . . .ff. . .

and . . .tt. . . both map to . . .ff. . .. Actually, it turns out that
over C1, any bijective CA is an RCA, because G causal

and bijective does entail that G�1 is causal. It follows that

the linear extension of such a G into a unitary operator bG is

causal, and the local update mechanism K ¼ bG
y
SbG is local

indeed. Still, the QCA bG may have a much wider radius of

causality rbG
than it had as an RCA G. In Arrighi et al.

(2010) we were able to show that

rG þ rG�1 	 rbG
¼ r

bG
y 	 minð2rG þ rG�1 ; rG þ 2rG�1Þ.

However, given just rG one cannot even bound rbG
; in fact

there is no computable function b such that rG�1\bðrGÞ, as
was proven in Kari (1991). QCA are again better behaved

in this sense, we showed that the radius of their backwards

evolution equals that their forward evolution in Arrighi

et al. (2010, 2011a). Let us mention that t’Hooft (2016)

embarked on the program of studying how much physics

can be recovered within such quantized RCA bG.

The early definition (Dürr et al. 1996; Dürr and Santha

1996) of QCA would allow for these non-causal bF over H;

and had to be abandoned. However, a characterization of

1D QCA as tensor networks of Matrix Product Unitaries

(MPU) (Cirac et al. 2017) has recently appeared, which

bears strong similarities with the abandoned definition,

whilst remaining causal. Indeed, with MPU one looks for a

tensor Tso
is0 such that the circular tensor network

Vo0...on
i0...in

¼ Ts0o0
i0s1

Ts1o1
i1s2

. . .Tsnon
ins0

is unitary matrix for any n. Interestingly, this is the quan-

tum analogue of the classical bijectivity over C1 rather

than C, which made bijective CA G an RCA and bG a QCA.

2.6 Historical notes

Whilst the definition of QCA is now well-established, its

beginnings were difficult. The first attempt of a definition

would require that state vector of a cell at time t þ 1,

should be locally-dependent upon the state of its neigh-

bouring cells at time t (Dürr et al. 1996; Dürr and Santha

1996). Whilst plausible, we realized that this definition was

problematic, as it would still allow for information to

propagate at an arbitrary speed (Arrighi et al.

2008, 2011b). The first solid axiomatic definition of QCA

was given in Schumacher and Werner (2004), in terms of

C�–algebra, together with a broken proof that these were in

fact exactly two-layer quantum circuits, infinitely repeating

across space. In Arrighi et al. (2008, 2011) we rephrased

the definition in terms of Hilbert spaces, and clarified the

proof as sound for 1D QCA, but gave a counter-example in

higher-dimensions taken from (Kari 1999). In Arrighi et al.

(2010, 2011a) we were able to obtain Theorem 1, which we

later (Arrighi and Grattage 2012b) completed into Theo-

rem 2. Summarizing, QCA are not exactly PQCA, but they

are intrinsically simulated by them.

It took a while, thus, to arrive at the axiomatic definition,

and even longer to deduce ways of constructing/enumer-

ating the corresponding instances of this definition. Natu-

rally, this lack of operationality left the gap open for many

competing, hands-on definitions of the same concept. A

closer examination shows that these competing operational

definitions would fall into three classes: the multi-layer

quantum circuits (Pérez-Delgado and Cheung 2007;

Arrighi et al. 2010), the two-layer quantum circuits

(Brennen and Williams 2003; Karafyllidis 2004; Nagaj and

Wocjan 2008; Raussendorf 2005; Schumacher and Werner

2004; Van Dam 1996), and PQCA (Watrous 1995; Van -

Dam 1996; Inokuchi and Mizoguchi 2005). In Arrighi and

Grattage (2012b) we showed that they all simulate each

other in a spacetime-preserving manner, leading us to

prefer their simplest, PQCA form.

3 Universality

3.1 Intrinsic universality

In Sect. 2.3 we recalled the notion of intrinsic simulation

between QCA in order to show that PQCA can simulate all

other QCA in a spacetime-preserving manner. Now, once

890 P. Arrighi

123



the structure of a model of computation is well-understood,

the last step to take in order to try and simplify it even

further, is to identify universal instances of the model.

