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Abstract
This paper presents a new ensemble algorithm which combines two well-known algorithms particle swarm optimization

(PSO) and differential evolution (DE). To avoid the suboptimal solutions occurring in the previous hybrid algorithms, in

this study, an alternative mutation method is developed and embedded in the proposed algorithm. The population of the

proposed algorithm consists of two groups which employ two independent updating methods (i.e. velocity updating method

from PSO and mutative method from DE). By comparing with the previously generated population at the last generation,

two new groups are generated according to the updating methods. Based on the alternative mutation method, the population

is updated by the alternative selection according to the evaluation functions. To enhance the diversity of the population, the

strategies of re-mutation, crossover, and selection are conducted throughout the optimization process. Each individual

conducts the correspondent mutation and crossover strategies according to the parameter values randomly selected, and the

parameter values of scaling factor and crossover probability will be updated accordingly throughout the iterations.

Numerous simulations on twenty-five benchmark functions have been conducted, which indicates the proposed algorithm

outperforms some well-exploited algorithms (i.e. inertia weight PSO, comprehensive learning PSO, and DE) and recently

proposed algorithms (i.e. DE with the ensemble of parameters and mutation strategies and ensemble PSO).
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1 Introduction

Particle swarm optimization (PSO) (Kennedy and Eberhart

1995) is known for its fast convergence, fewer initialization

parameters, and easy to implement in complex optimiza-

tion problems, which has been widely applied to many

practical problems such as sampling-based image matting

problem (Mohapatra et al. 2017), radial basis function

networks problem (Alexandridis et al. 2016) and con-

strained non-convex and piecewise optimization problem

(Chen et al. 2017). However, the main drawback associated

with PSO and its variants is easily to fall into the local

optima in comparison to other evolutionary algorithms.

Different from the PSO method, differential evolution (DE)

(Storn and Price 1997) is famous for its superior

exploration capability using the strategies such as mutation,

crossover and selection. Currently, DE has shown the great

success in engineering applications such as economic or

emission dispatch problem (Jebaraj et al. 2017), circuit

designs problem (Zheng et al. 2017), and flood classifica-

tion problem (Liao et al. 2013). Even so, the convergence

speed of DE seems to be rather slow in the late optimiza-

tion stage, which leads to the local optimum like PSO.

To overcome the limitation associated with PSO meth-

ods and DE methods, various strategies (Cheng et al. 2014;

Guo et al. 2015; Juang et al. 2015; Niu et al. 2014, 2017)

are used in the improvements of PSO and DE method. For

example, some methods [e.g. integrating a unification

factor (Tsai 2017), incorporating the individual particles

memories (Guedria 2016) and improving the particles’

collision and ‘‘territories’’ (Arani et al. 2013)] were applied

in the independent PSO to avoid the premature conver-

gence. Additionally, to encourage broader exploration,

some strategies were also introduced in the independent

DE, such as, the combination of Taguchi method with
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sliding levels (Tsai 2015), the introduction of fuzzy

selection method (Pandit et al. 2015) and the application of

restricting the discrete variables (Ho-Huu et al. 2015). In

recent years, the hybrid DE and PSO have been verified the

superior performance on practical problems. In (Ma et al.

2015), a hierarchical hybrid algorithm, adopting the

velocity and position method in PSO and a mutation

strategy in DE, has been proposed and applied to solving

the bi-level programming problem (BLPP). With equal sub

lots method, a proposed hybrid algorithms of PSO and DE

(Vijay Chakaravarthy et al. 2013) was used for scheduling

m-machine flow shops with lot streaming. A hybrid method

of PSO and DE integrating fuzzy c-means clustering

algorithm had good performance on image segmentation

(Liu and Qiao 2015).

Although the combination strategies can improve the

effectiveness of global capability of DE or PSO, they

generally have to burden larger computational complexity.

