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Abstract
Electric circuits manipulate electric charge and magnetic flux via a small set of discrete components to implement useful

functionality over continuous time-varying signals represented by currents and voltages. Much of the same functionality is

useful to biological organisms, where it is implemented by a completely different set of discrete components (typically

proteins) and signal representations (typically via concentrations). We describe how to take a linear electric circuit and

systematically convert it to a chemical reaction network of the same functionality, as a dynamical system. Both the

structure and the components of the electric circuit are dissolved in the process, but the resulting chemical network is

intelligible. This approach provides access to a large library of well-studied devices, from analog electronics, whose

chemical network realization can be compared to natural biochemical networks, or used to engineer synthetic biochemical

networks.

Keywords Electric circuits � Chemical reaction networks � Differential–algebraic system of equations

1 Introduction

Living organisms perform a variety of functions that can be

described in abstract terms as information processing and

regulation. Analogies have been drawn between the bio-

chemical reaction networks that perform such functions

and electric circuits of similar nature (Arkin 2000;

Del Vecchio et al. 2008). The comparison is useful in

systems biology, in trying to understand the function of

natural systems, and in synthetic biology, in trying to

engineer desired functionality in a biochemical context.

An obstacle to exploiting this analogy is that the fun-

damental components of biochemistry and electronics are

very different: the phenomena of resistance, induction, and

capacitance based on the interplay between electric and

magnetic fields have no immediate parallel in terms of

chemical concentrations. Hence, it is not clear how to take

systematic advantage of engineering knowledge developed

in electronics in understanding biochemical systems.

Instead, the search for components of biological network

has progressed in different and certainly more appropriate

directions (Hart et al. 2012; Milo et al. 2002).

Even within electronics, though, the precise nature of

electric components is incidental to the desired function.

For example, one may wish to filter the high frequencies of

a signal represented by an oscillating voltage. There are

countless electric circuits that can perform this function,

based on different classes of components in different

configurations. Some of those circuits are based on oper-

ational amplifiers, which are themselves built from a large

network of components to perform an abstract function to

which they are incidental. The nature of the fundamental

components is inessential, as long as they can be combined

to provide a wide range of functionality.

A common way to describe essential function, both in

electronics and in biochemistry, is through a system of

ordinary differential equations (ODEs). Once the function

of a circuit is reduced to this form, it does not matter if the

quantities represented are voltages or concentrations: it

only matters the way in which they vary over time. Con-

versely, given an ODE system, one may ask the engi-

neering question of how to realize a circuit (electronic or

biochemical) that can perform that function. An early

example of this inverse process is the synthesis of
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mechanical and then electric analog circuits from differ-

ential equations (Bush 1931; Shannon 1941).

Certain classes of polynomial ODE systems can be

systematically turned into chemical reaction networks

(CRNs) that obey the same kinetics (Hars and Toth 1979).

Further, CRNs can be compiled systematically into a col-

lection of molecules that can be engineered to obey the

kinetics of those reactions (Soloveichik et al. 2010). In this

paper we wish to go one step further on the front end of this

process. Taking advantage of the large libraries of known

electric circuits, we wish to take an arbitrary (but linear, for

now) electric circuit and show how to turn it into a set of

molecules that obey the kinetics of the quantities in that

circuit.

The first obstacle we need to confront is that even

common electric circuits describe behaviors that go beyond

ODEs. Algorithmic approaches for the analysis of linear

circuits such as Modified Nodal Analysis produce, in

general, systems of differential algebraic equations

(DAEs), where the algebraic equations are induced by

classical node analysis based on Kirchhoff laws (Ho et al.

1975). Hence we first reduce DAEs to ODEs, after which

we can apply some further techniques. The second obstacle

is to take an ODE that may be about voltages and currents,

and turn it into a form that can be interpreted chemically.

This means that each variable should only take nonnegative

quantities (for concentrations), and that appropriate

chemical reactions should be derived about those

quantities.

This approach has a dual purpose. From a systems

biology point of view, we may want to compare the CRNs

derived from electric circuits to the ones occurring in

nature. This might help elucidate the function of natural

networks. Or, at least, it will provide a spectrum of possible

chemical networks of known function, whose structure

may not be obvious, therefore broadening our expectations

of what is possible chemically. From a systems biology

point of view, we take it as given that an abstract CRN can

be turned into a collection of molecules. In fact, multiple

target architectures are possible, from short oligonu-

cleotides in solution (Soloveichik et al. 2010) to gene

networks (Schwarz-Schilling et al. 2016). The ability to

generate molecular configurations from a vast existing

library of (electric, or other) circuits is appealing for sys-

tematizing the generations of synthetic organisms. In

extending the known techniques from ODEs to DAEs, we

extend the scope of potential libraries we can draw from.

Contributions Our main result is a systematic technique

that transforms linear DAE systems into CRNs. Our tech-

nique is, to the best of our knowledge, novel. DAE systems

are either solved symbolically by relying on index reduc-

tion (Pantelides 1988), or numerically by relying on

numerical methods that compute the trajectories for a given

initial condition (Kunkel and Mehrmann 2006). In contrast

to our approach, index reduction introduces additional

derivatives of signals that may not be available to the

circuit, while numerical methods do not transform the

DAEs into ODEs, which seems necessary for transforming

DAE systems into CRNs. We analyze, as an example, an

electric high pass filter and provide a chemical reaction

network for it, whose function and architecture can be

independently interpreted in a biological context.

2 Outline of methods

We start from a linear electric circuit composed of resis-

tors, capacitors and inductors, with variables ranging over

voltages and currents, and we systematically derive an

equivalent CRN where chemical species (or more precisely

their differences) approximate the trajectories of the orig-

inal variables.

The basis for this process is the so-called Hungarian

Lemma (Hars and Toth 1979), which provides a method for

converting certain polynomial ODEs into CRNs by con-

verting each monomial on the right hand side of a differ-

ential equation into a separate chemical reaction.

Polynomial ODEs can represent, exactly, a much broader

class of ODEs, including fractional, trigonometric, and

exponential terms (Liu et al. 2015), thus covering a broad

range of chemical behavior including Hill kinetics (Car-

delli 2014).

