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Abstract
Differential evolution (DE) is an efficient population-based search algorithm for solving numerical optimization problems.

However, the performance of DE is very sensitive to the choice of mutation strategies and their associated control

parameters. In this paper, we propose a self-adaptive multi-population differential evolution algorithm, called SAMDE.

The population is randomly divided into three equally sized sub-populations, each with different mutation strategies. At the

end of each generation, all sub-populations are updated independently and recombined. Each sub-population uses an

adaptive mechanism for selecting how current generation control parameters are generated. An improved mutation

strategy, ‘‘rand assemble/1’’, is proposed, its base vector is composed proportionally of three randomly selected individ-

uals. The performance of SAMDE is evaluated on the suite of CEC 2005 benchmark functions. A comparative study is

carried out with other state-of-the-art optimization techniques. The results show that SAMDE has a competitive perfor-

mance compared to several other efficient DE variants.

Keywords Evolutionary algorithm � Differential evolution � Multi-population � Self-adaptive � Numerical optimization

1 Introduction

Differential evolution (DE), first proposed by Storn and

Price (1997), is a simple and efficient evolutionary algo-

rithm (EA) for solving numerical optimization problems.

DE is a population-based stochastic search technique, in

which mutation, crossover, and selection operators are

utilized at each generation to move the population toward

the global optimum (Wang et al. 2011). In the last few

years, DE has been extended for handling multiobjective,

constrained, large scale, dynamic and uncertain optimiza-

tion problems (Das and Suganthan 2011; Mukherjee et al.

2014) and is now successfully used in various scientific and

engineering fields (Plagianakos et al. 2008; Ghasemi et al.

2014; Wang and Cai 2015; Zhao et al. 2014), such as

chemical engineering, engineering design, and pattern

recognition (Cai and Wang 2015).

When DE is applied to a given optimization problem,

there are three crucial associated parameters which

significantly affect the performance of DE (i.e., population

size NP, scaling factor F, and crossover rate CR). More-

over, there are many trial vector generation strategies, and

different strategies have different search capabilities for

different problems in different stages of the evolutionary

process. An inappropriate setting of these for a particular

problem may lead to premature convergence and degrade

algorithmic performance. Therefore, in order to apply DE

successfully to solve optimization numerical problems, a

trial and error search for the strategies and the associated

control values is usually required.

Consequently, many enhanced DE variants such as jDE

(with self-adapted parameters) (Brest et al. 2006), SaDE

(with adapted mutation strategies and parameters) (Qin

et al. 2009), JADE (with ‘‘current-to-pbest/1’’ mutation

strategy and adaptive parameters) (Zhang and Sanderson

2009), CoDE (with composition of multiple strategies and

parameter settings) (Wang et al. 2011), EPSDE (with

ensemble of mutation strategies and parameters) (Mal-

lipeddi et al. 2011), SspDE (with self-adapted strategies

and control parameters) (Pan et al. 2011), ESADE (with

‘‘current-to-pbest/1’’ mutation strategy and self-adaptive

parameters) (Guo et al. 2014), MPEDE (with ensemble of

multiple mutation strategies and self-adaptive parameters)

(Wu et al. 2016), and DMPSADE (with self-adaptive
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mutation strategies and parameters) (Fan and Yan 2015),

have been proposed.

Although DE’s effectiveness and competitive perfor-

mance has been demonstrated by many experimental

studies and theoretical analysis, DE still quite depends on

the settings of control parameters such as scaling factor (F),

crossover rate (CR), mutation/crossover strategy and pop-

ulation size (NP), so many variants of DE have proposed,

as mentioned above, they all used a similar idea of using

different mutation strategies and self-adaptive techniques

to control parameter settings (Awad et al. 2016). The

proposed variants of DE are classified into 3 types: DE

methods with both strategy and control parameter adapta-

tions, DE with only control parameter (F and Cr) adapta-

tion, and DE with population size control (Das et al. 2016).

As a very competitive method, the well-known EPSDE

(Mallipeddi et al. 2011) is select strategy as well as values

of F and Cr from the strategy pool, which is associated with

the success rate of the generated trial. EPSDE is developed

by a proposed variant of EPSDE where the ensemble of F

and Cr values are evolved by using the optimization pro-

cess of another metaheuristic algorithm called Harmony

Search (HS) (Mallipeddi 2013). However, EPSDE and it’s

variants can be computationally costlier, especially on

large scale problem instances (Das et al. 2016), and the

success rate of the generated trial doesn’t all depends on

mutation strategies.

It would be a useful attempt that DE consists of multiple

populations and each sub-population is evolved using dif-

ferent mutation/crossover strategies and adaptive parame-

ters (Yongjie et al. 2009), individuals may migrate among

sub-populations according to certain rules.

In this paper, we propose a self-adaptive multi-popula-

tion differential evolution, called SAMDE, which aims at

improving the search precision and solving numerical

optimization problems. The algorithm first randomly

divides the population into three equally sized sub-popu-

lations. The algorithm then generates trial vectors for each

sub-population using three different strategies. A modified

mutation strategy uses a linear combination of randomly

selected several individuals from the sub-populations.

Moreover, two classical mutation strategies (‘‘rand/1’’ and

‘‘best/2’’) are used to other two sub-populations, respec-

tively. In addition, parameters such as scaling factor F and

crossover rate CR, associated with each mutation strategy

are adapted based on iterations. At the end of each gen-

eration, each sub-population is updated by random

recombination. SAMDE is tested on the suite of CEC 2005

benchmark functions with 10, 30 and 50 variables,

respectively. The competitive performance of SAMDE is

exhibited by extensive comparisons with several state-of-

the-art DE variants.

Recently, population partitioning techniques for

enhancing the performance of EAs and swarms, such as

particle swarm optimization (PSO) and DE, attracted

increasing attention (Wu et al. 2016). Our work is different

from previous studies. In all previous works, each sub-

population evolved separately for a certain number of

generations and then some individuals were randomly

selected migrate between sub-populations to share experi-

ences. By contrast, each sub-population in this paper

updates at the end of each generation. The application of

multi-population technique in our study is aimed to main-

tain population diversities while enhance algorithmic

performance.

The rest of this paper is structured as follows: Sect. 2

gives a brief introduction to classical DE, including its

typical mutation operators, crossover, and selection oper-

ators. Section 3 reviews the related works in literature.

Section 4 introduces details of the implementation of

SAMDE. Experimental results and analysis are presented

in Sect. 5. Section 6 concludes this paper.

2 Differential evolution

The DE firstly generates a random initial population within

the scope of solution, then uses differential mutation,

crossover, and selection operation to produce a new gen-

eration of population. The DE algorithm, which selects real

number coding, generates random initialization population

in the feasible solution space. The initial value of the jth

decision variable of the ith individual at generation G = 0

is generated within the search space constrained by the

prescribed minimum and maximum decision variable’s

bounds Xmin = {xmin
1, …, xmin

D} and Xmax = {xmax
1, …,

xmax
D} by:

x
j
i;0 ¼ x

j
min þ randð0; 1Þ � ðx j

max � x
j
minÞ; j ¼ 1; 2; . . .;D

ð1Þ

where D is the dimensions of the problem, rand(0,1) rep-

resents a uniformly distributed random variable within the

range [0,1].

Constrained numerical optimization problems (CNOPs)

is defined as:

Min f Xð Þ; X 2 Xmin;Xmax½ �

Because of the highly competitive performance showed

by DE when solving CNOPs, the researchers have been
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focused on providing modifications to DE variants, such as

self-adaptive parameter control in constrained search

spaces, etc.

2.1 Mutation operation

In DE, the variation vector is composed of the difference

vector of individual in the population after scaling and

other different individuals within the population. A variety

of mutation strategies are obtained according to different

methods of generating the variation vector. The most

commonly used mutation strategies are the followings

(Mallipeddi and Lee 2015):

‘‘DE=rand=1’’ : Vi;G ¼ Xri
1
;G þ F � Xri

2
;G � Xri

3
;G

� �
ð2Þ

‘‘DE=rand=2’’ :

Vi;G ¼ Xri
1
;G þ F � Xri

2
;G � Xri

3
;G

� �
þ F � Xri

4
;G � Xri

5
;G

� �

ð3Þ

‘‘DE=best=1’’ : Vi;G ¼ Xbest;G þ F � Xri
1
;G � Xri

2
;G

� �

ð4Þ

‘‘DE=best=2’’ :

Vi;G ¼ Xbest;G þ F � Xri
1
;G � Xri

2
;G

� �
þ F

� Xri
3
;G � Xri

4
;G

� � ð5Þ

‘‘DE=rand-to-best=1’’ :

Vi;G ¼ Xi;G þ K � Xbest;G � Xi;G

� �
þ F � Xri

1
;G � Xri

2
;G

� �

ð6Þ

‘‘DE=rand-to-best=2’’ :

Vi;G ¼ Xi;G þ K � Xbest;G � Xi;G

� �
þ F

� Xri
1
;G � Xri

2
;G þ Xri

3
;G � Xri

4
;G

� � ð7Þ

‘‘DE=current - to - rand=1’’ :

Vi;G ¼ Xi;G þ K � Xri
1
;G � Xi;G

� �
þ F � Xri

2
;G � Xri

3
;G

� �

ð8Þ

The parameters r1
i, r2

i, r3
i, r4

i, r5
i are randomly gener-

ated independent integers different from the index i and

within the range of [1, NP]. These indexes are randomly

generated in each vector. Xbest,G is the best individual

which has the best fitness value in the Gth generation

populations. K is randomly selected in [0, 1]. F is the scale

factor.

2.2 Crossover operation

Crossover operator aims to generate trial vectors. The DE

algorithm generally employs two kinds of crossover

methods: binomial crossover (bin) and exponential cross-

over (exp).

2.2.1 Binomial crossover

In binomial crossover, at least one component of trial

vector is provided by the variation vector with the method

of random selection. Operation equation is as follows:

ui;j;G ¼ vi;j;G randð0; 1Þ�CR or j ¼ jrand
xi;j;G otherwise

�
ð9Þ

where j = 1,2,…,D, jrand is a randomly chosen integer in

the range [1,D], CR[(0,1) is the crossover rate.

2.2.2 Exponential crossover

Exponential crossover operation mode is as follows:

ui;j;G ¼ vi;j;G j¼\l[D;\lþ1[D; � � � ;\lþL�1[D

xi;j;G otherwise

�

ð10Þ

In the exponential crossover, an integer l[[1,D], which
acts as a starting point in the target vector, is chosen ran-

domly from the point at which the crossover or exchange of

components with the mutant vector starts. L[[1,D] denotes
the number of components that are contributed by the

mutant vector to the target vector. Integer L is drawn from

[1,D] depending on the crossover probability (CR). Where

the angular brackets\l[D denote a modulo function with

modulus D.

2.3 Selection operation

DE uses a ‘‘greed’’ selection strategy to choose the best

individual according to the fitness value of target vector

and trial vector. The selection operation can be expressed

as follows:

Xi;Gþ1 ¼
Ui;G f ðUi;GÞ\f ðXi;GÞ

Xi;G otherwise

(
ð11Þ

where Xi,G?1 is target vector of the next generation.
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3 Related works

The DE algorithm has became a powerful optimizer for

solving global continuous optimization problems, which is

simple, high-efficiency, easy to understand and implement,

and has less controlled parameters. Meanwhile, it can

proceed heuristic search in the continuous space randomly,

directly and concurrently (Storn and Price 1997; Qin et al.

