
Computing with chemical reaction networks: a tutorial

Robert Brijder1

Published online: 21 January 2019
� Springer Nature B.V. 2019

Abstract
Chemical reaction networks (CRNs) model the behavior of chemical reactions in well-mixed solutions and they can be

designed to perform computations. In this tutorial we give an overview of various computational models for CRNs.

Moreover, we discuss a method to implement arbitrary (abstract) CRNs in a test tube using DNA. Finally, we discuss

relationships between CRNs and other models of computation.

Keywords Chemical reaction networks � DNA strand displacement � Population protocols � Petri nets

1 Introduction

Chemical reaction networks are a fundamental model of

chemical reactions in well-mixed solutions. A chemical

reaction network (CRN) is, roughly, a finite set of chemical

reactions like X þ Y ! 2Y þ Z, where X, Y, and Z are

‘‘abstract’’ molecular species, i.e., these species are not tied

to any chemical implementation. CRN theory (Feinberg

1980), which studies the dynamic behavior of CRNs, is a

mature research field that is traditionally focused on net-

works of chemical reactions occurring in nature. Recently,

it has been been shown that carefully designed CRNs are

able to compute (Liekens and Fernando 2007; Soloveichik

et al. 2008)—such computations can, e.g., take place in a

test tube. There is now a rapidly growing body of literature

devoted to computational models for (abstract) CRNs.

Decoupling reactions from chemical implementations

introduces a higher level of abstraction, where CRNs

become a high-level programming language. Using a

(semi-)automated method, arbitrary abstract CRNs can

then be compiled to chemical implementations (Solove-

ichik et al. 2010; Chen et al. 2013; Badelt et al. 2017).

In this tutorial we give a gentle overview of the popular

computational models for CRNs, a possible chemical

implementation for arbitrary CRNs, and an overview of

related models of computation.

First we define the notion of aCRNand theway it operates

on a discrete state space (Sect. 2). A discrete state describes

the counts of the species of a CRN. In Sects. 3.1 and 3.2 we

turn to a model of computation for such discrete CRNs

inspired by the notion of population protocols from the

research field of distributed computing (Angluin et al. 2006).

Here a CRN computes by either accepting or rejecting an

input state, much like a finite state automaton or a Turing

machine accepts or rejects arbitrary input strings. Equiva-

lently, such a CRN can be seen as recognizing a Boolean-

valued function on its set of input states. This computational

model is then extended in Sect. 3.3 to the computation of

more general functions than Boolean-valued functions

(Chen et al. 2014a). Next we study CRNs that never need

‘‘slow’’ reactions to perform their computations (such slow

reactions are called speed faults) (Chen et al. 2017).

In Sect. 4.1, we augment discrete CRNs with stochastics

to obtain stochastic CRNs. In this way, a stochastic CRN

behaves as a continuous-time Markov chain on the discrete

state space of the CRN. The probability for a reaction to

take place here depends on (1) the molecular counts of the

reactants, (2) the volume of the solution (e.g., the test tube),

and (3) the rate constant (a value that depends on the

reaction). With the notion of a stochastic CRN in place, we

show in Sect. 4.2 that stochastic CRNs can simulate Turing

machines with an arbitrary small positive probability of

error (Soloveichik et al. 2008). In Sect. 4.3 we turn to the

natural problem of leader election (Angluin et al. 2008;

Belleville et al. 2017; Doty and Soloveichik 2018) and in

Sect. 4.4 we show that probability distributions can be

computed using CRNs (Cardelli et al. 2016a).

& Robert Brijder

robert.brijder@uhasselt.be

1 Hasselt University, Diepenbeek, Belgium

123

Natural Computing (2019) 18:119–137
https://doi.org/10.1007/s11047-018-9723-9(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-018-9723-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-018-9723-9&domain=pdf
https://doi.org/10.1007/s11047-018-9723-9

Instead of considering discrete state spaces, where a

discrete state describes the counts (which are nonnegative

integers) of the species of a CRN, one can also consider a

continuous state space, where a continuous state describes

the concentrations (which are nonnegative real numbers)

of the species. In fact, CRN theory has traditionally

focused largely on CRNs with continuous state spaces.

However, such continuous CRNs only form a faithful

approximation of reality in environments where the mole-

cule counts are high (and stay high) (Kurtz 1972). The

standard mass-action continuous CRN model is given in

Sect. 5.1, including a discussion of the computational

mode of operation for this CRN model (Fages et al. 2017),

and the continuous CRN model from Chen et al. (2014b) is

studied from a computational point of view in Sect. 5.2.

In Sect. 6 we recall from Soloveichik et al. (2010) that

arbitrary CRNs can be implemented in the wetlab using

DNA as a substrate, in this way, justifying the high level of

abstraction that was taken in the previous sections. We

recall in Sect. 7 that CRNs are closely related to Petri nets

(Peterson 1977; Reisig and Rozenberg 1998), vector

addition systems (Karp and Miller 1969), and population

protocols (Angluin et al. 2006). Petri nets and vector

addition systems are the most studied models of concur-

rency and population protocols form a popular model for

distributed computing. We end with a discussion.

2 Chemical reaction networks

In this section we recall the notion of a chemical reaction

network (CRN), which is roughly a set of reactions. We

consider a level of abstraction that is higher than that of

concrete chemical reactions. So, rather than considering

‘‘concrete’’ chemical reactions such as NaHCO3 þ HCl !
H2Oþ NaCl þ CO2, we abstract from the level of molec-

ular species, like NaHCO3 and HCl, and instead consider

abstract species, usually denoted by capital letters like A

and B, and reactions like 2Aþ B ! 3A. Thus we do not

worry about the chemical implementations of species A and

B. This higher level of abstraction is justified in Sect. 6,

where it is recalled that any (abstract) CRN is imple-

mentable in the wetlab using DNA as a substrate.

LetN be the set of nonnegative integers. LetK be a finite set.

The set of vectors overN indexed byK (i.e., the set of functions

u : K ! N) is denoted byNK.A vector v 2 NK can be viewed

as a multiset with K as the underlying set. For x 2 NK, we

denote the cardinalityof themultisetx bykxk ¼
P

i2K xðiÞ.We

denote the restriction of x to R � K by xjR. For x; y 2 NK we

write x� y if and only if xðiÞ� yðiÞ for all i 2 K.

A reaction a over K is a tuple ðr; pÞ with r; p 2 NK; r

and p are called the reactants and products of a,

respectively. A reaction is commonly written additively,

where, e.g., Aþ 2B ! Bþ C denotes the reaction ðr; pÞ
over K ¼ fA;B;Cg, where rðAÞ ¼ 1, rðBÞ ¼ 2, rðCÞ ¼ 0,

pðAÞ ¼ 0, pðBÞ ¼ 1, and pðCÞ ¼ 1. Reaction a is called

unimolecular if krk ¼ 1, and bimolecular if krk ¼ 2. Since

it is very rare in nature for three or more molecules to

simultaneously collide, almost all elementary reactions

(that is, reactions that cannot be decomposed into multiple

reactions) in nature are unimolecular and bimolecular

reactions. Reaction a is called mute if r ¼ p.

We now define the central notion of a chemical reaction

network.

Definition 2.1 A chemical reaction network (CRN) is an

ordered pair N ¼ ðK;RÞ with K a finite set and R a finite

set of reactions over K.

The elements of K are called the species of N . Also, the

sets of species and reactions of a CRN are denoted by

KðN Þ and RðN Þ, or, if the CRN under consideration is

clear, simply by K and R, respectively.

Example 2.2 Let N ¼ ðK;RÞ with K ¼ fA;B;Cg and

R ¼ f3A ! 2B;Bþ C ! A;C ! B;B ! Cg. Then N is a

CRN having three species and four reactions. One reaction

of N is bimolecular (Bþ C ! A) and two are unimolec-

ular (C ! B and B ! C).

The elements of NK are called the (discrete) states

of N (also called configurations in the literature), and

they describe the counts of each of the molecular

species of N in some well-mixed solution (such as a

well-mixed test tube). Viewing c as a multiset, each

element of c is called a molecule. So, c has kck
molecules. A molecule of species S is sometimes

called a S-molecule for short. Just as reactions, we

often write states additively (assuming the underlying

species set K is clear from the context). If S 2 K is

some species and c a state then the number cðSÞ of S-

molecules in c is sometimes denoted by #cS or simply

#S if c is clear from the context.

As a consequence of the well-mixedness assumption, if

all reactants of some reaction a ¼ ðr; pÞ are available in

sufficient quantity (i.e., r� c), then a can take place. This

is formalized as follows.

For a state c 2 NK and a reaction a over K, we say that

a ¼ ðr; pÞ is applicable to c if r� c. If a is applicable to c,

then the result of applying a to c, denoted by aðcÞ, is

c0 ¼ c� rþ p. In this case we also write c)a c
0. Note

that c0 is a state, i.e., c0 2 NK. We also write c)N c0 to

denote that c)a c
0 for some reaction a of N . The transi-

tive and reflexive closure of)N is denoted by)�
N . If

c)�
N c0, then we say c0 is reachable from c in N .

120 R. Brijder

123

Example 2.3 Consider again the CRN N of Example 2.2.

Consider the state c ¼ Aþ 2C. Then only the reaction

C ! B of N is applicable to c. We have c)N c0 where
c0 ¼ Aþ Bþ C, in other words c0 is the result of applying

C ! B to c. Three reactions of N are applicable to c0. For

example, we have c0)N 2A. In state 2A no reactions of N
are applicable. We observe that, e.g., 2A is reachable from

c.

Remark 2.4 We remark that a reaction a is usually defined

as a triple, consisting also of a positive real number ka
called the rate constant of a which determines the likeli-

hood of the reaction to take place in the current state (as-

suming it is applicable). Since this section and the next

section only deals with reachability (i.e., whether it is

possible to reach one state from another), we postpone

considering rate constants until Sect. 4.

For c 2 NK, we define preN ðcÞ ¼ fc0 2 NK j c0)�
N cg

and postN ðcÞ ¼ fc0 2 NK j c)�
N c0g. So, postN ðcÞ con-

tains all states that can be reached from c (including c

itself), and preN ðcÞ contains all states that can reach c

(including c itself). A state c 2 NK is called terminal in N
if postN ðcÞ ¼ fcg. In other words, a state is terminal if no

non-mute reaction of N is applicable to c.

If N is clear from the context, then we often omit the

subscripts of)N ,)�
N , preN and postN .

We extend preðcÞ and postðcÞ to sets X � NK of states in

the natural way: preðXÞ :¼
S

c2X preðcÞ, and postðXÞ :¼
S

c2X postðcÞ.
We remark here that the notion of a CRN is similar to

some notions from other research domains, see Sect. 7 for

details. Therefore, the results presented here can (often) be

straightforwardly carried over to these domains.

3 Computing with discrete chemical
reaction networks

For a significant part of the rest of the paper we recall

several models of computing with CRNs from the literature

and discuss some of their key results. The computational

CRNmodels this only concern reachability of states, and so

their results are independent of stochastics (i.e., how likely

a certain state is reached). CRNs augmented with stochas-

tics are discussed in Sect. 4.

For didactical reasons we do not discuss the computa-

tional CRN models in chronological order, but instead we

first consider the elementary computational model intro-

duced in Chen et al. (2014a), which is in turn inspired by

(and very similar to) the computational model of Popula-

tion Protocols (Angluin et al. 2006) (see Sect. 7.3 for a

comparison between Population Protocols and CRNs).

