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Abstract
Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance

problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the

tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases

depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron

nodes, and make the whole structure complex, even cause the worse generalization and unstable classification perfor-

mances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the

class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the

number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different

length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain

storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than

other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the

proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault

diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances.

Keywords Variable-length � Adaptive � Brain storm optimization algorithm � Class-specific cost regulation extreme

learning machine � The class imbalance problems

1 Introduction

In many real-world classification problems, the total

number of data for a class is less than the other class (He

and Ma 2013; Shen et al. 2018). We call it the imbalance

data sets. Classifying the imbalance data is a challenging

problem that has attracted growing attention of the schol-

ars. Many outstanding works, normally grouped into data-

and algorithm-based strategies (Liu et al. 2009), had been

done on the class imbalance learning. Data-based strategies

weaken the imbalance degree of data by over-sampling for

minority samples and under-sampling for majority sam-

ples. Synthetic minority over-sampling technique

(SMOTE) (Nitesh et al. 2002) and SMOTE-based

improved sampling algorithms were the popular data-based

strategies (Ramentol 2012; Zeng et al. 2009; Gao et al.

2011). Algorithm-based strategies improve the traditional

classification algorithms according to the data features,

with the purpose of enhancing the classification perfor-

mances. The cost-sensitive boosting methods (Li and Mao

2014) updated the weight of AdaBboost in terms of the

classification cost. Kernel-based learning methods were

employed to adjust the classification boundary between

minority and majority samples (Wu and Chang 2005; Wu

et al. 2016). Three approaches including the boundary

movement, the biased penalty and the class-boundary

alignment were presented to adjust boundary skews (Wu

and Chang 2005). In the kernel boundary alignment algo-

rithm, the kernel matrix was adjusted in terms of the skew

distribution of dataset (Wu et al. 2016). A weighted
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extreme learning machine (weighted-ELM) (Zong et al.

2013) was presented to strengthen the role of minority class

by assigning an extra weight to each minority sample. Xiao

et al. (2017) introduced class-specific regulation cost to

penalize the misclassified data, and then proposed a class-

specific cost regulation extreme learning machine (CCR-

ELM), together with its kernel-based extension, to solve

binary or multiclass classification problems with imbalance

distribution.

In recent years, extreme learning machine (ELM) has

become an attention-attracting method due to its faster

speed and better generalization in regression and classifi-

cation applications. It provides an unified learning platform

with a widespread type of feature mappings by employing

generalized single hidden layer feed-forward networks

(SLFNs) and least-square-based learning algorithm (Huang

et al. 2005). The input weights and hidden biases of SLFNs

are chosen randomly. Corresponding output weights are

analytically determined by generalized inverse operation of

output matrix in the hidden layer. Some improved ELM

algorithms were proposed to solve different kinds of

regression or classification problems. Online sequential

extreme learning machines employed additive hidden

nodes with radial basis function in SLFNs, with the pur-

pose of better generalization for dealing with an online data

flow or concept-drifting data stream (Rong et al. 2009;

Zhao et al. 2012; Mirza et al. 2015). Incremental extreme

learning machine (Yang et al. 2017) randomly added hid-

den nodes and manually adjusted the output weights link-

ing the hidden layer and the output layer. Semi-supervised

ELM and unsupervised ELM fit for tackling the classifi-

cation problems that collecting a large amount of labeled

data is hard and time-consuming (Huang et al. 2014). For

the class imbalance problems, weighted ELM (W-ELM)

(Zong et al. 2013), total error rate ELM (TER-ELM)

(Mirza et al. 2013), and class-specific cost regulation

extreme learning machine (CCR-ELM) (Xiao et al. 2017)

were presented, and CCR-ELM show better performances.