Minimal universal instances are particularly useful, as they

point towards the threshold physical resources required in

order to implement the entire model. Thus, we need to look

for a single PQCA which can intrinsically simulate all

other PQCA.

In a PQCA, incoming information gets scattered by a

fixed ‘scattering unitary’ U, before getting redispatched.

We need to find a universal scattering unitary U, see Fig. 2.

From a computer architecture point of view, this problem

can be recast in terms of finding some fundamental quan-

tum processing unit which is capable of simulating any grid

network of quantum processing units, in a space-preserving

manner. From a theoretical physics perspective, this is

looking for a universal scattering phenomenon, a problem

which we could phrase in humorous form as: ‘‘A physicist

is taken on a desert Island where he is allowed only one

type of elementary particle. Which one would he choose,

whose scattering behaviour is rich enough so that it can

simulate all the others?’’.

We began the search for an intrinsically universal PQCA

in dimension 1, which is feasible (Arrighi and Fargetton

2007; Arrighi et al. 2009) (see also Fig. 2) but difficult,

because wires cannot cross over. We then then tackled the

problem in the general n-dimensional case, where we could

find a much simpler solution (Arrighi and Grattage

2010, 2012a). Eventually we reached a minimal, 3-di-

mensional construction (Arrighi and Grattage 2010). This

so-called ‘Quantum Game of Life’ roughly works as

follows. Each cell contains just one qubit—in Fig. 3 the

cell is represented as little cube, red if the qubit is in state

j1i, transparent if it is in state j0i. At even steps, the cube

of 8 qubits at cells f0; 1g3, as well as all of its ð2ZÞ3–
translates, each undergo a scattering unitary U, syn-

chronously. At odd steps, the cube of 8 qubits at cells

f1; 2g3, as well as all of its ð2ZÞ3–translates, each undergo

U again, synchronously. The scattering unitary U is given

in Fig. 3, by means of its action over a small number of

basis states (the full definition follows by linear extension

and assuming rotation-invariance).

Observe that when there is just one red, e.g. at the left-

bottom-front corner of the cube, it just moves across the

cube. But because of the staggering between even and odd

steps, it will find itself at the left-bottom-front corner of the

new cube and again move across—this is the mechanism

whereby signals are made. We also need to be able to

redirect our signals, so we need red walls to form

stable patterns, and demand that if a fifth red comes along,

it bounces off. The Hadamard is implemented as a special

case of this deflection : if the signal bounces on a edge, it

skids or bounces, in a quantum superposition. Finally a two

qubit interaction happens when two signals cross, and a

phase gets added.

The outline of the proof that this PQCA is intrinsically

universal is as follows (see Fig. 4 for a 2D illustration of

this argument). First make fixed-shaped tiles, each imple-

menting one of the universal quantum gates of the quantum

circuit model in a fixed number of time steps, out of these

walls and signals. Next, combine these tiles into a layout

that implements V, the scattering unitary of the PQCA to be

Fig. 3 A minimal intrinsically

universal 3D PQCA: the

scattering unitary of the

‘‘Quantum Game of Life’’
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simulated. Repeat this layout across space. Finally, plug the

outputs of each simulated V gates into the inputs of the

neighbouring ones, so that they feed each other, thereby

implementing the staggered structure of the simulated

PQCA.

Notice that the hereby constructed scattering unitary is

over 8 qubits, which is much more complicated that the 2

qubits gate sets that are universal for quantum circuits. This

is because simulation of a QCA G has to be done in a

parallel, spacetime-preserving manner, and because we

must simulate not just one iteration of G but several (G2,

G3..., i.e. after every iteration we must get ready for the

next one). Thus intrinsic universality is a much more

stringent requirement than quantum circuit universality.