3.1 Haltingly deciding chemical reaction
deciders

Suppose we are given a state with an unknown number of

molecules of species X and Y and we want to decide

whether or not #X is equal to #Y modulo 3. Is there a

CRN that can perform this computation? More specifically,

is there a CRN which eventually (by keeping applying

reactions) halts on every possible input such that merely

the presence of certain molecules in the halting state

indicates whether the answer to the decision problem is yes

or no? The next example (taken from Brijder et al. 2018)

shows that the above given modulo problem

#X
?� #Y mod 3 can be decided by a CRN.

Example 3.1 Consider the CRN N ¼ ðK;RÞ with K ¼
fX; Y ;Vg and R consisting of the following reactions

3X ! V ; 3 Y ! V; X þ Y ! V; ð1Þ
X þ V ! X; Y þ V ! Y : ð2Þ

First notice that all reactions preserve whether or not

#X � #Y mod 3. The reactions of (1) all reduce the

number of X or Y molecules, while the remaining reactions

(of (2)) do not influence the X and Y molecules. So,

eventually (that is, when reactions continue to take place),

we reach a state where none of the reactions of (1) can take

place anymore. The last reaction of (1) that took place

introduced a V-molecule. Now, if #X � #Y mod 3, then

no X and Y molecules are present anymore at this point and

so the CRN has halted with only some V-molecules. If

#X 6� #Y mod 3, then some X- or Y-molecules remain

and these eat all the V-molecules that are present by the

reactions of (2). So, in this case the CRN eventually halts

with only some X- or Y-molecules.

Consequently, eventually the CRN halts and the pres-

ence of V-molecules in the terminal state indicate that

#X � #Y mod 3 holds, while the presence of X- or Y-

molecules in the terminal state indicate that #X �
#Y mod 3 does not hold. We then say that V is a yes

voter (or 1-voter) and X and Y are no voters (or 0-voters).

Note however that this computation does not work in the

corner case where the initial state has no molecules, since

in this case no V-molecule is ever produced.

Inspired by Example 3.1 we now formalize the above

illustrated model of computation for CRNs. First we define

the notion of chemical reaction decider which is roughly a

CRN augmented with three distinguished sets of species:

one to define the input states, one to define the no voters,

and one to define the yes voters.

Computing with chemical reaction networks: a tutorial 121

123

Definition 3.2 A chemical reaction decider (CRD) is a

4-tuple D ¼ ðN ;R;K0;K1Þ, where N is a CRN,

R;K0;K1 � KðN Þ, and K0 \ K1 ¼ £.

The elements of R, K0, and K1 are called the input

species, 0-voters, and 1-voters, respectively. The elements

of NRnf0Rg are called the input states, where by 0R we

denote the zero vector with index set R. If the index set is

clear from the context we just write 0 instead of 0R. For

b 2 f0; 1g, let Lb ¼ fc 2 NK j cjKb
6¼ 0g be the set of

states that have at least one b-voter. We say that c has

output b 2 f0; 1g if c 2 LbnL1�b. In other words, c has

output b when it contains b-voter molecules, but no

ð1� bÞ-voter molecules.

Let T be the set of terminal states of N and let, for

b 2 f0; 1g, T b ¼ T \ ðLbnL1�bÞ be the set of terminal

states of N with output b. We say that c 2 NK is output-b

halting if postðcÞ � preðT bÞ. In other words, c is output-

b halting if every state reachable from c (including c itself)

can reach an output-b terminal state. Note that a state

cannot be both output-0 halting and output-1 halting.

Remark 3.3 It is worthwhile to note that the definition of

output-b halting is often sloppily interpreted as saying that

starting from an output-b halting state we eventually reach

an output-b terminal state. This is incorrect in general

since we may, e.g., have a output-b halting (but not ter-

minal) state c such that c)þ c (where)þ denotes the

transitive closure of)), and so the current state may

indefinitely be in a loop without reaching an output-

b terminal state (we correctly used ‘‘eventually’’ in

Example 3.1 since loops cannot appear there). To ensure

eventually reaching an output-b terminal state, it is pos-

sible to additionally assume some notion of fairness (Chen

et al. 2014a). One such notion of fairness is implicit for

stochastic chemical reaction networks (see Sect. 4) that have

only a finite number of states reachable from any given state

(Cummings et al. 2016).

For c 2 NR, let ıðcÞ 2 NK be the vector obtained from c

by padding zeros for the entries indexed by KnR, i.e.,

ıðcÞjR ¼ c and ıðcÞjKnR ¼ 0.

We now define a key notion.

Definition 3.4 We say that a CRD D is haltingly deciding

if, for each input state c of D, ıðcÞ is output-b halting for

some b 2 f0; 1g.

Thus D is haltingly deciding if for each input state c,

there is a b 2 f0; 1g such that during the computation a

terminal state with output b is always reachable. So,

starting from c you can never go ‘‘wrong’’ since a terminal

state with output b always remains reachable.

If D is haltingly deciding, then we say that D (haltingly)

recognizes the set fc 2 NRnf0g j ıðcÞ is output-1 haltingg.
If a haltingly deciding D recognizes X � NRnf0g, then we

also say that D decides the predicate, i.e., Boolean-valued

function, u : NRnf0g ! f0; 1g where uðxÞ holds (i.e.,

uðxÞ ¼ 1) if and only if x 2 X.

Example 3.5 Consider again the CRN N from Exam-

ple 3.1. With the notions and terminology in place we can

now formalize the behavior of N as a CRD

D ¼ ðN ;R;K0;K1Þ, where R ¼ K0 ¼ fX; Yg and

K1 ¼ fVg. From the observations we made in Example 3.1

we conclude that D haltingly recognizes the set

fc 2 NRnf0g j cðXÞ � cðYÞ mod 3g.

Remark 3.6 Note that, when a CRD halts on a given input,

the CRD does not give a ‘‘signal’’ that it has halted. In

other words, an observer of a computation of the CRD does

not know whether or not the output of the computation is

final unless it has determined somehow that the computa-

tion has terminated (i.e., that no non-mute reaction can take

place in the current state). One could imagine an alternative

mode of operation for CRDs in which the presence of at

least one molecule of some distinguished species signals

that the output is final.

It is natural to ask which sets can be haltingly recog-

nized by CRDs. We say that X � NR is linear if there is a

finite set S � NR and a d 2 NR such that

X ¼ fdþ
P

v2S nvv j nv 2 N for all v 2 Sg. We say that

X � NR is semilinear if X is the union of a finite number of

linear sets. We remark that semilinear sets are precisely the

sets definable in Presburger arithmetic, which is the first-

order theory of natural numbers with addition (Ginsburg

and Spanier 1966).

Example 3.7 Let R ¼ fX; Yg. Consider the following four

linear sets: L1 is defined by S1 ¼ fX þ Y ; 2Xg and

d1 ¼ 3Y , L2 is defined by S2 ¼ £ and d2 ¼ X, L3 is

defined by S3 ¼ £ and d3 ¼ 5X þ Y , and L4 is defined by

Fig. 1 A semilinear set

122 R. Brijder

123

S4 ¼ fXg and d4 ¼ 3Y . The semilinear set L1 [L2 [L3 [
L4 is depicted in Fig. 1.

The following result combines results from Angluin

et al. (2006) and Angluin et al. (2007). The if direction has

been shown in the proof of the main result of Angluin et al.

(2006) (see Brijder 2016 for some details concerning the

halting claim), and the only-if direction is a special case of

the main result of Angluin et al. (2007).

Theorem 3.8 (Angluin et al. 2006, 2007) Let X � NRn
f0g. Then X is recognized by a haltingly deciding CRD if

and only if X is semilinear.

Moreover, this result also holds if we restrict to

haltingly deciding CRDs D such that (1) D has only

bimolecular reactions and (2) every species of D is either a

0-voter or a 1-voter.

It is well known (from vector addition system theory)

that for a state c and a CRN N , preN ðcÞ and postN ðcÞ are
not necessarily semilinear (Hopcroft and Pansiot 1979).

This makes Theorem 3.8 rather surprising.

It is well known (see, e.g., Ginsburg and Spanier 1966)

that semilinear sets are exactly the sets that are obtained by

finite unions, intersections, and complementations of sets

which are either of the form Xa;b ¼ fx 2 NR j a � x� bg or

of the form Xa;b;m ¼ fx 2 NR j a � x � b mod mg, where

a 2 ZR, b 2 Z, and m 2 Nnf0; 1g are constants and �
denotes the dot product. The proof of the if direction in

Angluin et al. (2006) shows that (1) there are CRDs that

compute Xa;b and Xa;b;m and (2) if CRDs D1 and D2

compute the sets X1 and X2, respectively, then there are

CRDs that compute X1 [X2, X1 \ X2 and NRnX1.

As an example we illustrate why Xa;b;m is semilinear.

Example 3.9 First we show that the predicate

#Z
?� b mod m, where b and m are nonnegative integers

with b\m, can be haltingly decided by a CRD. Consider

the CRD D ¼ ðN ;R;K0;K1Þ with N ¼ ðK;RÞ,
K ¼ fZ; T;F;F0g, K0 ¼ fF0;Fg, K1 ¼ fTg and R con-

sisting of the following reactions

mZ ! F0; b Z ! b T ; T þ F0 ! T ;
Z þ T ! 2 Z; T þ F ! 2 Z; F þ Z ! 2 Z;

and k Z ! k F for k 2 f1; . . .;m� 1gnfbg. Note that each

of these reactions preserve the value #Z þ#Fþ
#T mod m. Because of the reaction mZ ! F0 it is always

possible to reach a state where #Z\m. In fact, by addi-

tionally using the three reactions with 2 Z as the products, it

is always possible to reach a state where

x ¼ #Z þ#F þ#T\m. If x 6¼ 0, then one easily verifies

that the only way to halt is when the three reactions with

2 Z as the products take place until #F þ#T ¼ 0, and

then followed by either (1) reaction b Z ! b T taking place

(when x ¼ b), or (2) k Z ! k F taking place (when x ¼ k).

In case (2) or when x ¼ 0, the CRD has halted with only

0-voters left, and in case (1) the CRN halts with only T-

molecules left once T þ F0 ! T has taken place repeatedly

until all F0-molecules are gone.

Now, more elaborate examples like 2#X1 �
#X2

?� b mod m can be reduced to the problem

#Z
?� b mod m by extending the aboveN with the reactions

X1 ! 2 Z and X2 ! ðm� 1Þ Z (the latter because

�1 � m� 1 mod m).

3.2 Stably deciding chemical reaction deciders
and other modes of operation

We now present a natural generalization of the notion of

haltingly deciding CRDs. Instead of requiring for each

input the existence of some b 2 f0; 1g such that during the

computation a terminal state with output b is always

reachable, we now merely require that it is always possible

to reach a state c such that any state reachable from c

(including itself) has output b. So, even though non-mute

reactions may still take place at c, any state reachable from

c has the same output b. State c is then called output-

b stable.

More precisely, let b 2 f0; 1g. We say that c 2 NK is

output-b stable if every c0 2 postðcÞ has output b. Let Sb be

the set of output-b stable states. Note that any output-b

halting state is output-b stable, i.e., T b � Sb.