All above ELM-based learning algorithms may result in

ill-condition problems due to the randomly selected input

weights and hidden biases. Non-optimal or redundant input

weights and hidden biases also make them responding

slowly (Huang et al. 2005) and lead to worse generaliza-

tion. In view of the shortcomings above, some population-

based intelligence optimization algorithms, such as genetic

algorithm (GA) (Ertam and Avci 2017), particle swarm

optimization (PSO) (Han et al. 2013), fruit fly optimization

(FOA) (Li and Zhang 2014) and krill herd algorithm (KH)

(Guo et al. 2017), were introduced to find the optimal

parameters of the activation function in ELM-based

learning algorithms, with the purpose of improving the

classification accuracy.

In this paper, we focus on the class imbalance problem,

in which majority class with negative label and minority

class with positive label. Class-specific cost regulation

ELM is employed to weaken the influence of the imbalance

and dispersion degree of the data on the classification

accuracy. The structure of CCR-ELM decided by the

number of hidden nodes, the input weights, the hidden

biases and two tradeoff factors, plays the direct role in its

classification performances. In general, above parameters

are pre-set by human or randomly generated. Inappropriate

values of the above parameters may lead to the useless or

redundant neuron nodes, and make the whole structure

complex. Based on this, brain storm optimization algorithm

(BSO) is employed to find the optimal parameters’ values

of CCR-ELM. Because the number of input weights and

biases depend on the number of hidden nodes, the networks

with a varying number of hidden nodes are depicted by the

individuals with various length. The novel mutation and

mergence operators generating the new individuals are

proposed, with the purpose of effectively exchanging

evolutionary information between the individuals with

variable-length. Following that, an adaptive CCR-ELM

based on variable-length brain storm optimization algo-

rithm is presented to solve the class imbalance problems.

The rest of paper is organized as follows. A brief review

of CCR-ELM is given in Sect. 2. BSO-based CCR-ELM

for classifying imbalance data is proposed in Sect. 3. The

classification performances of the proposed method are

compared with other class imbalance learning algorithms

in Sect. 4. Finally, the whole paper is concluded and work

planned to do next are given.

2 Class-specific cost regulation extreme
learning machine

In extreme learning machine originally proposed by Huang

et al. (2005), the input weights and biases of SLFNs are

randomly generated. Corresponding output matrix of hid-

den-layer is explicitly calculated in terms of the output

weights by the fewer steps. Thus, the computation cost of

ELM is less.

Suppose there are N distinct samples, depicted by

(Xi; yiÞ; i ¼ 1; 2; . . .;N. Xi ¼ ½xi1; xi2; . . .; xin�T 2 Rn and

yi ¼ ½yi1; yi2; . . .; yim�T 2 Rm. Let aj and bj be the input and

output weights, respectively. bj is the bias of a hidden unit.

A SLFN with L hidden nodes is modeled as follows.

XL

j¼1

bjgðaj; bj;XiÞ ¼ oi; i ¼ 1; :::;N ð1Þ

In above formula, gð�Þ is the activation function and nor-

mally employs traditional nonlinear functions, such as
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sigmoid, sine, radial basis functions, and so on (Huang

et al. 2012). The error between the estimated output oi and

the actual output yi shall be zero once SLFNs can exactly

approximate the feature of data. That is,

XL

j¼1

bjgðaj; bj;XiÞ ¼ yi; i ¼ 1; :::;N ð2Þ

Let b ¼ ½b1T ; . . .; bLT �T and Y ¼ ½y1T ; . . .; yNT �T . Above

model can be simplified as Hb ¼ Y .

H ¼
gða1; b1;X1Þ � � � gðaL; bL;X1Þ

..

.
� � � ..

.

gða1; b1;XNÞ � � � gðaL; bL;XNÞ

2

64

3

75

N�L

ð3Þ

H is so-called output matrix of hidden layer.hij represents

the output of jth hidden node corresponding to the input Xi.