3.2 Other kinds of universality

Quantum turing machine We just constructed a PQCA that

is capable of simulating any other PQCA and hence any

QCA. But does it mean that this PQCA is capable of

running any quantum algorithm? Clearly, the question

amounts to whether QCA are universal for QC. In the sense

of the quantum circuit model the answer is clearly yes,

simply by inspection of the construction of Sect. 3.1,

Figs. 3 and 4 in particular. In the sense of the quantum

Turing machine, the answer is clearly yes also, as was

proven in Watrous (1995). In this construction, a QCA with

alphabet R� f0; 1g � S simulates a Quantum Turing

machine with alphabet R and internal states S. The way this

works is that each cell is capable of hosting the head of the

Turing machine : it has enough state space to store both the

symbol at this location of the tape; the internal state of the

head; and whether the head is actually there or not.

Quantum circuit universality The so-called ‘‘physical

universality’’ is specific-kind of quantum circuit

universality for QCA, more stringent than the early work of

Van Dam (1996). Indeed, in all the above-mentioned uni-

versality constructions, part of the state space R of each

cell is used to encode ‘the program’ (i.e. what dynamics is

to be simulated), whilst the other part is used to encode ‘the

data’ (i.e. the states whose evolution is being simulated).

One may demand that this is not the case, and wish to have

a convex region X in which the data (the input to a quantum

circuit) lies untouched, without any preparation, whereas

only the surroundings X are allowed to code for the pro-

gram (the quantum circuit to be applied). The requirement

is that after a precise number of time steps, the data is to be

found at the very same place, evolved according to the

specified quantum circuit. Such a construction is achieved

in Schaeffer (2015). In this construction the data within X

is left to ‘‘explode’’ into X, where it gets treated and

redirected towards X.

Computability The (strong) physical Church-Turing

thesis states that ‘‘any function that can be (efficiently)

computed by a physical system can be (efficiently) com-

puted by a Turing machine’’. Because there are concrete

examples of functions that cannot be computed by Turing

machines (e.g. the famous halting function

h : N ! f0; 1g), the physical Church-Turing thesis makes

a strong statement about physics’ (in)ability to compute.

The discovery of QC algorithms has shaken the strong

version of the thesis. But what about the original version—

could it be that a QC might compute functions that were

not computable classically? Quantum theory imposes that

physical systems evolve unitarily : according to a unitary

matrix when the system is finite-dimensional; according to

a unitary operator otherwise. It follows that finite quantum

circuits can always be simulated (very inefficiently) on a

classical computer just via matrix multiplications. There-

fore these do not endanger the original version of the

Fig. 4 Intrinsic simulation of a 2D PQCA by another. Top left: The

partitions at odd and even steps of the PQCA with scattering unitary

V overlap, but in the simulating PQCA they will be laid out side-by-

side. Top right: The simulating PQCA emulates each V in parallel, as

well as the wirings between the V. Bottom: It does so by combining

tiles (of fixed shapes and taking a fixed number of steps to be

traversed, implementing universal quantum gates) into a layout that

implements V
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thesis. Yet nothing forbids (Nielsen Oct 1997; Kieu 2003;

Gu et al. 2009) that unitary operators, on the other hand,

break the thesis, e.g. U ¼
P

ji; hðiÞ 
 bihi; bj. That is

unless the limitation comes from other physical principles.

That physically motivated limitations lead to the phys-

ical Church-Turing thesis was already argued in Gandy

(1980) by Gandy, Turing’s former PhD student. There, the

main idea is that causality (i.e. bounded velocity of prop-

agation of information) together with homogeneity (i.e. the

rules of physics are the same everywhere and everywhen)

and finite density (i.e. bounded number of bits per volume)

entail CA-like evolutions, which are computable. Actually

the proof relies upon a few more assumptions (an eucli-

dean-like space, whose state can be described piecewise)

and a delicate formalism. But the main issue with this proof

of the physical Church-Turing thesis based upon physics

principles, is that it complete ignores quantum theory.

Quantum theory demands that the bounded density prin-

ciple be updated, changing the word ‘bits’ to the word

‘qubits’.

When we do so, the updated set of principles entail

QCA-like evolutions in the axiomatic-style of Definition 5.