2009). However, the performance of the conventional DE

algorithm depends on the chosen mutation/crossover

strategies and the associated control parameters. In addi-

tion, the performance of DE becomes more sensitive to

strategies and their associated parameter values as the

complexity of the problem increases (Gämperle et al.

2002). In other words, the inappropriate selection of

strategies and parameters may lead to a premature con-

vergence, stagnation, or a waste of computational resources

(Wu et al. 2016; Gämperle et al. 2002; Lampinen and

Zelinka 2000; Price et al. 2005; Zaharie 2003).

In order to improve the performance of DE algorithm, in

recent years, some researchers have proposed many

improved measures of mutation strategy. In Zhang and

Sanderson (2009), a new mutation strategy, named DE/

current-to-pbest with optional archive, is proposed to serve

as the basis of the adaptive DE algorithm JADE. Li et al.

(2012) proposed a new mutation strategy, with the best

individual as a guide but not entirely dependent on the best

individual, and with a certain probability to the optimal

direction of evolution. In Bi and Liu (2012), the base vector

selected by the mutation strategy make a compromise

between the random individual and the best individual. In

Ouyang et al. (2013), a random mutation strategy was

proposed. The method of random choice was adopted to

implement mutation and disturbance operation, which was

aimed at increasing the diversity of population and bal-

ancing the local and global search. In Kong et al. (2014), a

multi-strategy mutation operator based on symbolic func-

tion was designed. In Kong et al. (2014), the global

acceleration operator was proposed, which can balance the

global search and local search. In Bi et al. (2012), the best

global solution and the best previous solution of each

individual are utilized in the new mutation strategy to

guide the search direction by introducing more effective

directional information. This method avoids the search

blindness brought by the random selection of individuals in

the difference vector. In Qiu et al. (2015), the mutation

strategy of DE is proposed and divided into two parts to

reflect the changes of the target population trends and their

random variations. It consists of an additional mutation

factor which is simulated by a different Hurst index fractal

Brownian motion. In Ali et al. (2015), a modified mutation

strategy was proposed, which called mms, uses a convex

linear combination of randomly selected individuals from

the population. This novel mutation strategy was used to

produce quality solutions to balance exploration and

exploitation. In Mukherjee et al. (2016), the mutation phase

has been entrusted to a locality-induced operation that

retains traits of Euclidean distance-based closest individu-

als around a potential solution. A locality based DE

mutation scheme called ‘DE/current-to-p-local_best/1’ has

been devised.

Extensive studies have been done on appropriate setting

of the control parameters of DE, such as scaling factor

F and crossover rate CR. Initially, Storn and Price (1997)

said that F = 0.5 would be a good initial choice, and its

adjustable range is from 0.4 to 1. On this basis, Liu and

Lampinen (2010) mentioned that F = 0.9 would be a good

initial choice, and F[(0.4,0.95). Ronkkonen et al.

(Ronkkonen et al. 2005) set CR[(0,0.2) in the separable

functions. But if parameters are dependent on each other,

CR[(0.9,1). Zielinski et al. (2006) pointed out that F C 0.6

and CR C 0.6 can make the algorithm get better perfor-

mance. From the above, it can be observed that parameters

maintain a fixed value in the process of evolution, which

lack sufficient theoretical justification. Therefore, the

researchers began to consider the automatic adjustment of

DE parameters. Brest et al. (2006) proposed a self-adap-

tation scheme (jDE), in which control parameters F and CR

were encoded into the individuals and are adjusted in the

run of DE. Qin et al. (2009) considered allowing F to take

different random values in the range (0, 2] with normal

distribution of mean 0.5 and standard deviation 0.3 for

different individuals in the current population, and accu-

mulating the previous learning experience within a certain

generation interval so as to dynamically adapt the value of

CR to a suitable range. In Zhang and Sanderson (2009), the

parameter adaptation automatically updates the control

parameters to appropriate values. In Zou et al. (2013),

MDE adjusts scale factor F and crossover rate CR by using

Gauss distribution and uniform distribution, respectively.
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From the analysis of population structure of DE, the

initial population is divided into multiple sub-populations

that according to the topology relationship and migrate by

the corresponding individual migration mechanism. This

form of DE is called distributed DE. In recent years, the

distributed DE algorithm has became an important branch

of DE. Therefore, the researchers began to pay close

attention to the distributed DE. Some researches on the

present mainly partition the initial population or swarm

into multiple equal smaller sub-populations. As the algo-

rithm proceeds, information exchange among sub-popula-

tions and regrouping operators will be triggered with a

certain frequency with the aim to maintain the diversity of

the whole population and balance the exploitation and

exploration capabilities (Wu et al. 2016). Weber et al.

(2011) proposed shuffle or update parallel differential

evolution (SOUPDE), which is a structured population

algorithm characterized by sub-populations employing a

differential evolution logic. Two simple mechanisms have

been integrated. The first, namely shuffling, consists of

randomly rearranging the individuals over the sub-popu-

lations. The second consists of updating all the scale fac-

tors of the sub-populations. In Ali et al. (2015), the

population is divided into four independent sub-groups,

each with different mutation and update strategies. The size

of each group is fixed and computed by dividing the pop-

ulation size by number of predefined groups. Each sub-

group is filled randomly by picking random individuals

from the entire population. In Wu et al. (2016), there are

three equally sized smaller indicator sub-populations and

one much larger reward sub-population. Each constituent

mutation strategy has one indicator sub-population. After

every certain number of generations, the current best per-

forming mutation strategy will be determined according to

the ratios between fitness improvements and consumed

function evaluations. Then the reward sub-population will

be allocated to the determined best performing mutation

strategy dynamically. Shang et al. (2014) proposed a multi-

population based cooperative coevolutionary algorithm

(MPCCA) to solve the multi-objective capacitated arc

routing problem. In MPCCA, population is partitioned into

multiple sub-populations with respect to their different

direction vectors. These sub-populations evolve separately

and search different objective sub-regions simultaneously.

The adjacent sub-populations are able to share their

information. The differences between our research and

other related studies are explained in Sect. 1.

4 Self-adaptive multi-population DE
(SAMDE)

The sub-populations quickly exploit some areas of the

decision space, thus drastically and quickly reducing the

fitness value in the highly multi-variate fitness landscape

(Weber et al. 2011). Moreover, the suitable mutation

strategies choosing and the reasonable control parameter

setting are important to enhance the search ability of DE

algorithm. Therefore, in this study, the population is divi-

ded into three equally sized sub-populations, each with

different mutation strategies. At the end of each generation,

all sub-populations are updated by random recombination.

Meanwhile, the SAMDE algorithm is proposed to imple-

ment the self-adaptive control parameters to ensure the

search ability of algorithm.

4.1 Multiple populations

The mechanism of multi-population ensures that each sub-

population is not affected by the interference of other sub-

populations in the process of evolution. In this work, the

formation process of the sub-populations is first initializes

the entire population and then calculates fitness value of all

individuals, at last, the population is randomly divided into

three same size subgroups, called X1, X2, X3. Three sub-

populations use different mutation strategies and evolve

respectively and concurrently within each sub-population.

At the end of each iteration, all individuals are randomly

reordered. It is worth mentioning that each sub-population

is updated at each generation, which actually share opti-

mization experience with each other and realize the

information exchange among sub-populations.

4.2 Parameter adaptation

The choice of numerical values for control parameters F,

CR significantly affect the performance of the DE algo-

rithm. Instead of fixing the values of these parameters, the

current trend is to use self-adaptive parameter setting

mechanisms. In this study, three sub-populations use three

sets of scale factor Fk and crossover probabilities CRk,

k = 1, 2, 3. In SAMDE, a parameter adaptive approach is

proposed that control parameters of each generation can be

gradually self-adapted according to the number of itera-

tions. This adaptive scheme can keep both local and global
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search ability to generate the potential good mutant vector

throughout the evolution process.

At each generation t, mutation factor Fki
t of each indi-

vidual xi is independently generated according to a normal

distribution of mean lFkt and standard deviation 0.1 and is

bounded in the interval (0, 1) as:

Fkti ¼ randniðlFkt; 0:1Þ ð12Þ

In generation t, the location parameter lFkt of the nor-

mal distribution is updated at the end of each generation as:

lFkt ¼ olFk � 0:1� e � t
Gmð Þ ð13Þ

Similarly, at each generation t, the crossover probability

CRki
t of each individual xi is independently generated

according to a normal distribution of mean lCRkt and

standard deviation 0.1 and is bounded in the interval (0, 1)

as:

CRkti ¼ randniðlCRkt; 0:1Þ ð14Þ

In generation t, the location parameter lCRkt of the

normal distribution is updated at the end of each generation

as:

lCRkt ¼ olCRk � 0:1� e � t
Gmð Þ ð15Þ

where Gm is maximum number of iterations. olFk is the

initial value of lFk, and olCRk is the initial value of lCRk.
Equations (13) and (15) will complete coarse search at

beginning of iterations and fine search at ending of

iterations.

4.3 Choice of mutation strategies
for populations in SAMDE

The choices of different mutation strategies affect the

efficiency of DE and accuracy of solution. Therefore, the

reasonable selection of mutation strategies is especially

important. Several mutation strategies from the DE litera-

ture were presented in Sect. 2.1. Two of these strategies are

directly used in some sub-populations in SAMDE while

one is a modified mutation strategy.

Two standard mutation strategies are used in X1 and X3,

that are ‘‘rand/1’’ and ‘‘best/2’’. ‘‘DE/rand/1/bin’’ is one of

the most commonly used strategies in the DE research. It

can effectively maintain the diversity of population. For

this reason, ‘‘DE/rand/1/bin’’ mutation strategy is used in

X1. In contrast, the ‘‘DE/best/2/bin’’ mutation strategy

have a faster convergence rate and better searching ability.

It can availably ensure optimization ability of the sub-

population. Thus, we use ‘‘DE/best/2/bin’’ mutation strat-

egy in X3.

In Ali et al. (2015), a new mutation strategy is proposed.

Based on this mutation strategy, we propose a new muta-

tion strategy, call it as ‘‘rand assemble/1’’, use in X2. In

‘‘rand assemble/1’’, the choice of the base vector is dif-

ferent from standard DE. It uses a linear combination of

randomly selected three individuals from the population,

which will carry more paternal genes and pass to their

offspring. This modified mutation strategy will produce

well distributed solutions with higher convergence rate and

increase the diversity of population due to the generational

interchange of sub-populations using different mutation

strategies.

Mutation strategy 1: ‘‘rand/1’’

Vi;t ¼ Xri
1
;t þ F � ðXri

2
;t � Xri

3
;tÞ ð16Þ

Mutation strategy 2: ‘‘rand assemble/1’’

Vi;t ¼ ðaXri
1
;t þ bXri

2
;t þ cXri

3
;tÞ þ F � ðXri

4
;t � Xri

5
;tÞ ð17Þ

Mutation strategy 3: ‘‘best/2’’

Vi;t ¼ Xbest;t þ F � ðXri
1
;t � Xri

2
;tÞ þ F � ðXri

3
;t � Xri

4
;tÞ ð18Þ

where r1, r2, r3, r4, r5 are all random integers within the

interval [1, NP], a, b and c are random numbers selected

from the interval (0, 1). Where a ? b ? c = 1.