The Hungarian Lemma, however, has specific require-

ments. First, the concentrations of the chemical species

must be nonnegative, while ordinary ODE variables, and in

particular voltages and currents, may be negative. Second,

if a monomial has a negative sign, then the differential

variable on the left-hand side of the equation must appear

as a factor in the monomial. This means, for example, that

the ODE otx ¼ y (where the growth rate of x is given by the

concentration of y, with otx denoting the time derivative of

x) can be reduced to the reaction y ! xþ y. And the ODE

otx ¼ �xy can be reduced to the reaction xþ y ! y. But

the ODE otx ¼ �y (where the decrease in rate of x is given

by the concentration of y) cannot be reduced: for x to

decrease it must appear on the left-hand-side of a chemical

reaction, which implies it should appear in a monomial for

otx by the law of mass action. An ODE system with no

such forbidden negative monomial is said to be Hungarian,

and any Hungarian ODE system can be reduced to a CRN

(although not uniquely) whose mass action kinetics

reproduces the original ODE. We use a technique to reduce

a polynomial non-Hungarian ODE to an Hungarian one in

twice as many variables, thus allowing us to produce CRNs

also for non-Hungarian ODEs. In the same step, we make
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all trajectories nonnegative so that they can be realized by

chemical species.

Some simple electric circuits yield ODE systems that

can be converted to CRNs as outlined. Pure resistor circuits

yield simple algebraic equations. But more complex cir-

cuits yield general DAEs (Ho et al. 1975), which we must

be prepared to handle. Our main technique applies to linear

DAE systems of the form

Eotx ¼ Axþ Bu ð1Þ

Here, x 2 Rn is the (column) vector of dependent variables,

E 2 Rn�n produces a linear combination of their deriva-

tives, A 2 Rn�n produces a linear combination of the

variables, and the term B 2 Rn�m is the input matrix, and

u 2 Rm is the vector of inputs, such as voltage or current

sources. That is, A and E are real matrices which produce

linear combinations of variables and their derivatives by

multiplication with the corresponding column vectors.

In general, inputs are assumed to be arbitrary, known

functions of time. However, for the purposes of converting

electric circuits into CRNs, it is necessary to appropriately

encode also the inputs as chemical species. In this paper,

we will assume that the input vector u can be itself

described as the solution of a system of equations.

Specifically, we assume that it satisfies an affine ODE

system of the form

otu

otz

� �
¼ D �

u

z

� �
þ d ð2Þ

for some matrix D 2 RðmþkÞ�ðmþkÞ and

uð0Þ; zð0Þð ÞT ; d 2 Rmþk. Intuitively, the input u in (1) is

part of an ODE solution which may depend on auxiliary

ODE variables z that do not appear in the DAE. This is a

rather general setting that allows us to encode arbitrary

time-varying inputs by approximating them with Fourier

series, which can be expressed as solutions of linear ODEs

(see Sect. 4).

Our technique converts the overall system (1), (2) into

an ODE system over the same variables, up to a control-

lable approximation. That ODE system can then be trans-

formed into a CRN as discussed above.

We now describe in detail the entire process of con-

verting linear electric circuits to CRNs, through a small

textbook example involving a single differential equation

and a single algebraic equation for the well-known RL

(resistor–inductor) circuit in Fig. 1 (Agarwal and Lang

2005). The analysis of the circuit proceeds as follows. We

let vin denote the input voltage (measured with respect to

the ground node); the output is the voltage vout across the

inductor. By standard node analysis, using Kirchhoff’s

current law at each node, we obtain that the three currents

are equal, so i,iT ¼ iR ¼ iL. Faraday’s law for the inductor

L, and Ohm’s law for the resistor R, then give us:

oti ¼ vout=L ð3aÞ

iR ¼ vin � vout ð3bÞ

This is a DAE, where (3a) is a differential equation, and

(3b) is an algebraic equation. To find its solution, we can

replace vout ¼ vin � iR from (3b) in (3a), obtaining (4a),

which can be integrated to obtain i(t). From that solution

we can then obtain voutðtÞ via (4b).

oti ¼ vin=L� iR=L ð4aÞ

vout ¼ vin � iR ð4bÞ

If we briefly assume that vin is a non-negative input

source, then (4a) can be converted to a mass action CRN as

follows (using chemical species with the same names as

our variables):

vin�!
1=L

iþ vin i�!R=L ;

where with the symbol ; we have denoted the empty set of

products. These two chemical reactions yield (4a) for the

evolution of the concentration of species i. However, a

voltage vin may be negative, which cannot be modeled with

chemical concentrations. Additionally, we are interested in

the output vout, not i, and therefore we need to find a way to

realize chemically Eq. (4b) as well.

Because of those difficulties, we cannot make much

progress without a more general technique to implement

DAEs as CRNs. Our technique involves an approximation,

like the one that seems necessary just for algebraic equa-

tions, but it can be used in the general case of linear DAEs.

We now illustrate it by applying it to the example of Fig. 1.

We first rearrange our DAE as (5a,5b). Setting x ¼
ði; voutÞT we have:

oti ¼ vout=L ð5aÞ

iR

R
L i Li Tvin vout

Fig. 1 A high pass filter, with input voltage vin and output voltage vout
with respect to ground. The symbols at the left, top, right and bottom

of the diagram denote, respectively, a DC voltage source, a resistor,

an inductor and the ground
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0 ¼ iþ vout=R� vin=R ð5bÞ

which can be arranged into the form (1):

1 0

0 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

E

oti

otvout

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

otx

¼
0 1=L

1 1=R

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

A

i

vout

� �
|fflfflfflffl{zfflfflfflffl}

x

þ
0

�vin=R

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

b

where we have fixed the constant vector b :¼ Bu under the

assumption of a constant input source u :¼ vin.

We approximate the DAE, for a parameter h[ 0, by

symbolically computing FhðxÞ ¼ ðE � hAÞ�1ðAxþ bÞ,
which is related to the numerical backward Euler method.

