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Abstract
Insertion–deletion (or ins–del for short) systems are simple models of bio-inspired computing. They are well studied in

formal language theory, especially regarding their computational completeness. This concerns the question if all recur-

sively enumerable languages can be generated. This ultimately addresses the question if one can build general-purpose

computers rooted in this formalism. The descriptional complexity of an ins–del system is typically measured by its size, a

6-dimensional tuple of non-negative integers ðe; e0; e00; d; d0; d00Þ where e is the maximum length of the insertion string, e0

(and e00) is the maximum length of the left (and right) context used for insertion; the last three parameters d; d0; d00 are

similarly understood for deletion rules. Computational completeness for ins–del systems can even be achieved with rule

size (1, 1, 1; 1, 1, 1) but with no rule size strictly smaller than this. This fact has motivated to study ins–del systems in

combination with regulation mechanisms. In this context, the six-tuple explained above is called the ID size of a system.

Several regulations like graph-control, matrix and semi-conditional have been imposed on ins–del systems. Typically, the

computational completeness results are obtained as trade-offs, reducing the ID size, say, to (1, 1, 0; 1, 1, 0) at the expense

of increasing other measures of descriptional complexity. In this paper, we study simple semi-conditional ins–del systems,

where an ins–del rule can be applied only in the presence or absence of substrings of the derivation string. This brings

along two further natural parameters to measure descriptional complexity, namely, the maximum permitting string

length p and the maximum forbidden string length f, usually summarized as the degree d ¼ ðp; f Þ. We show that simple

semi-conditional ins–del systems of degree (2, 1) and with ID sizes ð1 þ e; e0; e00; 1 þ d; d0; d00Þ are computationally

complete for any e; e0; e00; d; d0; d00 2 f0; 1g, with eþ e0 þ e00 ¼ 1 and d þ d0 þ d00 ¼ 1. The obtained results complement

and improve on the existing results known from the literature. To prove our results, we also show a new normal form for

type-0 grammars that appears to be interesting in its own right.
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1 Introduction

Insertion–deletion systems are a computational model

based on the operations of insertion and deletion of sub-

strings in a string. Initially motivated on linguistic grounds,

they more recently became quite popular as a theoretical

model for DNA-based computations, as the basic opera-

tions fit well into this area. For further discussions on the

history of this model, as well as giving insights into the rich

literature of this area, we refer to Kari and Thierrin (1996),

Verlan (2007, 2010).

In a nutshell, the rules of an insertion–deletion system

(or ins–del system) can be of two types: insertion or

deletion, i.e., either, a string is specified that may be

inserted in a prescribed context within the current string, or

it may be deleted relative to the context conditions. The

potential biological or bio-chemical meaning of such a rule

should be clear: parts of a strand-like molecule are inserted

or deleted in a certain context. The main research question

is under which restrictions can computational completeness

results still be obtained. For instance, it is known (Takahara

and Yokomori 2003) that for each recursively enumerable

language (or RE language for short), there exists an ins–del

system where only single symbols are inserted or deleted,

and the allowed context conditions (to the left or to the

right) are again (at most) single symbols. However, if we

disallow checking contexts both to the left and to the right,

then not all RE languages can be described; cf. Verlan

(2007). In such situations, several regulation mechanisms

have been studied and shown to achieve computational

completeness results. From the viewpoint of biocomputing,

let us only mention ins–del P systems (Krishna and Rama

2002; Krassovitskiy et al. 2011), sometimes in disguise

(Fernau et al. 2019), tissue P systems with ins–del rules

(Kuppusamy and Rama 2003), random context and semi-

conditional ins–del systems (Ivanov and Verlan 2015).

Meduna and Svec have reported on the use of several

variants of context conditions in regulated rewriting in the

textbook (Meduna and Svec 2005). In this paper, (simple)

semi-conditional rules are of particular importance. In the

semi-conditional case, the conditions are sets of words and

are associated with each rule. A rule can be applied if all

words from its permitting condition are present and no

word from the forbidden condition is present in the string.

A semi-conditional grammar is said to be simple if each

rule has only either a permitting condition or a forbidden

condition. Notice that this type of simplicity can be again

interesting from a bio-chemical perspective: insertion or

deletion operations are usually triggered by some sort of

enzymes or other chemical regulation mechanisms; such

catalysts can be enabled or disabled by conditions as for-

malized in conditional grammars, but it should be easier to

have only single conditions here when it comes to bio-

logical implementations. Let the maximum length of a

string in the permitting and forbidden set be denoted by

i and j, respectively; then the ordered pair (i, j) is called the

degree of the semi-conditional grammar. From a biological

point of view, these conditions can be interpreted as global

context conditions, as opposed to the local context condi-

tions traditionally represented within the ins–del rules

themselves.

The study of semi-conditional ins–del systems was ini-

tiated in Ivanov and Verlan (2015). They proved that with

degree (2, 2), inserting and deleting single symbols without

any local context is sufficient to describe any RE language.

Conversely, extending previous computational incom-

pleteness results on non-regulated ins–del systems, it was

shown in the same paper that ins–del systems that may

insert or delete single symbols in one-sided single-symbol

context are not able to describe the regular language

fabgþ, assuming that these systems can also globally

check for single symbols only, i.e., if they are of degree

(1, 1).

No previous computational completeness results have

been known for other degrees. This motivates the present

study. More precisely, the degree (2, 1) that is in the focus

of our study somehow interpolates between the degrees

(2, 2) and (1, 1) that were previously studied in the liter-

ature (Ivanov and Verlan 2015). We also think that it might

be possible to also globally check for the presence or

absence of short molecular parts (strings) within biocom-

putational devices. Furthermore, we managed to cope with

the already mentioned simple restriction on semi-condi-

tional rules. Clearly, this additional restriction is a technical

challenge. More specifically, we prove that simple semi-

conditional ins–del systems of degree (2, 1) are computa-

tionally complete if (i) strings of length two may either be

inserted or deleted without any local conditions, or (ii) only

single symbols (with one-sided single-symbol local con-

text) may be inserted, but strings of length two may be

deleted without any local conditions, or (iii) only single

symbols (with one-sided single-symbol local context) may

be inserted and single symbols (with one-sided single-

symbol local context) may be deleted.

The results of this paper and a sketch on how they

complement the existing results of Ivanov and Verlan

(2015) are given in Table 1. The notation of the language

families (explained in details below) basically distin-

guishes between semi-conditional (SC) and simple semi-

conditional (SSC). In parenthesis, the 6-dimensional inte-

ger tuple upper-bounding the admitted ID size is given.

Finally, the index refers to the admitted degree. The

table also shows how the results of this paper improve on

results obtained in the conference version of this paper
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(Fernau et al. 2018a): In the case of two ID sizes, we are

now able to admit degree (2, 1) where previously, we could

only prove a computational completeness result for degree

(3, 1). Yet, the reader is encouraged to also look into the

previous results, as the constructions there are clearly

conceptually simpler than the ones contained in this paper,

but this simplicity comes at a price: the results themselves

are weaker, as can be also seen in Table 1. The comparison

of the results is also supported by using the same numbers

for results related to the same ID sizes for SSC ins–del

systems. Finally from the table, some optimality results can

be read off. For instance, the last two rows indicate com-

putational completeness results that cannot be improved

when moving from degree (2, 1) to degree (1, 1), even in

the case when permitting non-simple rules or when

allowing both-sided contexts for deletion rules with dele-

tion strings of any length.

Another contribution of this paper (not contained in the

conference version) is the presentation of a new normal

form for type-0 grammars. We call this the space sepa-

rating special Geffert normal form, because it is obtained

in a way from a variant of the well-known Geffert normal

form that is similar to the way how the so-called special

Geffert normal form was produced. Also, it is called space

separating, because the rules are designed in a fashion that

guarantees that for a certain variety of nonterminal sym-

bols, from N 00 ¼ fA;B;C;D;E;Fg, no sentential form is

ever generated that contains the substring ZZ for any

Z 2 N 00. In other words, the occurrences of two identical

symbols from N 00 are always separated from each other.

2 Preliminaries

Let N denote the set of non-negative integers, and

½1. . .k� ¼ fi 2 N : 1� i� kg. If R is an alphabet (finite

set), then R� denotes the free monoid generated by R. The

elements of R� are called strings or words; k denotes the

empty string. The morphism from the monoid R� to N

(with addition), defined by a 7!1 for a 2 R, is called the

length of a word; usually, we write |w|. The set of all words

over R of length at most i is denoted by R� i. A word v is a

subword of x 2 R� if there are words u, w such that

x ¼ uvw. Let subðxÞ � R� denote the set of all subwords of

x 2 R�. We also make use of the insertion operation . to

describe the effect of insertions at a random position in the

string. Hence, u . v ¼ fv1uv2 j v ¼ v1v2g. This operation is

readily lifted to languages: U . V ¼
S

u2U;v2V u . v. We

assume that . is right-associative, i.e,

U . V .W :¼ U . ðV .WÞ. We write wR to denote the

reversal of w 2 R�. We can easily lift this notation to sets

of words (i.e., languages) and also to families of languages,

as well.

2.1 Normal forms for type-0 grammars

For the computational completeness results, we are using

the fact that type-0 grammars in certain normal forms

characterize the class RE of recursively enumerable

languages.

Definition 1 (see Freund et al. 2010; Ivanov and Verlan

2015) A type-0 grammar1 G ¼ ðN; T ;P; SÞ is said to be in

Special Geffert Normal Form, or SGNF for short, if

– N decomposes as N ¼ N 0 [ N 00, where N 00 ¼
fA;B;C;Dg and N 0 contains at least the two nontermi-

nals S and S0,
– the only non-context-free rules in P are the two erasing

rules AB ! k and CD ! k,

– the context-free rules are of the following forms:

1 As usual, N is the nonterminal alphabet, T is the terminal alphabet,

P is the set of rules and S is the start symbol of grammar G. Also, we

use ) to denote a single derivation step of G and )� to denote an

arbitrary number of derivation steps.