We can then apply Theorem 1. Armed with a robust notion

of computability upon vector spaces (Arrighi and Dowek

2010), we were able show that these are computable (Ar-

righi and Dowek 2012). This provided a proof of the

Church-Turing thesis based upon quantum physics

principles.

4 Simulation

Let us take a step back to realize how the previous results

chain up. In Sect. 2 we showed that discrete-space discrete-

time quantum theory, i.e. QCA, can be intrinsically simu-

lated by PQCA. In Sect. 3 we constructed a minimal,

intrinsically universal PQCA. Logically, this entails that

any lattice discrete-space discrete-time quantum physics

phenomenon can be expressed within this particular

PQCA.

Let us evaluate whether such statements are applicable

in practice. Let us pick up one of the simplest and most

fundamental physics phenomenon, namely the free propa-

gation of the electron, and see whether it can be re-ex-

pressed by means of some simple PQCA.

4.1 The Dirac QCA

The equation governing the free propagation of an electron

is called the Dirac equation. Let us describe a PQCA model

for it, the so-called Dirac QCA. For this Dirac QCA we

adopt the conventions depicted in Fig. 5. Each red (resp.

black) wire carries a qubit, which codes for the presence or

absence of a left-moving (resp. right-moving) electron.

Thus there can be at most two electrons per site x ¼ ek,
k 2 Z (where the red and black wires cross).

The scattering unitary of this QCA is given by

U ¼

1 0 0 0

0 �is c 0

0 c �is 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A

¼ 1
 r1 expð�imer1Þ 
 1

with c ¼ cosðmeÞ and s ¼ sinðmeÞ, where m stands for the

mass of the electron, and e the spacetime discretization

step, and the Pauli matrices as usual:

r0 ¼
1 0

0 1

� �

; r1 ¼
0 1

1 0

� �

; r2 ¼
0 �i

i 0

� �

;

r3 ¼
1 0

0 �1

� �

:

Notice that the components are ordered so that when the

mass is zero, the particles do not change direction, i.e. a

right-moving electron is transfered from x to xþ e, etc.
To see whether this QCA implements the Dirac equa-

tion, let us consider the one-particle sector, i.e. restrict to

the QCA to the subspace spanned by states of the form

j. . .00100. . .i. Let w�ðt; xÞ (resp. wþðt; xÞ) be the ampli-

tude of that single particle being on a red (resp. black) wire

at their intersection at point (x, t). We have

wþðt þ e; xÞ ¼ cwþðt; x� eÞ � isw�ðt; xÞ
w�ðt þ e; xÞ ¼ cw�ðt; xþ eÞ � iswþðt; xÞ:

Expanding to the first order in e gives

eotw
þ ¼ �eoxw

þ � imew�eotw
�

¼ þeoxw
� � imewþotw

¼ �r3oxw� imw

Fig. 5 The Dirac QCA: each space-time point (x, t) can be occupied

by a left and a right-moving particle. All gates are identical and given

by the matrix U, which lets a particle change direction with an

amplitude that depends on its mass
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with w ¼ ðwþ;w�ÞT . We recognize the ð1þ 1Þ-dimensions

Dirac equation governing the free propagation of an elec-

tron of mass m. The upper (resp. lower) component of the

vector gets transported right (resp. left), but the mass mixes

these components.

4.2 Further simulation results

The one-particle sector: quantum walks Section 4.1,

illustrated how to restrict QCA to their ‘one-particle sec-

tor’, i.e. to configurations of the form j. . .00s00. . .i with

s 2 S ¼ R n f0g. Each of these represents a single ‘parti-

cle’, standing at a some position x with internal state s. The

Hilbert space of superpositions of these configurations is a

rather small subspace of H, which is better described as

HZ �HS—i.e. superpositions of position-state pairs jx; si.
The amplitude of jx; si is usually written wsðxÞ and one

needs
P

x;s jw
sðxÞj2 ¼ 1. This one-particle sector of QCA

has a life of its own. It is the playground for a huge field of

research known by the name of Quantum Walks (QW).