During the training process, the parameters of a hidden

node, including aj and bj, are not adjusted after initially

generated. Corresponding output weights are estimated as

follows.

b̂ ¼ HyY ¼
I
C þ HTH
� ��1

HTY; L\N

HT I
C þ HTH
� ��1

Y ; L�N

(
ð4Þ

Hy is the Moore–Penrose generalized inverse of H. C is a

pre-set parameter, with the purpose of providing a tradeoff

between minimizing the training error and maximizing the

marginal distance. I is the unit matrix. The optimal output

weights are gotten by minimizing the cost function

kO� Yk.
After introducing class-specific regulation cost, CCR-

ELM was presented to solve the class imbalance problems.

Two tradeoff factors, including Cþ for minority positive

samples and C� for majority negative samples, are

employed to rebalance both classes (Xiao et al. 2017).

Assuming that the number of minority positive samples

and majority negative samples are expressed by l1 and l2,

respectively. CCR-ELM is modelled as follows.

min
1

2
bk k2 þ 1

2
Cþ

Xl1

i¼1jyi¼þ1

n2i þ
1

2
C�

Xl2

i¼1jyi¼�1

n2i

0
@

1
A

s:t: hðxiÞb ¼ yi � ni; i ¼ 1; :::N:

ð5Þ

Corresponding output weights b̂ are computed as:

b̂ ¼ HyY ¼
I
Cþ þ I

C� þ HTH
� ��1

HTY ; L\N

HT I
Cþ þ I

C� þ HTH
� ��1

Y ; L�N

(
ð6Þ

For the binary classification problems, the decision func-

tion of CCR-ELM-based classifier is f ðxÞ ¼ signhðxÞb .

f ðxÞ ¼
sign hðxÞ I

Cþ þ I
C� þ HTH

� ��1
HTY ; L\N

sign hðxÞHT I
Cþ þ I

C� þ HTH
� ��1

Y ; L�N

(
ð7Þ

In CCR-ELM, there are five key parameters having a direct

impact on the classification accuracy, including the number

of hidden nodes L, the input weights aj, the biases bj, C
þ

for the minority positive samples and C� for the majority

negative samples. The former three parameters decide the

structure of SLFNs and normally are pre-set by human.

3 Adaptive CCR-ELM with variable-length
brain storm optimization algorithm

Brain storm optimization algorithm (BSO) proposed by

Cheng et al. (2015) is a promising swarm intelligence

algorithm simulating the human brainstorming process.

Implicit parallel search ability of BSO makes the popula-

tion having superior diversity and converges to the opti-

mum faster, especially for multi-modal or large-scale

optimization problems. Many improved BSO algorithms

have been presented, with the purpose of avoiding pre-

mature convergence and accelerating the convergence

speed. Cheng et al. (2014) proposed the population diver-

sity enhanced brain storm optimization algorithm (en-

BSO). Two partial re-initializing solutions strategies were

given to help the population jump out of local optima. The

algorithm steps of en-BSO with re-initialization strategy is

shown in Algorithm 1 (Cheng et al. 2014).

In en-BSO, a new individual is formed by the following

mutation or mergence operators. Let xijðtÞ and xijðtÞ be jth

gene of xi after and before mutation operation. T and t

denote the maximum iterations and the current generation.

logsig is a logarithmic sigmoid transfer function. c is a

constant. The mutation operation corresponds to Step 3.1

shown as follows.

xijðtÞ ¼xijðtÞ þ nðtÞ � randðÞ ð8Þ

nðtÞ ¼ log sig
0:5T � t

c

� �
� randðÞ ð9Þ

The mergence operation corresponding to Step 3.2 is done

based on two selected parent individuals or cluster centers

expressed by xijðtÞ and xkjðtÞ. xijðtÞ denotes the new indi-

vidual. Let a�Uð0; 1Þ be a random number.

xijðtÞ ¼ axijðtÞ þ ð1� aÞxkjðtÞ ð10Þ

Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance... 13
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Algorithm 1 The en-BSO
1: Initialization:

Randomly generate n individuals, and evaluate them.
2: Clustering:

2.1: Partition n individuals into m clusters by k-means clustering algorithm;
2.2: Rank individuals in each cluster and record the best individual as cluster center in
each cluster;
2.3: A new individual is generated based on a randomly selected cluster center as rc <
pc.rc ∈ [0, 1) and pc is a pre-determined probability.