Similar as for T b, we say that c 2 NK is output-b stabi-

lizing (for b 2 f0; 1g) if postðcÞ � preðSbÞ. Note that a state
cannot be both output-0 stabilizing and output-1 stabilizing.

Definition 3.10 We say that a CRD D is stably deciding if

for each input state c of D, ıðcÞ is output-b stabilizing for

some b 2 f0; 1g.

If D is stably deciding, then we say that D (stably) recog-

nizes the set fc 2 NRnf0g j ıðcÞ is output-1 stabilizingg.
While it is computationally easy to determine if a state is

terminal (one just has to verify whether a non-mute reaction

can take place in the given state), it does not seem to be

computationally easy to determine if a state is output-

b stable for some b 2 f0; 1g (although it is known to be

decidable, see Brijder 2016). However, restricting to the

class of CRDs where krk ¼ kpk ¼ 2 for all reactions

a ¼ ðr; pÞ, output stability can be shown efficiently—espe-

cially, due to a preprocessing step, when a large set of states

need to be checked for output stability (Brijder 2016).

The main result of Angluin et al. (2007) shows that a

very general class of CRDs, which in particular includes

the stably deciding CRDs, can only compute semilinear

sets. By Theorem 3.8, we therefore observe that stably

Computing with chemical reaction networks: a tutorial 123

123

deciding CRDs and haltingly deciding CRDs compute the

same family of sets, namely the family of semilinear sets

that do not contain the zero vector.

Theorem 3.11 (Angluin et al. 2006, 2007) Let X � NR.

Then X is recognized by a stably deciding CRD if and only

if X is recognized by a haltingly deciding CRD.

Note that the above definitions of the output of a state

are based on consensus: states with both yes and no voters

do not have a defined output. One can consider a demo-

cratic mode of operation based on majority voting. Also,

one can consider a mode of operation without 0-voters

(here the existence or absence of 1-voters determines the

output). These and other modes of operation have been

shown to also compute exactly all semilinear sets not

containing the zero vector, see Brijder et al. (2018).

3.3 Computing functions

In the previous subsection we considered a way of com-

puting predicates u : NRnf0g ! f0; 1g using CRNs. Fol-

lowing Chen et al. (2014a), we now consider the

computation of functions of the form u : NR ! NC using

CRNs.

Example 3.12 Consider the function min that computes

the minimum minðx; yÞ of two nonnegative integers x and

y. For R ¼ fX; Yg and C ¼ fZg, the function min : NR !
NC can be easily seen to be computed through the reaction

X þ Y ! Z. Indeed, starting from an initial state i con-

sisting of only X and Y molecules, the CRN eventually

halts in a state c where #cZ ¼ minð#iX;#iYÞ.

Computing the max function turns out to be slightly

more involved.

Example 3.13 Consider the function max that computes

the maximum maxðx; yÞ of two nonnegative integers x and

y. For R ¼ fX; Yg and C ¼ fZg, the function max : NR !
NC can be computed using the auxiliary species X0 and Y 0

and reactions

X ! X0 þ Z

Y ! Y 0 þ Z

X0 þ Y 0 þ Z ! £

Notice that if the third reaction is absent, then, starting

from an initial state i consisting of only X and Y molecules,

the CRN eventually halts in a state c where

#cZ ¼ #iX þ#iY . Observe that the third reaction con-

sumes exactly minð#iX;#iYÞ Z-molecules. So, the whole

CRN eventually halts in a state c where #cZ ¼ #iX þ
#iY �minð#iX;#iYÞ ¼ maxð#iX;#iYÞ: So, this CRN

indeed computes the max function.

In analogy with the chemical reaction decider we define

the chemical reaction computer (Chen et al. 2014a; Doty

and Hajiaghayi 2015).

Definition 3.14 A chemical reaction computer (CRC) is

3-tuple C ¼ ðN ;R;CÞ, where N is a CRN and R;C �
KðN Þ are disjoint.

The elements of R and C are called the input species and

output species, respectively. Similar as for CRDs, the

elements of NR are called the input states. We say that a

state c has output cjC.
We say that c 2 NK is output stable if every c0 2 postðcÞ

has the same output as c.

For o 2 NC, let So be the set of output stable states with

output o. We say that c 2 NK is output- o stabilizing if

postðcÞ � preðSoÞ. Note that a state is output-o stabilizing

for at most one o 2 NC.

Definition 3.15 We say that a CRC C is stably computing

if for each input state c of C, ıðcÞ is output-o stabilizing for

some o 2 NC.

If C is stable deciding, then we say that C (stably)

computes the function u : NR ! NC where uðcÞ ¼ o if c is

output-o stabilizing.

Finally, u : NR ! NC is called semilinear if the set

fc 2 NR[C j uðcjRÞ ¼ cjCg is semilinear.

Example 3.16 Consider again min : NR ! NC from

Example 3.12. We can easily verify that min is semilinear.

Indeed minðx; yÞ ¼ z if and only if ðy ¼ z ^ x� zÞ
_ðx ¼ z ^ y� zÞ. Since y ¼ z is equivalent to y� z ^ z� y,

we observe that fðx; y; zÞ j minðx; yÞ ¼ zg can be expressed

by finite unions and intersections of sets of the form

Xa;b ¼ fx 2 NR j a � x� bg. Indeed, e.g., y� z is expressed

as Xð0;1;�1Þ;0. Thus min is semilinear. In the same way we

observe that max is semilinear.

The following is shown in Doty and Hajiaghayi (2015)

(by using results from Angluin et al. 2006, 2007; Chen

et al. 2014a).

Theorem 3.17 (Doty and Hajiaghayi 2015) Stably com-

puting CRCs compute exactly the semilinear functions u :

NR ! NC with uð0Þ ¼ 0.

3.4 Speed faults

A reaction a is considered ‘‘slow’’ in a state c if at least two

reactants of a appear in low quantity in c. We will see in

Sect. 4.1 that, assuming the standard stochastic CRN

model, the expected time of such reactions to take place is

indeed long.

124 R. Brijder

123

Let a be a uni- or bimolecular reaction. Then a is called k-
fast for c, denoted by c)a;� k c

0, if #cX� k for some

reactant X of a. Similarly as before, we define)N ;� k to

denote)a;� k for some reaction a of N and we define the

transitive and reflexive closure of)N ;� k

by)�
N ;� k

. Moreover, we define preN ;� kðcÞ ¼ fc0 2 NK j
c0)�

N ;� k
cg. As usual we omit the subscript N , and write

simply pre� k when the CRN is clear from the context.

Recall that for stably deciding CRDs it holds that for all

input states c 2 NRnf0g, we have postðıðcÞÞ � preðSbÞ for
some b 2 f0; 1g. In other words, from every state reachable

from an input state, we can reach an output-b stable state.

We now define when such a CRD is speed-fault free

(Chen et al. 2017).

Definition 3.18 We say that a stably deciding CRD with

only uni- and bimolecular reactions is speed-fault free if

there is a distinguished input species F 2 R such that for all

k 2 N there is an n 2 N such that for all input states c 2
NRnf0g with #cF� n, postðıðcÞÞ � pre� kðSbÞ for some

b 2 f0; 1g.

The distinguished input species F of Definition 3.18 is

called the fuel species. Definition 3.18 says that a stably

deciding CRD is speed-fault free if any state c0 reachable
from some input state having at least n fuel molecules can

reach an output-stable state using only k-fast reactions.

The next example is essentially taken from Chen et al.

(2017).

Example 3.19 Consider the problem of deciding whether

or not there is at least one A1 or A2 molecule and no A3

molecule. Let R ¼ fA1;A2;A3;Fg, where F is the fuel

species. Identify the species A1, A2, A3, F with X100, X010,

X001, X000, respectively. These subscripts are bit-vectors

identifying the presence or absence of the Ai molecules.

We introduce species Xb1b2b3 for every bit-vector b1b2b3
and we introduce bimolecular reactions Xv þ Xw !
2XORðv;wÞ where v 6¼ w and OR denotes bitwise OR. For

example, we introduce the reactions X000 þ X001 ! 2X001

and X110 þ X011 ! 2X111. One can easily verify that the

corresponding CRN N eventually halts where all mole-

cules are of the same species Xb1b2b3 where the bi’s indicate

the presence (bi ¼ 1) or absence (bi ¼ 0) of Ai-molecules

in the input state. The species Xb1b2b3 with ðb1 ¼ 1 _ b2 ¼
1Þ ^ b3 ¼ 0 precisely satisfy the above given predicate and

we define these to be exactly the yes-voters. The total

number of molecules in a state does not change when

reactions take place and so a halting state is nonzero if and

only if the input state is nonzero. Hence the obtained CRD

D haltingly (and, therefore, stably) decides the given

predicate. Note that the CRD also works fine if we omit the

fuel species F and the reactions in which F appears. The

sole purpose of species F is to make D speed-fault free

(and, in this way, the ability to ‘‘boost’’ the computation by

increasing the number of F-molecules). It is easy to see that

D is speed-fault free. Indeed, note that there are 23 species

Xb1b2b3 . Thus at least one species Xb1b2b3 with at least t=23

molecules, where t be the total number of molecules (recall

that t does not change when reactions take place). For any

k 2 N, take n :¼ k � 23. Then t=23 � n=23 ¼ k, so for any

non-halting state c there is a k-fast reaction for c, and thus

D is speed-fault free.

The following has been shown in Chen et al. (2017).

Theorem 3.20 (Chen et al. 2017) Let X � NR for some

finite setR. Then X is obtained by finite unions, intersections,

and complementations of sets of the form SA ¼ fc 2 NR j
#cA ¼ 0gwith A 2 R if and only if there is a speed-fault-free

stably deciding CRD D with only uni- and bimolecular

reactions that recognizes a set X0 � NR0
with X0jR ¼ X and

R0 ¼ R [fFg where F is the fuel species of D.

So, essentially, such CRDs can only distinguish between

existence and non-existence of molecules of the input

species. Consequently, they can decide predicates of the

form ‘‘there is at least one molecule of A’’ but not predi-

cates of the form ‘‘there are at least two molecules of A’’.

We note that speed-fault freeness is only an indication (no

guarantee) for fast computation. However, the approach

described in Example 3.19 to determine (non-)existence of

molecules in the input state by speed-fault free CRDs can

be shown to fast compute assuming the standard stochastic

CRN model (cf. Sect. 4.1), for details see Chen et al.

(2017).

Remark 3.21 Non-speed-fault-free stably deciding CRDs

D are not necessarily slower, assuming the standard

stochastic CRN model, than speed-fault-free stably decid-

ing CRDs. Indeed, the existence of a single c0 reachable
from some input state c that does not have a k-fast trajec-

tory to an output stable state (i.e., c0 2 preðSbÞ, but

c0 62 pre� kðSbÞ) may have little effect on the speed of the

CRD if c0 is unlikely to be reached from the input state c in

the first place.

The notions and results concerning speed faults turned

out to be a stepping stone to prove time lower bounds for

problems like leader election (cf. Sect. 4.3) in the standard

stochastic CRN model.

Remark 3.22 In Definition 3.18, the fuel species F is

defined to be in the input alphabet R. However, in Chen

et al. (2017) the fuel species is not defined to be in R.
Consequently, the formulation of Theorem 3.20 above is

slightly different than its corresponding formulation in

Chen et al. (2017). The formulation of Theorem 3.20

Computing with chemical reaction networks: a tutorial 125

123

above raises the question whether the whole set X0 (not
merely X0jR ¼ X) is obtained by finite unions, intersections,

and complementations of sets of the form SA’s with A 2 R0.
Even more generally, one can also consider a definition of

speed-fault freeness without explicit fuel species F, where

the condition #cF� n is replaced by kck� n.