Table 1 Comparing the results of Ivanov and Verlan (2015), of Fernau et al. (2018a) and of this paper

Result of Ivanov and Verlan (2015) Our complementing result(s) References

1. SC2;2IDð1; 0; 0; 1; 0; 0Þ ¼ RE SSC2;1IDð2; 0; 0; 2; 0; 0Þ ¼ RE Theorem 3

2. SC1;1IDð1; 1; 0; 2; 0; 0Þ(RE SSC2;1IDð1; 1; 0; 2; 0; 0Þ ¼ RE Theorem 5

3. SC1;1IDð1; 1; 0; 1; 1; 1Þ(RE SSC2;1IDð1; 1; 0; 1; 1; 1Þ ¼ RE Thm. 4 in Fernau et al. (2018a)

4. SC1;1IDð2; 0; 0; 1; 1; 0Þ ¼ RE SSC2;1IDð2; 0; 0; 2; 0; 0Þ ¼ RE Theorem 3

5. SSC3;1IDð1; 1; 0; 1; 1; 0Þ ¼ RE Thm. 5 in Fernau et al. (2018a)

6. SSC3;1IDð1; 0; 1; 1; 1; 0Þ ¼ RE Thm. 6 in Fernau et al. (2018a)

4. SC1;1IDð2; 0; 0; 1; 1; 0Þ ¼ RE SSC2;1IDð2; 0; 0; 1; 1; 0Þ ¼ RE Theorem 4

5. SC1;1IDð1; 1; 0; 1; 1; 1Þ(RE SSC2;1IDð1; 1; 0; 1; 1; 0Þ ¼ RE Theorem 6

6. SC1;1IDð1; 1; 0; 1; 1; 1Þ(RE SSC2;1IDð1; 0; 1; 1; 1; 0Þ ¼ RE Theorem 7
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X ! Yb0 orX ! bY ;whereX; Y 2 N 0; X 6¼ Y ;

b 2 N 00; b0 2 T [ N 00; or S0 ! k:

The way the normal form is constructed in Freund et al.

(2010) and is based on Geffert (1991).2 So, the construction

starts out with the classical Geffert normal form that has

context-free rules of the form S ! uSa and S ! uSv, as

well as S ! uv, for u 2 fA;Cg�, v 2 fB;Dg�, a 2 T , plus

two non-context-free rules AB ! k and CD ! k. We can

also replace S ! uv by S ! uS0v and S0 ! k. The SGNF is

obtained by first breaking the rules of the type S ! uSx

into S ! uSx and Sx ! Sx and then ‘‘spelling out’’ words

u or x of length more than one. For instance, S ! abSx,

would become S ! aSbx and Sbx ! bSx and Sx ! Sx. Sim-

ilarly, S ! uS0v can be spelled out.

Also, the derivation of a string is done in two phases. In

phase I, the context-free rules are applied repeatedly; this

phase is completed by applying the rule S0 ! k in the

derivation. In phase II, only the non-context-free erasing

rules are applied repeatedly until a terminal string is

reached. From its invention, this normal form turned out to

be a very useful tool for proving computational com-

pleteness results for (regulated) ins–del systems. However,

notice that Geffert designed his normal form(s) in order to

produce grammars with few nonterminals and few non-

context-free rules. This is not so much of interest in our

present study. Therefore, we will modify the sketched

constructions in a way that allows us to have more structure

in the sentential forms. This will help us in our arguments,

leading to fewer cases to examine.

The first point is that we can modify Geffert’s normal

form itself by introducing the nonterminal S0 already into

this normal form and having rules of the forms S ! uSa

and S ! uS0a or S ! k if k is contained in the language3.

Moreover, we have context-free rules of the form S0 !
uS0v and S0 ! k in our grammar. The advantage of our

construction over the classical Geffert normal form is that

all sentential forms that can be derived by using context-

free rules belong to

fA;Cg�fSgT� [ fA;Cg�fS0gfB;Dg�T� [ fA;Cg�fB;Dg�T�;

where it is clear that sentential forms from fA;Cg�fSgT�

are produced in the first stage of the first phase, using rules

S ! uSa only, then a transitional rule like S ! uS0a has to

be executed, and from that time on, it is possible to produce

strings from fA;Cg�fS0gfB;Dg�T� in the second stage of

the first phase, using rules like S0 ! uS0v. Finally, the rule

S0 ! k is used to produce a string from fA;Cg�fB;Dg�T�,
hence exiting the first phase. In the second phase, as usual,

only erasing non-context-free rules (AB ! k and CD ! k)

are applied. Upon doing so, only sentential forms from

fA;Cg�fB;Dg�T� can be produced, hence keeping this

property as an invariant. When using S ! k to exit the first

stage of the first phase, then we also arrive at a string from

fA;Cg�fB;Dg�T�, more precisely, from fA;Cg�T�, but

here further derivation steps are not possible, as can be

easily verified.

Our further discussions will show that we can easily

modify the construction leading to SGNF in order to avoid

substrings like AA or BB ever occurring in sentential forms

derivable in normal form grammars. Namely, we first

modify the Geffert normal form construction itself by

replacing the context-free rules S ! uSa and S ! uS0a, as

well as S0 ! uS0v, for u 2 fA;Cg�, v 2 fB;Dg�, a 2 T , by

S ! hðuÞSa, S ! hðuÞS0a or S0 ! hðuÞS0hðvÞ, respectively,

where the morphism h is defined by A 7!EA, B 7!BF,

C 7!EC and D7!DF. Now, we have three non-context-free

rules, namely AB ! k, CD ! k and EF ! k. It should be

clear that the symbol E prevents AA and CC from ever

being produced as a substring of any sentential form.

Likewise, the symbol F prevents BB and DD from ever

being produced as a substring of any sentential form.

Clearly, this property is preserved when deriving the

‘‘special’’ form from this variant of Geffert normal form,

which leads us to the following definition and theorem.

Definition 2 A type-0 grammar G ¼ ðN; T ;P; SÞ is said to

be in Space Separating Special Geffert Normal Form, or

ssSGNF for short, if

– N decomposes as N ¼ N 0 [ N 00, where N 00 ¼
fA;B;C;D;E;Fg and N 0 further decomposes as N 0 ¼
NS [ NS0 such that NS contains at least the nonterminal

S and NS0 contains at least the nonterminal S0,
– the only non-context-free rules in P are the erasing

rules AB ! k, CD ! k and EF ! k,

– the non-erasing context-free rules are of the following

forms:

– X ! Yb or X ! b0Y; where X 2 NS; Y 2 N 0; X 6¼
Y ; b 2 T ; b0 2 fA;C;Eg; or

– X ! Yb or X ! b0Y; where X; Y 2 NS0 ; X 6¼ Y;

b 2 fB;D;Fg; b0 2 fA;C;Eg;

– G contains the erasing context-free rule S0 ! k and also

possibly S ! k.

It is clear from the h morphism and the discussion

above, that without loss of generality, we can restrict our

attention to ssSGNF’s whose derivations split into two

2 The construction sketched in Freund et al. (2010) is a bit different

where b; b0 2 fN 00 [ Tg.
3 With this requirement, we introduce a step that is non-constructive,

mostly for reasons of laziness, but as we do not bother about

decidability issues, this does not matter here.
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phases; where in the first phase, only context-free rules are

applied and only strings from

fEA;ECg�NST
� [ fEA;ECg�NS0 fBF;DFg�T�

[ fEA;ECg�fBF;DFg�T�

are produced; in the second phase, only non-context-free

erasing rules are applied and only strings from

fEA;ECg�fk;EFgfBF;DFg�T� can be derived.

Furthermore, this ssSGNF can be obtained from SGNF

by simply replacing a previously existing rule X ! b0Y
(where b0 2 fA;Cg) by the rules X ! EZ and Z ! b0Y
(and similarly for rules X ! b0Y where b0 2 fB;Dg).

Our considerations allow us to state the following result.

Theorem 1 For every recursively enumerable language,

there exists a type-0 grammar in ssSGNF that describes it.

Moreover, we know for ssSGNF grammars: for any w 2
ðN [ TÞ� such that S )� w, then

fAA;BB;CC;DD;EE;FFg \ subðwÞ ¼ ;. h

2.2 Insertion–deletion systems

We now give the basic definition of insertion–deletion

systems, following (Kari and Thierrin 1996; Păun et al.

1998).

Definition 3 Kari and Thierrin (1996); Păun et al. (1998)

An insertion–deletion system, or ins–del system for short, is

a construct c ¼ ðV ; T ;A;RÞ, where V is an alphabet, T � V

is the terminal alphabet, A is a finite language over V, R is a

finite set of triplets of the form ðu; g; vÞins or ðu; d; vÞdel,
where ðu; vÞ 2 V� � V�, g; d 2 Vþ.

The pair (u, v) is called the context, where we differ-

entiate between the left context u and the right context v, g
is called the insertion string, d is called the deletion string

and x 2 A is called an axiom. If either the left or the right

context is empty for all the insertion (deletion) contexts,

then we call the insertion (deletion) one-sided. If both

contexts are empty for every insertion (deletion) rule, then

the insertion (deletion) is called context-free. The de-

scriptional complexity of an ins–del system is measured by

its size s ¼ ðn; i0; i00;m; j0; j00Þ, where the parameters repre-

sent resource bounds as given in Table 2.