3: Generating new individual:
One or two cluster(s) are randomly selected to generate new individual in terms of a
random value rg ∈ [0, 1)
3.1: A new individual is generated by the mutation operation based on a randomly selected
cluster center or an individual in this cluster as a pre-determined probability pg > rg;
3.2: A new individual is formed by merging two randomly selected cluster centers or indi-
viduals from corresponding clusters when pg < rg.

4: Selection:
Compared the newly generated individual with the original individual and the one with
better fitness will be retained.

5: Re-initialization:
Re-initialize half solutions which is selected randomly after certain iterations.

6: Evaluate all of individuals.
7: If the terminate condition is not satisfied, jump to Step 2. Otherwise, output the optimal

individual.

Above en-BSO is employed to find the optimal parame-

ters of CCR-ELM. Among five key parameters of CCR-

ELM, the number of input weights aij 2 RN�L and the biases

bj�R
L vary with the number of hidden nodes L. Based on this,

the networks with different L can be described by the indi-

viduals with various length, expressed by pi ¼
ðCþ;C�; a11; . . .; a1N ; . . .; aL1; . . .; aLN ; b1; b2; . . .; bLÞ. The
length of each individual is LðN þ 1Þ?2. During the evolu-

tion, once two parent individuals have different length, no

matching genes for the shorter individual can bemergedwith

the longer one by Eq. (10). Therefore, a novel mergence

operator is proposed, and then variable-length en-BSO

algorithm (VLen-BSO) is constructed.

Assuming that lj and lk are the length of parent individuals.

Only the genes in the matching positions can bemerged each

other and the new genes in the mismatching parts are ran-

domly generated based on corresponding parents.

xijðtÞ¼
axijðtÞþð1�aÞxkjðtÞ j	minðli; lkÞ

xijðtÞþanðtÞ minðli; lkÞ\j	 maxðli; lkÞ� randðÞd e; li[ lk

0 j[ maxðli; lkÞ� randðÞd e

8
><

>:

ð11Þ

Above variable-length en-BSO algorithm is introduced to

find the optimal structure and tradeoff factors of CCR-

ELM for the class imbalance learning. We call it adaptive

CCR-ELM with VLen-BSO. In order to evaluate the

classification accuracy of each individual, the fitness

function is defined as the root mean square error (RMSE)

on the training set Xtrain.

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

PL
j¼1 b̂jgðaj; bj;XiÞ � yik22

���
N

vuut ð12Þ

The detailed algorithm steps of adaptive CCR-ELM with

VLen-BSO are shown as follows.

4 Experimental results and discussion

Nine binary-class imbalanced datasets are chosen from

UCI machine learning repository preprocessed by Frank

and Asuncion (2010) in the experiments, with the purpose

of fully analyzing and comparing the classification per-

formances of the proposed method. Especially, the data in

Wine1 record chemical composition of wine in the same

area of Italy, and can be classified into three categories in

fact. It is transformed into binary-classification problem by

combining the data in any two classes into majority sam-

ples, and employing the others as minority samples.

Detailed information about these datasets is listed in

Algorithm 2 Adaptive CCR-ELM with VLen-BSO
1: The imbalanced dataset X = {(xi, yi), i = 1, 2, . . . , N} is divided into the training set

Xtrain and test set Xtest.
2: The initial population P is randomly generated based on the defined lower and upper

bounds of variables.
3: Finding the optimal parameters of CCR-ELM by VLen-BSO and output these optimal

parameters.
4: Classify the imbalanced dataset by CCR-ELM with the optimal parameters.