Remark 3.23 We remark that Theorem 3.20 is shown in

Chen et al. (2017) for the more general class of CRDs

which have an initial ‘‘context’’ c 2 NKnR (in fact, this

complicates the proof of Theorem 3.20 significantly). This

initial context is present at the start of the computation

along with the input (see Sect. 4.3 for a definition). The

notion of a CRD as defined above corresponds to the case

where the initial context c is 0.

4 Computing with stochastic chemical
reaction networks

The computational CRN models of Sect. 3 only concern

reachability of states, and so their results are independent

of stochastics (i.e., how likely a certain state is reached). In

this section we recall the well-known standard stochastic

model for CRNs and then show, assuming this stochastic

model, that CRNs can perform Turing-universal compu-

tation if we allow an arbitrary small error probability. We

also illustrate the computational mechanism of stochastic

CRNs by considering the leader election problem and

computing probability distributions.

4.1 Stochastic chemical reaction networks

We first recall the (standard) stochastic model for CRNs

(McQuarrie 1967). In this section we use several notions

and notation from Soloveichik et al. (2008).

In the stochastic model for CRNs, each reaction a has a

value ka 2 Rþ called the rate constant. The volume v 2 R[0

represents the volume of the well-mixed solution, and as

such it determines the expected time for two fixed molecules

in the well-mixed solution to meet. The larger the volume,

the slower reactions with more than one reactant will take

place. Due to physical constraints, the ratio kck=v is bounded
above for well-mixed solutions—this is called the finite

density constraint. Consequently, one cannot make the vol-

ume arbitrarily small, and the cardinality of a state can only

grow unboundedly when the volume grows unboundedly too

by continuously diluting the solution.

Let v 2 N be a fixed volume. Define the propensity

qðc; aÞ of a reaction a ¼ ðr; pÞ in a state c as

ka

vkrk�1

Y

X2S
cðXÞðcðXÞ � 1Þ � � � ðcðXÞ � ðrðXÞ � 1ÞÞ;

see, e.g., Anderson and Kurtz (2011). Here, the product

counts the number of ways one can pick all the molecules

of r from the state c, the fraction 1
vkrk�1 represents the

likelihood that all molecules of r simultaneously meet, and

ka represents the likelihood that when these molecules

meet, they will react (i.e., the reaction will take place).

In particular, if a is unimolecular, then qðc; aÞ ¼ kacðXÞ
where X 2 K such that rðXÞ ¼ 1. If a is bimolecular, then

qðc; aÞ is equal to ka
v
cðX1ÞcðX2Þ in the case where X1;X2 2

K are distinct such that rðX1Þ ¼ rðX2Þ ¼ 1, and is equal to
ka
v
cðXÞðcðXÞ � 1Þ in the case where rðXÞ ¼ 2.

For c; c0 2 NK, define the transition rate from c to c0 as

qðc; c0Þ :¼
X

a2RðN Þ;c)ac0

qðc; aÞ:

We remark that the transition rates define a continuous-

time Markov chain on the set of states of N . However, in

this paper we assume no familiarity with Markov chains.

The duration for some reaction to take place within the

state c is an exponential random variable, i.e., a continuous

random variable that depends only on the current state and

not on the amount of time elapsed (the random variable is

‘‘memoryless’’), with rate

qðc;NÞ :¼
X

a2RðN Þ
qðc; aÞ:

The probability that a 2 RðN Þ is the next reaction to occur

in c is equal to qðc; aÞ=qðc;NÞ. In particular, the expected

time for some reaction to take place in c is 1=qðc;NÞ (if
qðc;NÞ ¼ 0, then no reaction can occur in c).

Coming back to the notion of speed faults (cf. Sect. 3.4),

we have, in particular, that increasing the molecular count

of one of the reactant species of a reaction a, increases its
propensity, and therefore decreases the expected time of

this reaction to take place (assuming a is the next reaction

to take place). In other words, the reaction will indeed be

faster.

Example 4.1 Consider a CRN with the reactions a ¼
Aþ B ! C and b ¼ 2A ! C. For any state c, we have

qðc; aÞ ¼ ka
v
cðAÞcðBÞ and qðc; bÞ ¼ kb

v
cðAÞðcðAÞ � 1Þ.

Since the expected time for some reaction to take place in c

is 1=qðc;NÞ, increasing the number of molecules of A and

B will decrease this expected time. If both reactions are

applicable to c (i.e., c has at least 2 molecules of A and at

least 1 molecule of B), then the probability that a is the

next reaction to occur in c is

qðc; aÞ
qðc; aÞ þ qðc; bÞ ¼

1

1þ kb
ka
� cðAÞ�1

cðBÞ
;

126 R. Brijder

123

which is tending to 1 by increasing the number of B-

molecules compared to A-molecules.

Note that because of the finite density constraint, one

cannot arbitrarily speed up the computation by decreasing

v. Similarly, one cannot arbitrarily increase kck without

increasing v.

Rate constants of chemical reactions are very difficult to

control because they depend on the molecular structure of

their reactants. Therefore, computational CRN models are

often designed to work for any choice of rate constants.

That is, we assume we cannot set the rate constants our-

selves and so, e.g., the rate constants appear as undeter-

mined constants in various results, such as time complexity

results. For notational convenience, we assume in this

paper that all rate constants are equal to some fixed value

k. Also, for notational convenience, by a ‘‘stochastic CRN’’

we mean a CRN with rate constants for each reaction that

operates in the above described way.

4.2 Turing-universal computation by stochastic
chemical reaction networks with possible
errors

In this subsection we show that stochastic CRNs can

simulate any Turing machine if we allow an arbitrary small

nonzero probability of error. Various computational mod-

els are Turing universal, and here we follow Soloveichik

et al. (2008) by simulating deterministic counter automata

[which are Turing universal (Minsky 1961; Hopcroft and

Ullman 1979)] by stochastic CRNs. See also Soloveichik

et al. (2008) for a direct simulation of Turing machines by

stochastic CRNs.

We briefly recall the notion of a counter automaton (also

sometimes called register machine in the literature), see,

e.g., Minsky (1961) and Hopcroft and Ullman (1979) for a

more elaborate treatment. A (deterministic) counter

automaton M is a finite state automaton, with distinguished

start and halting states qstart and qhalt, augmented with a

finite number of counters (also called registers in the lit-

erature) which can each hold an arbitrary non-negative

integer. For any state q of M, there is an instruction

– incðq; c; q0Þ which increments counter c by 1 and then

moves to state q0 or
– decðq; c; q0; q00Þ which either (1) decrements counter c

by 1 and moves to state q0 if the value of c is nonzero or
(2) moves to state q00 (leaving the value of c unchanged)
if the value of c is zero.

We assume that for each state q there is exactly one such

instruction (hence the adjective ‘‘deterministic’’). The input

of a counter automaton is a nonnegative integer that is

stored in the input counter (a distinguished counter) and the

input is accepted when, starting in the start state, the

computation eventually reaches the halting state.

Given a counter automaton M we define a CRN NM

simulating M with low probability of error as follows. The

set K of species of NM is equal to Q [C, where Q is the

(finite) set of states and C is the (finite) set of counters ofM

(we assume without loss of generality that Q and C are

disjoint). Furthermore, for each instruction incðq; c; q0Þ we
introduce the reaction q ! cþ q0 in NM and for each

instruction decðq; c; q0; q00Þ we introduce two reactions qþ
c ! q0 and q ! q00. Let ı be the input counter of M and

m 2 N be an input value of M. Then we take as the input

state im of NM the state with one molecule of the start state

qstart of M and m molecules of species ı.

The idea is that during the computation there is exactly

one molecule of a species in Q, which represents the cur-

rent state of M, and, for each c 2 C, the number of c-

molecules is equal to the value of the counter c in M. Note

that the reaction q ! cþ q0 correctly simulates the

instruction incðq; c; q0Þ. Moreover, if the value of counter c

is zero, then decðq; c; q0; q00Þ is correctly simulated by q !
q00 (and qþ c ! q0 cannot take place). If the value of

counter c is nonzero, then decðq; c; q0; q00Þ is correctly

simulated by qþ c ! q0, however reaction q ! q00 can

also take place. In the latter case, i.e., when reaction q !
q00 takes place with c-molecules present, the computation is

in error. To make the chance of error arbitrary small, we

modify the reaction q ! q00 to make it arbitrary slow:

indeed, the slower this reaction, the more likely the correct

reaction qþ c ! q0 is taken instead. In this way, we trade

computation speed for a lower probability of error. To

accomplish this trade, the reaction q ! q00 is replaced by

the following reactions: Ti þ D ! Tiþ1 þ D and Tiþ1 ! Ti
for i 2 f1; . . .; l� 1g and some nonnegative integer l, and

T1 þ q ! q00 þ Tl. Here, T1; . . .; Tl, and D are all new

species. Moreover, qþ c ! q0 is replaced by the reaction

qþ c ! q0 þ D. Also, the input state im of NM now also

contains one Tl-molecule and a sufficiently large number of

D-molecules (depending on the rate constants and volume).

The higher the number of D-molecules, the longer it takes

for a Tl molecule to convert to a T1 molecule, while in turn

a T1 molecule is required for the reaction T1 þ q ! q00 þ Tl
to take place (which corresponds to moving from state q to

state q00). In fact, the production of T1 takes more and more

time as the computation of M progresses since each tran-

sition from q to q0 by decreasing counter c introduces a new
D-molecule. Since the value l is not fixed, we denote the

resulting CRN by NM;l.

By Soloveichik et al. (2008, Theorem 3.1 and Sect. 4)

we have the following.

Theorem 4.2 (Soloveichik et al. 2008) Let M be a counter

automaton, d[0, and m 2 N. Then there is an l 2 N, such

Computing with chemical reaction networks: a tutorial 127

123

that NM;l on input im simulates M with a cumulative error

probability of at most d.

See Soloveichik et al. (2008), for upper bounds on the

expected computation time and for a faster computation by

simulating Turing machines instead of counter automata.

Finally, we remark that in Cummings et al. (2016) an

analog of Theorem 4.2 is obtained with error probability

zero in terms of ‘‘limit-stable’’ computations: although

there might be (infinite) trajectories that lead to an error,

these ‘‘wrong’’ trajectories together do not contribute to a

positive error probability. While the notions of error

probability zero and error-free coincide when each state

has only a finite number of reachable states, these notions

diverge when states can have an infinite number of

reachable states.

We also mention that, independently, a similar approach

of simulating Turing machines (via counter automata with

multiplication and division) was taken in Angluin et al.

(2008) in the context of population protocols (see Sect. 7.3

for a discussion on the relation between CRNs and popu-

lation protocols). Finally, we mention that finite circuit

computation was shown to be achievable using CRNs in

Magnasco (1997) (despite its title, the paper does not show

Turing universality).