2.3 Semi-conditional insertion–deletion systems

Definition 4 (Ivanov and Verlan 2015) A semi-condi-

tional insertion–deletion system of degree (i, j), i; j� 0 is a

construct P ¼ ðV ; T;A;RÞ, where V is a finite alphabet,

T � V is the terminal alphabet, A � V� is a finite set of

axioms, R is a finite set of rules of the form ½ðu; s; vÞt;P;F�
where u; s; v 2 V�, t 2 fins; delg, P;F are finite subsets of

V�. The set P is called the permitting set and F is called

the forbidden set. For clarity, we often use unique labels for

rules, even identifying a rule with its label, i.e., if r 2 R is a

rule (label), then r : ½ður; sr; vrÞtr ;Pr;F r�. The ordered pair

(i, j) is called the degree of the semi-conditional ins–del

system P where i is the smallest integer such that
S

r2R Pr � V � i and j is the smallest integer such that
S

r2R F r � V � j.

We write x )r y if Pr � subðxÞ and F r \ subðxÞ ¼ ;
and either

1. tr ¼ ins and x ¼ x1urvrx2; y ¼ x1ursrvrx2, for some

x1; x2 2 V�; or

2. tr ¼ del and x ¼ x1ursrvrx2; y ¼ x1urvrx2, for some

x1; x2 2 V�.

The language generated by a semi-conditional insertion–

deletion system P is

LðPÞ ¼ fw 2 T� j x )� w for some x 2 Ag ;

where )� is the reflexive and transitive closure of ),

which is
S

r2R )r.

Given P ¼ ðV; T ;A;RÞ, the underlying ins–del system

cP ¼ ðV ; T ;A;RcÞ is given by Rc ¼ fðu; s; vÞtr j r 2 Rg.

The size (six-tuple) associated to ðu; s; vÞtr is also called the

ID size of r, and the ID size of P is hence the size of cP.

The families of languages generated by semi-conditional

insertion–deletion systems of degree at most (i, j) having

ID size at most s ¼ ðn; i0; i00;m; j0; j00Þ is denoted as

SCi;jIDðsÞ. If, for each r 2 R, either Pr ¼ ; or F r ¼ ;,

then the semi-conditional ins–del system is said to be

simple. The families of languages generated by such simple

semi-conditional insertion–deletion (denoted in short as

SSCID) systems of degree at most (i, j) and ID size at most

s is denoted as SSCi;jIDðsÞ. If both P ¼ F ¼ ; for all rules

of R then the semi-conditional ins–del system is same as

the ordinary ins–del system. Hence, SC0;0IDðsÞ refers to

the family of languages that can be described by ins–del

systems of degree at most (i, j).

Example 1 Consider the non context-free language

L1 ¼ fanbncn j n� 1g. We construct a simple semi-condi-

tional ins–del system P of degree (1, 1) and ID size

(3, 1, 1; 1, 0, 0) describing L1 as follows: P ¼
ðfA;B; a; b; cg; fa; b; cg; fabcg;RÞ where the set of rules of

Table 2 Parameters in the size of ins–del system

n ¼ maxfjgj : ðu; g; vÞins 2 Rg m ¼ maxfjdj : ðu; d; vÞdel 2 Rg
i0 ¼ maxfjuj : ðu; g; vÞins 2 Rg j0 ¼ maxfjuj : ðu; d; vÞdel 2 Rg
i00 ¼ maxfjvj : ðu; g; vÞins 2 Rg j00 ¼ maxfjvj : ðu; d; vÞdel 2 Rg
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123



R is given in Table 3. We will now explain the working of

the rules in Table 3. From the rules, we can see that r1 can

be applied in the absence of B and r2 can be applied in the

presence of A, thus, r1 has to be applied before r2 is

applied. Note that in r1, as the contexts are a and b, once

aAb is introduced between a and b, the rule r1 cannot be

(immediately) applied again until A is deleted. Similarly,

rule r2 cannot be applied for a second time unless B is

deleted. Starting from the axiom abc, the only applicable

rule is r1 which will results in aaAbbc. Now, r3 cannot be

applied, as deleting A requires the presence of B and this

symbol is not introduced yet. So, the only applicable rule is

r2 which results in aaAbbBcc. Now, r4 cannot be applied

as it requires the absence of A and A is still present in the

derived string. The only applicable rule is hence r3 which

deletes the A and then the only applicable rule is r4 which

deletes the B and results to aabbcc. A sample derivation is

given below for better understanding how the system

works.

abc)r1 aaAbbc)r2 aaAbbBcc)r3 aabbBcc)r4 aabbcc:

The process above is repeated and as the rules are

applied in a deterministic manner, it is easy to see that

LðPÞ ¼ L1. h

Remark 1 The purpose of Example 1 is to explain how

the system works and the size used in this example does not

necessarily correspond to computational completeness

results obtained in this paper. On the other hand, if a type-0

grammar (in SGNF) is given for L1, then L1 can be simu-

lated by a simple semi-conditional ins–del system with the

sizes that are shown in the computational completeness

result. h

3 Main results

In order to make some of our results simple, we claim the

following, similar to other regulation mechanisms, as for

example in Fernau et al. (2019).

Theorem 2 If s ¼ ðn; i0; i00;m; j0; j00Þ is some ID size and

(i, j) is some degree, then SSCi;jIDðsÞ ¼ ½SSCi;jIDðs0Þ�R,

with s0 ¼ ðn; i00; i0;m; j00; j0Þ.

Namely, for every conditional rule p : ððu; s; vÞt;P;FÞ
of P we take the rule pR : ððvR; sR; uRÞt;PR;FRÞ into PR,

and also if A is the set of axioms of P, then AR is the set of

axioms of PR, so that LðPRÞ ¼ LðPÞR. Clearly, the upper-

bounds on the lengths of the left and right contexts are

interchanged when moving from P to PR. This allows us

to go from ID size s to ID size s0 as stated in the theorem.

As RE is closed under reversal, whenever

SSCk;lIDðsÞ ¼ RE, then SSCk;lIDðs0Þ ¼ RER ¼ RE and

vice versa.

With s; s0 as in the previous theorem, we know that

SSCk;lIDðsÞ ¼ RE if and only if SSCk;lIDðs0Þ ¼ RE.

In order to show that simple semi-conditional ins–del

systems of certain sizes describe RE, we make use of the

fact that RE languages can be generated by grammars in

Special Geffert Normal Form (SGNF), where the rules are

of the type p : X ! bY , q : X ! Yb, f : AB ! k,

g : CD ! k, and e0 : S0 ! k, where p; q; f ; g; e0 2 ½1. . .jPj�
are labels associated with each type of rule of SGNF. We

provide a simulation of these rules by rules of simple semi-

conditional ins–del system. As we are sometimes also

starting with ssSGNF, rules can also look like h : EF ! k
and e : S ! k.

The simulation of rules g, h is similar to the simulation

of f-rules. Therefore, we will only present f-rule simula-

tions in the following, assuming a similar setting for g- and

h-rules. Also, we always simulate rule e0 by

½ðk; S0; kÞdel; ;;M�, and similarly we can simulate rule e,

with M 2 fM00;M000g as defined below. Therefore, in the

following proofs we mostly discuss the simulations of rules

of type p, q, f and we let

M ¼ fm j m 2 ½1. . .jPj�g; M0 ¼ fm0 j m 2 ½1. . .jPj�g;
M00 ¼ fm00 j m 2 ½1. . .jPj�g; M000 ¼ fm000 j m 2 ½1. . .jPj�g;
M00 ¼ M [M0 [M00; M000 ¼ M [M0 [M00 [M000;

and similar notations for fourfold and fivefold primed

symbols. If no confusion arises, we will use, say, M000 even

in the case when, for instance for the simulation of p-rules,

no triple-primed markers are necessary. Also, we will

simply write M to refer to all marker symbols altogether.

After this general description, we move on to our more

specific results.

We first recall from Ivanov and Verlan (2015) that

SC2;2IDð1; 0; 0; 1; 0; 0Þ ¼ RE. In the following we decrease

the degree to (2, 1) and further make the system simple but

at the cost of increasing the insertion and deletion lengths

from one to two.

Theorem 3 SSC2;1IDð2; 0; 0; 2; 0; 0Þ ¼ RE.

Proof Consider a type-0 grammar G ¼ ðN; T;P; SÞ in

SGNF in which the rules of P are labelled uniquely by

numbers ½1. . .jPj�. We construct an SSCID system P ¼
ðV; T ; fSg;RÞ of degree (2, 1) and ID size (2, 0, 0; 2, 0, 0)

as follows such that LðPÞ ¼ LðGÞ. The alphabet of P is

V 	 N [ T [M, where M is the set of all markers; we

Table 3 SSCID rules describing fanbncn j n� 1g

r1 : ½ða; aAb; bÞins; ;;B� r2 : ½ðb;Bc; cÞins;A; ;�
r3 : ½ðk;A; kÞdel;B; ;� r4 : ½ðk;B; kÞdel; ;;A�
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need in particular up to triple-primed versions of markers

for context-free rules. The set of rules of R in P is given as

follows. (i) For every rule of type p : X ! bY in G, the

simulating rules are stated in Fig. 1a. (ii) For every rule of

type q : X ! Yb in G, the simulating rules are stated in

Fig. 1(b). (iii) Rules of type f : AB ! k are simulated by

the (SSC)ID rule f1 ¼ ½ðk;AB; kÞdel; ;; ;�.
We now proceed to prove that LðPÞ ¼ LðGÞ. We

initially prove that LðGÞ � LðPÞ by showing that P
correctly simulates the application of the rules of the types

p, q, f. We focus on the p rule simulation, as this is the

most complicated one.