Taking R ¼ L ¼ 1 for simplicity, we obtain:

Fh

i

vout

� �
¼

vin � i

1þ h

vin � i� ð1þ hÞvout
hð1þ hÞ

0
BB@

1
CCA ð6Þ

We next use FhðxÞ as the right-hand side of a new ODE

system otx ¼ FhðxÞ, which is such that for h ! 0 the

solution of the ODE system (7a), (7b) converges to the

solution of the original DAE system (5a), (5b) (see

Theorem 1).

oti ¼ vin=ð1þ hÞ � i=ð1þ hÞ ð7aÞ

otvout ¼ vin=ðhþ h2Þ � i=ðhþ h2Þ � vout=h ð7bÞ

Indeed, we can easily see that for h ! 0, (7a) converges

exactly to the ODE (4a). As for (7b), this is now a dif-

ferential equation approximating Eq. (5b) for h ! 0, where

we notice that a small value of h makes (7b) evolve much

faster than (7a).

We have reduced a DAE to an ODE, but (7a), (7b) is not

Hungarian because of the �i monomial in (7b). Keeping in

mind that we need to deal eventually with non-Hungarian

ODEs, we now apply a positivation technique in the style

of Oishi and Klavins (2011) and Fages et al. (2017), also

known as dual-rail encoding, where each variable is rep-

resented as the difference of two non-negative variables:

i ¼ iþ � i� vin ¼ vþin � v�in vout ¼ vþout � v�out

Let us now abbreviate p ¼ 1=ð1þ hÞ, q ¼ 1=ðhþ h2Þ, and
r ¼ 1=h, and consider the ODE system where we separate

the positive and negative monomials of each ODE in (7a),

(7b) into two ODEs:

oti
þ ¼ pvþin þ pi� oti

� ¼ pv�in þ piþ ð8aÞ

otv
þ
out ¼ qvþin þ qi� þ rv�out otv

�
out ¼ qv�in þ qiþ þ rvþout

ð8bÞ

The initial conditions for this new system must satisfy

iþ0 � i�0 ¼ i0 with iþ0 ; i
�
0 � 0, etc. Since differentiation is a

linear operator, the solutions of (7a), (7b) can be recovered

as differences from the solutions of (8a), (8b): oti
þ �

oti
� ¼ oti and otv

þ
out � otv

�
out ¼ otvout. Although the goal

was to make all variables non-negative, we now also have a

Hungarian ODE system because all the monomials in (8a),

(8b) are positive. Hence there is no further difficulty in

converting these ODEs to mass action reactions, obtaining

the following CRN with unary reagents, with one reaction

for each monomial in (8a), (8b), and with the parameter

h appearing in the reaction rates:

vþin �!
p

vþin þ iþ i� �!p i� þ iþ

v�in �!
p

v�in þ i� iþ �!p iþ þ i�

vþin �!
q

vþin þ vþout i� �!q i� þ vþout

v�in �!
q

v�in þ v�out iþ �!q iþ þ v�out

v�out �!
r

v�out þ vþout vþout �!
r

vþout þ v�out

ð9Þ

Here the input v�in always acts as a simple catalyst. We note

that the CRN implementation does not depend on the actual

value of vin, which only affects the initial condition of the

chemical species that represent v�in. This decoupling

between the CRN implementation of the circuit and that of

the input sources carries over to the more general case

when the sources are time-varying solutions of the

ODEs (2), see Theorem 3 and the subsequent discussion.

Inspecting (9), the chemical species v�out and i� are

involved in autocatalytic cycles. For example both iþ and

i� grow exponentially over time, while their difference

i remains bounded. It is possible to eliminate such expo-

nential growths by adding non-linear dampening reactions

to the CRN:

iþ þ i� �!c ; vþout þ v�out �!
c ; ð10Þ

The first reaction, for example, preserves the difference

iþ � i�, and results in two new identical monomials in the

ODEs for iþ and i�, that then cancel in oti
þ � oti

�. Hence

that reaction does not change the i solution, but keeps iþ

and i� bounded.

The network consisting of reactions (9), (10) is depicted

in Fig. 2, where for small h we have 1 � p � q � r, and

we can take c ¼ r. This network has the flavor of an

incoherent feedforward motif (Milo et al. 2002), consid-

ering parallel pairs x� ! y� as activations and cross pairs

x� ! y	 as inhibitions, thereby vin activates both i and vout,

and i ‘incoherently’ inhibits vout. Additionally, the motif of

mutual catalysis and join degradation around i� makes that

pair stabilize to a copy of its input v�in (in the sense that at

steady state iþ � i� ¼ vþin � v�in) regardless of the value of

the rate p. This motif is repeated around v�out. When the
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input v�in remains constant, i� becomes a copy of v�in, and

v�out becomes a copy of the sum of its two opposite inputs,

v�in and i	, and so it converges to a baseline output of

vþout � v�out � 0. When the input vin changes, it affects vout
quickly and i slowly, with a delayed inhibition of vout by

i. It has been shown that feedforward motifs can behave

like high-pass filters (de Ronde et al. 2012).

The subnetwork in Fig. 2 consisting of v�in, v
�
out, and the

connecting q,r,c arcs, is in itself also a low-pass filter. It is

exactly what is obtained when replacing the inductor with a

capacitor of capacitance C in Fig. 1, yielding a well known

low-pass filter, and deriving the CRN from it by positiva-

tion (with q ¼ r ¼ 1=RC). The process is simpler in this

case, since a single ODE is generated from that circuit, and

no approximation via h ! 0 is required.

In summary, we have derived an intelligible chemical

reaction network from an electric circuit, and we are

guaranteed that it implements the same functionality, as

shown in the next section.

3 Methods

3.1 From DAEs to ODEs

We first show how to convert a linear DAE system into a

linear ODE system. To this end we start with a DAE sys-

tem in the form

Eotx ¼ Axþ b; withE;A 2 Rn�n; b 2 Rn; ð11Þ

which corresponds to (1) under the assumption of constant

inputs u. Following Hadamard’s concept of well-posed-

ness, we next assume regularity. A DAE system is regular

if there exists no initial condition xð0Þ 2 Rn which admits

more than one solution. We let D denote the set of initial

conditions for which a regular DAE admits solutions.

Elements of D are called consistent initial conditions (see,

e.g., Kunkel and Mehrmann 2006, Section 2.1 for details).

In the case of electric circuits, for instance, non-regular

DAE systems may arise in the presence of short circuits

and other erroneous designs.

If E is invertible, this DAE can be directly recast into a

linear ODE system via

otx ¼ E�1Axþ E�1b:

However, in the case of linear electric circuits E is in

general not invertible. In this case, a transformation of a

DAE system into an ODE system requires index reduction

(Pantelides 1988; Kunkel and Mehrmann 2006), which

relies on expensive symbolic computations. Our method

consists in circumventing this analysis by considering an

explicit scheme arising from numerical methods for the

solution of DAE systems.