4.3 Leader election

We now turn to the problem of leader election. To moti-

vate this problem, consider a natural extension of the

notion of a CRD D ¼ ðN ;R;K0;K1Þ, where we extend D
by a vector | 2 NKnR, called the context, to obtain the

5-tuple D0 ¼ ðN ;R;K0;K1; |Þ. The molecules of | are

assumed to be present at the start of a computation. Hence,

the initial state consists of the input molecules and the

molecules of the context. It turns out that the notion of a

CRD with context does not lead to a (significant) increase

in computational power, i.e., CRDs with context can also

only compute semilinear sets (Angluin et al. 2007) (the

only difference is that CRDs with context can also compute

the semilinear sets X with 0 2 X).

While the expressive power of the class of CRDs with

context is equal to that of the class of ordinary CRDs, it is

natural to wonder whether or not there are predicates that

can compute faster using CRDs with context compared to

ordinary CRDs.

An interesting special case of this problem is where

k|k ¼ 1, the (unique) molecule of | is called the leader ofD0.
For designing a CRN that computes a given predicate, it is

often convenient to have a leader. Intuitively, a leader can

‘‘guide’’ the computation much like the control flow dictates

the computation for an ordinary computer program. Indeed,

in Angluin et al. (2008) it has been shown that various

predicates can be computed efficiently if a leader is present.

Conversely, various other predicates have been shown to be

slow without a leader (Belleville et al. 2017).

In the absence of a leader, one can construct a leader

(i.e., a single molecule of some given species)—this is

called leader election. It is straightforward to elect a leader

as follows: assuming there is at least one molecule of

L 2 R, then the reaction Lþ L ! L eventually results in a

single L-molecule. However, the process of constructing a

leader in this way is slow: O(n) expected time with

n molecules of L present in the initial state. Indeed, leader

election turns out to be necessarily slow (Doty and

Soloveichik 2018).

4.4 Computing probability distributions

A different way to define the computation of a stochastic

CRN is through probability distributions (Fett et al. 2007;

Cardelli et al. 2016a).

Given a stochastic CRN N and a state c, we denote by

ProbN ;cðt; dÞ, for t 2 R� 0 and state d, the probability of

reaching state d at time t. Note that for fixed t1 2 R� 0,

ProbN ;cðt1;dÞ can be seen as a function sending states d 2
NK to values in the real interval [0, 1]. Also note that
P

d2NK ProbN ;cðt1; dÞ exists and is equal to 1. We call such

functions f : NK ! ½0; 1	 with
P

d2NK f ðdÞ ¼ 1 probability

mass functions.

Similarly, if pN ;cðdÞ :¼ limt!1 ProbN ;cðt; dÞ exists,

then pN ;cðdÞ is a probability mass function. Intuitively,

pN ;cðdÞ describes the long-term probability distribution of

the states of N starting from c.

For probability mass functions f1 and f2, we define

dðf1; f2Þ ¼
P

d2NK jf1ðdÞ � f2ðdÞj. Note that dðf1; f2Þ is well
defined (in fact, dðf1; f2Þ� 2). The support of a probability

mass function f is the set of states c such that f ðcÞ is

nonzero.

The next result shows that arbitrary probability mass

functions can be approximated by stochastic CRNs.

Theorem 4.3 (Cardelli et al. 2016a) Let f : NK ! ½0; 1	
be a probability mass function and �[0. Then there exists

a stochastic CRN N and a state c such that pN ;c exists and

dðf ; pN ;cÞ\�. If f has moreover finite support, then there

exists a stochastic CRN N and a state c such that f ¼ pN ;c.

In the case where f ¼ pN ;c, we say that N computes f

starting in c. The proof of Theorem 4.3 first shows the

exact computation result (the case where f has finite sup-

port) and then observes that the approximate computation

result holds since the probability mass functions with finite

support are dense for all probability mass functions with

countable domain NK under the distance metric d. It is an

128 R. Brijder

123

open question to characterize the set of probability mass

functions that can be (exactly) computed (of course, this set

includes all probability mass functions with finite support).

Furthermore, in Cardelli et al. (2016a) a calculus for

probability mass functions that are zero for all but a finite

number of states is defined such that any such probability

mass function can be obtained from a formula in this cal-

culus. The operators have been shown to be imple-

mentable using CRNs (Cardelli et al. 2016a). In this way, a

programming language for probability mass functions

based on CRNs is obtained.

5 Computing with continuous chemical
reaction networks

5.1 Continuous chemical reaction networks

Until now, a state of a CRN is a vector describing the

molecular counts #X of the species X. Such a state is also

called a discrete state. The larger these molecular counts, the

more the stochastic model tends to the continuous mass-

action kinetics model, which we call simply the continuous

CRN model in this paper, up to some point in time (Kurtz

1972). We remark however that this point in time where

divergence of the continuous mass-action kinetics model

with the stochastic model can happen is rather soon, namely

logarithmic in the number of molecules.

Denote by R� 0 the set of nonnegative real numbers. In

the continuous CRN model, a state is a R� 0-valued vector

describing the molecular concentrations [X] of the species

X. To distinguish both types of states, we call a state

describing molecular concentrations, a continuous state.

For notational convenience, by a discrete CRN (continuous

CRN, resp.) we mean a CRN that uses discrete (continuous,

resp.) states. Note that a stochastic CRN is a particular kind

of discrete CRN.

A continuous state evolves continuously (with R� 0-

valued time variable t) according to a set of ordinary dif-

ferential equations (ODEs). To define these ODEs, we first

recall the notion of a stoichiometry matrix M of N . The

rows and columns of M corresponds to the species X and

reactions a of N , respectively, and each entry MX;a

describes the net change of the X-molecules when reaction

a takes place. For example, consider the CRN N with

reactions a ¼ Aþ B ! C and b ¼ 2C þ B ! 2Aþ B.

Then the stoichiometry matrix of N is as follows

The concentration of some species X changes according

to the ODE

d½X	
dt

¼
X

a¼ðr;pÞ2R
kaMX;a

Y

Y2K
½Y	rðYÞ;

where ka denotes the rate constant of reaction a. Thus each
reaction a contributes to a change in concentration of

species X that is equal to the product of the reactant con-

centrations of a, its rate constant ka, and the difference of

the number of times X is a product of a minus the number

of times X is a reactant of a (so, e.g., the contribution of a
to the concentration of X is negative when X appears as a

reactant, but not as a product of a).
So, in the given example, a continuous state changes

according to the following set of ordinary differential

equations:

d½A	
dt

¼ �ka½A	½B	 þ 2kb½C	2½B	

d½B	
dt

¼ �ka½A	½B	

d½C	
dt

¼ ka½A	½B	 � 2kb½C	2½B	

where ka and kb are the rate constants of a and b, respec-
tively. We remark that, since states change deterministi-

cally in the continuous CRN model, this model is often

called the ‘‘deterministic’’ CRN model—however, we do

not use this terminology here to avoid possible confusion

with the computational CRN models of Sect. 3 that also

have various deterministic aspects.

We now briefly sketch the computational model of

continuous CRNs from Fages et al. (2017), see that refer-

ence for the (involved) formal definition. Roughly speak-

ing, a function f : R� 0 ! R� 0 is called chemically-

computable if there exists a continuous CRN N and a K-
indexed vector q(x), where each entry of q(x) is a poly-

nomial in variable x with coefficients from R� 0, such that,

for all z 2 R� 0, starting in state q(z), the state c of the CRN

evolves in such a way that cðSÞ, for some distinguished

species S, approaches the value f(z) as t ! 1. In other

words, to compute f(z), q maps z to the initial state of the

CRN and the value f(z) is represented by a distinguished

entry of the state to which the CRN converges. By using a

‘‘dual rail’’ approach that is similar to the one discussion in

Sect. 5.2 below, one can extend the notion of chemically-

computable to functions f : R ! R, i.e., where the domain

and codomain is R.

It is then shown in Fages et al. (2017) that chemically-

computable functions are exactly the functions com-

putable by so-called General Purpose Analog Computers as

defined in Bournez et al. (2007) [which is somewhat dif-

ferent from the original definition in Shannon (1941)]. In

Computing with chemical reaction networks: a tutorial 129

123

turn, General Purpose Analog Computers [as defined in

Bournez et al. (2007)] are computationally equivalent to

Turing machines. In this way, this computational model of

continuous CRNs is Turing universal.

5.2 Rate-independent computation
with continuous chemical reaction networks

Early work on the computational power of continuous

CRNs includes Buisman et al. (2009), where it is shown

that various numerical operations such as addition and

multiplication can be implemented by continuous CRNs

assuming the rate constants of the used reactions can be

tuned. Since rate constants are however notoriously diffi-

cult to tune, a computational model for continuous CRNs

has been introduced in Chen et al. (2014b) that works

independently of the rate constants of the individual reac-

tions. In this subsection we discuss the computational

model of Chen et al. (2014b). We remark that another rate-

independent model of computation for continuous CRNs

has been studied in Senum and Riedel (2011).

The computational model for continuous CRNs in Chen

et al. (2014b) is an analog of the computational model in

Sect. 3 but with a reachability function that deals with

continuous states instead of (integer-valued) states.

We say that a reaction a ¼ ðr; pÞ is applicable to a

continuous state c if for all species X, rðXÞ[0 implies that

cðXÞ[0. For continuous states c and d and u 2 RR
� 0, we

write c)u d if cþMu ¼ d, where M is the stoichiometry

matrix, and uðaÞ[0 implies that a is applicable to c. Here

uðaÞ 2 R� 0 represents the ‘‘amount’’ of reaction a to occur
and so ðMuÞðXÞ represents the change in concentration of

X when all reactions take place in the amounts described by

u. Therefore, d ¼ cþMu is the state obtained from state c

when the reactions take place according to u.

We say that d is straight-line reachable from c, denoted

by c) d, if there is a u 2 RR
� 0 such that c)u d. As usual,

the transitive and reflexive closure of) is denoted by)�.
We say that d is segment-reachable from c if c)� d. Note
that segment-reachability is quite different from the

reachability notion implied by the ODEs of Sect. 5.1

(which is very much rate dependent). Indeed, Sect. 5.1

implies a definition of reachability such that a continuous

state d is reachable from c if d corresponds to the contin-

uous state at time t[0 starting from continuous state c at

time t ¼ 0. While the two notions are quite different, Chen

et al. (2014b) shows some relationships between these two

notions of reachability. In particular, if a state d is mass-

action reachable from state c, then d is segment-reachable

from c.

With the notion of reachability defined in this subsection

in place, one can straightforwardly define the continuous

analogs of stably deciding for chemical reaction deciders

(CRDs) and stably computing for chemical reaction com-

puters (CRCs) of Sect. 3, see Chen et al. (2014b). Let us

call the continuous analog of stably computing, R� 0-stably

computing.

Example 5.1 One verifies that the CRCs described in

Examples 3.12 and 3.13 R-stably compute the minðx; yÞ
and maxðx; yÞ functions where x and y are, more generally,

in R� 0 instead of in N.

In order to compute general real-valued functions

(which allow negative values), we additionally need the

notion of a ‘‘dual-rail’’ representation. A dual-rail repre-

sentation of f : RR ! RC is a function f̂ : RR
� 0
 RR

� 0 !
RC

� 0
 RC
� 0 such that for all xþ; x� 2 RR

� 0 and

yþ; y� 2 RC
� 0, f̂ ðxþ; x�Þ ¼ ðyþ; y�Þ implies that

f ðxþ � x�Þ ¼ yþ � y�. We remark here that CRNs that

compute using dual-rail representations of functions can be

straightforwardly composed in contrast to CRNs that

compute functions in the ordinary way—this is true for

both discrete and continuous CRNs.