14 J. Cheng et al.
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Table 1. The imbalanced ratio (IR) of datasets varies from

0.1 to 0.4. In addition, a real-world class imbalance prob-

lem for the fault diagnosis of conveyor belt is employed to

further analyze the classification performances.

To evaluate the class imbalance algorithms, we give

more insight into not only the overall accuracy of the whole

samples, but also the classification accuracy obtained

within each class. Suppose TP, TN, FP, FN are the number

of data with true positive, true negative, false positive and

false negative, respectively. The overall accuracy of the

dataset is defined in Eq. (13). However, this index is sen-

sitive to the class distribution and cannot fully reflect the

imbalance classification performances (Xiao et al. 2017).

Based on this, minority accuracy, majority accuracy and G-

mean are employed to evaluate the binary-classification

performances (Yu et al. 2016).

overallaccuracy ¼ TPþ FN

TPþ FPþ TN þ FN
ð13Þ

minorityaccuracy ¼ TP

TPþ FN
ð14Þ

majority accuracy ¼ TN

TN þ FP
ð15Þ

G� mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TPþ FN
� TN

TN þ FP

r
ð16Þ

4.1 The influence of parameters
on the performance of CCR-ELM

In CCR-ELM, sigmoid expressed by gða; b;XÞ ¼ 1=ð1þ
expða 
 X þ bÞÞ is employed as the activation function and

the bound of input weights and biases are set as aj
,bj 2 ½�1; 1�. Cþ and C� are the discrete values chosen

from {2�24,2�23,...,225} and the possible values of L are

{10,20,...,1000}.

The statistical classification performances under different

L are shown in Fig. 1. Taking Car dataset as example, the

effect of L on G-mean is shown in Fig. 2. With the

increasing of L, more hidden nodes are contained in the

network, bringing the better testing accuracy, and relatively

stable G-mean when L� 500 for most of the datasets.

However, G-mean for large-scale datasets, such as Poker

hand and Dota2, becomes larger with the increasing number

of hidden nodes, causing the weak generalization of CCR-

ELM. Iris, as a small-scale dataset, the classification per-

formance is apparently independent on L because larger

L causes more redundant nodes having meaningless impact

on the algorithm performances. In summary, the classifier

with the complex structure is in favor of the classification

accuracy, but obviously increases the computational com-

plexity, causing the time-consuming for learning.

As L is pre-set to 400, G-mean under different Cþ and

C� are shown in Fig. 3. Obviously, G-mean is sensitive to

both Cþ and C�. When Cþ and C� are less than 2�10, the

classification accuracy retains worse because of less pun-

ishment for the misclassified data.

4.2 Comparison of the classification
performances among ACCR-ELM combining
with different evolutionary optimization
algorithms

In this paper, five kinds of swarm intelligence optimization

algorithms, including GA, PSO (Guo et al. 2016), variable-

length PSO (VPSO) (Wang et al. 2018), VLen-BSO and

group-based VLen-BSO (GVLen-BSO) are introduced to

find the optimal parameters of CCR-ELM, with the purpose

of improving the generalization and classification accuracy.

Group-based VLen-BSO employes a simple grouping

method (Guo et al. 2015) in the cluster operator instead of

the k-means method to reduce the computational cost.

During the experiments, the maximum terminal iteration

and the population size are respectively set to 1500 and 20

for all methods. For ACCR-ELM with GA, the crossover

probability is 0.9, the mutation probability is 0.01, and the

generation gap is 0.9. For ACCR-ELM with PSO and

Table 1 Detailed information about the datasets from UCI

Dataset Number of attributes Number of classes Number of training data Number of test data Imbalance ratio

Wine1 13 2 100 78 0.3333

Wine2 12 2 2898 2000 0.2461

Adult 14 2 28,842 20,000 0.2500

WPBC 34 2 100 98 0.2533

WDBC 32 2 300 317 0.4000

Dota2 116 2 50,000 52,944 0.1000

Iris 4 2 75 75 0.3333

Car 6 2 1000 728 0.2997

Poker hand 11 2 25,010 100,000 0.2382

Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance... 15
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VPSO, the learning factors c1 ¼ 1:5, c2 ¼ 1:7 and the

inertia weight x ¼ 1. For ACCR-ELM with VLen-BSO,

pc ¼ 0:2, pg ¼ 0:6. The number of the clusters is set to 20.