A numerical method is an algorithm that generates, for a

given small time step h[ 0 and initial condition x(0), a

sequence ðx½i
Þi such that x½i
 � xðihÞ, where x : ½0;1Þ !
Rn denotes the solution of (11). Numerical methods are

guaranteed to converge to the solution x when h approaches

zero. That is, that for any error threshold e[ 0 and finite

time horizon T[ 0, one can find a sufficiently small time

step h[ 0 such that max0� i�N jjx½i
 � xðihÞjj � e and

T=h ¼ N 2 N.

A common numerical method for the solution of DAE

systems is the backward Euler method (Kunkel and

Mehrmann 2006, Section 5.2) which is given by

x½iþ 1
 ¼ x½i
 þ hFhðx½i
Þ;with
FhðxÞ :¼ ðE � hAÞ�1ðAxþ bÞ:

The function Fh is well-defined for sufficiently small h[ 0

because the DAE system is regular (Kunkel and Mehrmann

2006, Section 2.1).

Noting that the ‘‘slope’’ of the Euler method at point

x[i], ðx½iþ 1
 � x½i
Þ=h, is given by Fhðx½i
Þ, we expect that
the Euler sequence ðx½i
Þi� 0 will match the solution of the

ODE system otxh ¼ FhðxhÞ. That is, we expect that

xhðihÞ � x½i
 for all 0� i�N. Then, the convergence of the

Euler sequence to the DAE solution x would allow us to

conclude that xhðihÞ � x½i
 � xðihÞ.
The next theorem is our first main result and proves that

this is indeed the case.

Theorem 1 For any e[ 0, xð0Þ 2 D and T [ 0, there

exists an h[ 0 such that sup0� t�T jjxðtÞ � xhðtÞjj � e,
where otxh ¼ FhðxhÞ and xhð0Þ ¼ xð0Þ.

We now extend Theorem 1 to systems (1), (2).

vout

vout

vin

vin

i

i

ØØ p

p

p

p

q

q

q

q
rr

γγ

Fig. 2 The CRN for the high-pass filter of Fig. 1, consisting of

reactions (9, 10). A ball-headed arc from x to y denotes a reaction

x ! xþ y, and a double-tailed arc from x and y denotes a reaction

xþ y ! ;. Black arcs have much faster rates than blue arcs
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Theorem 2 Given a DAE system via (1) and (2), consider

the ODE system

otxh ¼ ðE � hAÞ�1
Axh þ Bu

h0i
h þ hBu

h1i
h

� �
; ð12Þ

where h[ 0 is small and the functions u
h0i
h ; u

h1i
h 2 Rm

satisfy

otu
h0i
h

otz
h0i
h

 !
¼ ðI � hDÞ�1

D
u
h0i
h

z
h0i
h

 !
þ ðI � hDÞ�1

d ð13Þ

otu
h1i
h

otz
h1i
h

 !
¼ ðI � hDÞ�1

D
u
h1i
h

z
h1i
h

 !
ð14Þ

with initial conditions

u
h0i
h ð0Þ ¼ uð0Þ u

h1i
h ð0Þ ¼ ðI � hDÞ�1

Duð0Þ
z
h0i
h ð0Þ ¼ zð0Þ z

h1i
h ð0Þ ¼ ðI � hDÞ�1

Dzð0Þ

Then, for any e[ 0, xð0Þ 2 D and T [ 0, there exists an

h[ 0 such that sup0� t� T jjxðtÞ � xhðtÞjj � e if

xhð0Þ ¼ xð0Þ.

Note that I � hD is strictly diagonal dominant and

therefore invertible for sufficiently small values of h. It can

be shown that ðuh0ih ; v
h0i
h ÞT converges to ðu; vÞT from (2) as

h ! 0. Hence, Theorem 2 essentially replaces the constant

vector b in FhðxÞ ¼ ðE � hAÞ�1ðAxþ bÞ by the function

Bu.

3.2 From ODEs to CRNs

We next present a technique that transforms the ODE

approximation from Sect. 3.1 into a CRN. The approach

borrows ideas from Oishi and Klavins (2011) that trans-

forms linear ODE systems (i.e., systems without algebraic

constraints) into CRNs. We wish to point out, however,

that our approach considers state space representation,

while (Oishi and Klavins 2011) acts on the frequency

domain.

In the following, let otx ¼ Âxþ b̂ denote some ODE

system with initial condition x(0).

Proposition 1 Any non-negative quadruple ðÂþ; Â�; b̂þ;

b̂�Þ satisfying Â ¼ Âþ � Â� and b̂ ¼ b̂þ � b̂� induces the

positivation

otx
þ ¼ Âþxþ þ Â�x� þ b̂þ

otx
� ¼ Âþx� þ Â�xþ þ b̂�

ð15Þ

If (15) is subject to non-negative xþð0Þ; x�ð0Þ 2 Rn
� 0 with

xð0Þ ¼ xþð0Þ � x�ð0Þ, the corresponding solution

ðxþ; x�Þ is non-negative and satisfies x ¼ xþ � x�.

While positivations trivially satisfy the properties of the

Hungarian lemma discussed in Sect. 2 and can therefore be

readily translated into CRNs, they may exhibit divergence

even if the original system is bounded, see for instan-

ce (8a), which implies that iþ and i� diverge. Fortunately,

one can apply a correction that leads to bounded

positivations.

Proposition 2 Given a positivation ðÂþ; Â�; b̂þ; b̂�Þ,
define the quadratic function Qðxþ; x�Þ ¼ ðxþ1 x�1 ; . . .;
xþn x

�
n Þ

T
. For any c[ 0, the corresponding Hungarization

is given by

otx
þ ¼ Âþxþ þ Â�x� þ b̂þ � cQðxþ; x�Þ

otx
� ¼ Âþx� þ Â�xþ þ b̂� � cQðxþ; x�Þ

ð16Þ

If (16) is subject to non-negative xþð0Þ; x�ð0Þ 2 Rn
� 0 with

xð0Þ ¼ xþð0Þ � x�ð0Þ, ODE system (16) admits a non-

negative solution on ½0;1Þ that satisfies x ¼ xþ � x�.