The following example is taken from Chen et al.

(2014b).

Example 5.2 Consider the minðx; yÞ and maxðx; yÞ func-

tions over R, i.e., min and max compute the minimum and

maximum of two real numbers x and y.

Let R ¼ fX; Yg, C ¼ fZg, R̂ ¼ fXþ;X�; Yþ; Y�g, and
Ĉ ¼ fZþ;Z�g. A dual-rail representation dmin : RR̂ ! RĈ

of min : RR ! RC can be computed by the reactions

Xþ þ Yþ ! Zþ

X� ! Yþ þ Z�

Y� ! Xþ þ Z�

To see this, first notice that both the values ð#Xþ �
#X�Þ þ ð#Zþ �#Z�Þ and ð#Yþ �#Y�Þ þ ð#Zþ �
#Z�Þ are invariant under applying these reactions. Also

notice that for any state a halting state is reachable: the last

two reactions can take place until no X� and Y� molecules

are present and then the first reaction can take place until

the Xþ or Yþ molecules are exhausted.

Let i be an initial state, i.e., consisting of only Xþ, X�,

Yþ, and Y� molecules. It is easy to see that the CRN has

halted in some state c precisely when #cX
� ¼ #cY

� ¼ 0

and either #cX
þ ¼ 0 or #cY

þ ¼ 0. By the invariance

properties #iX
þ �#iX

� ¼ ð#iX
þ �#iX

�Þ þ ð#iZ
þ�

#iZ
�Þ ¼ ð#cX

þ �#cX
�Þþ ð#cZ

þ �#cZ
�Þ ¼ #cX

þþ
ð#cZ

þ �#cZ
�Þ and similarly for #iY

þ �#iY
�. In the

case where #cX
þ ¼ 0, we have that #iY

þ �
#iY

� �#iX
þ �#iX

� ¼ #cZ
þ �#cZ

� and so #cZ
þ �

#cZ
� is indeed equal to minð#iX

þ �#iX
�;

130 R. Brijder

123

#iY
þ �#iY

�Þ. The case where #cY
þ ¼ 0 is analogous,

and so we conclude that this CRN (more precisely, CRC)

indeed computes dmin.

Note that the special case where #iX
� ¼ #iY

� ¼ 0

essentially corresponds to the usual ‘‘single-rail’’ compu-

tation of min, cf. Example 5.1, since then only the reaction

Xþ þ Yþ ! Zþ can take place.

Since maxðx; yÞ ¼ �minð�x;�yÞ, a dual-rail represen-

tation dmax : RR̂ ! RĈ of max : RR ! RC is obtained from

dmin by reversing the roles of the ‘‘plus’’ and ‘‘minus’’

species (i.e., flipping the superscript). Thus, dmax can be

computed by the reactions

X� þ Y� ! Z�

Xþ ! Y� þ Zþ

Yþ ! X� þ Zþ

Let f : RR ! R be a function. Then f is called rational

linear if there is a a 2 QR such that f ðxÞ ¼ a � x, where �
denotes the dot product. Moreover, f is called piecewise

rational linear if there is a finite set S of rational linear

functions such that for every x 2 RR, f ðxÞ ¼ gðxÞ for some

g 2 S.

Theorem 5.3 (Chen et al. 2014b) Let f : RR ! R be a

function. Then there is a CRC that R� 0-stably computes a

dual-rail representation of f if and only if f is continuous

and piecewise rational linear.

It is natural to wonder about the computational com-

plexity of determining whether or not we have c)� d for

given continuous states c and d. It is shown in Case et al.

(2016) that if c and d have only rational entries, then this

problem can be solved in polynomial time. In contrast, the

reachability problem for CRNs using the usual reachability

relation for states of Sect. 2 is much harder, cf. Sect. 7.2.

6 Implementation: DNA strand
displacement

In the previous sections we have seen various ways in

which (abstract) CRNs can perform computations. We now

discuss from Soloveichik et al. (2010) a method of

implementing an arbitrary (abstract) CRN N in the wetlab

using DNA as a substrate.

First, let us use a concise representation of a DNA

molecule that abstracts away from the exact identity of the

DNA base-pair sequence. The left-hand side of Fig. 2

depicts a DNA molecule where one single strand consisting

of the segments u� and t� is bound to the single strand u

complementary to u� (in general, we denote by x� the

Watson-Crick complement of x). As usual, a single strand

is denoted by an arrow and its 3’-end is denoted by an

arrow head. For visual clarity, we use colors to emphasize

the various segments of a single strand/arrow. The concise

representation of the left-hand side of Fig. 2 is given on the

right-hand side of that figure.

We now discuss the key principle of DNA strand dis-

placement, illustrated in Fig. 3. Since t and t� are comple-

mentary segments appearing on the left-hand side of Fig. 3,

these segments can bind, which results in a single DNA

molecule given in the middle part of Fig. 3. Segment t is a

small segment, called a toehold, designed to be small enough

for the binding to be reversible. Thus, it may happen that t

and t� unbind and we obtain again the situation on the left-

hand side of Fig. 3. Alternatively, the two u segments may

compete for binding with u� in a random walk fashion and it

may happen that the segment u that is connected to t com-

pletely pushes out the single strand u that was bound to u�

(single strand u is then called displaced), see the right-hand

side of Fig. 3. Note that this second step of pushing out the

single strand u is irreversible.

Figure 4 gives now the implementation of an example

reaction a ¼ Aþ B ! C using DNA strand displacement

from Soloveichik et al. (2010). A molecule of A is repre-

sented by a single strand consisting of four segments. The

black segment can be arbitrary [although we naturally

assume that different segments are always sufficiently

different from the (complements of the) other segments of

the figure so that they not interfere in unintended ways

(Dirks et al. 2007; Lorenz et al. 2011)], and the segments

iA, sA, oA together form an identifier for species A. The

segments iA and oA are toeholds. Aside from these single

strands, there are additional molecules La and Ta which are

assumed to be abundantly present in the well-mixed

solution.

If an A-molecule is present, then the ‘‘incoming toe-

hold’’ iA can bind to its complement i�A in molecule La.

Again, because of the small size of iA, the single strand

representing A may also unbind at this stage. Alternatively,

it may compete with the existing single strand Ba ¼ sAoAiB
that is part of La and possibly push Ba out obtaining Ha.

Note that this process is reversible as Ba has iB as a toehold

which can bind to i�B in Ha and push out the molecule

representing A. Alternatively, if a B-molecule is present,

then it may also bind to i�B in Ha and this may result in

pushing out single strand Oa. The remainder of Ha is waste,

and at this stage Ba is waste too. Note that this step is

irreversible since Oa cannot bind to the remainder of Ha.

Finally, Oa can bind to toehold o�B of Ta and this may result

in pushing out a single strand that represents C. Again, this

step is irreversible. It is important that the first of the three

steps is reversible. Indeed, if no B-molecules are present

Computing with chemical reaction networks: a tutorial 131

123

Fig. 2 DNA molecule

representation

Fig. 3 DNA strand

displacement

Fig. 4 Simulating reaction a ¼
Aþ B ! C through DNA

strand displacements

132 R. Brijder

123

and the first step is irreversible, then A-molecules would be

incorrectly consumed by the La-molecules.

Since we consume an La and a Ta molecule for every

application of the reaction a, it is necessary to keep adding

these ‘‘fuel’’ molecules to the well-mixed solution to

ensure reaction a can keep taking place.

Additional systematic methodologies for compiling a

given (abstract) CRN to an implementation are given in

Chen et al. (2013), Badelt et al. (2017). Note that an

implementation of an (abstract CRN) is a CRN as well,

called an implementation CRN. Verification of correctness

of an implementation CRN against an abstract CRN has

been studied using the notion of pathway decomposition in

Shin et al. (2017) and using the notion of bisimulation in

Johnson et al. (2016). We also remark that the notion of

correctness in general depends on the computational model

that is assumed. For example, the implementation CRN of

Fig. 4 would in general not faithfully represent the original

abstract CRN if we assume a computational model that

highly depends on specific values of the rate constants, like

the model of computing with probability density functions

in Sect. 4.4.

Note that for CRNs N having ‘‘non mass-conserving’’

reactions like 0 ! A or A ! 0, where 0 is a zero vector, we

necessarily need ‘‘fuel’’ molecules or ‘‘waste’’ molecules,

respectively, for any implementation of N in nature (notice

that the above mentioned implementation of a CRN by

DNA strand displacement needs fuel molecules and has

waste molecules also for mass-conserving reactions).

Mass-conserving CRNs are exactly the CRNs for which it

is possible to assign positive integers to the species, a

weight vector v, such that the weighted sum of the mole-

cules in a state is invariant under the application of any

reaction (i.e., vTM ¼ 0T , where M is the stoichiometry

matrix of the CRN). Such a weight vector is called a

conservation vector (Horn and Jackson 1972).

7 Related research fields

Since CRNs form a mathematically natural model, it is not

surprising that this notion (or notions very similar to it) has

also appeared in other contexts. Indeed, CRNs are very

closely related to the notions of Petri nets (Peterson 1977;

Reisig and Rozenberg 1998) and vector addition systems

(Karp and Miller 1969) from the theory of concurrency and

population protocols (Aspnes and Ruppert 2007) from the

theory of distributed computing.

7.1 Petri nets

We first turn to Petri nets (Peterson 1977; Reisig and

Rozenberg 1998), which are nearly identical to CRNs. In a

Petri net, molecules are called tokens, species are called

places, reactions are called transitions, and states are called

markings. The firing of a transition in a Petri net corre-

sponds to a reaction that takes place in a CRN. More

advanced notions often also have their counterpart in Petri

net theory (and vice versa), e.g., the notion of a conser-

vation vector (mentioned in Sect. 6) is called a P-invariant

in Petri net theory.

A Petri net is defined as a directed bipartite multigraph

where the vertices of one colour class P are the places (and

are depicted as round vertices) and the vertices of the other

colour class T are the transitions (and are depicted as

square vertices).

Example 7.1 Consider the CRN N ¼ ðfX1;X2;X3g;
fa; bgÞ with
a ¼ X1 þ 2X2 ! 2X1 þ X3

b ¼ X3 ! X1

The Petri net corresponding to N is depicted in Fig. 5.

Note that the reactions correspond to square vertices (i.e.,

transitions) and that the species correspond to round ver-

tices (i.e., places) in Fig. 5. The reactants (products, resp.)

of each reaction correspond to the incoming (outgoing,

resp.) arrows, with multiplicity, of the corresponding

transition. For example since, X1 þ 2X2 are the reactants of

a, there is one arrow from X1 to a and two arrows from X2

to a.

There are some small differences between the (usual)

definitions of a CRN and a Petri net, which for most

problems are irrelevant. One difference is that a Petri net

has an initial marking (i.e., an initial state), while this is not

the case in the (usual) definition of a CRN. Of course, such

a fixed initial state can be useful in the context of CRNs as

well (see, e.g., Sect. 4.4). A more subtle difference is that a

Petri net may have two (or more) transitions with the same

multisets of incoming and outgoing arrows, which would

corresponds to two distinct reactions of the form ðr; pÞ.