According to three mutation strategies and parameter

adaptation introduced above, we come to the framework of

SAMDE as given in Algorithm 1.
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Algorithm 1: Pseudo code of SAMDE
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5 Experimental study

5.1 Experimental settings

The proposed SAMDE algorithm was implemented and

tested on a set of 25 benchmark functions which proposed

in CEC 2005 (Suganthan et al. 2005). The test suite con-

sists of 25 benchmark functions which includes unimodal

functions F1–F5, basic multimodal functions F6–F12,

expanded multimodal functions F13–F14, and hybrid

composition functions F15–F25. The maximum number of

function evaluation was set to 20009D. The population

size for this algorithm was set as NP = 60. The initial value

of location parameters were set as olF1 = 1, olF2 = 0.75,

olF3 = 0.5, olCR1 = 1.1, olCR2 = 1 and olCR3 = 0.9.

The crossover operator was set as binomial crossover. Both

F and CR are taken in the range (0, 1).

The SAMDE and other DE variants were coded in

Matlab environment. The computations were carried out

using a PC with Intel(R) Core(TM) i3 - 2350 M @

2.3 GHz CPU and 2 GB RAM while running Matlab

R2012a on 64-bit windows operating system.

5.2 Comparison with state-of-the-art
evolutionary algorithms

This section mainly presents 25 real-valued benchmark

functions which are used to evaluate the proposed SAMDE

algorithm against other DE variants. The computational

results obtained by running each of the eight comparative DE

variants 25 times on each benchmark functionwith 10, 30 and

50 variables are reported in Tables 1, 2 and 3, respectively.

These tables show statistical results of the mean error and

standard deviation values obtained for all these functions. The

symbols of ‘‘–’’, ‘‘?’’, and ‘‘=’’ in last three rows of each

table respectively denote that the performance of the corre-

sponding algorithm is worse than, better than and similar to

that of SAMDE. a is level of significance, which is used to

determine at which level the null hypothesis H0 may be

rejected, and wins = worse (-)?bsimilar(=)/2c.
SAMDE was compared with eight other state-of-the-art

DE variants including JADE (Zhang and Sanderson 2009),

SaDE (Qin et al. 2009), EPSDE (Mallipeddi et al. 2011),

CoDE (Wang et al. 2011), SOUPDE (Weber et al. 2011),

SspDE (Pan et al. 2011), ESADE (Guo et al. 2014) and

MPEDE (Wu et al. 2016). The reasons we choose these

eight DE variants as comparative algorithms are explained

as follows. First, JADE, SspDE and ESADE are three DE

variants which parameters are set in an adaptive manner.

Second, SaDE, EPSDE and CoDE also incorporate multi-

ple mutation strategies as SAMDE. Third, SOUPDE and

MPEDE are two DE variants which use evolution of

multiple populations as SAMDE, and MPEDE is a recently

proposed DE variant that can reflect the latest progress of

DE. Hence, it is meaningful to compare SAMDE with

them. The settings of each algorithm are as follows:

1. JADE with NP = 100.

2. SADE with NP = 50, LP=30.

3. EPSDE with NP = 50.

4. CoDE with NP = 30.

5. SOUPDE with NP = 60, ps = 0.5, pu = 0.5, CR = 0.9.

6. SspDE with NP = 100, BR = 0.8.

7. ESADE with NP = 50, t0 = 1000.

8. MPEDE with NP = 250, ng = 20, k1 = k2 = k3 = 0.2.

Let us detail the eight algorithms according to the time

order that they were published. All these algorithms have

been summarized in Sect. 1.

As indicated in Table 1, SAMDE shows a statistically

significant performance when compared with all the con-

testant algorithms in most of the functions. It is found that

SAMDE has the best performance among the other eight

classical state-of-the-art DE variants on the 13 test func-

tions with 10D. Regarding the unimodal functions F1–F5,

JADE, EPSDE, ESADE and SAMDE show the better

performance. SAMDE obtains significantly best results on

the 4 test functions (F1, F2, F4 and F5) than all other peers.

Only in function F3, JADE performs better than SAMDE.

Whereas, compared with the other seven DE variants,

SaDE, EPSDE, CoDE, SOUPDE, SspDE, ESADE and

MPEDE, SAMDE exhibits better overall performance. For

basic multimodal benchmark functions F6–F12, SaDE,

EPSDE, CoDE and SAMDE show the better performance.

SAMDE has significantly best results on the 3 test func-

tions (F6, F8 and F12) than all the other DE variants.

Moreover, SAMDE is better than JADE, SspDE and

MPEDE on all simple multimodal functions. SAMDE

outperforms SaDE, EPSDE, CoDE, SOUPDE and ESADE

on three (F6, F7 and F12), three (F6, F7 and F12), four

(F6, F7, F10 and F12), five (F6–F8, F10 and F12) and five

(F6, F8–F10 and F12) benchmark functions, respectively.

As for expanded multimodal functions, SAMDE generally

performs worse than other DE variants (except MPEDE) on

function F13 while it outperforms all the other DE variants

on function F14. With regard to the more complex hybrid

composition functions F15–F25, CoDE, SOUPDE, SspDE

and SAMDE show the better performance. SAMDE per-

forms significantly best results on the 5 test functions (F16,

F17, F19, F21 and F25) than all other peer DE variants. It

outperforms SaDE, EPSDE, CoDE, SOUPDE, SspDE and

MPEDE on nine (F16–F19 and F21–F25), nine (F16, F17,

F19 and F21–F25), five (F16, F17, F19, F21 and F25),

seven (F15–F17, F19, F21, F22 and F25), six (F15–F17,

F19, F21 and F25) and ten (F15–F23 and F25) benchmark

functions, respectively. Moreover, SAMDE is better than
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Table 1 Comparison of the average error for 25 independent runs by different optimization techniques with D = 10 on functions F1–F25

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F1

Mean 8.00E-10 3.45E-18 1.86E-17 7.43E-05 2.44E-06 1.40E-06 8.96E-15 1.24E?00 1.56E222

Std 3.67E-10 1.73E-18 9.26E-18 3.04E-05 5.66E-06 7.48E-07 3.59E-15 2.71E-02 7.31E223

W – – – – – – – –

F2

Mean 4.86E-04 3.77E-03 1.23E-03 1.16E?00 3.39E?00 3.06E-01 2.94E-02 3.95E?01 3.37E209

Std 2.54E-04 2.05E-03 6.65E-04 4.07E-01 2.16E?00 2.29E-01 2.57E-02 1.14E?00 1.82E209

W – – – – – – – –

F3

Mean 7.00E101 8.64E?05 6.84E?04 1.42E?04 3.51E?06 5.35E?04 2.74E?03 2.38E?05 6.23E?02

Std 3.65E101 5.29E?05 3.24E?04 4.35E?03 2.49E?06 4.94E?04 5.94E?01 1.03E?04 1.33E?02

W ? – – – – – – –

F4

Mean 7.97E-03 6.97E-02 1.20E-02 6.26E?00 1.24E?01 8.49E-01 5.82E-02 9.77E?01 7.77E208

Std 4.15E-03 3.74E-02 6.05E-03 2.22E?00 8.69E?00 6.42E-01 4.74E-02 1.94E?00 3.71E208

W – – – – – – – –

F5

Mean 8.28E-01 3.48E-02 3.06E-03 2.68E?01 1.21E?02 1.43E?01 8.71E-04 1.95E?02 1.46E204

Std 1.75E-01 6.54E-03 7.80E-04 5.04E?00 3.79E?01 3.08E?00 1.86E-04 2.28E?00 2.43E205

W – – – – – – – –

F6

Mean 2.06E?01 4.86E?00 2.15E?00 7.99E?01 1.73E?02 8.47E?00 7.82E?00 2.83E?03 1.21E100

Std 6.38E?01 1.74E-01 2.31E-01 3.85E?01 1.22E?02 2.98E?00 1.57E?01 9.62E?01 6.58E202

W – – – – – – – –

F7

Mean 8.86E-01 7.53E-01 7.98E-01 9.20E-01 9.75E-01 8.78E-01 1.92E201 1.33E?00 6.30E-01

Std 1.07E-01 1.49E-01 1.28E-01 1.06E-01 1.03E-01 1.12E-01 5.92E203 7.26E-03 1.29E-01

W – – – – – – ? –

F8

Mean 2.11E?01 2.08E?01 2.08E?01 2.08E?01 2.09E?01 2.09E?01 2.16E?01 2.10E?01 2.08E101

Std 1.61E-01 1.25E-01 1.31E-01 1.18E-01 1.32E-01 1.39E-01 2.09E-01 6.23E-03 1.31E201

W – = = = – – – –

F9

Mean 6.67E?00 9.44E?00 9.98E?00 4.84E201 4.58E?00 3.28E?01 6.12E?01 4.46E?01 2.32E?01

Std 2.05E?00 2.71E?00 3.10E?00 2.06E201 2.66E?00 1.29E?01 1.44E?01 6.16E-01 6.71E?00

W ? ? ? ? ? – – –

F10

Mean 7.11E?01 4.85E?01 5.05E101 5.56E?01 5.67E?01 5.82E?01 1.11E?02 7.13E?01 5.15E?01

Std 1.17E?01 9.24E?00 9.62E100 9.92E?00 1.13E?01 9.89E?00 2.11E?01 4.75E-01 8.19E?00

W – = ? – – – – –

F11

Mean 1.40E?01 1.12E?01 1.12E?01 1.03E?01 1.12E?01 1.19E?01 6.63E201 1.35E?01 1.14E?01

Std 1.26E?00 1.22E?00 1.20E?00 1.16E?00 1.26E?00 1.22E?00 1.17E201 6.86E-02 1.29E?00

W – = = ? ? – ? –

F12

Mean 2.09E?03 5.97E?02 3.25E?02 3.35E?03 3.04E?03 2.74E?02 3.54E?02 9.37E?03 1.69E102

Std 2.80E?03 5.25E?02 1.18E?02 1.45E?03 1.51E?03 4.35E?02 1.26E?03 2.25E?02 1.20E203

W – – – – – – – –
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Table 1 (continued)

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F13

Mean 3.77E?00 3.09E?00 2.86E?00 2.75E?00 2.53E100 3.91E?00 1.14E?01 5.38E?00 4.11E?00

Std 8.69E-01 6.98E-01 7.41E-01 7.37E-01 7.38E201 1.03E?00 4.37E?00 5.53E-02 8.03E-01

W ? ? ? ? ? ? ? –

F14

Mean 4.58E?00 4.22E?00 4.22E?00 4.19E?00 4.29E?00 4.33E?00 4.92E?00 4.50E?00 4.18E100

Std 1.63E-01 1.84E-01 1.98E-01 1.93E-01 1.99E-01 1.90E-01 1.31E-01 8.62E-03 1.86E201

W – – – – – – – –

F15

Mean 3.94E?02 2.20E?02 2.20E?02 1.54E102 2.97E?02 4.34E?02 3.18E?02 5.86E?02 2.95E?02