Moreover, if x is bounded on ½0;1Þ, then so is ðxþ; x�Þ.

By applying the law of mass action, it can be easily seen

that the Q terms in (16) are captured by the annihilation

reactions xþ1 þ x�1 �!c ;; . . .; xþn þ x�n �!c ;. Combining this

with Proposition 2, we arrive at the following statement.

Proposition 3 Define the chemical reactions of the Hun-

garization (16) as

R ¼ xþi þ x�i �!c ;
��in o

[ �!
b̂þ
i
xþi
��i

� 	
[ �!

b̂�i
x�i
��i

� 	

[ xþj �!
Âþ
i;j

xþj þ xþi
��i; j

( )
[ x�j �!

Â�
i;j

x�j þ xþi
��i; j

� 	

[ xþj �!
Â�
i;j

xþj þ x�i
��i; j

� 	
[ x�j �!

Âþ
i;j

x�j þ x�i
��i; j

( )

Then, the reactions R induce, via the law of mass action,

the ODE system (16).

For instance, if the positivation is given by (7a, 7b),

then (9, 10) constitute R.

Proposition 3 and Theorem 2 yield our main result.

Theorem 3 Given a DAE system via (1) and (2), let

• H1;h and H2;h denote the Hungarization of (12)

and (13, 14), respectively.

• R1;h and R2;h refer to the chemical reactions of H1;h

and H2;h, respectively.

Then, the following holds.

(a) The solution of the CRN given by R1;h [ R2;h

converges to the DAE solution as h ! 0.
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(b) A change of D and d affects the reactions of R2;h but

does not alter the reactions of R1;h.

As anticipated in Sect. 2, Theorem 3 ensures that a) our

encoding is correct up to a controllable error and b) that the

CRN implementation of the circuit, R1;h, does not depend

on the CRN implementation of the input, R2;h.

Theorems 2 and 3 allow for composition of circuits: a

circuit expressed as a DAE (1), with input provided by an

ODE (2), yields another ODE (12) that can be supplied as

input to a further circuit. The corresponding CRNs can be

composed as well.

4 Methods applied to example

The RL circuit discussed in Sect. 2 is a high-pass filter,

attenuating the low frequencies of the input while trans-

mitting the high frequencies to the output. The cutoff fre-

quency is the frequency at which the input signal is

attenuated by 1
2
its power, or equivalently its amplitude is

attenuated by �3 dB �
ffiffi
1
2

q
� 0:707. In our circuit, the

cutoff frequency is fc ¼ R
2pLHz, where R is the value of the

resistance (measured in ohm) and L is the inductance (in

henry).

Here we show how we can apply Theorem 3 to the RL

circuit with a time-varying input represented by an arbi-

trary differentiable function. Such a function can be

approximated arbitrarily well by a Fourier series u(t) given

by

uðtÞ ¼ aþ
XN
i¼1

bi sinðxit þ ciÞ;

where a, bi, xi, and ci are constant parameters. It can be

seen that u(t) can be written as the solution of the ODE

system:

otu ¼
XN
i¼1

bixi�zi otzi ¼ xi�zi ot�zi ¼ �xizi ð17Þ

with initial conditions zið0Þ ¼ sinðciÞ, �zið0Þ ¼ cosðciÞ and

uð0Þ ¼ aþ
PN

i¼1 bi sinðciÞ with 1� i�N, whereby zi and

�zi are auxiliary variables whose solutions give the sinu-

soidal components of the series. We can recognize the

system (17) to be in the required form (2).

As a first example of an input waveform, we consider

the ODE system

otu

otz

� �
¼

0 1

�1 0

� �
�

u

z

� �
ð18Þ

With initial conditions uð0Þ ¼ 0 and zð0Þ ¼ 1, this yields

the solution uðtÞ ¼ sinðtÞ for all t, whose frequency is the

cutoff frequency. Figure 3 shows simulations of the sinðtÞ
CRN composed with the high-pass filter CRN, taking h ¼
0:01 for a sufficiently good approximation, and c ¼ r for a

sufficiently fast degradation. As expected, the output vout is

attenuated by �3dB � 0:707, and its phase is shifted by

45�. The variation of the underlying non-negative variables

is shown on the right.

As a second example, in a biological context, high pass

filters exhibit perfect adaptation (Ferrell 2016): they adapt

to slow but possibly large variations in input stimulus and

still react to quick changes. In Fig. 4 we supply stepped

inputs via an appropriate Fourier series to our filter. At

each sudden increase or decrease, the output reacts quickly

and then settles back to its original level. The size of the

transient response is proportional to the step size, but

independent of the level of the input. The adaptation level

can be set to any level, not just zero, by adding a constant

contribution to vþout, so that the output can represent the

(positive) concentration of a certain protein.

5 Discussion

We have presented a method to convert linear DAEs to

CRNs which hinges on a transformation into an approxi-

mate linear ODE system with arbitrary accuracy. This is

then translated into a set of reactions where the time-course

evolutions of the concentrations of the chemical species

can be directly related to the original DAE solution.

In principle, any DAE system can be exactly trans-

formed into an ODE system by means of the so-called

index reduction (Kunkel and Mehrmann 2006). However,

this relies on symbolic computations. Moreover, the so-

obtained ODE system will contain derivatives of the input

signal, thus requiring for additional approximations. For

instance, by differentiating (3b) and using (3a) we obtain

otvout ¼ otvin � R
L
vout, which together with (3a) is a simple

ODE system in the dependent variables with no algebraic

equations. This system now depends on the derivative of

the input, otvin, and would have to be combined with

another circuit to supply that derivative from the given

input vin. In contrast to index reduction our technique does

not require input derivatives. Moreover, while index

reduction requires symbolic computations, the matrix

inversion at the basis of the construction of the approxi-

mate linear ODE system can also be performed using

numerical techniques.

The precision of the linear ODE depends on a parameter

which, when taken asymptotically small, has the effect of

rapidly equilibrating certain components of the ODE sys-

tem. Therefore, in this respect our approach can be related

to quasi steady-state approximation (QSSA, Verhulst 2005;
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Pantea et al. 2014), which applies to semi-explicit DAEs in

the special form

otx ¼ A1xþ B1u

0 ¼ A2yþ B2u

Essentially, QSSA replaces the algebraic constraints 0 ¼
A2yþ B2u with eoty ¼ A2yþ B2u for some e � 0. How-

ever, DAEs of electric circuits are not semi-explicit in

general. For instance, the circuit given in Fig. 5 yields the

DAE system

ðC1 þ C2Þotv1 � C2otv2 ¼ iS

C2otv1 � C2otv2 ¼
1

R
v2;

ð19Þ

which is not semi-explicit because it has two differential

variables on the left-hand side.