A QW, therefore, is essentially an operator driving the

evolution of a single particle on the lattice, through local

unitaries.

One reason for the popularity of QW is that a whole

series of novel Quantum Computing algorithms, for the

future Quantum Computers, have been discovered via QW,

e.g. (Ambainis et al. 2010; Wang 2017), or are better

expressed using QW, e.g the Grover search. In these QW-

based algorithms, however, the walker usually explores a

graph, which is encoding the instance of the problem,

rather than a fixed lattice. No continuum limit is taken.

The focus here will remain with the other reason, which

is the ability of QW to simulate certain quantum physical

phenomena, in the continuum limit—thereby providing:

• Simple discrete toy models of physical phenomena, that

conserve most symmetries (unitarity, homogeneity,

causality, sometimes even Lorentz-covariance)—

thereby providing playgrounds to discuss foundational

questions in Physics.

• Quantum simulation schemes, for the near-future sim-

ulation devices, in the way that was envisioned by

Feynman when he invented QC (Feynman 1982, 1986).

• Stable numerical schemes, even for classical comput-

ers—thereby guaranteeing convergence as soon as they

are consistent.

Section 4.1 is a simplified presentation of the original

arguments by Succi and Benzi (1993), Bialynicki-Birula

(1994) , Meyer (1996) suggesting that QW can simulate the

Dirac equation. In Arrighi et al. (2014a) we gave a rigorous

proof of convergence, given regular enough initial condi-

tions, including in ð3þ 1Þ-dimensions—without the need

to actually solve the QW evolution as was done in Strauch

(2007). The zitterbewegung effect is discussed in Mallick

and Chandrashekar (2016). An axiomatic derivation of

these schemes is given in Bisio et al. (2012), D’Ariano

et al. (2013), Raynal (Jun 2017). We discussed conserva-

tion of symmetries, including Lorentz-covariance in

Arrighi et al. (2014b), and so did (Bibeau-Delisle et al.

2015; Bisio et al. 2017; Debbasch 2018). The Klein-Gor-

don equation can also be simulated via this QW once the

appropriate decoupling is performed, as explained in

Chandrashekar et al. (2010), di Molfetta and Debbasch

(2012) and in our subsequent generalization (Arrighi and

Facchini 2013). The Schrödinger equation can be obtained

in a similar fashion, but by scaling space and time differ-

ently, i.e. Dx ¼ e but Dt ¼ e2, see (Strauch 2006a, b;

Boghosian and Taylor 1998).

Once it was realized that QW could simulate free par-

ticles, the focus shifted towards simulating particles in

some background field (Cedzich et al. 2013; Di Molfetta

et al. 2014; Di Molfetta and Pérez 2016; Arnault et al.

2016; Márquez-Martı́n et al. 2017), by means of non-

translation-invariant QW. The question of the impact, of

these inhomogeneous fields, upon the propagation of the

walker gave rise to lattice models of Anderson localization

(Ahlbrecht et al. 2011; Joye and Merkli 2010). Surpris-

ingly, they even gave rise to lattice models of particles

propagating in curved spacetime (Di Molfetta et al. 2014;

Arnault and Debbasch 2017; Mallick et al. 2019), see also

our generalizations (Arrighi et al. 2016; Arrighi and Fac-

chini 2017).

The many-particle sector Recently, the two-particle

sector of QCA was investigated from a quantum simulation

perspective, with the two walkers interacting via a phase

[similar to the Thirring model Destri and de Vega (1987)].

This was shown to produce molecular binding between the

particles (Ahlbrecht et al. 2012; Bisio et al. 2018). In the

many-particle sector, the problem of defining a concrete

QCA that would simulate a specific interacting quantum

field theory (QFT) had remained out of reach until (Arrighi

et al. 2019). In this paper, we were able to give a first QCA

description of quantum electrodynamics (QED) in ð1þ 1Þ-
dimensions (a.k.a the Schwinger model).