Std 1.48E?02 8.52E?01 5.93E?01 3.95E101 1.33E?02 1.26E?02 2.81E?01 2.50E?00 2.63E?01

W – ? ? ? – – – –

F16

Mean 2.60E?02 2.09E?02 2.09E?02 2.19E?02 2.34E?02 2.25E?02 3.03E?02 2.60E?02 2.04E102

Std 3.94E?01 2.79E?01 2.27E?01 2.48E?01 3.15E?01 2.54E?01 4.42E?01 1.64E?00 2.24E101

W – – – – – – – –

F17

Mean 2.99E?02 2.33E?02 2.39E?02 2.59E?02 3.01E?02 2.53E?02 3.68E?02 2.96E?02 2.32E102

Std 4.19E?01 2.93E?01 2.60E?01 3.24E?01 6.34E?01 2.71E?01 5.94E?01 1.72E?00 2.42E101

W – – – – – – – –

F18

Mean 7.75E?02 7.96E?02 6.35E?02 5.40E102 6.59E?02 6.78E?02 8.32E?02 8.20E?02 6.85E?02

Std 5.78E?01 2.23E?01 2.93E?00 2.55E101 4.36E?01 3.10E?01 1.19E-01 1.81E?00 6.83E-04

W – – ? ? ? ? – –

F19

Mean 7.53E?02 7.15E?02 7.78E?02 6.69E?02 6.67E?02 7.01E?02 8.07E?02 8.14E?02 6.65E102

Std 5.50E?01 2.12E?01 5.79E?00 2.37E?01 5.73E?01 2.12E?01 1.04E-01 1.56E?00 4.81E204

W – – – – – – – –

F20

Mean 7.84E?02 6.51E?02 6.96E?02 5.86E102 6.70E?02 7.22E?02 8.23E?02 8.29E?02 7.47E?02

Std 2.65E?01 2.66E?01 2.03E?00 3.07E101 4.15E?01 6.16E?00 1.24E-01 3.11E?00 2.90E-03

W – ? ? ? ? ? – –

F21

Mean 5.01E?02 7.22E?02 4.85E?02 5.26E?02 5.76E?02 5.02E?02 6.90E?02 8.17E?02 4.83E102

Std 1.25E?02 2.51E?01 7.63E-08 2.25E?00 5.81E?00 5.66E?00 1.58E-03 1.27E?00 1.37E206

W – – – – – – – –

F22

Mean 8.03E?02 7.91E?02 7.73E?02 7.33E102 7.93E?02 7.38E?02 8.05E?02 8.12E?02 7.70E?02

Std 1.07E?01 6.54E?00 5.82E?00 1.31E101 1.94E?01 1.13E?01 1.20E?01 4.31E-01 5.39E?00

W – – – ? – ? – –

F23

Mean 8.06E?02 7.73E?02 7.54E?02 6.20E102 6.52E?02 6.56E?02 9.58E?02 8.43E?02 7.18E?02

Std 7.85E?01 2.93E?01 4.19E?00 6.03E100 1.42E?01 1.95E?01 3.45E?01 2.21E?00 6.65E-08

W – – – ? ? ? – –

F24

Mean 2.15E?02 2.13E?02 2.36E?02 2.00E?02 2.01E?02 2.00E102 2.48E?02 2.05E?02 2.12E?02

Std 2.81E?01 2.63E?00 3.65E-10 9.82E-05 2.74E?00 9.85E206 1.27E-09 1.11E-01 2.94E-16

W – – – ? ? ? – ?
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JADE and ESADE on all hybrid composition functions.

The performance of MPEDE is better than that of SAMDE

only on function F24. However, SAMDE obtains worse

performance on functions F18, F20 and F24. And CoDE is

superior to SAMDE on functions F15, F18, F20, F22 and

F23.

In summary, SAMDE has the best overall performance

compared with other eight competitors, namely JADE,

SaDE, EPSDE, CoDE, SOUPDE, SspDE, ESADE and

MPEDE on all the 25 benchmark functions with 10 vari-

ables. Actually, the results of Wilcoxon’s rank sum tests

reported in the last three rows indicate that SAMDE is

significantly better than JADE, SaDE, EPSDE, CoDE,

SOUPDE, SspDE, ESADE and MPEDE on 22, 18, 17, 15,

17, 19, 22 and 24 functions, respectively. It is significantly

worse than JADE, SaDE, EPSDE, CoDE, SOUPDE,

SspDE, ESADE and MPEDE on 3, 4, 6, 9, 7, 6, 3 and 1

functions and similar to them on 0, 3, 2, 1, 1, 0, 0 and 0

functions, respectively. As the Table 1 states, SAMDE

shows a significant improvement over JADE, SaDE,

EPSDE, SspDE, ESADE and MPEDE, with a level of

significance a = 0.05, and over SOUPDE, with a = 0.1.

Applying the Multiple Sign test, suppose level of sig-

nificance a = 0.1, the critical value of Rj is 6 for

m = 8(m = k - 1) and n = 25 (Derrac et al. 2011), and

losses = better(-)?dsimilar(=)/2e, since the number of

minuses in the pairwise comparison between the control

algorithm SAMDE and JADE, SaDE, SspDE, ESADE,

MPEDE is equal to 3, 6, 6, 3, 1 in Table 1, respectively, we

may conclude that SAMDE has a significantly better per-

formance than them.

As indicated in Table 2, it is found that SAMDE has the

best performance among the other eight classical state-of-

the-art DE variants on the 9 test functions with 30D.

SAMDE shows a statistically significant performance when

compared with all the contestant algorithms in most of the

functions.

Regarding the unimodal functions F1–F5, JADE and

SAMDE show the better performance. SAMDE obtains

significantly best results on function F5 than all other peers.

JADE performs better than SAMDE on three functions

(F2–F4). EPSDE, CoDE and SOUPDE do not show better

performance than SAMDE on any unimodal functions.

For basic multimodal benchmark functions F6–F12,

SaDE, EPSDE and SspDE show the better performance.

SAMDE has significantly best results on the 2 test func-

tions (F8 and F12) than all the other DE variants. More-

over, SAMDE outperforms JADE, SaDE, EPSDE, CoDE,

SOUPDE, SspDE, ESADE and MPEDE on five (F6, F8

and F10–F12), four (F6, F7, F9 and F12), three (F9, F10

and F12), five (F6, F7, F9, F10 and F12), four (F6, F7,

F10 and F12), five (F6, F7, F9, F10 and F12), six (F6–F9,

F11 and F12) and five (F6–F9 and F12) benchmark

functions, respectively. As for expanded multimodal

functions, SAMDE is inferior to JADE, SaDE, EPSDE,

CoDE, SOUPDE, SspDE, ESADE and MPEDE on func-

tion F13. In contrast, it outperforms all the other DE

variants on function F14.

With regard to the more complex hybrid composition

functions F15–F25, ESADE, MPEDE and SAMDE show

the better performance. SAMDE performs significantly

best results on the 5 test functions (F15, F18, F19, F24 and

F25) than all other peer DE variants. It outperforms JADE,

SaDE, EPSDE, CoDE, SOUPDE, SspDE, ESADE and

MPEDE on nine (F15–F20, F22, F23 and F25), nine (F15–

F20, F22, F23 and F25), nine (F15–F20, F22, F23 and

F25), seven (F15, F17–F20, F22 and F25), eight (F15–

F20, F22 and F25), nine (F15, F17–F23 and F25), six

(F15, F17, F19, F21, F24 and F25) and six (F15, F18–

F20, F23 and F25) benchmark functions, respectively.

However, SAMDE obtains worse performance on func-

tions F16 and F21. And CoDE, SOUPDE, ESADE and

MPEDE are superior to SAMDE on three functions (F16,

F21 and F23), two functions (F21 and F23), four functions

(F16, F20, F22 and F23) and four functions (F16, F17,

F21 and F22), respectively.

In summary, SAMDE has the best overall performance

compared with other eight competitors, namely JADE,

Table 1 (continued)

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F25

Mean 4.25E?02 3.99E?02 4.17E?02 4.01E?02 4.45E?02 4.01E?02 4.40E?02 4.11E?02 3.94E102

Std 1.17E?01 5.01E?00 4.60E?00 5.58E?00 1.74E?01 6.50E?00 3.17E?01 4.44E-01 4.57E100

W – – – – – – – –

– 22 18 17 15 17 19 22 24

? 3 4 6 9 7 6 3 1

= 0 3 2 1 1 0 0 0

a 0.05 0.05 0.05 – 0.1 0.05 0.05 0.05

The better values of Mean and Std among SAMDE and eight other state-of-the-art DE variants JADE, SaDE, EPSDE, CoDE, SOUPDE, SspDE,

ESADE and MPEDE, are highlighted in bold
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Table 2 Comparison of the average error for 25 independent runs by different optimization techniques with D = 30 on functions F1–F25

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F1

Mean 1.16E-23 1.57E226 4.92E-23 1.69E-02 9.27E-06 2.52E-10 5.78E?00 4.27E-05 5.97E-24

Std 3.20E-24 4.24E227 1.36E-23 3.64E-03 1.95E-05 8.26E-11 1.54E?00 7.22E-07 8.68E-25

W – ? – – – – – –

F2

Mean 9.40E203 2.02E?02 1.36E?02 1.41E?02 6.28E?02 3.49E?01 5.77E?00 1.51E?01 6.71E-01

Std 7.21E204 1.96E?01 2.21E?01 1.17E?01 2.46E?02 1.04E?01 1.52E?00 1.30E-01 6.66E-02

W ? – – – – – – –

F3

Mean 3.06E?05 9.77E?06 6.50E?06 2.25E?06 1.45E?08 1.47E?06 8.76E?05 1.04E105 1.93E?06

Std 4.95E?03 1.91E?06 1.20E?06 3.93E?04 6.06E?07 2.75E?05 7.86E?03 4.54E102 1.30E?05

W ? – – – – ? ? ?