Only half of the solutions will be re-initialized every 200

iterations.

The classification performances of above all adaptive

CCR-ELM are compared with the original CCR-ELM and

the statistical results under 30 running times are listed in

Tables 2 and 3.

The statistical results of overall accuracy for 30 running

times shown in Table 2 indicate that ACCR-ELMs with

VLen-BSO and GVLen-BSO have the better classification

accuracy than other algorithms.By further comparing

G-mean shown in Table 3, we see that traditional CCR-

ELM with randomly generated parameters has the worse

classification accuracy, especially for Iris, Dota2 and Poker

hand datasets. In contrast, adaptive CCR-ELMs with the

optimal parameters have the better classification

Fig. 2 G-mean of ACCR-ELM with different number of hidden nodes L

Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance... 17
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Table 2 Compare the overall accuracy ððCþ;C�;LÞMax=Averageð%ÞÞ among CCR-ELM and ACCR-ELM with GA, PSO, VPSO, VLen-BSO

and GVLen-BSO

Dataset CCR-ELM ACCR-ELM with

GA

ACCR-ELM with

PSO

ACCR-ELM with

VPSO

ACCR-ELM with

VLen-BSO

ACCR-ELM with

GVLen-BSO

Wine (27; 26; 70) (6:597; 3:446; 70) (3:766; 9:786; 50) (1:825; 1:725; 70) (3:256; 3:406; 80) (1:687; 2:087; 30)

96.87/95.41 92.55/91.17 97.75/97.23 98.75/97.10 98.88/97.75 100/97.42

Wine2 (23; 2�10; 10) (5:373; 1:123; 250) (1:743; 1:814; 170) (5:756; 3:706; 60) (5:956; 2:277; 120) (2:387; 6:556; 80)

97.30/96.55 98.91/97.96 99.06/98.95 99.24/99.03 99.31/99.28 99.37/99.14

Adult (27; 2�1; 600) (1:437; 5:116; 310) (6:347; 5:126; 130) (2:814; 1:684; 30) (2.457, 5.767, 80) (1:947; 2:977; 500)

76.53/75.71 81.72/79.77 80.48/78.98 86.14/84.85 88.64/87.95 79.51/77.89

WPBC (2�12; 24; 20) (3:386; 2:897; 90) (3:327; 1:777; 90) (6:773; 5:323; 150) (4:796; 9:196; 10) (5:926; 1:027; 60)

82.47/80.82 85.30/83.99 72.16/70.61 92.88/91.43 90.38/89.42 92.31/89.62

WDBC (27; 2�21; 60) (4:467; 7:436; 80) (5:386; 1:227; 220) (8:392; 1:543; 40) (1:767; 8:796; 110) (1:857; 2:527; 90)

90.82/90.13 90.12/89.01 91.50/90.37 92.41/91.55 91.82/90.77 92.45/91.22

Dota2 (213; 26; 90) (2:325; 6:656; 340) (4:425; 1:336; 60) (2:814; 1:684; 90) (3:456; 4:786; 90) (5:666; 1:396; 150)

85.69/85.14 84.42/81.11 83.10/81.32 85.42/85.04 87.75/86.94 85.76/85.66

Iris (20; 21; 30) (1:226; 8:096; 120) (4:995; 2:547; 280) (2:537; 4:926; 30) (2:067; 2:387; 50) (2:317; 1:456; 70)

41.33/37.86 60.33/59.63 35.52/34.66 100/99.54 100/100 100/98.35

Car (2�8; 26; 60) (4:967; 3:787; 60) (3:097; 2:307; 420) (9:624; 1:206; 60) (3:247; 1:577; 30) (1:627; 2:477; 80)