Extensions of this work are needed to tackle non-linear

DAE systems arising from non-linear electronic compo-

nents such as diodes and transistors. The conversion of

polynomial ODEs to Hungarian and positive ones, and thus

to CNRs, works essentially unchanged also for non-linear

polynomial systems, and further extends to ODE systems

including trigonometric and exponential functions, which

can model transistors. However, this must be coupled with

a general method for converting non-linear DAEs arising

from electronic circuits to ODEs.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
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Appendix

Proof of Proposition 1 Since Âþ; Â�; b̂þ and b̂� are non-

negative, the theory of differential inequalities (or mono-

tonic systems) readily implies that the solution ðxþ; x�Þ
of (15) is non-negative whenever ðxþð0Þ; x�ð0ÞÞ is non-

negative. To see the remainder of the statement, let

ðxþ; x�Þ solve (15) for xð0Þ ¼ xþð0Þ � x�ð0Þ. Then

otx
þ � otx

� ¼ ðÂþxþ þ Â�x� þ b̂þÞ
� ðÂþx� þ Â�xþ þ b̂�Þ

¼ ðÂþ � Â�Þðxþ � x�Þ þ ðb̂þ � b̂�Þ
¼ Âðxþ � x�Þ þ b̂

Since otx ¼ Âxþ b̂ admits a unique solution, it must hold

x ¼ xþ � x�. h

Proof of Proposition 2 Write (16) as otx
þ
i ¼ gþi ðxþ; x�Þ

and otx
�
i ¼ g�i ðxþ; x�Þ. Since gþi ðzþ; z�Þ� � czþi z

�
i and

g�i ðzþ; z�Þ� � czþi z
�
i for any ðzþ; z�Þ 2 R2n

� 0 and the

ODE system

(i +  –  i –) vout
+ vout

–

0

1

2

0 5 10 15 20

i + i – vin
+

-1

0

1

0 5 10 15 20

–3dB

vin
–(  –  )vout

+ vout
–(      –       )vin

+ vin
–Fig. 3 Left: simulation of the

CRN from Fig. 2, plotting

variables differences, with

L ¼ R ¼ 1, input vin ¼ vþin � v�in
of frequency 1

2pHz, and output

vout ¼ vþout � v�out. Horizontal
axis is time. Right: the same,

but plotting the individual

variables

-4

0

4

0 10 20 30 40

(            –             )vout   + vout   –(      –       )   +vin vin   –

Fig. 4 The circuit from Fig. 2 exhibiting perfect adaptation. Input

vin ¼ vþin � v�in, and output vout ¼ vþout � v�out. Horizontal axis is time

RiS C1

C2
1v 2v

Fig. 5 An electric circuit which gives the DAE system (19) that is not

in semi-explicit form. Here, C1, C2 and R refer, respectively, to the

first capacitor, the second capacitor and the resistor
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otz
þ
i ¼ �czþi z

�
i ; otz

�
i ¼ �czþi z

�
i ; 1� i� n

remains non-negative if initialized with non-negative val-

ues, we conclude that ðxþ; x�Þ remains non-negative.

Moreover, since cQ is non-positive on R2n
� 0, the solution

of (16) is defined on ½0;1Þ and does not exhibit a finite

explosion time. Since the second claim follows trivially

from Proposition 1 because the Q terms cancel each other

out in otx
þ � otx

�, let us focus on the third claim and set

n :¼ sup0� t�1 jjxðtÞjj1\1. Note that xi ¼ xþi � x�i ,

hence we get

otx
þ
i ¼

�
Âþxþ þ Â�x� þ b̂þ

�
i
� cxþi x

�
i

¼
�
Âþxþ þ Â�x� þ b̂þ

�
i
� cxþi ðxþi � xiÞ

�
�
Âþxþ þ Â�x� þ b̂þ

�
i
þ cnxþi � cðxþi Þ

2

Since a similar calculation implies that

otx
�
i �

�
Âþx� þ Â�xþ þ b̂�

�
þ cnx�i � cðx�i Þ

2;

we infer that there exists a f[ 0 such that, for all i and

ðzþ; z�Þ 2 R2n
� 0, it holds that

• gþi ðzþ; z�Þ� � 1 if zþi � f and;

• g�i ðzþ; z�Þ� � 1 when z�i � f.

This ensures that for any initial condition

ðxþð0Þ; x�ð0ÞÞ 2 R2n
� 0, the solution ðxþ; x�Þ enters even-

tually ½0; f
2n in order to remain there forever. h

Proof of Proposition 3 Straightforward. h

Proof of Theorem 3 Follows from a direct combination of

Proposition 3 and Theorem 2. h

Proof of Theorems 1 and 2

Before proving Theorems 1 and 2, we first have to estab-

lish some auxiliary results. To allow for a compact nota-

tion, we denote in the present section the i-th step of the

numeric sequence by xi rather than x[i].

Proposition 4 Consider the ODE systems otx ¼ FðxÞ and
otxh ¼ FhðxÞ where F and Fh are assumed to be Lipschitz

continuous on some bounded domain B 
 Rn and L� 0

denotes the Lipschitz constant of F. Let us assume further

that both ODE systems have solutions on [0; T] which

remain in B and that supfjjFðxÞ � FhðxÞjj j x 2 Bg� g.
Then, if xð0Þ ¼ xhð0Þ, for all 0� t� T it holds that