To address this drawback, many improvements of hybrid

PSO and DE have been proposed. In (Mao et al. 2017),

combined the DE with the acceleration factors updating

strategy in PSO, a global optimization method was devel-

oped to reduce the computational complexity. The updated

mutation and crossover strategies were introduced in the

novel hybrid DE and PSO algorithm (DE-PSO) (Xu et al.

2016) to make use of the shared resources, i.e. location and

time. In (Tang et al. 2016), a novel hybrid PSO and DE

algorithm, with the nonlinear time-varying PSO

(NTVPSO) and the ranking-based self-adaptive DE

(RBSADE), was developed to avoid stagnation and

enhance the convergence speed. With the strategies of

making uses of the population diversity of DE and the

convergence ability of PSO, a multi-objective hybrid

algorithm (Ma et al. 2015) integrating DE and PSO is

designed to quickly produce the satisfactory solutions. In

addition, some strategies have been presented in the hybrid

DE and PSO methods to enhance the global search ability,

such as the aging leader and challenger strategy (Moharam

et al. 2016), population reduction strategy (Ali and Tawhid

2016), and hybrid operator and a multi-population strategy

(Zuo and Xiao 2014). Though those hybrid methods can

improve the performance of the original algorithms of the

PSO and DE, premature stagnation is still a major problem.

In this study, based on an alternative mutation method, a

combination of PSO and DE with ensemble strategies

(EPSODE) is proposed to address the problem of prema-

ture convergence in original PSO and DE. Unlike previous

combination algorithms of DE and PSO, this proposed

EPSODE algorithm is a hierarchical method, which

includes the alternative mutation method, the novel muta-

tion and crossover strategies. Different mutation strategies

of DE algorithm can achieve more accurate results than a

unique mutation strategy. The ensemble mutation and

crossover strategies have the characteristics of fast con-

vergence and easy to jump out of the local optimal situa-

tion. To enhance population diversity, in the alternative

mutation strategy, the population is separated into two

groups generated by two different methods (i.e. velocity

updating strategy of PSO and mutation strategy of DE).

Additionally, those two new generated groups are updated

by making the comparison with the previous population.

The population at the next generation is obtained by

intentionally selecting from two separated groups.

Thus, the main contributions of this paper are as

follows:

• A new combination of PSO and DE is proposed with

ensemble strategies to address the problem of prema-

ture convergence;

• The ensemble mutation and crossover strategies are

developed to ensure the diversity of the population and

the convergence speed of the optimization;

• The population of the proposed method is separately

updated using velocity updating strategy of PSO and

mutation strategy of DE to increase the disturbances

between individuals;

• Compared with three well-exploited algorithms and

two recently proposed PSO and DE algorithms, the new

proposed combination algorithm is demonstrated to be

superior by demonstrating on twenty-five benchmark

functions.

The remaining paper is organized as follows. Section 2

provided a brief introduction of PSO algorithm and DE

algorithm. In Sect. 3, the ensemble algorithm of PSO and

DE with alternative mutation method is presented. Sec-

tion 4 gives experimental results of the simulations on

benchmark functions. Finally, Sect. 5 gives the conclusion

remarks.

2 Description of algorithms

In this Section, the particle swarm optimization (PSO)

method and differential evolution (DE) method are intro-

duced, separately.

2.1 Particle swarm optimization

Inspired by the behavior of birds flocking, PSO (Kennedy

and Eberhart 1995) is proposed as one of the intelligent

optimization methods. In the simulation of PSO algorithm,

a group of particles without quality and volume flies in the

search space to find the optimal location. Each particle

represents a potential solution to the problem under anal-

ysis. All particles are given random positions x and

velocities v at the initial state. At each generation, the best
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position of ith particle is represented by p besti and the best

position of all particles is denoted by gbest. By learning

from them, the particles gradually approach to their opti-

mal position. Equations (1)–(2) are the update equation:

vGþ1
i ¼ xvGi þ c1randð0; 1ÞðpbestGi � xGi Þ

þ c2randð0; 1ÞðgbestG � xGi Þ ð1Þ

xGþ1
i ¼ xGi þ vGþ1

i ð2Þ

where N is the number of particles, D is the dimension of

search space, and G is the number of generation,

xi i ¼ 1; 2; . . .; Nð Þ denotes the ith particle, viði ¼
1; 2; . . .; NÞ is the velocity (i.e. the rate of change of

position) of the ith particle. c1 and c2 are acceleration

factors. Finally, the value of inertia weight represented by

x plays an important role in the search ability of PSO

algorithm.