Fig. 5 The Petri net corresponding to the CRN N of Example 7.1

Computing with chemical reaction networks: a tutorial 133

123

Many results on Petri nets deal with behavioral prop-

erties starting from the initial marking/state. Roughly

speaking, a Petri net is most often considered as a gener-

ator of states. In contrast, the computational CRN models

of Sect. 3 deal with accepting or rejecting an unknown

input state. The models from Sect. 3 have not been con-

sidered in the context of Petri net theory but have been

taken from the theory of population protocols, cf. Sect. 7.3

below.

The notion of a stochastic Petri net (Balbo 2000; Bause

and Kritzinger 2002; Marsan 1988) studied in the literature

is similar to the notion of a stochastic CRN, however the

notion of propensity (defined in Sect. 4.1) that is used is

different. More specifically, in stochastic Petri nets the

propensity is equal to the rate constant (called firing rate in

the context of stochastic Petri nets) and so, e.g., transition t

can fire for markings c and d, then the expected time for t

to fire for c is equal to the expected time for t to fire for d—

this behavior is, of course, very different from stochastic

CRNs (indeed, for stochastic CRNs the expected time for a

reaction to take place decreases when increasing the

molecule counts of species that appear as reactants of that

reaction).

The notion of a continuous Petri net (Recalde et al.

1999; David and Alla 2010) studied in the literature is quite

different from the notion of a continuous CRN from

Sect. 5.1. Indeed, the former is not based on differential

equations, but instead allows transitions/reactions to be

applied ‘‘x 2 R times’’. In this way, continuous Petri nets

are more related to the rate-independent mode of operation

discussed in Sect. 5.2.

We mention that there are other classes of Petri nets, like

hybrid Petri nets (David and Alla 2010) and coloured Petri

nets (Jensen 1996), which currently have not yet been

considered in the context of CRNs.

7.2 Vector addition systems

A vector addition system (VAS for short) (Karp and Miller

1969) is a finite subset A of ZK, where Z is the set of

integers and K is finite. The elements of A are called ac-

tions. Similar as for CRNs and Petri nets, a state is an

element of NK. An action a 2 A can fire for state c if cþ a

is a state.

For an action a, let p; r 2 NK be such that for all X 2 K,
we have (1) pðXÞ ¼ aðXÞ and rðXÞ ¼ 0 if aðXÞ� 0 and (2)

rðXÞ ¼ �aðXÞ and pðXÞ ¼ 0 otherwise. Then a ¼ p� r,

and we can easily see that the reaction ðr; pÞ simulates the

action a. In this way, for each VAS A there is a CRN that

simulates A.

There is, however, an issue in simulating a CRN by a

VAS. Consider the VAS A obtained from a CRN N by

replacing each reaction ðr; pÞ by the action p� r. Then A

may behave differently than N . Indeed, for example, the

reaction Aþ 3B ! C þ 3B cannot be applied to a state d

with only the single molecule A, but the action p� r ¼
C � A can be applied to d. More generally, the construc-

tion does not work for ‘‘catalyst-like’’ reactions ðr; pÞ,
where rðXÞ and pðXÞ are both nonzero for some species X.

However, for each CRN N there is a CRN N 0
without

catalyst-like reactions that behaves very similar to N . The

CRN N 0
is obtained from N by introducing a new species

Qa for each catalyst-like reaction a ¼ ðr; pÞ and replacing

a by the reactions a1 ¼ ðr; qaÞ and a2 ¼ ðqa; pÞ, where qa
contains one copy of Qa and nothing else (Soloveichik

et al. 2008; Cook et al. 2009). In this way, e.g., the reaction

a ¼ Aþ 3B ! C þ 3B is simulated by the reactions Aþ
3B ! Qa and Qa ! C þ 3B. For many problems the dif-

ference between N and N 0
is irrelevant and for these

problems we can equivalently consider the VAS corre-

sponding to N 0
.

The reachability problem for VASs, i.e., to determine

for given states c and d whether or not d can be reached

from c, has been intensively investigated and is well known

to be EXPSPACE-hard (Cardoza et al. 1976) (lower

bound) and decidable (Mayr 1984; Leroux 2012) (upper

bound, see the introduction of Leroux (2012) for a more

detailed historical account of the decidability proofs). By

the above, these results directly carry over to the domains

of Petri nets and CRNs.

7.3 Population protocols

The notion of a population protocol was introduced in

Angluin et al. (2006) as a model for distributed computing.

A population protocol models a finite set of agents that

each hold a state from a fixed finite set Q of states. When

two agents bump into each other, the agents change their

state according to a transition function d : Q2 ! Q2.

Agents with a common state are indistinguishable, so a

particular global state of a set of agents can be described as

a multiset of the states of the agents. We can now easily see

that population protocols correspond to CRNs where each

reaction ðr; pÞ is such that krk ¼ kpk ¼ 2. Indeed, agents

correspond to molecules, states correspond to species, and

if dðq1; q2Þ ¼ ðq3; q4Þ, then this corresponds to reaction

q1 þ q2 ! q3 þ q4. More precisely, the class of population

protocols therefore actually corresponds to the class of

CRNs where each reaction ðr; pÞ is such that krk ¼ kpk ¼
2 and, additionally, there is a reaction for each pair of

species. However, we may have dðq1; q2Þ ¼ ðq1; q2Þ and so

the corresponding reaction ðr; pÞ is mute. For most prob-

lems the existence or absence of mute reactions is irrele-

vant. The computational CRN model of Sect. 3.2 is the

134 R. Brijder

123

natural generalization to CRNs of the original computa-

tional model for population protocols from Angluin et al.

(2006). The interpretation of the computational model of

Sect. 3.2 in terms of population protocols is as follows:

each agent starts with an input state and ‘‘eventually’’ there

is agreement among the agents of accepting the input or not

(we use eventually in the sloppy way here, cf. Remark 3.3:

we actually mean ‘‘during the computation it is always

possible to reach a state where’’). Some states are desig-

nated as ‘‘yes’’ states and others as ‘‘no’’ states—in this

way, agents communicate their opinion. Notice that the

notion of stably deciding is natural within the context of

population protocols since agents will keep bumping into

each other, triggering the application of the transition

function d. Indeed, stably deciding (not haltingly deciding)

is the most studied mode of operation for population

protocols.

Because the class of population protocols corresponds to

a proper subclass of all CRNs, results concerning popula-

tion protocols do not necessarily hold for the whole class of

CRNs. One particularly important aspect of population

protocols is that the number of agents stay fixed during a

computation. In other words, in the corresponding CRN N ,

we have that for all states c and d 2 postðcÞ, kdk ¼ kck.
Since there are only a finite number of states of a given

size, we have that the set postðcÞ is finite. It is easy to

define CRNs that violate this property: take, e.g., a CRN

having the reaction 0 ! A, where 0 is a zero vector.

The efficiency of population protocol algorithms is

expressed in terms of the expected number of interactions

between agents, where the two agents for each interaction

are chosen at random. While the model is therefore similar

to that of stochastic CRNs where the rate constants are all 1

and the volume is equal to the number of agents, there is a

difference in that population protocols use discrete time

and stochastic CRNs use continuous time.

8 Discussion

The goal of this paper is to introduce in a tutorial fashion

the basic concepts and results concerning computational

CRNs as well as to review some of the main strands of

research in this area. By now the literature of this research

field is really vast, so it is not possible to cover (in a space-

limited tutorial) all interesting research directions. We

complete this tutorial by mentioning a few research

directions that we did not cover.

Most prominently, we have not discussed the important

topic of model checking, i.e., verifying behavioral prop-

erties of CRNs. CRN theory, see, e.g., Feinberg (1980);

Feinberg and Horn (1977), Horn (1972), Gunawardena

(2003), is a well-established research field that is tradi-

tionally used to study CRNs occurring in nature, but it can

equally well be used to model check human-designed

computational CRNs. Model checking techniques can be

drawn from various contexts. Indeed, for example, various

notions introduced originally in the context of continuous

CRNs, such as the important notion of deficiency, have

found their use also for discrete CRNs (Anderson et al.

2014). As another example, notions introduced originally

in the context of Petri nets, such as the notion of a T-in-

variant, have found their use for discrete CRNs, see, e.g.,

Brijder (2017).

Also, since CRNs behave inherently asynchronously, it

is natural to link CRNs to asynchronous logic circuits. This

research direction is pursued in Cardelli et al. (2016b)

where (among other results) it is shown that the Muller

C-element (a fundamental asynchronous component)

(Sparso and Furber 2001) can be simulated by a CRN.

Other work on asynchronous logic circuits implemented by

CRNs includes Salehi et al. (2014).

CRNs have a finite number of reactions and a finite

number of species. It would be interesting to see what

results concerning CRNs hold in the more general setting

where we drop one or both of these assumptions (of course,

allowing an infinite number of species without allowing an

infinite number of reactions makes little sense). Motivated

by polymers, which can be of arbitrary length, a special

class of CRNs with an infinite number of species has been

considered in Johnson and Winfree (2014).

In this paper we have also assumed that CRNs reside in

well-mixed solutions. However, one can also consider non-

homogeneous environments. For example, in Qian and

Winfree (2014) it is shown possible to implement CRNs

tied to surfaces, which are called surface CRNs. The

‘‘spatial awareness’’ of surface CRNs results in a higher

computational expressivity compared to (the usual) CRNs

that reside in well-mixed solutions. Indeed, surface CRNs

can simulate arbitrary Turing machines (without any the-

oretical probability of error) (Qian and Winfree 2014).

Acknowledgements We thank Dave Doty, Grzegorz Rozenberg,

David Soloveichik, and three anonymous referees for many useful

comments on earlier versions of this paper. R.B. is a postdoctoral

fellow of the Research Foundation–Flanders (FWO).

References

Anderson DF, Kurtz TG (2011) Continuous time Markov chain

models for chemical reaction networks. In: Koeppl H, Setti G, di

Bernardo M, Densmore D (eds) Design and analysis of

biomolecular circuits: engineering approaches to systems and

synthetic biology. Springer, New York, pp 3–42

Computing with chemical reaction networks: a tutorial 135

123

Anderson DF, Enciso GA, Johnston MD (2014) Stochastic analysis of

biochemical reaction networks with absolute concentration

robustness. J R Soc Interface 11(93):20130943

Angluin D, Aspnes J, Diamadi Z, Fischer MJ, Peralta R (2006)

Computation in networks of passively mobile finite-state sensors.

Distrib Comput 18(4):235–253

Angluin D, Aspnes J, Eisenstat D, Ruppert E (2007) The computa-

tional power of population protocols. Distrib Comput

20(4):279–304

Angluin D, Aspnes J, Eisenstat D (2008) Fast computation by

population protocols with a leader. Distrib Comput

21(3):183–199

Aspnes J, Ruppert E (2007) An introduction to population protocols.