jjxðtÞ � xhðtÞjj �
g
L
ðeLt � 1Þ

Proof We first show a modified version of Gronwall’s

inequality. To be more specific, let n1 and n2 be positive

constants and v a continuous function on 0� t\1 such

that

vðtÞ� n2t þ n1

Z t

0

vðsÞds ð20Þ

Then, it holds that vðtÞ� n2
n1
ðen1t � 1Þ. To see this, we first

rewrite (20) to

vðtÞ þ n2
n1

� n2
n1

þ n1

Z t

0

vðsÞ þ n2
n1

� �
ds

Since this rewrites to ~vðtÞ� ~aþ
R t
0
~vðsÞ ~wðsÞds for

~vðsÞ :¼ vðsÞ þ n2
n1
, ~a :¼ n2

n1
and ~wðsÞ :¼ n1, Gronwall’s

inequality ensures that ~vðtÞ� ~a � e
R t

0
~wðsÞds

and we infer the

auxiliary statement. This, in turn, yields

jjxðtÞ � xhðtÞjj � xð0Þ � xhð0Þk k

þ
Z t

0

�
FðxðsÞÞ � FhðxhðsÞÞ

�
ds












�
Z t

0

�
FðxðsÞÞ � FðxhðsÞÞ

�
ds












þ
Z t

0

�
FðxhðsÞÞ � FhðxhðsÞÞ

�
ds












� L

Z t

0

xðsÞ � xhðsÞk kdsþ gt

� g
L
ðeLt � 1Þ

h

Proposition 5 Let Eotx ¼ Axþ b be a regular linear

DAE system and let D 
 Rn denote the corresponding set

of consistent initial conditions. Then, D is an affine sub-

space of Rn and xþ hFhðxÞ 2 D whenever x 2 D.

Proof To see that D is an affine subspace of Rn, we refer

to (Kunkel and Mehrmann 2006, Section 2.1). Note further

that xi ¼ xi�1 þ hFhðxi�1Þ defines the backward Euler

scheme which is applied to the DAE system

Eotx ¼ Axþ b, see (Kunkel and Mehrmann 2006, Sec-

tion 5.2). Consider the BDF-1 scheme (Kunkel and

Mehrmann 2006, Section 5.3) which is given by

1

h
Eðxi � xi�1Þ ¼ Axi þ b

if applied to Eotx ¼ Axþ b. With this, we first observe that

1
h
Eðxi � xi�1Þ ¼ Axi þ b

, 1
h
Exi � Axi ¼ 1

h
Exi�1 þ b

, 1
h
E � Að Þxi ¼ 1

h
Exi�1 þ b

, ðE � hAÞxi ¼ Exi�1 þ hb

, xi ¼ ðE � hAÞ�1ðExi�1 þ hbÞ;

where the inversion in the last line can always be per-

formed for sufficiently small h because Eotx ¼ Axþ b is

regular. This, in turn, yields

From electric circuits to chemical networks 245

123



xi � xi�1

h
¼ ðE � hAÞ�1

bþ
�
ðE � hAÞ�1

E � I
�1
h
xi�1

¼ ðE � hAÞ�1
bþ ðE � hAÞ�1ðE � ðE � hAÞÞ1

h
xi�1

¼ ðE � hAÞ�1
bþ ðE � hAÞ�1

Axi�1

¼ ðE � hAÞ�1ðAxi�1 þ bÞ
¼ Fhðxi�1Þ

This shows that the backward Euler scheme and the BDF-1

scheme are identical if applied to Eotx ¼ Axþ b. With this,

the statement of the proposition is closely related to

(Kunkel and Mehrmann 2006, Remark 5.25). To see this,

we may assume without loss of generality (see proof of

Kunkel and Mehrmann 2006, Theorem 5.24) that Eotx ¼
Axþ b is such that A ¼ I and E ¼ N for some nilpotent

N with Nm ¼ 0 and Nm�1 6¼ 0. It can be easily seen that in

such a case the solution is x � �b, thus implying in par-

ticular that the set of consistent initial conditions is

D ¼ f�bg. Moreover, the BDF-1 scheme rewrites to

1
h
N � Ið Þxi ¼ 1

h
Nxi�1 þ b

, I � 1
h
Nð Þxi ¼ �1

h
Nxi�1 � b

, xi ¼ � I � 1
h
Nð Þ�1 1

h
Nxi�1 þ bð Þ

, xi ¼ �
Pm�1

l¼0
1
h
Nð Þl 1

h
Nxi�1 þ bð Þ;

where the last equivalence is due to the Neumann series

and the nilpotency of N. This, in turn, implies that

xi ¼ �
Xm�1

l¼0

1

h
N

� �l 1

h
Nxi�1 þ b

� �

¼ �
Xm�1

l¼1

1

h
N

� �l
xi�1 �

Xm�1

l¼0

1

h
N

� �l
b

¼ �b�
Xm�1

l¼1

1

h
N

� �l
ðxi�1 þ bÞ;

thus showing that xi ¼ �b whenever xi�1 ¼ �b. h

Proposition 6 Let Eotx ¼ Axþ b be a regular linear

DAE system and let D 
 Rn denote the corresponding set

of consistent initial conditions. Then

• The solution of Eotx ¼ Axþ b is contained in D.

• There exist Â 2 Rn�n and b̂ 2 Rn such that the

solution of the ODE system otx ¼ Âxþ b̂ coincides

with that of Eotx ¼ Axþ b for all xð0Þ 2 D.

• Together with FhðxÞ :¼ ðE � hAÞ�1ðAxþ bÞ, where

h[ 0, it holds that Fh converges uniformly, as h ! 0,

to Âxþ b̂ on any bounded subset of D.

Proof The first two points are well-known in the theory of

linear DAE systems, see Kunkel and Mehrmann

(2006, Section 2.1) [it is interesting to note that an efficient

computation of Â 2 Rn�n and b̂ 2 Rn is difficult because it

relies on index reduction (Pantelides 1988)].

To see the third claim, we observe that xi ¼ xi�1 þ
hFhðxi�1Þ defines the backward Euler scheme applied to the

DAE system Eotx ¼ Axþ b, see Kunkel and Mehrmann

(2006, Section 5.2). We next show that x0 7! 1
h
ðx1 � x0Þ

converges uniformly on any bounded subset of D to

x0 7!Âx0 þ b̂ when h ! 0. To this end, we may assume

without loss of generality (see discussion after Equa-

tion 5.25 in Kunkel and Mehrmann 2006) that the DAE

system Eotx ¼ Axþ b is such that

E =
I 0
0 N

and A =
J 0
0 I

,

where N is such that Nm ¼ 0 and Nm�1 6¼ 0 for some m� 1.