In addition to giving a fixed inertia weight, Shi and

Eberhart (1998) proposed a linearly decreasing strategy for

inertia weight [i.e. Eq. (3)] to improve the premature

convergence in 1999. In the early part of the optimization,

larger inertia weight can enhance the global exploration.

While a smaller inertia weight in the later part of the

generation can enable the local exploitation.

x ¼ xmax � ðxmax � xminÞ � G=Gmax ð3Þ

where xmax and xmin are the maximum and minimum

values of inertia weight respectively. Gis the current

number of generation and Gmax is the maximum number of

generation.

2.2 Differential evolution algorithm

Proposed by Storn and Price (1997), DE is a well-known

evolutionary optimization algorithm, which generally

includes three basic operators includingmutation, crossover,

and selection. In DE algorithm, each candidate solution is

encoded as xi ¼ xi1; xi2; . . .; xiDgf , i = 1, 2, …, N. The ini-

tial population should be distributed throughout the whole

search space. The lower limit and the upper limit of the

search space are xmin ¼ xmin1; xmin2; . . .; xminDgf and

xmax ¼ xmax1; xmax2; . . .; xmaxDgf , respectively. In general,

the initial population is generated by using the following

equation [i.e. Eq. (4)].

xij ¼ xminj þ randð1; 0Þ � ðxmaxj � xminjÞ j ¼ ð1; 2; . . .;DÞ
ð4Þ

where N is the number of individuals and D is the search

space’s dimension.

Mutation: In order to avoid the local optima, the off-

spring of DE algorithm is produced by using mutation

operation (Salman et al. 2007), and most frequently used

mutation strategies are shown as follows:

DE=rand=1 Storn 1996ð Þ : VG
i ¼ xGr1 þ F � ðxGr2 � xGr3Þ

ð5Þ

DE=rand=2 Qin etal: 2009ð Þ :
VG
i ¼ xGr1 þ F � ðxGr2 � xGr3Þ þ F � ðxGr4 � xGr5Þ

ð6Þ

DE=best=1 Storn 1996ð Þ : VG
i ¼ xGbest þ F � ðxGr1 � xGr2Þ

ð7Þ

DE=best=2 Storn 1996ð Þ :
VG
i ¼ xGbest þ F � ðxGr1 � xGr2Þ þ F � ðxGr3 � xGr4Þ

ð8Þ

DE=rand� to� best=1 Storn 1996ð Þ or DE=
target � to� best=1 Price et al: 2005ð Þ :
VG
i ¼ xGi þ K � ðxGbest � xGi Þ þ F � ðxGr1 � xGr2Þ

ð9Þ

DE=rand� to� best=2 Qin et al: 2009ð Þ :
VG
i ¼ xGi þ K � ðxGbest � xGi Þ þ F � ðxGr1 � xGr2 þ xGr3 � xGr4Þ

ð10Þ

DE=current � to� rand=1 Iorio and Li 2004ð Þ :
uGi ¼ xGi þ K � ðxGr1 � xGi Þ þ F � ðxGr2 � xGr3Þ

ð11Þ

where G is the current generation, the scaling factor F

plays an important role in disturbing the previous vectors.

Larger scaling factor is useful for obtaining more potential

solutions while smaller scaling factor facilitates to enhance

the speed of convergence. K is a random number selected

from 0 to 1. r1, r2, r3, r4 and r5 not equal to each other are

randomly selected from 1 to N, and also different to i. Vi is

the updated ith vector through mutating. xGbest is the optimal

individual at the Gth generation.