84.14/82,81 84.64/83.77 84.74/83.73 85.69/81.94 86.53/84.66 85.01/84.36

PokerHand (211; 2�17; 70) (5:414; 3:864; 130) (2:426; 2:337; 120) (8:427; 5:506; 130) (4:326; 6:666; 20) (1:017; 2:856; 100)

78.42/74.98 85.33/83.46 86.53/83.23 89.87/88.98 90.03/89.83 71.45/71.42

Table 3 Compare G-mean ððCþ;C�; LÞMax=Averageð%ÞÞ among CCR-ELM and ACCR-ELM with GA, PSO, VPSO, VLen-BSO and GVLen-

BSO

Dataset CCR-ELM ACCR-ELM with

GA

ACCR-ELM with

PSO

ACCR-ELM with

VPSO

ACCR-ELM with

VLen-BSO

ACCR-ELM with

GVLen-BSO

Wine (2�4; 2�3; 20) (6:776; 1:466; 160) (1:977; 2:387; 120) (6:134; 3:604; 60) (3:546; 2:237; 70) (1:647; 1:987; 60)

0.9616/0.9540 0.9263/0.9143 0.9832/0.9788 0.9858/0.9794 0.9916/0.9741 0.9916/0.9726

Wine2 (2�2; 2� 23; 20) (3:425; 9:477; 120) (2:737; 1:517; 10) (9:495; 7:714; 130) (2:577; 3:136; 190) (2:797; 2:636; 100)

0.9612/0.9526 0.9804/0.9724 0.9819/0.9800 0.9891/0.9877 0.9874/0.9869 0.9725/0.9648

Adult (218; 2�12; 370) (6:314; 6:785; 30) (4:206; 1:556; 40) (6:934; 6:236; 70) (4:336; 8:376; 30) (3:307; 1:297; 150)

0.9616/0.9540 0.8407/0.8367 0.8223/0.8108 0.8858/0.8647 0.8858/0.8647 0.8913/0.8891

WPBC (27; 2�1; 30) (3:436; 3:976; 140) (6:696; 3:157; 100) (9:906; 1:216; 60) (1:067; 1:697; 80) (2:567; 1:476; 110)

0.6896/0.6062 0.8426/0.8352 0.7009/0.6364 0.8905/0.8766 0.8789/0.8603 0.8946/0.8809

WDBC (24; 2�13; 10) (5:236; 6:216; 60) (1:546; 8:076; 30) (1:407; 2:327; 160) (1:557; 1:697; 10) (1:947; 2:977; 20)

0.9616/0.9540 0.9057/0.8982 0.9123/0.9037 0.9185/0.9127 0.9162/0.9052 0.9229/0.9100

Dota2 (24; 221; 30) (4:765; 3:536; 90) (3:675; 7:434; 50) (6:455; 2:416; 30) (3:667; 4:116; 140) (1:197; 2:055; 70)

0.0036/0.020 0.8508/0.8437 0.8406/0.8312 0.8779/0.8696 0.8895/0.8816 0.8996/0.8911

Iris (2�8; 2�16; 60) (4:234; 2:616; 120) (2:947; 2:257; 150) (1:977; 1:327; 10) (2:587; 1:777; 30) (2:877; 2:844; 40)

0.2464/0.1963 0.6421/0.6372 0.2132/0.1414 1/0.9926 1/1 0.9738/0.9653

Car (2�1; 25; 530) (8:447; 8:007; 80) (2:257; 2:807; 100) (5:114; 2:214; 90) (2:657; 1:007; 90) (1:267; 2:657; 150)

0.8802/0.8419 0.8522/0.8436 0.8640/0.8486 0.8927/0.8738 0.8720/0.8710 0.8702/0.8541

PokerHand (24; 217; 80) (6:675; 3:984; 210) (1:106; 7:846; 130) (5:535; 2:654; 220) (4:557; 4:736; 40) (1:617; 2:717; 100)

0.4266/0.3676 0.8212/0.8011 0.7963/0.7748 0.8958/0.8821 0.9020/0.9013 0.8589/0.8477
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performances for most of datasets. Especially, VLen-BSO

and GVLen-BSO provides the more rational parameters for

CCR-ELM, classifying the minority data more accurately.