Simulation of p : X ! bY : Consider a sentential form

aXb derivable in G, where X 2 N 0 and a; b 2 ðN 00 [ TÞ�.
By induction, aXb can be also derived in P. The

application of p : X ! bY to aXb derives abYb ¼ w,

which is correctly simulated by P as follows:

aXb )p1 app0Xb )p2 apb )p3 abp00pb

)p4 abYp000p00pb )p5 abYp00pb )p6 w:

Being slightly different, we also show the

simulation of q : X ! Yb; here, aYbb ¼ w0 is the result of

applying q to aXb.

aXb )q1 aqq0Xb )q2 aqb )q3 aqq00bb )q4 aqq00q000Ybb

)q5 aqq00Ybb )q6 w0:

Observe how the simulation of q mirrors that of p, while

the logic behind is clearly identical. This proves that

LðGÞ � LðPÞ.
Simulation idea: We insert strings of length two in a

random manner, such that one symbol of it acts as a marker

to stitch to the correct position in the string. The correct

position is verified with permitting strings or deletion

strings of length two, which verifies that the previously

introduced string has been inserted only at a particular

correct position. For example, pp0 is randomly inserted by

rule p1 and the rule p2 demands that this insertion happens

to the left of the only non-terminal X present in the string.

In particular, this technique prevents us from re-starting the

rules on a string consisting of terminal symbols only.

Similarly, the permitting string in p5 demands to have the

substring p000p00 present in the string, thus Yp000 (see rule p4)

is inserted between b and p00 and bp00 itself is inserted by

rule p3. The forbidden strings in insertion rules prevent us

from using of the same rule again and also indirectly bring

the order among the applications of the rules. We now

proceed to the formal simulation.

We now prove the converse inclusion LðPÞ � LðGÞ by

showing that the rules stated in Fig. 1a can only be used in

the intended way, simulating the context-free rule p : X !
bY of G.

Consider a sentential form w0 ¼ aXb derivable in P and

G, where X 2 N 0 and a; b 2 ðN 00 [ TÞ�. Notice that, from

the perspective of G, we are (still) in phase I. The only

applicable rule is p1 (or any other insertion rule r1 where

the left-hand side of rule r is X) since other insertion rules

like p3 or p4 forbid the presence of any non-terminal of N 0.
All deletion rules of Fig. 1 require the presence of rule

markers (i.e., elements of M), but subðw0Þ \M ¼ ;. On

applying the rule p1, pp0 is inserted anywhere in the string

thus yielding w1 2 pp0 . aXb, with pp0 2 subðw1Þ. We

cannot apply any insertion rule r1, r3 or r4, as

p0 2 F r1 \ F r3 \ F r4. In particular, this rules out repeated

applications of p1. Also, we cannot apply rule h1 ¼
½ðk;EF; kÞdel; ;; ;� now, as here (and also in any of the

further steps discussed below) some rule marker is present

in the string. Hence, we must apply a deletion rule of Fig. 1

to w1. The application of any r5 or r6 requires r00 to appear,

which is not the case for w1. By the uniqueness of rule

labels, the only applicable rule is p2 which actually fixes

the position of pp0 on the left of X, thereby deleting p0X.

Hence, we obtain a unique string w2 satisfying

w1 )p2 w2 ¼ apb.

Alternatively, we can think of obtaining w2 by applying

the rewriting rule X ! p to w0. Now, there is a choice in

applying r3 or r4 for some rule r. We focus on r ¼ p in the

following, as this is the only possible fruitful continuation,

as we will soon see. If p4 is applied to w2, we get w0
2 2

Yp000 . apb and now p3 cannot be applied, as

p000 2 subðw0
2Þ \ F p3. The derivation is stuck, as no other

rule can be applied. In particular, p5 is not applicable, since

p00 62 subðw0
2Þ. Thus, the only applicable rule on w2 is p3

which inserts bp00 randomly into w2 yielding

w3 2 bp00 . apb, with bp00 2 subðw3Þ. The re-application

of p3 on w3 is stopped since p00 is a member of its forbidden

set. On applying the only possible rule p4 on w3,4 Yp000 is

p1 = [(λ, pp′, λ)ins, ∅, M]
p2 = [(λ, p′X, λ)del, {pp′}, ∅]
p3 = [(λ, bp′′, λ)ins, ∅, N ′ ∪ (M \ {p})]
p4 = [(λ, Y p′′′, λ)ins, ∅, N ′ ∪ (M \ {p, p′′})]
p5 = [(λ, p′′′, λ)del, {p′′′p′′}, ∅]
p6 = [(λ, p′′p, λ)del, {bY }, ∅]

(a) Simulating p : X → bY

q1 = [(λ, qq′, λ)ins, ∅, M]
q2 = [(λ, q′X, λ)del, {qq′}, ∅]
q3 = [(λ, q′′b, λ)ins, ∅, N ′ ∪ (M \ {q})]
q4 = [(λ, q′′′Y, λ)ins, ∅, N ′ ∪ (M \ {q, q′′})]
q5 = [(λ, q′′′, λ)del, {q′′q′′′}, ∅]
q6 = [(λ, qq′′, λ)del, {Y b}, ∅]

(b) Simulating q : X → Y b

Fig. 1 Simulating context-free rules of SGNF by

SSC2;1IDð2; 0; 0; 2; 0; 0Þ

4 Again, any r4 could be applied, but we will soon see that r ¼ p is

enforced.

Computational completeness of simple semi-conditional insertion–deletion systems of degree (2,1) 569

123



randomly inserted, resulting in w4 2 Yp000 . bp00 . apb, with

Yp000; bp00 2 subðw4Þ. At this point we note that both bp00

and Yp000 are floating across w4 and their position is not yet

fixed. This is done in the step after the next step by

applying the rule p6. A careful case analysis reveals that

now p5 is the only applicable rule.5 Since p5 demands that

p000p00 2 subðw4Þ, this crucial rule application fixes several

of our previous choices:

(a) Recall that we could have applied any rule r3

(instead of p3) and any rule �r4 (instead of p4). But if we

would have chosen �r 6¼ r, then the substring r000r00 would

not be present in w4. As we promised above, we will see in

the next step that only r ¼ p is possible, which we will

therefore use already in the following to avoid clumsy

formulations.

(b) Previously, we had the choice of inserting Yp000; bp00

anywhere into w2. However, p000p00 2 subðw4Þ ensures that

Yp000 must have been inserted between b and p00. Hence, we

know that bYp000p00 2 subðw4Þ. Now, w4 )p5 w5 yields

bYp00 2 subðw5Þ. With symbols from M [M00 being present

in w5, we understand that only rule p6 is applicable. Also,

the deletion operation fixes that the right-hand side bY

introduced with rules r3 and r4 corresponds to that of p, as

this deletion is only possible if r ¼ p. Similarly, bp00 must

have been inserted to the left of p due to p00p 2 subðw5Þ.
Applying p6 on w5 deletes the markers p00p, thus yielding

w6 ¼ abYb. This series of rule applications that yields

w6 ¼ abYb from w0 ¼ aXb corresponds to the rewriting

rule X ! bY of G.

Recall that during the whole sequence of derivation

steps that we studied, always a marker from M000 was

present in the string, in particular preventing premature

starts of new simulations of some rule r : Y ! Y1Y2 from

G after applying p4 or p5.

Consider now a sentential form w0 derivable both in P
and in G, with N 0 \ subðw0Þ ¼ ;. This means that the

derivation of grammar G is in phase II. Hence, w0 ¼ xyt,

where x 2 fA;Cg�, y 2 fB;Dg�, t 2 T�. Clearly, if

w0 2 T�, no further derivation is possible. If AB or CD

are substrings of w0, we can (directly) apply f1 or g1, this

way removing this substring as intended. Alternatively, we

can apply r1 for some context-free rule r of G. As we have

considered above, we would have to apply r2 next, but this

is not possible due to the absence of symbols from N 0.
Hence, any such attempt will get stuck.

By induction, the previous arguments (that basically

present the induction steps) show that LðPÞ � LðGÞ, thus

proving the theorem. h

Remark 2 We like to mention that ins–del systems that

work completely without local context are always chal-

lenging to handle. There is always the danger of re-starting

a derivation, even after having derived a terminal string,

because in particular insertion may happen without

checking context conditions. Even in our case, we can

always insert pp0 in such a situation, but afterwards (as the

given analysis proves) there is no further continuation.

Likewise, we could insert bp00 or Yp000, even both, one after

the other, but after possibly deleting p000 with rule p5, the

derivation is stuck, as no p marker was introduced. But

these possibilities (which are easily blocked if local context

conditions are present) already indicate that rules have to

be designed carefully.

The following result is not just a simple modification of

the previous one, as it is sometimes the case when trading

the possibility of deleting substrings of length two for

deleting single symbols in one-sided contexts. This can be

seen not only by looking at the simulation rules, which are

much more elaborate, using more markers, etc., but this can

be also seen by the fact that now we need the new normal

form called ssSGNF above. In fact, we could have short-

ened the whole presentation of this paper a bit by replacing

the simulation of the context-free rules shown in Fig. 1 by

that of Fig. 2 in the previous theorem; yet, we found it

instructive to see that the simulation in Fig. 1 is much

simpler than that in Fig. 2, hence proving a kind of trade-

off between the resources that we are actually measuring in

this paper and the number of rules, or also the number of

markers, that are required by the said simulations.

Theorem 4 SSC2;1IDð2; 0; 0; 1; 0; 1Þ ¼ SSC2;1IDð2; 0; 0;

1; 1; 0Þ ¼ RE:

Proof Consider a type-0 grammar G ¼ ðN; T;P; SÞ in

ssSGNF. The rules of P are labelled uniquely by numbers

½1. . .jPj�. We construct an SSCID system P ¼
ðV; T ; fSg;RÞ of degree (2, 1) and ID size (2, 0, 0; 1, 0, 1)

as follows such that LðPÞ ¼ LðGÞ. The alphabet of P is

V 	 N [ T [M, with M :¼ ðM [M0 [M00[
M000 [Miv [MvÞ n ff iv; giv; hiv; f v; gv; hvg. The set of rules

R of P is given as follows:

1. For every rule of type p : X ! bY in G, the simulating

rules are described in Fig. 2a.