F4

Mean 1.94E101 3.32E?03 1.44E?03 2.74E?03 8.91E?03 9.05E?02 9.05E?02 2.41E?02 1.54E?02

Std 1.86E100 4.23E?02 2.54E?02 2.66E?02 4.09E?03 1.88E?02 3.52E?01 2.32E?00 1.53E?01

W ? – – – – – – –

F5

Mean 1.61E?03 2.71E?03 1.88E?03 2.78E?03 8.26E?03 2.16E?03 2.65E?03 1.58E?03 1.52E103

Std 1.18E?01 4.16E?01 6.84E?01 1.06E?02 1.59E?03 6.50E?01 8.68E?00 3.54E?00 6.87E100

W – – – – – – – –

F6

Mean 1.16E?02 7.72E?01 3.23E101 4.74E?02 3.50E?02 8.40E?01 6.76E?01 1.37E?02 3.75E?01

Std 2.11E?02 5.18E-01 1.94E201 1.43E?02 7.02E?02 8.86E-01 3.54E?00 7.08E-01 2.27E-02

W – – ? – – – – –

F7

Mean 1.28E202 2.49E-02 1.39E-02 1.15E?00 1.28E?00 1.47E-01 5.16E?00 5.04E-01 1.73E-02

Std 4.14E206 3.02E-04 2.65E-07 3.30E-02 1.13E-01 1.61E-02 1.19E?00 3.95E-03 6.09E-06

W ? – ? – – – – –

F8

Mean 2.14E?01 2.12E?01 2.12E?01 2.12E?01 2.12E?01 2.12E?01 2.16E?01 2.13E?01 2.12E101

Std 7.97E-02 6.41E-02 6.25E-02 5.87E-02 6.26E-02 6.37E-02 1.20E-01 4.26E-03 6.54E202

W – = = = = = – –

F9

Mean 2.88E?01 3.47E?01 1.01E?02 3.43E?01 2.35E101 1.43E?02 8.82E?01 1.09E?02 2.91E?01

Std 4.65E?00 5.16E?00 1.38E?01 4.80E?00 5.59E100 3.95E?01 1.39E?01 1.12E?00 8.09E-01

W ? – – – ? – – –

F10

Mean 2.94E?02 2.20E?02 2.34E?02 2.53E?02 2.64E?02 2.33E?02 2.14E?02 2.10E102 2.25E?02

Std 2.40E?01 1.90E?01 1.90E?01 2.15E?01 3.43E?01 1.98E?01 2.51E?01 8.81E201 1.64E?01

W – ? – – – – ? ?

F11

Mean 5.02E?01 4.35E?01 4.26E?01 3.91E101 4.04E?01 4.38E?01 5.17E?01 4.44E?01 4.52E?01

Std 2.13E?00 2.04E?00 2.20E?00 2.45E100 2.67E?00 2.29E?00 3.67E?00 1.21E-01 1.79E?00

W – ? ? ? ? ? – ?

F12

Mean 6.53E?04 1.53E?04 6.57E?04 1.27E?05 2.18E?05 7.36E?03 1.46E?04 9.96E?03 6.17E103

Std 3.34E?04 1.13E?04 1.55E?04 2.57E?04 6.12E?04 6.45E?02 5.95E?03 3.44E?01 2.50E100

W – – – – – – – –
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Table 2 (continued)

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F13

Mean 1.54E?01 1.50E?01 1.40E?01 1.46E?01 8.02E?00 1.58E?01 2.66E?01 1.28E101 1.78E?01

Std 1.86E?00 1.46E?00 1.76E?00 1.88E?00 1.25E?00 2.97E?00 3.64E?00 1.34E201 1.62E?00

W ? ? ? ? ? ? – ?

F14

Mean 1.45E?01 1.40E?01 1.40E?01 1.40E?01 1.40E?01 1.41E?01 1.49E?01 1.43E?01 1.40E101

Std 1.70E-01 1.86E-01 1.86E-01 2.09E-01 2.04E-01 1.85E-01 1.48E-01 1.12E-02 1.76E201

W – = = = = – – –

F15

Mean 3.50E?02 3.59E?02 3.88E?02 3.94E?02 4.17E?02 4.12E?02 3.83E?02 3.97E?02 3.49E102

Std 1.21E?01 2.08E?01 3.23E-08 3.09E-01 3.46E?01 3.89E-04 1.83E?00 5.47E-03 5.36E213

W – – – – – – – –

F16

Mean 3.48E?02 2.86E?02 2.94E?02 2.69E?02 3.59E?02 2.56E?02 2.82E?02 2.50E102 2.84E?02

Std 3.56E?01 2.92E?01 1.89E?01 2.33E?01 6.89E?01 2.12E?01 2.23E?01 1.63E100 1.45E?01

W – – – ? – ? ? ?

F17

Mean 4.00E?02 3.02E?02 3.38E?02 3.37E?02 4.26E?02 3.08E?02 3.37E?02 2.87E102 3.00E?02

Std 3.84E?01 3.98E?01 1.88E?01 3.33E?01 7.31E?01 2.35E?01 2.32E?01 1.15E100 1.70E?01

W – – – – – – – ?

F18

Mean 9.04E?02 9.04E?02 9.04E?02 9.11E?02 9.18E?02 9.09E?02 9.03E?02 9.07E?02 9.03E102

Std 4.41E-01 5.30E-01 2.76E-01 6.20E-01 2.34E?00 3.44E-01 1.61E?00 1.32E-02 7.53E204

W – – – – – – = –

F19

Mean 9.01E?02 9.03E?02 9.09E?02 9.11E?02 9.19E?02 9.10E?02 9.12E?02 9.07E?02 8.99E102

Std 4.14E-01 2.45E?00 2.96E-01 6.00E-01 2.30E?00 3.60E-01 1.74E?00 1.17E-02 6.79E204

W – – – – – – – –

F20

Mean 9.08E?02 9.07E?02 9.10E?02 9.11E?02 9.18E?02 9.05E?02 8.90E102 9.07E?02 8.99E?02

Std 6.58E-01 5.35E-01 3.34E-01 6.09E-01 2.28E?00 2.85E-01 1.58E100 1.17E-02 6.87E-04

W – – – – – – ? –

F21

Mean 5.00E?02 5.00E?02 5.16E?02 5.00E?02 5.00E?02 5.38E?02 5.30E?02 5.00E102 5.24E?02

Std 6.08E-13 3.07E-13 2.67E-13 1.39E-03 1.41E-05 4.10E-03 1.51E?00 2.81E207 5.22E-13

W ? ? ? ? ? – – ?

F22

Mean 9.47E?02 9.49E?02 9.43E?02 9.70E?02 1.11E?03 9.43E?02 9.14E102 9.19E?02 9.29E?02

Std 8.35E?00 7.99E?00 8.08E?00 9.28E?00 5.68E?01 8.62E?00 7.56E100 3.37E-01 5.49E?00

W – – – – – – ? ?

F23

Mean 5.50E?02 5.50E?02 5.66E?02 5.34E102 5.34E?02 5.66E?02 5.34E?02 5.38E?02 5.37E?02

Std 1.20E-03 1.89E?00 1.28E-04 1.10E203 2.15E-03 6.17E-04 1.02E?00 3.14E-05 7.08E-13

W – – – ? ? – ? –

F24

Mean 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.05E?02 2.00E?02 2.00E102

Std 7.61E-13 1.34E-13 8.61E-13 3.56E-03 1.22E-04 8.81E-11 1.40E?00 7.27E-07 2.21E213

W = = = = = = – =
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SaDE, EPSDE, CoDE, SOUPDE, SspDE, ESADE and

MPEDE on benchmark functions with 30 variables. Actu-

ally, the results of Wilcoxon’s rank sum tests reported in

the last three rows indicate that SAMDE is significantly

better than JADE, SaDE, EPSDE, CoDE, SOUPDE,

SspDE, ESADE and MPEDE on 17, 17, 18, 17, 17, 19, 18

and 16 functions, respectively. It is significantly worse than

JADE, SaDE, EPSDE, CoDE, SOUPDE, SspDE, ESADE

and MPEDE on 7, 5, 5, 5, 5, 4, 6 and 8 functions and

similar to them on 1, 3, 2, 3, 3, 2, 1 and 1 functions,

respectively. As the Table 2 states, SAMDE shows a sig-

nificant improvement over SaDE, EPSDE, CoDE,

SOUPDE, SspDE and ESADE, with a level of significance

a = 0.05, and over JADE, with a = 0.1.

Applying the Multiple Sign test, as mentioned above,

since the number of minuses in the pairwise comparison

between the control algorithm SAMDE and EPSDE,

SspDE is equal to 6, 5 in Table 2, respectively, we may

conclude that SAMDE has a significantly better perfor-

mance than them.

As indicated in Table 3, it is found that SAMDE has the

best performance among the other eight classical state-of-

the-art DE variants on the 4 test functions with 50D.

Regarding the unimodal functions F1–F5, JADE and

MPEDE show the better performance. JADE performs

better than SAMDE on three functions (F1–F3). CoDE,

SOUPDE and SspDE do not show better performance than

SAMDE on any unimodal functions. SAMDE performs

better than SaDE, EPSDE, ESADE and MPEDE on four

functions (F2–F5), four functions (F2–F5), four functions

(F1, F2, F4 and F5), one functions (F1), respectively.

For basic multimodal benchmark functions F6–F12,

EPSDE and ESADE show the better performance. SAMDE

outperforms JADE, SaDE, EPSDE, CoDE, SOUPDE,

SspDE, ESADE and MPEDE on four (F8–F11), three (F7,

F9 and F12), two (F9 and F10), five (F6, F7, F9, F10 and

F12), four (F6, F7, F10 and F12), five (F7–F10 and F12),

three (F7, F8 and F12) and four (F7–F9 and F12)

benchmark functions, respectively. As for expanded mul-

timodal functions, SAMDE is superior to JADE, SaDE,

EPSDE, CoDE, SspDE and MPEDE on function F13.

meanwhile, it outperforms all the other DE variants on

function F14.

With regard to the more complex hybrid composition

functions F15–F25, CoDE, ESADE and MPEDE show the

better performance. SAMDE outperforms JADE, SaDE,

EPSDE, CoDE, SOUPDE, SspDE, ESADE and MPEDE

on ten (F15–F19 and F21–F25), seven (F15, F16, F18–

F20, F22 and F25), seven (F15–F19, F22 and F25), three

(F15, F16 and F22), eight (F15–F20, F22 and F25), four

(F15, F16, F22 and F25), three (F15, F21 and F25) and

five (F15, F19, F21 and F25) benchmark functions,

respectively. SAMDE outperforms all the other DE vari-

ants on function F14. However, SAMDE obtains worse

performance on functions F20, F21 and F23. And CoDE,

SspDE and ESADE are superior to SAMDE on seven

functions (F17–F21, F23 and F25), six functions (F17–

F21 and F23) and seven functions (F16–F20, F22 and

F23), respectively.

In summary, the results of Wilcoxon’s rank sum tests

reported in the last three rows indicate that SAMDE is

significantly better than JADE, SaDE, EPSDE, CoDE,

SOUPDE, SspDE, ESADE and MPEDE on 18, 16, 15, 15,

18, 16, 11 and 11 functions, respectively. It is significantly

worse than JADE, SaDE, EPSDE, CoDE, SOUPDE,

SspDE, ESADE and MPEDE on 7, 7, 8, 8, 5, 8, 13 and 13

functions and similar to them on 0, 2, 2, 2, 2, 1, 1 and 1

functions, respectively. As the Table 3 states, SAMDE

shows a significant improvement over other 8 algorithms,

with a level of significance a = 0.05.

Applying the Multiple Sign test, as mentioned above,

since the number of minuses in the pairwise comparison

between the control algorithm SAMDE and JADE, SaDE,

EPSDE, CoDE, SOUPDE, SspDE is equal to 4, 6, 6, 6, 5, 5

in Table 3, respectively, we may conclude that SAMDE

has a significantly better performance than them.