4.3 The effect of the imbalance ratio
on the algorithm performance

In real-world classification problems, the imbalance ratios

reflecting the quantitative difference between the data of

majority class and minority class, depend on the problem

properties. The experiments under the imbalanced ratios

changing from 0.1 to 0.4 are done for above nine imbalance

datasets, with the purpose of analyzing the robustness of

the class imbalance learning algorithms under varied

imbalanced ratios.

The statistic experimental results of G-mean under dif-

ferent imbalanced ratio are shown in Fig. 4. Comparing the

classification performances among ACCR-ELM with

VLen-BSO, VPSO and GVLen-BSO indicate that no

matter the imbalance ratios change or not, ACCR-ELM

with VLen-BSO has the relatively stable classification

performance. The G-means of ACCR-ELMs with GVLen-

BSO and VPSO both fluctuate in the range about 0.5,

meaning relatively worse robustness, but GVLen-BSO

obtains the more rational parameters with the relatively

better classification accuracy than VPSO.

4.4 Application of ACCR-ELM algorithm in fault
diagnosis of conveyor belt

Conveyor belt is the most important transportation equip-

ment in coal mine. Any fault, such as overcurrent, off-

tracking, overload, and so on, may make the belt shut down

immediately, and cause production delay, even reduce

production efficiency. Given that the faults only occur

occasionally and the belt generally holds a normal opera-

tion, the monitoring data for a conveyor belt is in fact

imbalance.

The experiment is done on the monitoring data collected

from two belts in certain coal mine. Belt 1 represents a belt

for the underground transportation of coal mine. Belt 2 is a

conveyer belt in a coal separating plant. Detailed infor-

mation about two belts are listed in Tables 4 and 5. In

ACCR-ELM with VLen-BSO, the number of hidden nodes

is set to 500, sigmoid activation function with C ¼ 1 is

employed. The learning factors and inertia weight of VPSO

are denoted as c1 ¼ 1:5, c2 ¼ 1:6 , and x ¼ 1. The prob-

ability of VLen-BSO is preset to pc ¼ 0:2, pg ¼ 0:6. The

statistic experimental results with 30 running times shown

in Table 6 indicate that ACCR-ELM with VLen-BSO has
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Fig. 4 The classification robustness of adaptive CCR-ELMs under

varied imbalanced ratios
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the better classification accuracy and stability that VPSO

because of the more reasonable structure of ELM.

5 Conclusions

An adaptive CCR-ELM combining with VLen-BSO was

proposed to deal with the class imbalance problems, with

the purpose of improving the generalization and classifi-

cation accuracy. VLen-BSO is employed to find the opti-

mal parameters of CCR-ELM, including the number of

hidden nodes, the input weights, the biases and the tradeoff

factors. All above parameters compose of an individual in

VLen-BSO and the length of individuals vary with the

number of hidden nodes. In order to incorporate two parent

individuals with different length, a novel mergence oper-

ator is presented to generate a new individual. The exper-

imental results for nine imbalance datasets show that

VLen-BSO can find better parameters of CCR-ELM,

resulting in the better classification accuracy than other

evolutionary optimization algorithms, such as GA, PSO,

and VPSO. In addition, the classification performance of

the proposed adaptive algorithm is relatively stable under

varied imbalance ratios. Applying the proposed algorithm

in the fault diagnosis of conveyor belt also proves that

ACCR-ELM with VLen-BSO has the better classification

accuracy and stability. The optimal structure for ensemble

imbalance learning with more than one CCR-ELM is our

future work.
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