This implies that the solution of Eotx ¼ Axþ b is charac-

terized by a pair of decoupled dynamical systems, namely

by the ODE system otx
I ¼ JxI þ bI and the DAE system

Notx
II ¼ xII þ bII, where x ¼ ðxI; xIIÞ and b ¼ ðbI; bIIÞ.

Thanks to this, it suffices to consider xI1 � xI0 and xII1 � xII0
separately.

Since xII � �bII solves Notx
II ¼ xII þ bII, we infer that

D ¼ fðxI; xIIÞ j xII ¼ �bIIg. Hence, Proposition 5 shows

that xII1 � xII0 ¼ 0 whenever x0 2 D.

We next focus on xI1 � xI0. Thanks to the fact that

otx
I ¼ JxI þ bI, we have to investigate the local truncation

error of the backward Euler scheme in the context of a

linear ODE system. Despite the fact that this is discussed in

many books about ODEs, we provide here a proof because

most texts do not show that the local truncation error

converges uniformly to zero on arbitrarily large compact

sets. To this end, we first observe that the Taylor expansion

of xI around zero yields

xIðhÞ ¼ xI0 þ ðJxI0 þ bIÞhþ €xIðnÞh
2

2

for some n 2 ð0; hÞ. With ~FhðxI0Þ ¼ ðI � hJÞ�1ðJxI0 þ bIÞ,
the proof of Proposition 5 implies that
~FhðxI0Þ ¼ 1

h
ðxI1 � xI0Þ. This, in turn, implies that

xIðhÞ � xI1 ¼ xIðhÞ � ðxI0 þ h ~FhðxI0ÞÞ

¼ xI0 þ ðJxI0 þ bIÞhþ €xIðnÞh
2

2

� xI0 þ hðI � hJÞ�1ðJIx0 þ bIÞ
h i

¼ h2
1

2
€xIðnÞ þ 1

h
ðI � ðI � hJÞ�1ÞðJxI0 þ bIÞ

h i

In the case h� 1=ð2jjJjjÞ, the Neumann series allows us to

deduce that
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I � ðI � hJÞ�1 ¼ ðI � hJÞðI � hJÞ�1 � ðI � hJÞ�1

¼ ððI � hJÞ � IÞðI � hJÞ�1

¼ �hJðI � hJÞ�1

¼ �hJ
X1
k¼0

ðhJÞk

with jj
P1

k¼0ðhJÞ
kjj �

P1
k¼0 2

�k ¼ 2. Moreover, a differ-

entiation of otx
I ¼ JxI þ bI yields €xI ¼ J2xI þ JbI. This and

the last statement imply the existence of constants

f1; f2 � 0 that neither depend on xI0 nor on h and that satisfy

jjxIðhÞ � xI1jj � h2
�
f1 þ f2jjxI0jj

�
for all 0� h� 1. This shows that xI0 7! 1

h
ðxI1 � xI0Þ converges

uniformly on any bounded set to xI0 7!JxI0 þ bI. h

We are in a position to prove Theorem 1.

Proof of Theorem 1 Let Â 2 Rn�n and b̂ 2 Rn be as in

Proposition 6 and fix T [ 0 and xð0Þ 2 D. Since the

solution of Eotx ¼ Axþ b solves the linear ODE system

otx ¼ Âxþ b̂, this implies that x exists and is bounded on

[0; T]. Hence, there exists a closed ball Bqð0Þ centered at

0 2 Rn with radius q[ 0 such that xðtÞ 2 Bqð0Þ for all

0� t� T . Since Bqð0Þ is bounded, Proposition 6 ensures

that x is contained in D and that for any g[ 0 there exists

an h[ 0 such that

sup
x2Bqð0Þ\D

jjÂxþ b̂� FhðxÞjj � g

Moreover, Proposition 5 ensures that the solution xh of

otxh ¼ FðxhÞ is contained in D. By combining the fore-

going statements, Proposition 4 yields the claim. h

The following auxiliary results are needed for the proof

of Theorem 2

Proposition 7 Fix E;A 2 Rn�n, B 2 Rn�ðkþmÞ,

D 2 RðkþmÞ�ðkþmÞ, d 2 RðkþmÞ and consider the linear DAE

system

E 0
0 I

Ê:=

∂tx
∂tu

∂tx̂:=

=
A B
0 D

Â:=

x
u

x̂:=

+
0
d

b̂:=

Then, ðÊ � hÂÞ�1ðÂx̂þ b̂Þ is given by

ðE � hAÞ�1
�
Axþ Buþ hBðI � hDÞ�1ðDuþ dÞ

�
ðI � hDÞ�1ðDuþ dÞ

 !

ð21Þ

Proof By relying on the inversion formula for block

matrices, we obtain

(Ê − hÂ)−1Â

=
E − hA −hB

0 I − hD

−1
A B
0 D

=
(E − hA)−1 (E − hA)−1hB(I − hD)−1

0 (I − hD)−1
A B
0 D

=
(E − hA)−1A (E − hA)−1(B + hB(I − hD)−1D)

0 (I − hD)−1D

Armed with this, we infer that

(Ê − hÂ)−1Â
x
u

= (E − hA)−1 Ax + Bu + hB(I − hD)−1Du
(I − hD)−1Du

and

(Ê − hÂ)−1 0
d

=
(E − hA)−1hB(I − hD)−1d

(I − hD)−1d

A summation of the foregoing statements yields (21). h

Corollary 1 Fix an arbitrary consistent initial condition

ðxð0Þ; uð0ÞÞT 2 Rnþkþm of the DAE system from Proposi-

tion 7. The corresponding ODE approximation is then

otxh ¼ ðE � hAÞ�1
�
Axh þ Bu

h0i
h þ hBu

h1i
h

�
otu

h0i
h ¼ ðI � hDÞ�1

Du
h0i
h þ ðI � hDÞ�1

d

otu
h1i
h ¼ ðI � hDÞ�1

Du
h1i
h

with u
h0i
h ð0Þ ¼ uð0Þ and u

h1i
h ð0Þ ¼ ðI � hDÞ�1

Duð0Þ.

Proof Follows directly from Proposition 7. h

Proof of Theorem 2 In Theorem 2, replace u with û, z with

ẑ and B with B̂. Afterwards, apply Corollary 1 to the case

where u :¼ û

ẑ

� �
2 Rkþm and

B := B̂ 0
0 0

∈ R
(k+m)×(k+m)

h
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