Table 2 (continued)

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F25

Mean 2.18E?02 2.16E?02 2.13E?02 2.14E?02 2.36E?02 2.13E?02 2.13E?02 2.13E?02 2.12E102

Std 3.95E-01 3.93E-01 2.43E-01 2.14E-01 4.81E?00 2.75E-01 1.44E?00 6.04E-03 1.40E201

W – – – – – – – –

– 17 17 18 17 17 19 18 16

? 7 5 5 5 5 4 6 8

= 1 3 2 3 3 2 1 1

a 0.1 0.05 0.05 0.05 0.05 0.05 0.05 –

The better values of Mean and Std among SAMDE and eight other state-of-the-art DE variants JADE, SaDE, EPSDE, CoDE, SOUPDE, SspDE,

ESADE and MPEDE, are highlighted in bold
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Table 3 Comparison of the average error for 25 independent runs by different optimization techniques with D = 50 on functions F1–F25

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F1

Mean 9.79E-28 3.35E228 5.89E-26 1.60E-02 8.06E-06 7.19E-12 8.30E-02 5.27E-08 2.60E-18

Std 1.78E-28 7.07E229 1.09E-26 3.60E-03 1.52E-05 1.47E-12 1.86E-02 5.79E-10 1.47E-19

W ? ? ? – – – – –

F2

Mean 1.89E100 2.34E?03 2.47E?03 8.91E?02 3.83E?03 4.39E?02 1.88E?02 5.09E?01 1.26E?02

Std 7.39E202 8.22E?01 2.03E?02 3.15E?01 1.24E?03 5.15E?01 2.98E?00 1.63E-01 4.61E?00

W ? – – – – – – ?

F3

Mean 8.28E105 4.74E?06 1.12E?07 5.48E?06 3.20E?08 3.51E?06 2.57E?06 9.69E?05 2.80E?06

Std 5.39E103 4.40E?04 8.54E?05 8.92E?04 1.04E?08 1.94E?05 7.23E?03 6.64E?02 5.25E?04

W ? – – – – – ? ?

F4

Mean 6.95E?03 2.14E?04 1.87E?04 1.67E?04 9.34E?04 9.74E?03 1.38E?04 5.89E103 6.55E?03

Std 2.75E?02 1.73E?03 2.32E?03 8.20E?02 3.49E?04 1.05E?03 3.14E?02 1.73E101 4.20E?02

W – – – – – – – ?

F5

Mean 4.61E?03 6.08E?03 4.45E?03 5.46E?03 2.33E?04 5.21E?03 6.90E?03 3.43E103 4.35E?03

Std 6.57E?00 2.81E?01 4.76E?01 6.42E?01 3.77E?03 5.54E?01 1.48E?00 1.44E100 6.45E?00

W – – – – – – – ?

F6

Mean 8.45E?01 1.15E?02 6.54E101 1.99E?02 3.80E?02 1.44E?02 1.27E?02 1.07E?02 1.60E?02

Std 4.13E-01 1.13E-01 9.62E202 1.95E?01 7.28E?02 1.55E?00 3.14E?00 1.40E-01 1.20E-01

W ? ? ? – – ? ? ?

F7

Mean 6.06E203 2.99E-02 7.00E-03 1.13E?00 1.05E?00 4.86E-01 1.09E?00 5.63E-02 2.50E-02

Std 5.83E205 4.42E-04 1.12E-05 2.11E-02 1.87E-02 1.67E-02 2.13E-02 2.72E-04 2.38E-04

W ? – ? – – – – –

F8

Mean 2.15E?01 2.13E?01 2.13E?01 2.13E?01 2.13E?01 2.13E?01 2.15E?01 2.14E?01 2.13E101

Std 5.83E-02 4.45E-02 4.38E-02 4.00E-02 4.70E-02 4.53E-02 8.91E-02 1.85E-03 4.56E202

W – = = = = – – –

F9

Mean 1.03E?02 5.90E?01 2.24E?02 1.05E?02 4.36E?01 2.74E?02 2.08E101 1.68E?02 5.14E?01

Std 1.11E?01 4.14E?00 2.07E?01 1.07E?01 7.42E?00 6.12E?01 3.60E100 1.28E?00 1.80E-08

W – – – – ? – ? –

F10

Mean 5.02E?02 4.08E?02 4.35E?02 4.27E?02 5.12E?02 4.22E?02 2.54E?02 3.09E102 4.14E?02

Std 3.33E?01 2.72E?01 2.63E?01 2.95E?01 6.17E?01 2.92E?01 3.29E?01 2.09E100 2.54E?01

W – ? – – – – ? ?

F11

Mean 8.71E?01 7.74E?01 7.69E?01 6.90E?01 7.17E?01 7.79E?01 7.29E?01 7.63E?01 8.02E?01

Std 2.77E?00 2.69E?00 2.77E?00 3.15E?00 3.85E?00 3.01E?00 3.96E?00 1.60E-01 2.34E?00

W – ? ? ? ? ? ? ?

F12

Mean 2.36E?04 3.53E?04 2.32E104 3.78E?05 6.44E?05 3.54E?04 4.50E?04 3.69E?04 3.48E?04

Std 9.63E?02 3.58E?01 5.43E101 6.13E?04 1.44E?05 1.31E?02 3.97E?01 1.89E?01 7.99E?00

W ? – ? – – – – –
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Table 3 (continued)

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F13

Mean 2.65E?01 2.90E?01 2.76E?01 3.01E?01 1.34E?01 2.95E?01 1.26E101 2.01E?01 2.00E?01

Std 2.52E?00 2.11E?00 2.39E?00 2.76E?00 1.65E?00 4.82E?00 1.59E100 1.22E-01 1.45E?00

W – – – – ? – ? –

F14

Mean 2.44E?01 2.38E?01 2.38E?01 2.39E?01 2.38E?01 2.38E?01 2.41E?01 2.40E?01 2.38E101

Std 1.91E-01 2.02E-01 2.09E-01 2.00E-01 2.47E-01 2.06E-01 2.26E-01 8.48E-03 1.83E201

W – – – – – – – –

F15

Mean 3.29E?02 3.73E?02 3.42E?02 4.09E?02 3.55E?02 3.56E?02 3.42E?02 3.52E?02 3.21E102

Std 2.62E?00 1.38E?01 2.45E-13 1.47E-01 6.83E?01 9.13E-05 9.09E-02 1.52E-04 1.14E211

W – – – – – – – –

F16

Mean 3.62E?02 2.31E?02 3.36E?02 2.93E?02 4.45E?02 2.96E?02 2.76E?02 2.16E102 2.89E?02

Std 2.19E?01 2.35E?01 1.50E?01 2.38E?01 4.95E?01 1.93E?01 1.49E?01 7.57E201 1.59E?01

W – – – – – – ? ?

F17

Mean 4.21E?02 3.43E?02 3.70E?02 3.36E?02 5.71E?02 3.39E?02 3.62E?02 2.93E102 3.67E?02

Std 2.83E?01 1.97E?01 1.54E?01 3.37E?01 8.49E?01 1.94E?01 2.19E?01 1.02E100 1.12E?01

W – ? – ? – ? ? ?

F18

Mean 9.32E?02 9.42E?02 9.35E?02 9.11E?02 9.76E?02 9.17E?02 7.87E102 9.18E?02 9.30E?02

Std 2.24E?00 1.37E?00 8.39E-01 5.74E-01 1.67E?01 2.41E-01 2.15E201 5.90E-03 3.12E-05

W – – – ? – ? ? ?

F19

Mean 9.36E?02 9.45E?02 9.29E?02 9.02E?02 9.62E?02 9.10E?02 7.44E102 9.30E?02 9.27E?02

Std 1.51E?00 2.22E?00 3.21E-01 5.07E-01 6.94E?00 3.30E-01 2.24E201 4.11E-03 8.08E-05

W – – – ? – ? ? –

F20

Mean 9.28E?02 9.43E?02 9.26E?02 9.10E?02 9.77E?02 9.01E?02 8.09E102 9.17E?02 9.32E?02

Std 1.12E?00 1.10E?00 5.52E-01 5.49E-01 1.72E?01 1.53E-01 2.51E201 7.15E-03 1.89E-05

W ? – ? ? – ? ? ?

F21

Mean 5.40E?02 5.00E?02 5.00E?02 5.00E102 5.00E?02 5.12E?02 5.40E?02 5.61E?02 5.39E?02

Std 1.47E-12 4.93E-13 4.03E-13 1.80E203 5.35E-06 7.85E-08 1.89E-02 8.27E-04 1.07E-10

W – ? ? ? ? ? – –

F22

Mean 1.00E?03 9.88E?02 9.76E?02 9.68E?02 1.09E?03 9.86E?02 9.49E?02 9.34E102 9.64E?02

Std 7.80E?00 5.50E?00 6.04E?00 9.19E?00 3.00E?01 5.97E?00 6.64E?00 1.65E201 4.29E?00

W – – – – – – ? ?

F23

Mean 5.95E?02 5.67E?02 5.42E?02 5.34E102 5.39E?02 5.55E?02 5.67E?02 5.58E?02 5.83E?02

Std 2.28E-01 4.23E-02 6.14E-08 1.00E203 1.75E-02 5.63E-02 1.21E-02 1.61E-04 2.02E-09

W – ? ? ? ? ? ? ?

F24

Mean 8.80E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E102

Std 8.63E?00 2.62E-11 1.05E-13 2.70E-03 9.40E-03 2.12E-11 2.03E-02 2.64E-09 2.86E213

W – = = = = = = =
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SAMDE outperforms all the other DE variants on

functions F8 and F14 for both 10, 30 and 50 variables.

SAMDE obtains best performance on functions F8, F14,

F15 and F24 for both 30 and 50 variables that compares

with all other peer algorithms. SAMDE outperforms all

other peer algorithms on functions F5, F8, F12, F14, F19

and F25 for both 10 and 30 variables.

5.3 Sensitivity analysis

5.3.1 Sensitiveness to the NP values

In this subsection, an experiment is conducted to investi-

gate the sensitivity of the SAMDE algorithm to variations

in population size. The population size of all the DE

algorithms is set as NP = 30, 60, 90, 120, 150, 180 and

300, respectively. We use those algorithms to solve the

30-dimensional functions and the maximum number of

function evaluations was fixed at 20009D. Table 4 shows

the results of this sensitivity tests. Results highlighted in

boldface show the best results from the best setting for each

parameter. We performed 25 independent runs for every

parameters.

In Table 4, it can be observed that SAMDE is sensitive

to parameter NP on many of the benchmark functions. For

the unimodal functions F1–F5, SAMDE shows better

performance with population size decrease in solving

problems F1–F4. However, SAMDE is not sensitive to

parameter NP in solving problem F5. With regard to the

basic multimodal benchmark functions F6–F12, the better

performance of SAMDE concentrate in NP = 60. As for

expanded multimodal functions, SAMDE shows better

performance with population size decrease. For the hybrid

composition functions F15–F25, SAMDE shows better

performance with NP=30 in solving problems F16 and

F17. And SAMDE is not sensitive to parameter NP in

solving problem F18–F25. When NP was equal to 60, the

algorithm gave the best results on most of selected

benchmarks. So we choose the value of the population size

as 60.

5.3.2 Sensitiveness to the F and CR values

In the traditional DE algorithm, the control parameter

F and CR will be tuned by a time-consuming trial-and-error

procedure for different optimization problems (Zhao et al.

2016). In SAMDE, F is adaptively adjusted by the adaptive

parameter lF. lF according to the number of iteration as

the search process continues. And three sub-populations

have different values of lF. Each lF is decided by the

corresponding initial value olF. In order to study their

effects on the performance of SAMDE, some experimental

studies are conducted in Fig. 1.