2. For every rule of type q : X ! Yb in G, the simulating

rules are listed in Fig. 2b.

3. Rules like f : AB ! k in G are simulated by rules as

given in Fig. 3.

Let us first see how the intended derivations are.

Simulating p : X ! bY : See Fig. 2a. Consider a sen-

tential form aXbt of G, with a; b 2 ðN 00Þ�, t 2 T�. The
5 Again, any r5 could be applied, but we will soon see that r ¼ p is

enforced.
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following sequence of rule applications simulates the

application of the rule p : X ! bY .

aXbt )1 aXpp0bt )2 aXpbp00p0bt )3 aXpbp000pivp00p0bt

)4 aXpbp000pivp0bt )5 apbp000pivp0bt )6

apbp000p0bt )7 apbp000Ypvp0bt )8 apbp000Yp0bt

)9 apbYp0bt )10 apbYbt )11 abYbt

Simulating q : X ! Yb : See Fig. 2b. Consider a sentential

form aXbt of G, with a; b 2 ðN 00Þ�, t 2 T�. The following

sequence of rule applications simulates the application of

the rule q : X ! Yb.

aXbt )1 aXqq0bt )2 aXqq00bq0bt )3 aXqq00q000qivbq0bt

)4 aXqq000qivbq0bt )5 aqq000qivbq0bt )6 aqq000bq0bt

)7 aqYqvq000bq0bt )8 aqYq000bq0bt )9 aqYbq0bt

)10 aqYbbt )11 aYbbt

Simulating f : AB ! k : See Fig. 3. Consider a sentential

form aABbt of G, with a; b 2 ðN 00Þ�, t 2 T�, where a does

not end with A and b does not start with B. The following

sequence of rule applications simulates the application of

this rule.

aABbt )1 afABbt )2 afAf 0Bbt )3 afAf 0Bf 00f 000bt )4

afAf 0Bf 000bt )5 afAf 0f 000bt )6 aff 0f 000bt )7 aff 000bt

)8 afbt )9 abt

We have similar rules for g : CD ! k and for h : EF ! k.

The context-free deletion rules S0 ! k (and possibly

S ! k) can be trivially simulated.

Let us now prove the converse inclusion. Recall that due

to the properties of ssSGNF, only very special strings can

be derived by a ssSGNF grammar. In our inductive

argument, we assume that we start with such a string

w and we assume that w can be also derived by the

constructed SSC ins–del system. We then prove that the

derivation of the SSC ins–del system either gets stuck or

produces a string that could have been also derived in the

ssSGNF grammar. By induction, this proves that the

constructed SSC ins–del system cannot derive any terminal

strings that do not belong to the originally given RE

language.

General Observation: There is a certain danger when

applying deletion rules in a context-free fashion, even if

there are global permitting context conditions. Namely, if

the symbol to be deleted occurs arbitrarily often in the

current string, then the deletion can occur multiple times in

general, because we cannot shield all occurrences with a

finite number of permitting contexts only. Therefore, only

the simulations for p-rules or q-rules could delete the

symbols in a context-free way, because all the deleted

symbols that are deleted in these simulations occur at most

once in a sentential form. However, when deleting, say, A’s

or B’s in the simulation of the f-rule, we need to do this at

least with one-sided context to make sure that the correct

occurrence of A or B is deleted. We will employ this

observation in the following quite frequently, mostly

without saying.

Case 1: Assume that w 2 fEA;ECg�NST
�. Hence, w ¼

aXt for some a 2 fEA;ECg�, X 2 NS, t 2 T�. As all

deletion rules require the presence of markers,6 only

insertion rules might apply. The insertion rules introduced

for simulating rules f, g, h of the ssSGNF grammar do not

apply, because they forbid the presence of symbols from

N 0 
 NS. Only if the correct symbol X 2 NS is present,

insertion rules labeled r1, r2, r3 are applicable, where r is a

context-free rule with left-hand side X. Observe that if we

apply r2, this blocks applying r1 (before erasing the marker

r00). However, we can delete the marker r00 only if marker r0

p1 = [(λ, pp′, λ)ins, ∅, (N ′ \ {X}) ∪ M]
p2 = [(λ, bp′′, λ)ins, ∅, (N ′ \ {X}) ∪ M \ {p, p′}]
p3 = [(λ, p′′′piv , λ)ins, ∅, (N ′ \ {X}) ∪ M \ {p, p′, p′′}]
p4 = [(λ, p′′, λ)del, {Xp, pb, bp′′′, p′′′piv , pivp′′, p′′p′}, ∅]
p5 = [(λ, X, λ)del, {Xp, pb, bp′′′, p′′′piv , pivp′}, ∅]
p6 = [(λ, piv , λ)del, ∅, N ′ ∪ Mv \ {p, p′, p′′′, piv}]
p7 = [(λ, Y pv , λ)ins, ∅, N ′ ∪ Mv \ {p, p′, p′′′}]
p8 = [(λ, pv , λ)del, {pb, bp′′′, p′′′Y, Y pv , pvp′}, ∅]
p9 = [(λ, p′′′, λ)del, {pb, bp′′′, p′′′Y, Y p′}, ∅]
p10 = [(λ, p′, λ)del, {pb, bY, Y p′}, ∅]
p11 = [(λ, p, λ)del, ∅, (N ′ \ {Y }) ∪ M \ {p}]

(a) Simulating p : X → bY

q1 = [(λ, qq′, λ)ins, ∅, (N ′ \ {X}) ∪ M]
q2 = [(λ, q′′b, λ)ins, ∅, (N ′ \ {X}) ∪ M \ {q, q′}]
q3 = [(λ, q′′′qiv , λ)ins, ∅, (N ′ \ {X}) ∪ M \ {q, q′, q′′}]
q4 = [(λ, q′′, λ)del, {Xq, qq′′, q′′q′′′, q′′′qiv , qivb, bq′}, ∅]
q5 = [(λ, X, λ)del, {Xq, qq′′′, q′′′qiv , qivb, bq′}, ∅]
q6 = [(λ, qiv , λ)del, ∅, N ′ ∪ Mv \ {q, q′, q′′′, qiv}]
q7 = [(λ, Y qv , λ)ins, ∅, N ′ ∪ Mv \ {q, q′, q′′′}]
q8 = [(λ, qv , λ)del, {qY, Y qv , qvq′′′, q′′′b, bq′}, ∅]
q9 = [(λ, q′′′, λ)del, {qY, Y q′′′, q′′′b, bq′}, ∅]
q10 = [(λ, q′, λ)del, {qY, Y b, bq′}, ∅]
q11 = [(λ, q, λ)del, ∅, (N ′ \ {Y }) ∪ M \ {q}]

(b) Simulating q : X → Y b

Fig. 2 Simulating context-free rules of SGNF by

SSC2;1IDð2; 0; 0; 1; 0; 0Þ

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M]
f2 = [(λ, f ′, λ)ins, ∅, N ′ ∪ M \ {f}]
f3 = [(λ, f ′′f ′′′, λ)ins, ∅, N ′ ∪ M \ {f, f ′}]
f4 = [(λ, f ′′, λ)del, {fA, Af ′, f ′B, Bf ′′}, ∅]
f5 = [(λ, B, f ′′′)del, {fA, Af ′, f ′B, Bf ′′′}, ∅]
f6 = [(λ, A, f ′)del, {fA, Af ′, f ′f ′′′}, ∅]
f7 = [(λ, f ′, λ)del, {ff ′, f ′f ′′′}, ∅]
f8 = [(λ, f ′′′, λ)del, {ff ′′′}, ∅]
f9 = [(λ, f, λ)del, ∅, N ′ ∪ (M \ {f})]

Fig. 3 Simulating f : AB ! k by SSC2;1IDð2; 0; 0; 1; 0; 1Þ
6 with the trivial exception of the simulation of S0 ! k (and possibly

S ! k)
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is present, which requires r1 to be applied before applying

r2. Similarly, we can rule out applying r3 first. The

presence of X also blocks the insertion rule p7. Hence, we

have to apply Rule r1, and this blockage remains true until

we delete X. As now details become different, we will

differentiate between rules of type p and q from now on.

However, notice that once some marker like p is intro-

duced, this rules out any simulations different from

p because of the respective permitting or forbidden

contexts.

Simulating p : X ! bY : As we have to apply p1, some

string w1 from pp0 . aXt results. Let us first check out

possibly applicable deletion rules. The deletion rule p5 that

deals with X requires all markers but p00 to be present and is

hence not applicable. The deletion rule p10 dealing with p0

is not applicable either, as it requires some non-marker

b being to the right of p. Finally, the deletion rule p11 is not

applicable, because all markers but p are forbidden

contexts, while p0 is contained in w1. Our previous

discussion shows that w1 )p2 w2 is enforced. Hence,

w2 2 bp00 . pp0 . aXt. The previous arguments carry over

and show that neither p5 nor p10 nor p11 are applicable.

Also p4 (for deleting p00) is inapplicable, as the marker p000

is missing. Hence, necessarily w2 )p3 w3, i.e.,

w3 2 p000piv . bp00 . pp0 . aXt. Clearly, no more insertion

rules are applicable. Because of the presence of X, we

cannot apply Rules p6 and p7. As X 6¼ Y , if X is present,

Y cannot be present, so that p8, p9, p10 are not applicable

either. As markers different from p occur, p11 is inappli-

cable. If we try to apply p4 or p5, then pp0 must have been

inserted to the right of X due to the permitting context Xp.