Trotterization of a nearest-neighour Hamiltonian QCA

are in discrete-space and discrete-time. Let us consider

their cousins in discrete-space but continuous-time, i.e.

lattices of quantum systems interacting according to a

nearest-neighbour translation-invariant Hamiltonian. These

are very common in Physics e.g. in condensed matter or

statistical quantum mechanics (spin chains, Ising models,

Hubbard models...), or towards QC [as candidate archi-

tectures (Fitzsimons and Twamley 2006; Benjamin 2000;

Twamley 2003; Weinstein and Hellberg 2004), for
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quantum information transport (Bose 2007), for entangle-

ment creation (Subrahmanyam 2004; Subrahmanyam and

Lakshminarayan 2006; Brennen and Williams 2003), as

universal QC (Vollbrecht and Cirac 2006; Nagaj and

Wocjan 2008)...].

Up to groupings and reencodings, focussing here on the

1D case just for simplicity, nearest-neighbour translation-

invariant Hamiltonians work as follows (Vollbrecht and

Cirac 2006). A global, continuous-time evolution G(t) is

induced, by giving a hermitian matrix h over HR �HR

verifying that hj00i ¼ 0, according to

GðtÞ ¼ e�iHt ¼
X

n

ð�iHtÞn

n!

with H ¼
P

x hx where hx stands for h as acting over

positions x and xþ 1.

From a practical implementation point-of-view, nearest-

neighbour Hamiltonians are central, and will be for a long

time. Indeed, although there are a number of remarkable

exceptions (Genske et al. 2013; Robens et al. 2017; San-

soni et al. 2012), most the leading-edge lattice-based

quantum simulation devices remain better described as

continuous-time evolutions (Bloch 2005). From a theoret-

ical point-of-view, however, nearest-neighbour Hamilto-

nians suffer the same downsides as the rest of non-

relativistic quantum mechanics to which they pertain.

Namely, strictly speaking they do allow for superluminal-

signalling, hopefully in some negligible, exponentially

tailing off manner, relying upon some Lieb–Robinson type

of argument that can sometimes go wrong (Eisert and

Gross 2009). Intuitively, this is because even though it is

the case that in an infinitesimal dt of time a cell only

interacts with its neighbour, this is no longer true after any

finite period of time Dt, however small, as GðDtÞ includes
terms of the form

Q
x hx and ½hx; hxþ1� 6¼ 0 if information is

to propagate at all.

Still, there is a strong connection between nearest-

neighbours Hamiltonians and QCA, which arises from the

Trotter–Kato formula (a.k.a Baker–Campbell–Thomson or

operator-splitting method):

eiDtðHoþHeÞ ¼ eiDtHoeiDtHe þ OðD2
t Þ:

Indeed, let He ¼
P

x22Z hx and Ho ¼
P

x22Zþ1 hx, and

readily get that GðDtÞ � G, where G is the PQCA induced

by the scattering unitary U ¼ eiDth—back in discrete-space

discrete-time.

Are space and time back on an equal footing, thanks to

this ‘trotterization procedure’? Not quite. For this approx-

imation to hold mathematically, one still needs that

Dt  Dx—for instance by setting Dx ¼ e and Dt ¼ e2 as

was done earlier in order to get the non-relativistic,

Schrödinger equation. Thus, QCA arising by trotterizing

nearest-neighbour Hamiltonians are generally non-rela-

tivistic models (Arnault et al. 2019), unless they are care-

fully engineered otherwise, as we did in Di Molfetta and

Arrighi (2019). Still, this is not the only use of the Trotter–

Kato formula, which has turned out to be an ubiquitous

mathematical tool in this field.

Noise, thermodynamics To the best of our knowledge

there has not been much studies of noisy QCA, i.e.

replacing unitary operators by quantum operators (a.k.a

TPCP maps), with a handful of exceptions (Avalle et al.

2015), in the many-particle sector. The one-particle sector

has been thoroughly studied on the other hand, e.g.

studying the transition for QW (ballistic transport) to ran-

dom walks (diffusion) (Love and Boghosian 2005). In

Angles et al. (2019) we studied this transition in parallel

with the continuum limit to PDE, where the Dirac equation

turns into a Lindblad equation and then a telegraph equa-

tion—making the argument that noisy quantum simulation

devices can still be useful, to simulate noisy quantum

systems.