We choose four benchmark functions as representative

ones. They are functions F1, F7, F13 and F20 which

respectively as unimodal function, basic multimodal

function, expanded multimodal function and hybrid com-

position function. The horizontal axis is the numbers of

iteration, and the vertical axis is the average error values of

fitness. From Fig. 1, it can be observed that the effects of

the different value of olF for the evolution results were

significant when solving some optimization problem, such

as functions F1 and F7. In addition, mutation strategy

‘‘best/2’’ is relatively sensitive to F value with other two

mutation strategies. In contrast, the effects of the different

value of olF for the evolution results were not sensitive

when solving some optimization problem, such as func-

tions F13 and F20. We can find that the best olF values for

one sub-population are different when solving different

optimization problems. For instance, in sub-population X2

(Fig. 1 a2, b2, c2, d2), the best olF2 values are 0.7 for

solving function F1, 1 for solving function F7, 0.5 for

solving function F13 and 0.6 for solving function F20. And

the best olF values for different sub-populations are dif-

ferent when solving one optimization problem. For

Table 3 (continued)

JADE SaDE EPSDE CoDE SOUPDE SspDE ESADE MPEDE SAMDE

F25

Mean 4.92E?02 2.43E?02 2.24E?02 2.14E?02 3.31E?02 2.26E?02 2.23E?02 2.28E?02 2.22E102

Std 3.82E?00 9.72E-01 2.46E-01 2.36E-01 1.33E?01 7.79E-01 1.35E-01 6.83E-03 1.46E201

W – – – ? – – – –

– 18 16 15 15 18 16 11 11

? 0 2 2 2 2 1 1 1

= 7 7 8 8 5 8 13 13

a 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

The better values of Mean and Std among SAMDE and eight other state-of-the-art DE variants JADE, SaDE, EPSDE, CoDE, SOUPDE, SspDE,

ESADE and MPEDE, are highlighted in bold
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example, when solving function F1 (Fig. 1 a1, a2, a3), the

best olF1 is 0.9, the best olF2 is 0.7, the best olF3 is 0.5.

In SAMDE, CR is adaptively adjusted by the adaptive

parameter lCR. lCR according to iteration number as the

search process continues. And three sub-populations have

different values of lCR. Each lCR is decided by the cor-

responding initial value olCR. In order to study their

effects on the performance of SAMDE, some experimental

studies are conducted in Fig. 2.

We plot the average values of fitness changes for dif-

ferent olCR in each sub-population. We select four

benchmark functions which same as the setting of experi-

mental studies for olF. For F1 and F7, the effects of the

different value of olCR for the evolution results were

significant. In particular, this phenomenon is more obvious

in sub-population X3. In contrast, the average fitness values

is not sensitive to parameter olF in solving problems F13

and F20. From Fig. 2, it can be observed that two point,

one is the best olCR values for one sub-population are

different when solving different optimization problems.

The other is the best olCR values for different sub-popu-

lations are different when solving one optimization

problem.

In summary, the select of appropriate parameters are

more important. According to these experimental studies,

we choose proper olCR and olF to solve 25 numerical

optimization problems.

5.3.3 Comparisons between SAMDE and its variants

In this experiment, comparisons between twelve variants of

SAMDE and their corresponding SAMDE algorithms are

made. They are divided into three groups. The first group is

comparison between SAMDE and its variants derived by

different setting of update for sub-populations. The second

group is comparison between SAMDE and its variants

Table 4 Sensitivity analysis with respect to population size (NP)

NP 30 90 120 150 180 300 60

F1 3.93E-17- 2.38E-19- 4.19E-15- 3.16E-11- 3.50E-09- 4.38E-05- 5.97E224

F2 1.17E?01- 4.67E?01- 1.11E?02- 1.50E?02- 8.75E?02- 4.70E?03- 6.71E201

F3 1.17E1061 4.94E?06- 9.31E?06- 1.51E?07- 2.53E?07- 3.00E?07- 1.93E?06

F4 4.05E?02- 3.22E?02- 2.62E?02- 3.01E?03- 2.76E?03- 1.60E?04- 1.54E102

F5 2.16E?03- 1.48E?03? 1.98E?03- 1.26E1031 1.64E?03- 3.61E?03- 1.52E?03

F6 6.60E?03- 2.63E?01? 2.43E1011 2.46E?01? 2.55E?01? 6.02E?01- 3.75E?01

F7 6.19E-01- 1.98E-02- 3.68E-02- 4.15E-02- 1.17E-01- 1.04E?00- 1.73E202

F8 2.12E?01= 2.12E?01= 2.12E?01= 2.13E?01- 2.13E?01- 2.13E?01- 2.12E101

F9 5.07E?01- 1.89E1011 2.33E?01? 1.57E?02- 3.63E?01- 1.90E?02- 2.91E?01

F10 2.98E?01- 2.33E?02- 2.28E?02- 2.36E?02- 2.50E?02- 2.61E?02- 2.25E102

F11 1.72E1011 4.63E?01- 4.63E?01- 4.67E?01- 4.69E?01- 4.74E?01- 4.52E?01

F12 6.11E?03? 5.37E?03? 7.57E?03- 3.02E?04- 3.53E?03? 3.26E1031 6.17E?03

F13 2.58E1001 1.79E?01- 1.84E?01- 2.02E?01- 2.05E?01- 2.18E?01- 1.78E?01

F14 1.35E1011 1.41E?01- 1.41E?01- 1.42E?01- 1.42E?01- 1.43E?01- 1.40E?01

F15 5.10E?02- 3.00E?02? 4.00E?02- 2.00E1021 3.00E?02? 5.00E?02- 3.49E?02

F16 6.64E1011 4.02E?02- 3.54E?02- 2.64E?02? 2.71E?02? 3.72E?02- 2.84E?02

F17 1.83E1021 2.71E?02? 2.90E?02? 5.53E?02- 3.10E?02- 4.48E?02- 3.00E?02

F18 9.47E?02- 9.11E?02- 9.09E?02- 9.05E?02- 9.10E?02- 9.12E?02- 9.03E102

F19 9.29E?02- 9.11E?02- 9.05E?02- 9.04E?02- 9.10E?02- 9.08E?02- 8.99E102

F20 9.48E?02- 9.07E?02- 9.06E?02- 9.11E?02- 9.05E?02- 9.09E?02- 8.99E102

F21 5.38E?02- 5.46E?02- 5.40E?02- 5.43E?02- 5.36E?02- 5.29E?02- 5.24E102

F22 9.55E?02- 9.39E?02- 9.43E?02- 9.42E?02- 9.30E?02- 9.59E?02- 9.29E102

F23 9.65E?02- 5.34E?02= 5.34E?02= 5.34E?02= 5.34E?02= 5.34E?02= 5.34E102

F24 2.00E?02= 2.00E?02= 2.00E?02= 2.00E?02= 2.00E?02= 2.00E?02= 2.00E102

F25 1.28E?03- 2.12E?02= 2.12E?02= 2.13E?02- 2.13E?02- 2.16E?02- 2.12E102

– 15 15 18 19 19 22

? 7 6 3 4 4 1

= 2 4 4 2 2 2
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derived by different setting of mutation strategies. The

third group is comparison between SAMDE and its variants

derived by different setting of evolution methods.

The results for the functions at 30D are shown in

Tables 5, 6 and 7. The better values in terms of mean

solution error compared between SAMDE and its variants

algorithm are highlighted in boldface in Tables 5, 6 and 7.
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Fig. 1 The influence of olF on evolution of four representative functions. a1–a3 are the effect of olF1, olF2 and olF3 take different values on

function F1, respectively; b1–b3 are related to function F7; c1–c3 are related to function F13; d1–d3 are related to function F20
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SAMDE_T1 indicates that three sub-populations are

updated every 10 generations. SAMDE_T2 indicates that

three sub-populations are updated every 20 generations.

SAMDE_T3 indicates that three sub-populations are

updated every 50 generations. SAMDE_T4 indicates that

three sub-populations are updated every 100 generations.

From Table 5, we can find that SAMDE significantly

outperforms the corresponding variants with respect to the
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Fig. 2 The influence of olCR on evolution of four representative functions. a1–a3 are the effect of olCR1, olCR2 and olCR3 take different

values on function F1, respectively; b1–b3 are related to function F7; c1–c3 are related to function F13; d1–d3 are related to function F20
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overall performance. Specifically, according to the Wil-

coxon’s test, SAMDE significantly improves the perfor-

mance of SAMDE_T2 on 21 out of 25 functions and losses

on only two functions. SAMDE is significantly better than

SAMDE_T1, SAMDE_T3 and SAMDE_T4 on 14, 16 and

15 functions, respectively.

SAMDE consists of three different mutation strategies.

To show the significant differences between SAMDE and

its variants derived by different setting of mutation strate-

gies, the results are shown in Table 6. SAMDE_M1

SAMDE_M2, SAMDE_M3 are SAMDE with ‘‘rand/1’’,

‘‘rand assemble/1’’ and ‘‘best/2’’, respectively. They can be

thought as special SAMDE variants with a single mutation

strategy. SAMDE_MR denotes an SAMDE variant in

which three mutation strategies are randomly selected. In

this test, we keep all the other parameters fixed at values

discussed in earlier subsections.