Hence, w3 2 p000piv . bp00 . aXpp0t. The permitting context

pb (both for p4 and for p5) is only possible if bp00 was

inserted inbetween p and p0, i.e., w3 2 p000piv . aXpbp00p0t.
The permitting context bp000 enforces that

w3 ¼ aXpbp000pivp00p0t. Now, Rule p4 deviates from p5. If

we want to apply p5, then the permitting context pivp0 is not

present in w3. In conclusion, we cannot apply p5 to w3. If

we follow the only remaining alternative, we have to apply

Rule p4. As it is easy to check, the permitting context are

all satisfied. Hence, w3 )p4 w4 ¼ aXpbp000pivp0t. A reason-

ing very similar to the one given just before shows that now

p5 must be applied, leading to w4 )p5 w5 ¼ apbp000pivp0t.
The absence of p00 and X and the presence of piv block all

rules except for Rule p6. Hence, w5 )p6 w6 ¼ apbp000p0t.
The absence of p00, piv and X and the presence of p000 to the

left of p0 block all rules except for Rule p7. This leads to

w6 )p7 w7 2 Ypv . apbp000p0t. The presence of pv in w7

rules out all rules with forbidden contexts. The absence of

piv leaves us with p8, p9 or p10. However, wherever we

insert Ypv, to the right of Y, we won’t find p0 as required by

p9 and p10. Hence, we have to apply Rule p8, which also

fixes the position where Ypv is inserted. Therefore,

w7 ¼ apbp000Ypvp0t )p8 w8 ¼ apbp000Yp0t. The presence of

Y (ruling out X) to the right of p000 forces us to apply

Rule p9, followed by p10 for similar reasons:

w8 )p9 w9 ¼ apbYp0t )p10 w10 ¼ apbYt. The presence of

p, Y together rule out all insertion rules. Rules that might

delete Y would require a rule marker to the right of

Y. Hence, the only possible continuation has to delete p,

using Rule p11. This results in w11 ¼ abYt. Clearly, the

transformation of w into w11 truthfully models the appli-

cation of Rule p of G. Notice that Y 2 N 0 but not

necessarily Y 2 NS.

Simulating q : X ! Yb : Consider w )q1 w1 )q2 w2

)q3 w3. As before, we can rule out using Rule q11 on

w1;w2;w3. Hence, w3 2 q000qiv . q00b . qq0 . aXt. With sim-

ilar arguments as in the p-case, Rules q6 through q10 are

disabled. Trying to apply q4 or q5 on w3 fixes the structure

of w3 due to the permitting strings. Xq 2 subðw3Þ means

that qq0 was inserted immediately to the right of

X. qq00 2 subðw3Þ tells us that q00b was inserted inbetween

q and q0 (assuming we try to apply Rule q4), while qq000 2
subðw3Þ tells us that q000qiv was inserted after q (assuming

we try to apply Rule q5). In the latter case, however, there

is no way to produce the substring qivb, as q000qiv has been

inserted to the left of q00b. Therefore, we must use Rule q4,

leading us to conclude that w3 ¼ aXqq00q000 qiv bq0t

)q4 w4 ¼ aXqq000qivbq0t. Now, w4 )q5 w5 ¼ aqq000qivbq0t
is enforced. As in the p-case, we can argue that Rules q6

and q7 must be applied now, leading us to

w7 2 Yqv . aqq000bq0t. We can argue as before that now

Rule q8 must be applied, which not only deletes qv but also

fixes the position of the inserted string Yqv, so that we

arrive at w8 ¼ aqYq000bq0t. The scenery is now completely

symmetric to the p-case, and analogous arguments prove

that in fact the rule q : X ! Yb of G has to be faithfully

simulated.

Case 2: Assume that w 2 fEA;ECg�NS0 fBF;DFg�T�.
As the presence or absence of symbols from fB;D;Fg was

never an issue in the analysis presented in Case 1, nor was

the question if X 2 NS (or X 2 NS0), only the fact that X 2
N 0 was of interest, all arguments given under Case 1

transfer to this case. Notice that now, Y 2 NS0 is necessarily

the case.

Case 3: Assume that w 2 fEA;ECg�fk;EFg
fBF;DFg�T�. The main subcase distinction is whether

w matches (i.e., w 2 fEA;ECg�fEABF;ECDF;EFg
fBF;DFg�T� or not (i.e., w 2 fEA;ECg�fEADF;ECBFg
fBF;DFg�T�), or if w 2 T� (terminal case). In each case,

we have the following argument: If we apply r1, r2, r3 (in

this order, as explored above) corresponding to a context-

free rule r, there is no continuation with r4, because the

left-hand side of Rule r is obviously missing. We still
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might apply Rule r6, but now we are finally stuck: neither

can we delete any markers anymore, nor can we introduce

some nonterminal (which would be the really bad case,

because then all of a sudden some continuation might be

possible).

The matching case: Without loss of generality, consider

w ¼ aEABFbt, with a 2 fEA;ECg�, b 2 fBF;DFg�,
t 2 T�. If we try to apply, say h1 (followed necessarily

by h2 and h3, as we will see with a similar discussion on

f soon), we arrive at h00h000 . h0 . h . aEABFbt. Then, we

need to delete h00 before being able to continue, but this

requires as permitting contexts hE, Eh0 and h0F, which

means that w must have EF as a subword, which is not the

case.

Hence, we have to apply one of the Rules f1, f2, or f3. If

we apply f2 first, then we cannot apply f1 thereafter as all

markers are blocked in f1, but as all deleting rules require

f to be present, such a derivation cannot terminate, as in

particular f 0 cannot be deleted. The same argument is valid

when we start with f3. Hence, w )f1 w1 2 f . w is

enforced. We could apply Rule f9 now, but as w1 )f9 w,

we will see no progress, so we can omit discussing this

case. If we apply Rule f3 immediately, we cannot delete f 00,
as this requires the presence of f 0. Hence w1 )f2 w2 2
f 0 . w1 is enforced. As we cannot delete f 0 due to the

absence of f 000, nor can we delete f in the presence of f 0, we

must apply Rule f3 next. This leads us to w3 2 f 00f 000 . w2.

Now, deletion rules must be applied. Notice that currently

f 00f 000 2 subðw3Þ. This disables all deletion rules but

Rule f4. However, applying this rule also fixes the places

where the insertions occurred, because there is only one

way how all the subwords fA;Af 0; f 0B;Bf 00 could have been

produced. Namely, w3 ¼ afAf 0Bf 00f 000bt. Notice that due to

ssSGNF, we do not have the possibility of longer

sequences of A’s or B’s occurring as subwords of

w. Therefore, cases like w3 ¼ afAAf 0Bf 00f 000bt are impossi-

ble, which is good, as otherwise Rule f6 might be applied

twice (after still applying f4 and f5 first), leading to

malicious derivations.

Hence, w3 )f4 w4 ¼ afAf 0Bf 000bt. Clearly, no insertion

rules are applicable. The subword Bf 000 enables exactly one

deletion rule, which is Rule f5. By our general observation,

w4 )f5 w5 ¼ afAf 0f 000bt is enforced, because we can delete

only the occurrence of B in the correct context. Similarly,

the subwords Af 0 and f 0f 000 enforce w5 )f6 w6 ¼ aff 0f 000bt,
while subwords ff 0 and f 0f 000 enforce w6 )f7 w7 ¼ aff 000bt.
Finally, subword ff 000 triggers w7 )f8 w8 ¼ afbt. It might

be tempting to leap into another simulation cycle by

continuing with Rule f2, as marker f is already present, but

as our previous analysis shows, f should be placed to the

left of an A (as otherwise the deletion rules would not

work), but this is not possible, as b does not contain any

occurrences of A. Therefore, we need to continue with

Rule f9, yielding w8 )f9 w9 ¼ abt. Obviously, the (en-

forced) transition from w to w9 models the non-context-free

deletion rule AB ! k.

The non-matching case: Without loss of generality,

consider w ¼ aEADFbt, with a 2 fEA;ECg�,

b 2 fBF;DFg�, t 2 T�. Notice that according to our

previous discussions, we should start by applying an

insertion rule like f1, g1, or h1. Once we applied, say, f1,

the presence of the marker f blocks other marker insertions,

like g2. However, also as argued above, if we start inserting

markers f and f 0, we also have to insert f 00f 000, as otherwise

no deletion rules would apply. Yet, after applying Rules f1,

f2 and f3, the contexts f 0f 000 or ff 000 required by the deletion

rules f7 or f8, respectively, require to delete f 00 first. This in

turn means that we need subwords Af 0 and f 0B, i.e., we find

the subword Af 0B as we could not have introduced two

occurrences of f 0. However, this implies that AB 2 subðwÞ,
which is not true in our case. A similar contradiction, this

time conerning the conclusion CD 2 subðwÞ, could be

drawn when assuming that we applied Rules g1, g2 and g3.

The terminal case: We have to discuss possible re-starts

with insertion rules and prove that they get (finally) stuck.

We already discussed the rules stemming from simulating

context-free rules. Alternatively, if we use f1, f2 and f3, we

will also get stuck, because any other rules will try to look

for A or B, which are not present within w 2 T�. This is

likewise true for the other non-context-free erasing rules.

Altogether, by induction, this shows that the simulation

is correct.

The second claim, which is SSC2;1IDð2; 0; 0; 1; 1; 0Þ ¼
RE; follows again with Theorem 2 from the previous

considerations. h

Next, we recall from Ivanov and Verlan (2015) that

SC1;1IDð1; 1; 0; 2; 0; 0Þ 6¼ RE. In the following we show

that computational completeness can be achieved if we

increase the degree of the system from (1, 1) to (2, 1), even

when maintaining simplicity.