Bull EATCS 93:98–117

Badelt S, Shin SW, Johnson RF, Dong Q, Thachuk C, Winfree E

(2017) A general-purpose CRN-to-DSD compiler with formal

verification, optimization, and simulation capabilities. In: Brijder

R, Qian L (eds) Proceedings of the 23th international conference

on DNA computing and molecular programming (DNA 23), vol

10467. Lecture Notes in Computer Science. Springer, Berlin,

pp 232–248

Balbo G (2000) Introduction to stochastic Petri nets. In: Brinksma E,

Hermanns H, Katoen J (eds) Lectures on formal methods and

performance analysis, vol 2090. Lecture Notes in Computer

Science. Springer, Berlin, pp 84–155

Bause F, Kritzinger PS (2002) Stochastic Petri nets: an introduction to

the theory, 2nd edn. Vieweg Verlag, Berlin

Belleville A, Doty D, Soloveichik D (2017) Hardness of computing

and approximating predicates and functions with leaderless

population protocols. In: Chatzigiannakis I, Indyk P, Kuhn F,

Muscholl A (eds) Proceedings of the 44th international collo-

quium on automata, languages, and programming (ICALP 2017),

volume 80 of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum fuer

Informatik, pp 141:1–141:14

Bournez O, Campagnolo ML, Graça DS, Hainry E (2007) Polynomial

differential equations compute all real computable functions on

computable compact intervals. J Complex 23(3):317–335

Brijder R (2016) Minimal output unstable configurations in chemical

reaction networks and deciders. Nat Comput 15(2):235–244

Brijder R (2017) Dominance and deficiency for Petri nets and

chemical reaction networks. Nat Comput 16(2):285–294

Brijder R, Doty D, Soloveichik D (2018) Democratic, existential, and

consensus-based output conventions in stable computation by

chemical reaction networks. Nat Comput 17(1):97–108

Buisman HJ, ten Eikelder HMM, Hilbers PAJ, Liekens AML (2009)

Computing algebraic functions with biochemical reaction net-

works. Artif Life 15(1):5–19

Cardelli L, Kwiatkowska M, Laurenti L (2016a) Programming

discrete distributions with chemical reaction networks. In:

Rondelez Y, Woods D (eds) Proceedings of the 22th interna-

tional conference on DNA computing and molecular program-

ming (DNA 22), vol 9818. Lecture Notes in Computer Science.

Springer, pp 35–51

Cardelli L, Kwiatkowska M, Whitby M (2016b) Chemical reaction

network designs for asynchronous logic circuits. In: Rondelez Y,

Woods D (eds) Proceedings of the 22th international conference

on DNA computing and molecular programming (DNA 22), vol

9818. Lecture Notes in Computer Science. Springer, pp 67–81

Cardoza E, Lipton RJ, Meyer AR (1976) Exponential space complete

problems for Petri nets and commutative semigroups: prelimi-

nary report. In: Chandra AK, Wotschke D, Friedman EP,

Harrison MA (eds) Proceedings of the 8th annual ACM

Symposium on theory of computing (STOC 1976). ACM,

pp 50–54

Case A, Lutz JH, Stull DM (2016) Reachability problems for

continuous chemical reaction networks. In: Amos M, Condon A

(eds) Proceedings of the 15th international conference on

unconventional computation and natural computation (UCNC

2016), vol 9726. Lecture Notes in Computer Science. Springer,

Berlin, pp 1–10

Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik

D, Seelig G (2013) Programmable chemical controllers made

from DNA. Nat Nanotechnol 8:755–762

Chen H-L, Doty D, Soloveichik D (2014a) Deterministic function

computation with chemical reaction networks. Nat Comput

13(4):517–534

Chen H-L, Doty D, Soloveichik D (2014b) Rate-independent

computation in continuous chemical reaction networks. In: Naor

M (ed) Proceedings of the 5th conference on innovations in

theoretical computer science (ITCS’14). ACM, pp 313–326

Chen H-L, Cummings R, Doty D, Soloveichik D (2017) Speed faults

in computation by chemical reaction networks. Distrib Comput

30(5):373–390

Cook M, Soloveichik D, Winfree E, Bruck J (2009) Programmability

of chemical reaction networks. In: Condon A, Harel D, Kok JN,

Salomaa A, Winfree E (eds) Algorithmic bioprocesses. Springer,

Berlin, pp 543–584

Cummings R, Doty D, Soloveichik D (2016) Probability 1 compu-

tation with chemical reaction networks. Nat Comput

15(2):245–261

David R, Alla H (2010) Discrete, continuous, and hybrid Petri nets,

2nd edn. Springer, Berlin

Dirks R, Bois J, Schaeffer J, Winfree E, Pierce N (2007) Thermo-

dynamic analysis of interacting nucleic acid strands. SIAM Rev

49(1):65–88

Doty D, Hajiaghayi M (2015) Leaderless deterministic chemical

reaction networks. Nat Comput 14(2):213–223

Doty D, Soloveichik D (2018) Stable leader election in population

protocols requires linear time. Distrib Comput 31:257–271

Fages F, Guludec GL, Bournez O, Pouly A (2017) Strong Turing

completeness of continuous chemical reaction networks and

compilation of mixed analog-digital programs. In: Feret J,

Koeppl H (eds) 15th international conference on computational

methods in systems biology (CMSB 2017), vol 10545. Lecture

Notes in Computer Science. Springer, Berlin, pp 108–127

Feinberg M (1980) Lectures on chemical reaction networks. https://

crnt.osu.edu/LecturesOnReactionNetworks. Accessed 2 Aug

2018

Feinberg M, Horn F (1977) Chemical mechanism structure and the

coincidence of the stoichiometric and kinetic subspaces. Arch

Ration Mech Anal 66(1):83–97

Fett B, Bruck J, Riedel MD (2007) Synthesizing stochasticity in

biochemical systems. In: Proceedings of the 44th annual design

automation conference (DAC 2007). ACM, pp 640–645

Ginsburg S, Spanier EH (1966) Semigroups, Presburger formulas, and
languages. Pac J Math 16(2):285–296

Gunawardena J (2003) Chemical reaction network theory for in-silico

biologists. http://vcp.med.harvard.edu/papers/crnt.pdf. Accessed

2 Aug 2018

Hopcroft JE, Pansiot J (1979) On the reachability problem for

5-dimensional vector addition systems. Theor Comput Sci

8:135–159

Hopcroft JE, Ullman JD (1979) Introduction to automata theory,

languages, and computation. Addison-Wesley, Boston

Horn F (1972) Necessary and sufficient conditions for complex

balancing in chemical kinetics. Arch Ration Mech Anal

49(3):172–186

Horn F, Jackson R (1972) General mass action kinetics. Arch Ration

Mech Anal 47(2):81–116

Jensen K (1996) Coloured Petri nets: basic concepts, analysis

methods and practical use, 2nd edn. Springer, Berlin

136 R. Brijder

123

https://crnt.osu.edu/LecturesOnReactionNetworks
https://crnt.osu.edu/LecturesOnReactionNetworks
http://vcp.med.harvard.edu/papers/crnt.pdf

Johnson R, Winfree E (2014) Verifying polymer reaction networks

using bisimulation. http://www.dna.caltech.edu/Papers/Poly

mers2014-VEMDP.pdf. Accessed 2 Aug 2018

Johnson RF, Dong Q, Winfree E (2016) Verifying chemical reaction

network implementations: a bisimulation approach. In: Rondelez

Y, Woods D (eds) Proceedings of the 22th international

conference on DNA computing and molecular programming

(DNA 22), vol 9818. Lecture Notes in Computer Science.

Springer, pp 114–134

Karp RM, Miller RE (1969) Parallel program schemata. J Comput

Syst Sci 3(2):147–195

Kurtz TG (1972) The relationship between stochastic and determin-

istic models for chemical reactions. J Chem Phys

57(7):2976–2978

Leroux J (2012) Vector addition systems reachability problem (a

simpler solution). In: Voronkov A (ed) Proceedings of the Alan

turing centenary conference (Turing-100), vol 10. EPiC Series,

pp 214–228

Liekens AML, Fernando CT (2007) Turing complete catalytic particle

computers. In: Almeida e Costa F, Rocha LM, Costa E, Harvey I,

Coutinho A (eds) Proceedings of the 9th European conference on

artificial life (ECAL 2007), vol 4648. Lecture Notes in Computer

Science. Springer, Berlin, pp 1202–1211

Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C,

Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0.

Algorithms Mol Biol 6(1):26

Magnasco MO (1997) Chemical kinetics is Turing universal. Phys

Rev Lett 78:1190–1193

Marsan MA (1988) Stochastic Petri nets: an elementary introduction.

In: Rozenberg G (ed) Advances in Petri nets 1989, vol 424.

Lecture Notes in Computer Science. Springer, Berlin, pp 1–29

Mayr EW (1984) An algorithm for the general Petri net reachability

problem. SIAM J Comput 13(3):441–460

McQuarrie DA (1967) Stochastic approach to chemical kinetics.

J Appl Probab 4(3):413–478

Minsky ML (1961) Recursive unsolvability of Post’s problem of

‘‘tag’’ and other topics in theory of Turing machines. Ann Math

74(3):437–455

Peterson JL (1977) Petri nets. ACM Comput Surv 9(3):223–252

Qian L, Winfree E (2014) Parallel and scalable computation and

spatial dynamics with DNA-based chemical reaction networks

on a surface. In: Murata S, Kobayashi S (eds) Proceedings of the

20th international conference on DNA computing and molecular

programming (DNA 20), vol 8727. Lecture Notes in Computer

Science. Springer, Berlin, pp 114–131

Recalde L, Teruel E, Suárez MS (1999) Autonomous continuous P/T

systems. In: Donatelli S, Kleijn HCM (eds) Proceedings of the

20th international conference on the applications and theory of

Petri nets (ICATPN ’99), vol 1639. Lecture Notes in Computer

Science. Springer, Berlin, pp 107–126

Reisig W, Rozenberg G (eds) (1998) Lectures on Petri nets I: basic

models, vol 1491. Lecture Notes in Computer Science. Springer,

Berlin

Salehi SA, Riedel MD, Parhi KK (2014) Asynchronous discrete-time

signal processing with molecular reactions. In: Proceedings of

the 48th Asilomar conference on signals, systems and computers,

pp 1767–1772

Senum P, Riedel M (2011) Rate-independent constructs for chemical

computation. PLOS ONE 6(6):1–12 06

Shannon CE (1941) Mathematical theory of the differential analyzer.

J Math Phys 20(1–4):337–354

Shin SW, Thachuk C, Winfree E (2017) Verifying chemical reaction

network implementations: a pathway decomposition approach.

Theor Comput Sci. https://doi.org/10.1016/j.tcs.2017.10.011

Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with

finite stochastic chemical reaction networks. Nat Comput

7(4):615–633

Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal

substrate for chemical kinetics. Proc Natl Acad Sci

107(12):5393–5398

Sparso J, Furber S (eds) (2001) Principles of asynchronous circuit

design: a systems perspective. Springer, Berlin

Computing with chemical reaction networks: a tutorial 137

123

http://www.dna.caltech.edu/Papers/Polymers2014-VEMDP.pdf
http://www.dna.caltech.edu/Papers/Polymers2014-VEMDP.pdf
https://doi.org/10.1016/j.tcs.2017.10.011

	Computing with chemical reaction networks: a tutorial
	Abstract
	Introduction
	Chemical reaction networks
	Computing with discrete chemical reaction networks
	Haltingly deciding chemical reaction deciders
	Stably deciding chemical reaction deciders and other modes of operation
	Computing functions
	Speed faults

	Computing with stochastic chemical reaction networks
	Stochastic chemical reaction networks
	Turing-universal computation by stochastic chemical reaction networks with possible errors
	Leader election
	Computing probability distributions

	Computing with continuous chemical reaction networks
	Continuous chemical reaction networks
	Rate-independent computation with continuous chemical reaction networks

	Implementation: DNA strand displacement
	Related research fields
	Petri nets
	Vector addition systems
	Population protocols

	Discussion
	Acknowledgements
	References