Though the single mutation strategy obtains good per-

formance in DE, many limitations still exist. In terms of

search accuracy, DE/rand/1 (Storn 1996) is widely used in

the intelligence optimization field while it does not obtain

the better solution relative to the DE/rand-to-best/1 (Storn

1996, Price et al. 2005). DE/rand/2 (Qin et al. 2009)

increases the diversity relative to the DE/rand/1 (Storn

1996). DE/best/1 (Storn 1996, DE/rand-to-best/1 (Storn

1996, Price et al. 2005), DE/rand-to-best/2 (Qin et al. 2009)

and DE/current-to-rand/1 (Iorio and Li 2004) all have

certain limitations in high dimension and multi-model.

Additionally, the speed of the DE/rand-to-best/1 (Storn

1996) is faster on easier optimization problems, and DE/

current-to-rand/1 (Iorio and Li 2004) is superior to the

other strategies for solving the rotated problems. Therefore,

in order to integrate the advantages of those mutation

strategies, the strategies of DE/rand-to-best/1 [i.e. Equa-

tion (9)] and DE/current-to-rand/1 [i.e. Eq. (11)] are

employed in the proposed EPSODE algorithm.

Crossover: In DE algorithm, crossover operation is used

for increasing the diversity of the population. The number

of the alternative population is determined by the crossover
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probability CR. Smaller CR preserves the stability of the

population during the evolution procedure, and larger CR

enhances the diversity of the population. Equations (12)–

(13) are the formulas of crossover:

uG
ij
¼

VG
ij

if ðrandjð0; 1Þ�CRÞorj ¼ jrand

xG
ij

otherwise

(
; j ¼ 1. . .D

ð12Þ

uG
ij
¼

VG
ij

ij ¼ jrandh iD; jrand þ 1h iD; . . .; jrand þ L� 1h iD
xG
ij

otherwise

(

ð13Þ

where uij is the trial vector, jrand is a randomly selected

index in the range of[1, D], randj is a random number in

the range of [0, 1], lh iD represents the modulo operation for

D, and L is an integer between 1 to D. To enhance the

diversity of the population, the binomial crossover and

exponential crossover [i.e. Eq. (13)] (Zaharie 2009) are

applied in the proposed algorithm (Mallipeddi and

Suganthan 2010).

Selection: Following the crossover process, every trial

vectoruiwill be compared with the individual vectorxiin

terms of the fitness value, and the vectors corresponding to

the better fitness values will be preserved to the next

generation. The greedy algorithm [i.e. Eq. (14)] is used to

select individuals for the next generation process.

xGþ1
i ¼

uGi if f ðuGi Þ� f ðxGi Þ
xGi otherwise

(
ð14Þ

3 Ensemble particle swarm optimization
and differential evolution (EPSODE)

The superior characteristics of PSO are fast convergence

speed and fewer initial parameters. However, due to

insufficient information search, the suboptimal solutions

might be more frequently obtained by PSO. Different from

PSO, the population of DE tends to be more diverse as the

number of generations increases but the computational

complexity is greater. To take advantages of those two

algorithms, in this paper, a new ensemble PSO and DE

method (EPSODE) is proposed to improve the search

capability of particles. The description of the proposed

EPSODE algorithm is as follows.

3.1 Alternative mutation method

At the beginning of each generation, two subpopulation

groups (i.e. P1 and P2) are generated by PSO and DE.

Considering that PSO is easy to implement and has fewer

parameters, one group (i.e., P1) is produced by the PSO

with the inertial weight of linearly decreasing strategy to

reduce computational complexity [i.e. Eqs. (1)–(3)]. In

order to disrupt the original movement direction, another

group P2is renewed by the mutation method [i.e. Eq. (15)].

xi ¼ K1 � ðxpbest � xiÞ þ K2 � ðxa � xbÞ; i ¼ 1. . .N ð15Þ

where N is the individuals’ number, K1 and K2 are ran-

domly selected from [0, 1], xidonates the ith individual.

xpbest is the optimal population, a and bare indexes selected

from 1 to N, but different from the i.