Theorem 5 SSC2;1IDð1; 1; 0; 2; 0; 0Þ ¼ SSC2;1ID ð1; 0; 1;

2; 0; 0Þ ¼ RE:

The reader might wonder why we could not deduce this

result by sequentializing the construction of Theorem 3 or

even by starting from a SSC2;1IDð2; 0; 0; 2; 0; 0Þ system. In

fact, as long as special symbols like rule labels are intro-

duced as in rule p1 in Fig. 1a, where a string of two rule

labels is inserted (in this example pp0) we might do the

following. First, introduce the left one of them (in this

example it is p) with the context conditions of the previous

simulation (in this example it is M000), and then introduce

the right one (in this example it is p0) in the context of the

left one (in this example it is p). One can avoid repetitions
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by having this newly introduced marker (in this example it

is p0) in the forbidden context. This trick can only work if

we do not expect that this symbol (that we now check for

not showing up in the string) may not already be present in

the string. In our example we do not expect p0 to be present

before we introduced it, so we can sequentialize p1 in the

described way. However, this expectation is not met, for

instance, when trying to sequentialize rule p3 in Fig. 1a in

a similar fashion. Here, we would need different ideas. In

more general terms, this prevents us from starting out from

a SSC2;1IDð2; 0; 0; 2; 0; 0Þ system in our simulation for

proving the claimed computational completeness result for

SSC2;1IDð1; 1; 0; 2; 0; 0Þ. Hence, we now show a different

simulation, starting from type-0 grammars in SGNF again.

Proof Consider a type-0 grammar G ¼ ðN; T;P; SÞ in

SGNF. The rules of P are labelled uniquely by numbers

½1. . .jPj�. We construct an SSCID system P ¼
ðV; T ; fSg;RÞ of degree (2, 1) and ID size (1, 1, 0; 2, 0, 0)

as follows such that LðPÞ ¼ LðGÞ. The alphabet of P is

V 	 N [ T [M00. The set of rules R of P is given as

follows:

1. For every rule of type p : X ! bY in G, the simulating

rules are stated in Fig. 4a.

2. For every rule of type q : X ! Yb in G, the simulating

rules are stated in Fig. 4b.

3. Rules of type f : AB ! k is simulated by the SSCID

rule f1 ¼ ½ðk;AB; kÞdel; ;; ;�.

We first explain the idea behind the construction of

q rule simulation in P as follows. We introduce three

markers q; q0; q00 in order to have qq0q00 present in the string.

The X of N 0 is deleted before q0 is introduced. So, the effect

of executing q1 through q4 is the same as that of applying

the rewriting rule X ! qq0q00. Then, Y is inserted in

between q, q0 and b is inserted in between q0 and q00. Note

that b cannot be introduced for a second time, as the string

will be having q0bq00 and not q0q00 (see rule q5). On deleting

the markers, first q is deleted in the presence of the Yq0 and

bq00 to ensure that Y and b are correctly introduced. Then,

the markers q0 and q00 are deleted in this order. The order of

deletion is important since otherwise, the rules q3 and/or

q4 can be applied again and a malicious string can be

obtained by using the rules q5 and/or q6.

One can show that LðGÞ � LðPÞ by an inductive

argument. The anchor being trivially given by construction.

Consider some string w that is derivable both in G and in P
(by induction hypothesis). If w was produced in phase I of

the SGNF grammar G, then w ¼ aXb for some a; b 2
ðT [ N 00Þ� and X 2 N 0.

Simulation of q : X ! Yb: The application of q : X !
Yb in phase I is simulated by rules of P as follows:

aXb )q1 aXqb )q2 aqb )q3 aqq0b )q4 aqq0q00b )q5

aqq0bq00b )q6 aqYq0bq00b )q7 aYq0bq00b )q8 aYbq00b )q9 aYbb:

Clearly, rules of type p work alike. The rule S0 ! k that

transfers to phase II and the phase II rules AB ! k and

CD ! k can be directly simulated. By induction, the claim

follows.

To show the converse inclusion LðGÞ � LðPÞ, consider

a string w0 derivable both in G and in P. We discuss

possible derivations for w0 in P and have to show that

these either get stuck or correspond to derivation steps in

G, which would then entail the claim by induction. Observe

that any rules rj for j[ 1 require that subðw0Þ \M00 6¼ ;,

either by the permitting context, or because this is a

requirement of the ins–del rules themselves. Hence, if

N 0 \ subðw0Þ ¼ ;, i.e., the SGNF grammar G would work

in phase II, we have to apply one of h1, f1, g1, which

directly corresponds to an erasing rule of G.

Therefore, we now consider a sentential form w0 ¼ aXb
derivable in P and G, where X 2 N 0 and a; b 2 ðN 00 [ TÞ�.
The only applicable rules are some rules q1 that insert the

marker q to the right of X, thus yielding w1 ¼ aXqb. Notice

that now (and also within the future discussions) always a

marker from M00 is present in the string, which disables

applying rule h1 prematurely. No rule r3 is applicable, as

N 0 \ subðw1Þ 6¼ ;. For any of the rules r4, r5, r6, r7, r8 to

be applicable, M0 \ subðw1Þ 6¼ ; is necessary, which is not

the case. Similarly, r9 is not applicable. Hence, the only

applicable rule is q2 which deletes X yielding the string

w2 ¼ aqb. Again, none of the rules r4, r5, r6, r7, r8 is

applicable, as M0 \ subðw1Þ ¼ ;. The presence of the

marker q disables r1 and r9. As N 0 \ subðw1Þ ¼ ;, no rule

r2 is applicable. Due to the uniqueness of the rule labels, q3

p1 = [(X, p, λ)ins, ∅, M′′]
p2 = [(λ, X, λ)del, {p}, ∅]
p3 = [(p, p′, λ)ins, ∅, N ′ ∪ (M′′ \ {p})]
p4 = [(p′, p′′, λ)ins, ∅, N ′ ∪ (M′′ \ {p, p′})]
p5 = [(p′, Y, λ)ins, {p′p′′}, ∅]
p6 = [(p, b, λ)ins, {pp′}, ∅]
p7 = [(λ, p, λ)del, {bp′, Y p′′}, ∅]
p8 = [(λ, p′, λ)del, ∅, M ]
p9 = [(λ, p′′, λ)del, ∅, M ∪ M ′]

(a) Simulating p : X → bY

q1 = [(X, q, λ)ins, ∅, M′′]
q2 = [(λ, X, λ)del, {q}, ∅]
q3 = [(q, q′, λ)ins, ∅, N ′ ∪ (M′′ \ {q})]
q4 = [(q′, q′′, λ)ins, ∅, N ′ ∪ (M′′ \ {q, q′})]
q5 = [(q′, b, λ)ins, {q′q′′}, ∅]
q6 = [(q, Y, λ)ins, {qq′}, ∅]
q7 = [(λ, q, λ)del, {Y q′, bq′′}, ∅]
q8 = [(λ, q′, λ)del, ∅, M ]
q9 = [(λ, q′′, λ)del, ∅, M ∪ M ′]

(b) Simulating q : X → Y b

Fig. 4 Simulation of context-free rules of SGNF by SSC2;1IDð1; 1; 0;
1; 0; 0Þ
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is hence the only applicable rule, with w2 )q3 w3 ¼ aqq0b.

As q; q0 are present in w3, any rule like r1, r3, r8, r9 is

disabled. The absence of symbols from N 0 [M00 disables

applying r2, r4, r5, r7. Label uniqueness leaves us with

applying either q4 or q6. Hence, if w3 ) w4 in P, then

w4 2 faqq0q00b; aqYq0bg. If w4 ¼ aqYq0b, a case analysis

reveals that if w4 ) w5 in P, then this must be due to

applying q4, i.e., w5 ¼ aqYq0q00b. Now, q5 is the only

applicable rule, so that w6 ¼ aqYq0bq00b is enforced.

Alternatively, on w4 ¼ aqq0q00b, only rules q5 and q6 can

apply. However, the order of application of q5, q6 does not

matter, because if q5 is applied, then only q6 can be

applied next, and vice versa. Hence, if w4 ) w5 ) w6 in

P, w6 ¼ aqYq0bq00b is again enforced.

The presence of symbols from M;M0;M00 and N 0 in the

substring qYq0bq0 within w6 prevents applying any of the

insertion rules, as well as of any of r8 or r9. Because we

can assume that X 6¼ Y in any rule q : X ! Yb or p : X !
bY of G, no rule r2 can be applied at this point. The only

applicable rule on w6 is hence q7 which deletes the marker

q, thus yielding w7 ¼ aYq0bq00b. Let us stress that q7 could

not have been applied at any earlier point, as it also checks

that both Yq0 and bq00 are present within the sentential form.

Following the application of q7, the rules q8, q9 are

applied in a deterministic way which will delete the

markers q0; q00, respectively, from w7 thus finally yielding

w9 ¼ aYbb. A case-by-case analysis shows that no other

rules are applicable within a derivation w7 ) w8 ) w9

within P. This series of rule applications yielding w9 ¼
aYbb from w0 ¼ aXb corresponds to the rewriting rule

X ! Yb.

The second claim SSC2;1IDð1; 0; 1; 2; 0; 0Þ ¼ RE fol-

lows now with Theorem 2. h

It is shown in (Ivanov and Verlan 2015, Theorem 4) that

SC1;1IDð1; 1; 0; 1; 1; 1Þ 6¼ RE. Analogous to the previous

theorem, we show in the following that computational

completeness of the system with ID (1, 1, 0; 1, 1, 1) can

be achieved if we increase the degree of the systems from

(1, 1) to (2, 1). We prove the result even for simple semi-

conditional ins–del systems. Thus, the ID size in the fol-

lowing result is optimal for degree (2, 1).