It can be noted from the Table 6 that the SAMDE out-

performs its other variants. For SAMDE_M1, SAMDE is

significantly better on 19 functions and worse on only three

functions. SAMDE is significantly better than SAM-

DE_M2 and SAMDE_M3 on 13 and 13 functions and

worse than SAMDE_M2 and SAMDE_M3 on 7 and 8

functions, respectively. SAMDE significantly improves the

performance of SAMDE_MR on 17 out of 25 functions and

losses on five functions. These results clearly show the

advantage of SAMDE caused by incorporating three

mutation strategies, and by individuals’ migrating among

sub-populations based on the fitness value rank. It seems

that different mutation strategies and self-adaptive param-

eter settings were used in different sub-populations, but

some individuals were migrated at every iteration among

sub-populations to share different mutation strategies and

adaptive parameter settings. It is worth noting that

SAMDE-M2 shows competitive performance on two uni-

modal functions F3 and F4 and three hybrid composition

functions F15–F17. SAMDE-M3 shows competitive per-

formance on one unimodal function F1, two multimodal

Table 5 Comparison results

between SAMDE and its

variants derived by different

setting of updation for sub-

populations

SAMDE_T1 SAMDE_T2 SAMDE_T3 SAMDE_T4 SAMDE

F1 2.23E-23- 6.03E-22- 1.04E-15- 4.71E-10- 5.97E224

F2 9.62E2021 1.01E?00- 2.04E?00- 1.79E?01- 6.71E-01

F3 3.03E?06- 3.21E?06- 1.47E1061 1.63E?06? 1.93E?06

F4 1.40E1021 4.60E?02- 3.16E?02- 1.25E?03- 1.54E?02

F5 2.11E?03- 3.05E?03- 4.10E?03- 2.71E?03- 1.52E103

F6 7.18E?01- 2.11E1011 1.43E?02- 7.98E?01- 3.75E?01

F7 8.15E-02- 2.14E-02- 9.45E-01- 7.13E-01- 1.73E202

F8 2.12E?01- 2.12E?01- 2.12E?01- 2.12E?01- 2.12E101

F9 2.98E?01- 2.99E?01- 3.38E?01- 6.67E?01- 2.91E101

F10 2.26E?02- 2.23E?02? 1.15E1021 2.27E?02- 2.25E?02

F11 4.52E?01= 4.54E?01- 4.54E?01- 2.03E1011 4.52E?01

F12 9.96E?03- 2.66E?04- 6.75E?03- 1.85E?04- 6.17E103

F13 1.58E?01? 1.82E?01- 1.72E?01? 5.73E1001 1.78E?01

F14 1.40E?01= 1.40E?01= 1.40E?01= 1.40E?01= 1.40E101

F15 3.17E?02? 5.00E?02- 4.05E?02- 2.33E1021 3.49E?02

F16 5.01E?02- 4.01E?02- 2.66E?02- 1.84E1021 2.84E?02

F17 2.68E?02? 4.36E?02- 2.60E1021 2.94E?02? 3.00E?02

F18 9.11E?02- 9.08E?02- 9.17E?02- 9.47E?02- 9.03E102

F19 9.12E?02- 9.13E?02- 9.27E?02- 9.19E?02- 8.99E102

F20 8.00E1021 9.20E?02- 9.13E?02- 9.26E?02- 8.99E?02

F21 5.00E?02= 8.33E?02- 5.00E?02= 5.00E?02= 5.00E102

F22 9.33E?02- 9.51E?02- 9.37E?02- 9.39E?02- 9.29E102

F23 5.57E?02- 5.96E?02- 5.34E?02= 5.34E?02= 5.34E102

F24 2.00E?02= 2.00E?02= 2.00E?02= 2.00E?02= 2.00E102

F25 2.12E?02= 2.14E?02- 2.12E?02= 2.14E?02- 2.12E102

– 14 21 16 15

? 6 2 4 6

= 5 2 5 4

Best results of each function are highlighted
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functions F6 and F9 and one hybrid composition function

F22. SAMDE_MR obtains much better results for F5 and

F12 than the other variants.

In this subsection, we compare four different schemes of

the proposed SAMDE algorithm. All the algorithms in this

section use the same population size and base on the same

stopping rule. We tests how adding or changing one

component at a time influences the performance.

The first version is the population composed of three

sub-populations that based on the fitness value, no use of

randomly assigned to individuals. At the end of each

generation, all sub-populations are updated based on the

new fitness values of its individuals. This version uses the

same parameter adaptive strategy as SAMDE. This version

is called SAMDE_1. The second scheme (SAMDE_2) of

this work is first initializes the entire population and then

subdivides the population into three sub-populations that

based on the fitness value rank, the first sub-population is

called X1 which have better individuals. Then we take X1

as an outstanding sub-population and it no longer involved

in later evolution. The other two sub-populations are

updated in the same way as SAMDE. The third variant of

this work (SAMDE_3) is same as SAMDE_1 in the first

100 generations, after 100 iterations, we take X1 as an

outstanding sub-population. At the end of each generation,

all sub-populations are updated based on the new fitness

values of its individuals. But sub-population X1 is only

updated without evolution. The fourth

scheme (SAMDE_4) is same as SAMDE in the first 100

generations, after 100 iterations, there are first better nine

individuals were extracted and constitute X4. The other

individuals are randomly divided into three sub-popula-

tions which have the same size. And sub-population X4 is

only updated without evolution.

From Table 7, the solution quality of the proposed

algorithm SAMDE outperforms all other variants of the

proposed work at 30D. For SAMDE_1, SAMDE is sig-

nificantly better on 17 functions and worse on only four

Table 6 Comparison results

between SAMDE and its

variants derived by different

setting of mutation strategies

SAMDE_M1 SAMDE_M2 SAMDE_M3 SAMDE_MR SAMDE

F1 5.59E-09- 3.27E-21- 4.82E2271 1.38E-21- 5.97E-24

F2 1.37E?03- 6.34E?00- 1.10E?00- 1.22E?01- 6.71E201

F3 1.84E?07- 1.77E1061 2.09E?06- 3.70E?06- 1.93E?06

F4 4.21E?03- 8.19E1011 1.37E?02? 2.90E?02- 1.54E?02

F5 1.96E?03- 1.74E?03- 2.05E?03- 1.39E1031 1.52E?03

F6 2.47E?01? 8.00E?01- 1.37E1011 2.60E?01? 3.75E?01

F7 6.63E-02- 4.14E-01- 4.67E-02- 1.97E-02- 1.73E202

F8 2.12E?01- 2.12E?01- 2.12E?01- 2.12E?01- 2.12E101

F9 1.41E?02- 1.71E?02- 1.39E1011 1.27E?02- 2.91E?01

F10 2.36E?02- 2.27E?02- 2.29E?02- 2.33E?02- 2.25E102

F11 4.52E?01- 4.58E?01- 4.52E?01- 4.55E?01- 4.52E101

F12 9.87E?03- 3.21E?03? 3.58E?03? 1.81E1031 6.17E?03

F13 1.98E?01- 1.79E?01- 1.81E?01- 1.82E?01- 1.78E101

F14 1.41E?01- 1.40E?01= 1.41E?01- 1.41E?01- 1.40E101

F15 4.00E?02- 3.00E1021 4.00E?02- 4.00E?02- 3.49E?02

F16 2.63E?02? 2.42E1021 2.56E?02? 3.26E?02- 2.84E?02

F17 2.91E?02? 2.60E1021 2.87E?02? 2.83E?02? 3.00E?02

F18 9.07E?02- 9.08E?02- 9.05E?02- 9.05E?02- 9.03E102

F19 9.11E?02- 9.07E?02- 9.10E?02- 9.07E?02- 8.99E102

F20 9.07E?02- 9.09E?02- 9.07E?02- 9.04E?02- 8.99E102

F21 5.00E?02= 5.00E?02= 5.00E?02= 5.00E?02= 5.00E102

F22 9.38E?02- 9.26E?02? 9.25E1021 9.28E?02? 9.29E?02

F23 5.34E?02= 5.34E?02= 5.34E?02= 9.37E?02- 5.34E102

F24 2.00E?02= 2.00E?02= 2.00E?02= 2.00E?02= 2.00E102

F25 2.15E?02- 2.12E?02= 2.12E?02= 2.12E?02= 2.12E102

– 19 13 13 17

? 3 7 8 5

= 3 5 4 3

Best results of each function are highlighted
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functions. SAMDE is significantly better than SAMDE_2

on 15 functions and worse than SAMDE_2 on 5 functions.

SAMDE significantly improves the performance of

SAMDE_3 on 16 out of 25 functions and losses on four

functions. For SAMDE_4, SAMDE is significantly better

on 15 functions out of 25 functions and losses on five

functions.

6 Conclusions

This research proposes a self-adaptive multi-population

differential evolution algorithm for solving numerical

optimization problem. The algorithm divides the popula-

tion into three sub-populations, each of which employs a

certain mutation strategy. These mutation strategies are

DE/rand/1/bin, DE/best/2/bin and a our customized muta-

tion strategy that uses a new approach to generate base

vector. Because the appropriate control parameters are very

important to the performance of DE in the DE algorithm,

an adaptive mechanism is also proposed that control

parameters Fki(t) and CRki(t) of each generation can be

gradually self-adapted according to the number of itera-

tions. In this paper, the experimental studies on CEC 2005

benchmark suite proved the good performance of SAMDE,

SAMDE was compared with other eight state-of-the-art DE

variants including JADE, SaDE, EPSDE, CoDE, SOUPDE,

SspDE, ESADE and MPEDE. The experimental results

show that the overall performance of SAMDE was better

than the eight competitors. The parameter sensitivity of

SAMDE is also analysed by some experimental studies.

We experimentally show that the multiple mutation

strategies and adaptive parameters mechanism in this study

have obvious advantages and competitiveness compared

with other algorithms.

In the future, we intend to further improve the SAMDE

to solve high dimensional optimization problems. In

addition, multi-populations is still an effective way to

Table 7 Comparison results

between SAMDE and its

variants

SAMDE_1 SAMDE_2 SAMDE_3 SAMDE_4 SAMDE

F1 1.84E-12- 2.08E-11- 5.38E-11- 2.70E-15- 5.97E224

F2 5.94E?02- 1.63E?03- 1.60E?03- 1.77E?00- 6.71E201

F3 4.68E?06- 8.05E?06- 1.16E?07- 2.51E?06- 1.93E106

F4 3.60E?03- 7.25E?03- 4.30E?03- 6.63E?02- 1.54E102

F5 3.29E?03- 3.35E?03- 3.10E?03- 3.37E?03- 1.52E103

F6 8.01E?01- 4.03E?05- 9.46E?06- 1.65E?02- 3.75E101

F7 6.42E-01- 4.70E?03- 4.70E?03- 2.91E-02- 1.73E202

F8 2.12E?01= 2.12E?01= 2.12E?01= 2.12E?01= 2.12E101

F9 1.82E?02- 5.08E?01- 8.31E?01- 9.65E?01- 2.91E101

F10 2.38E?02- 2.21E1021 2.23E?02? 2.45E?02- 2.25E?02

F11 4.51E?01? 4.45E?01? 4.46E?01? 1.96E1011 4.52E?01

F12 5.84E1031 7.91E?04- 2.19E?04- 8.06E?03- 6.17E?03

F13 1.96E?01- 1.61E1011 1.65E?01? 1.74E?01? 1.78E?01

F14 1.41E?01- 1.40E?01= 1.40E?01= 1.40E?01= 1.40E101

F15 4.00E?02- 4.00E?02- 4.65E?02- 4.00E?02- 3.49E102

F16 3.82E?02- 2.49E?02? 3.52E?02- 2.12E1021 2.84E?02

F17 2.92E?02? 3.74E?02- 3.31E?02- 2.69E1021 3.00E?02

F18 9.08E?02- 9.12E?02- 9.10E?02- 8.00E1021 9.03E?02

F19 9.11E?02- 8.38E1021 9.10E?02- 9.21E?02- 8.99E?02

F20 8.74E?02? 9.12E?02- 8.38E1021 9.13E?02- 8.99E?02

F21 5.00E?02= 5.00E?02= 5.00E?02= 5.00E?02= 5.00E102

F22 9.62E?02- 9.69E?02- 9.83E?02- 9.30E?02- 9.29E102

F23 5.34E?02= 5.34E?02= 5.34E?02= 5.34E?02= 5.34E102

F24 2.00E?02= 2.00E?02= 2.00E?02= 2.00E?02= 2.00E102

F25 2.17E?02- 1.68E?03- 1.68E?03- 2.13E?02- 2.12E102

– 17 15 16 15

? 4 5 4 5

= 4 5 5 5

Best results of each function are highlighted
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improve DE efficiency, we will try to use more, different

size sub-populations for parallel computing, and test them

on sets of competitive benchmarks like those presented in

the CEC 2013 (Li et al. 2013) and CEC 2015 (Chen et al.

2014; Garcı́a-Martı́nez et al. 2017) special sessions and

competitions.
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