The connection to toy models of thermodynanics is also

a promising one. In Vallejo et al. (2018) the thermalization

of a QW is observed. In the many-particle sector, Clifford

QCA (Schlingemann et al. 2008; Gütschow 2010) (a sub-

case of QCA which can be classically simulated) were

shown to produce fractal pictures (Gütschow et al. 2012)

and then gliders (Gütschow et al. 2010), used to show

bounds on entanglement propagation and von Neumann

entropy creation in QCA. These hands-on toy models may

eventually bring about interesting, complementary point-

of-view on the blossoming field of quantum thermody-

namics, by taking space into account, which is believed to

be a key ingredient of the quantum-to-classical transition

(Paz and Zurek 2002).

5 Conclusion

Summary Quantum cellular automata (QCA) are quantum

evolutions of lattices of quantum systems, as resulting from

nearest neighbour-interactions. This sentence, however,

could be understood in many ways:

– In terms of finite-depth circuits of local quantum

quantum gates, infinitely repeating across space—

amongst the various shapes of circuits proposed, it is

now known that the simplest, namely Partitioned QCA

(PQCA), can simulate all the others.

– In continuous-time in terms of sum of local Hamilto-

nians. It is now clear that integrating these over a small

period of time, yields a discrete-time evolution that can

again be simulated by a PQCA.
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– In more abstract terms, as the axiomatic requirement

that the evolved state vector; or quasi-local algebra; or

density matrix, be locally dependent. Locally dependent

state vectors have turned out to make little sense, but

the last two were shown to be equivalent and ultimately

again simulated by PQCA.

Amongst PQCA, some instances were shown to simulate

the quantum Turing machine; the free electron; the electron

in an electromagnetic field; the electron in curved space-

time, including in ð3þ 1Þ-dimensions. Lately some were

shown to model interacting quantum field theories as

PQCA, namely the Thirring model, and QED in ð1þ 1Þ-
dimensions. Ultimately, some particular instances were

shown to simulate all other instances.

Perspectives I would love to see QCA come true,

implemented in the labs. This is certainly a fascinating

topic in which cold atoms (Genske et al. 2013; Robens

et al. 2017; Bloch 2005), integrated fiber optics (Sansoni

et al. 2012) and hopefully superconducting qubits (Marcos

et al. 2014) will have a say. As a theoretician it would be

adventurous for me to comment much on this perspective.

It seems quite likely however that noisy implementations

will see the light in the next ten years, with progressive

improvements from there. At least nothing, at theoretical

level, prevents it. The fact that much physics phenomena

can be cast as QCA is an encouragement in this sense; it

suggests that physics might naturally implement QCA, at

its fundamental level.

But exactly, how much particle physics can be recast as

QCA? Will QCA provide us with an alternative mathe-

matical framework for interacting quantum field theories?

Hopefully a clearer one, more explanatory, readily pro-

viding us with quantum simulation algorithms to draw

predictions? These questions are, at the theoretical level,

the obvious and most likely continuation of the trend of

work which I presented in this overview. I am very opti-

mistic about them : my personal belief is that these will be

answered positively, probably within the next ten years. Of

course I foresee many technical difficulties along the way,

but no good reason why this could not be done. Thus, I

wish to take this opportunity to encourage young

researchers to engage these noble and realistic aims,

hopefully enjoying the same collaborative spirit that has

reigned over this research community in the last decade.

I do not believe, however, that QCA can account for

General Relativity. Nor do I believe that they constitute the

ultimate model of distributed Quantum Computation. In

both cases, an ingredient is missing : the ability to depart

from the grid and make the topology dynamical. Quantum

Causal Graph Dynamics (Arrighi and Martiel 2017) are

unitary operators over quantum superpositions of graphs.

The graphs constrain the evolution by telling whom can

interact with whom ; but at the same time they are the

subject of the evolution, as they may vary in time. The

possible connections between this further generalization of

QCA, and Quantum Gravity, are intriguing.
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