Theorem 6 SSC2;1IDð1; 1; 0; 1; 1; 0Þ ¼ SSC2;1IDð1; 0; 1;

1; 0; 1Þ ¼ RE:

Proof Clearly, we only have to show that

SSC2;1IDð1; 1; 0; 1; 1; 0Þ ¼ RE, because the other equality

follows with Theorem 2. Let us now sketch how to simu-

late a type-0 grammar in ssSGNF by an SSC ins–del sys-

tem of ID size (1, 1, 0; 1, 1, 0) and of degree (2, 1). Recall

that we only have to describe how to simulate the context-

free rules of types p and q, as well as how to simulate the

non-context-free deletion rules like f : AB ! k. For the

first item, we refer to Fig. 4 and the corresponding expla-

nations from the proof of Theorem 5. Also recall how the

proper use of markers prohibited mixing the intended

strands of simulation with other rule applications. These

arguments are also valid in this case, where we now

employ the simulation rules listed in Fig. 5a in order to

simulate f : AB ! k. Let us explain the intended simula-

tion in the following. Consider w ¼ aABbt. We expect that

abt should be derived after some steps.

w )f1 afABbt )f2 afAf 0Bbt )f3 afAf 0Bf 00bt

)f4 afAf 0Bf 00f 000bt )f5 afAf 0Bf 000bt )f6 afAf 0f 000bt

)f7

aff 0f 000bt )f8 aff 000bt )f9 afbt )f10 abt

For the converse inclusion, proving that no malicious

derivations are possible in the obtained SSC ins–del sys-

tem, we can again follow the lines of reasoning of the

previous theorem as far as the context-free simulation rules

are concerned. Concerning the simulation of the non-con-

text-free rules, we can follow the path given by the argu-

ments in the proof of Theorem 4, because the rules from

Fig. 5a can be seen as a kind of serialization of the rules

from Fig. 3. Therefore, let us only sketch the argument for

the matching case in what follows. Yet, notice that in

particular the general observation from that proof is also

valid here.

Consider w ¼ aEABFbt, with a 2 fEA;ECg�; b 2
fBF;DFg�; t 2 T� that is derivable both in the original

ssSGNF grammar and in the constructed SSC ins–del

system. We cannot apply the wrong deletion simulation,

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′′ \ {f, f ′}]
f4 = [(f ′′, f ′′′, λ)ins, ∅, N ′ ∪ M′′′ \ {f, f ′}]
f5 = [(λ, f ′′, λ)del, {fA, Af ′, f ′B, Bf ′′, f ′′f ′′′}, ∅]
f6 = [(f ′, B, λ)del, {fA, Af ′, f ′B, Bf ′′′}, ∅]
f7 = [(f, A, λ)del, {fA, Af ′, f ′f ′′′}, ∅]
f8 = [(λ, f ′, λ)del, {ff ′, f ′f ′′′}, ∅]
f9 = [(λ, f ′′′, λ)del, {ff ′′′}, ∅]
f10 = [(λ, f, λ)del, ∅, N ′ ∪ (M′′′ \ {f})]

(a) Simulating f : AB → λ by SSC2,1ID(1, 1, 0; 1, 1, 0)

f1 = [(λ, f, λ)ins, ∅, N ′ ∪ M′′′]
f2 = [(A, f ′, λ)ins, ∅, N ′ ∪ M′′′ \ {f}]
f3 = [(B, f ′′, λ)ins, ∅, N ′ ∪ M′′′ \ {f, f ′}]
f4 = [(f ′′, f ′′′, λ)ins, ∅, N ′ ∪ M′′′ \ {f, f ′}]
f5 = [(λ, f ′′, λ)del, {fA, Af ′, f ′B, Bf ′′, f ′′f ′′′}, ∅]
f6 = [(λ, B, f ′′′)del, {fA, Af ′, f ′B, Bf ′′′}, ∅]
f7 = [(λ, A, f ′)del, {fA, Af ′, f ′f ′′′}, ∅]
f8 = [(λ, f ′, λ)del, {ff ′, f ′f ′′′}, ∅]
f9 = [(λ, f ′′′, λ)del, {ff ′′′}, ∅]
f10 = [(λ, f, λ)del, ∅, N ′ ∪ (M′′′ \ {f})]

(b) Simulating f : AB→λ by SSC2,1ID(1, 1, 0; 1, 0, 1)

Fig. 5 Simulating f : AB ! k by SSC2;1IDð1; 1; 0; 1; y; zÞ with y; z 2
f0; 1g and yþ z ¼ 1
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for instance, trying to delete EF, because we again check

that the two symbols that are deleted sit side-by-side.

Hence, we apply Rules f1, f2, f3 and f4, in this order, due to

the forbidden contexts. Also, the given permitting contexts

prevent deletion rules from being applied prematurely.

Hence,

w )f1 w1 )f2 w2 )f3 w3 )f4 w4

is enforced, with w4 2 f 000 . f 00 . f 0 . faEABFbt, where on

top the insertion contexts guarantee that

fAf 0;Bf 00f 000g 	 subðw4Þ. The permitting contexts of

Rules f6 through f9, as well as the forbidden context of f10,

now enforce the deletion of f 00, i.e., w4 )f5 w5, and the

permitting context conditions of Rule f5 imply that

w5 ¼ aEfAf 0Bf 000Fbt, because the substring AB only

appears once in w, and also because there are no substrings

like AA or BB in ssSGNF. From now on, the simulation

works exactly as analyzed for Fig. 3. This shows that the

intended simulation is enforced.

One could build a formal induction argument from this

sketch, proving the claimed result. h

Theorem 7 SSC2;1IDð1; 1; 0; 1; 0; 1Þ ¼ SSC2;1ID ð1; 0; 1;

1; 1; 0Þ ¼ RE:

Proof Clearly, we only have to show that

SSC2;1IDð1; 1; 0; 1; 0; 1Þ ¼ RE, because the other equality

follows with Theorem 2. We now sketch how to simulate a

type-0 grammar in ssSGNF by an SSC ins–del system of

ID size (1, 1, 0; 1, 0, 1) and of degree (2, 1). As in the

previous theorem, we re-cycle the simulation from Fig. 4

for the context-free rules. For the non-context-free rules,

we will use the simulation rules listed in Fig. 5b. Notice

that they are quite similar to the ones from Fig. 5a, with the

only difference being that the context conditions are tested

on the other side for the deletion rules. Yet, notice that the

only purpose of these contexts is to ensure that the intended

symbols are deleted (there are possibly many occurrences

of A’s or B’s in the string). This purpose can be fulfilled by

using either left or right context.

These explanations should suffice to convince the reader

that a formal proof of the claim could be carried out. h

4 Conclusion and future work

In this paper, we introduced the mechanism of simple

semi-conditional restrictions on the application of rules of

ins–del systems. We described recursively enumerable

languages with simple semi-conditional ins–del systems of

degrees (2, 1), as shown in Table 1, ignoring symmetric

results obtainable from Theorem 2. From the experience of

working in this paper, we find that we could put the sim-

ulations of the context-free and non context-free rules of

SGNF in two different baskets, say A and B respectively.

Pick a simulation from basket A and one from basket B.

Let the degree and size of the simulation from A be d1 and

s1 and from B be d2 and s2. We may construct a stitched

simulation of degree maxðd1; d2Þ and of ID size maxðs1; s2Þ
to have a simulation of the SGNF rules. This concept of

stitching is discussed in detail in Fernau et al. (2017b) in

the domain of graph-controlled ins–del systems. The

beauty of this method is that, with k þ p simulations in

baskets A and B as pieces, one could build kp simulations

out of it. However, among them, some stitched simulations

may end up with not so interesting results in view of the

literature. We have already adopted this stitching concept

for our simulations in some cases here, but this might be

doable in a more systematic way.

We list below what we consider the most challenging

problems in this area.

– While Ivanov and Verlan could prove that semi-

conditional ins–del systems of degree (2, 2) and ID

size (1, 0, 0; 1, 0, 0) are computationally complete, it

is open if simple semi-conditional ins–del systems of

degree (2, 2) and ID size (1, 0, 0; 1, 0, 0) characterize

RE.

– The above-mentioned computational completeness

result of Ivanov and Verlan is also interesting, because

it is one of the few situations where the simulation

starts out from a mechanism completely different from

type-0 grammars in (some sort of) Geffert normal form.

We were not able to mimic this result with simple semi-

conditional ins–del systems.

– Again, Ivanov and Verlan could prove that semi-

conditional ins–del systems of degree (1, 1) and ID size

(2, 0, 0; 1, 1, 0) are computationally complete, but it is

unclear whether simple semi-conditional ins–del sys-

tems of this size and degree characterize RE. In fact,

little is known about degree (1, 1).

– With more limited resources, it seems to be difficult if

not impossible to characterize RE. In such situations, it

would be good to see if we can at least describe all

context-free languages or nice sub-classes thereof, as

attempted in similar situations in Fernau et al. (2017a);

Fernau et al. (2018b, c).

We also pose the following, a more general, open problem

for further study in this domain: Given the degree (i, j)

satisfying i; j� 1 and 3� iþ j� 4, with what ID sizes does

a simple semi-conditional ins–del system characterize RE?

Although the (altogether eight) numbers are the mea-

sures traditionally considered in the area of semi-condi-

tional ins–del systems, there are further measures that

could be worth considering. For instance, at present the
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number of permitting or forbidden strings per rule is

unlimited. Yet, this would lead to two further natural

descriptional complexity measures, in the spirit of con-

siderations within random context grammars. We refer to

the notion of restricted grammars studied in Dassow and

Masopust (2012); Masopust (2010), where it was shown,

among other results, that every recursively enumerable

language can be generated by a random context grammar

where each rule can test only either for the presence or for

the absence of a single symbol. We are not aware of any

studies of this restricted form of regulation in combination

with ins–del systems.

We also think that considering (simple) semi-condi-

tional ins–del systems that can only (globally) test per-

mitting or forbidden strings has some good motivation, as it

is not required that a certain bio-chemical environment

should implement both kinds of global tests. We are

therefore considering this scenario in forthcoming projects.
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