The mutation method is proposed to break the rules of

the original particle movement. For example, as shown in

Fig. 1, if the initial directions of xi, xpbest, xa and xb are

given, the directions of xbest - xi and xa - xb are also

determined. K1 and K2play the role in regulating the

direction. If the value of K1and K2 are the same, the

direction of the individual is the same of

ðxpbest � xiÞ þ ðxa � xbÞ. If not, it will be updated.

After updating the two subpopulation groups, the two

updated groups (i.e. P1 and P2) are compared with the

initial population or reserved population at the last gener-

ation according to the fitness value. The better individuals

are preserved to update the new P1andP2again.

The individuals of two new groups (i.e. new P1 and P2)

are sorted in accordance with the fitness value, and the

sorted groups are also compared to retain the superior

individuals. The new group P3 is consist of the superior

individuals, and served as the basic population in the next

simulation experiment. The flowchart of the alternative

mutation method is shown in Fig. 2.

3.2 Ensemble strategy of mutation
and crossover

The selection method of mutation and crossover strategies

plays an important role in the simulation process of DE.

The suitable strategy can make the algorithm more efficient

in solving the diffident types of functions, such as unimodal

function, multimodal function, continuous functions, and

discrete functions and so on. The recently proposed

xi

xpbest
xb

xa
xa-xb

xpbest- xi

xa-xb

xpbest- xi+xa-xb

K1*(xpbest- xi)+K2*(xa-xb)

Fig. 1 Disturbance map of the improved mutation method
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algorithm (Mallipeddi and Suganthan 2010) obtains supe-

rior offspring by employing the multi-strategies of muta-

tion and crossover successfully. Based on the superior

performance of multi-strategies, the ensemble of mutation

and crossover strategy is employed in the proposed

EPSODE algorithm.

In order to improve the global search ability of the

proposed algorithm, DE/rand-to-best/1 [i.e. Eq. (9)] and

DE/current-to-rand/1 [i.e. Eq. (11)] are applied in the

proposed EPSODE algorithm. Getting information from

the best individual of the whole group (i.e. DE/rand-to-

best/1), the proposed EPSODE is easier to obtain the

optimal value relative to other mutation strategies (i.e. DE/

rand/1 and DE/rand/2). Obtaining information from

neighbor individuals (i.e. DE/current-to-rand/1), the dis-

turbance between individuals can be increased. Binomial

crossover [i.e. Eq. (12)] and exponential crossover [i.e.

(13)] (Wong et al. 2016) are applied in EPSODE to

enhance population diversity.

In the ensemble method of mutation and crossover

strategies, mutation crossover strategies are randomly

selected according to the following pattern. The pattern is

as follows: the scaling factorFis given two values (i.e. 0.5

and 0.9) and the crossover probability CR is also given

three values (i.e. 0.1, 0.5, and 0.9). Each individual will be

given a randomFandCR during each iteration. T1 and T2 are

the test labels, and the value is 0 or 1 (the two value can be

selected arbitrarily). Each individual of the population P3

is given random T1 and T2. If T1¼ 0, the DE/rand-to-best/1

is selected as the mutation strategy according to the cor-

responding F. Otherwise, DE/current-to-rand/1 is used in

EPSODE. To improve population diversity, the individuals

which obtain information from the best individual of the

whole group, are employed in the crossover strategy. If

T1¼ 0 and T2¼ 0, the exponential crossover is selected as

the crossover strategy according to the corresponding CR.

If T1¼ 0 and T2 = 1, binomial crossover is used for the

crossover strategy. If the trial vector is not superior to the

individual of populationP3, the parameters (i.e. F, CR, T1
and T2) are updated again. The flowchart of the ensemble

method of mutation and crossover strategies is shown in

Fig. 3.

Initialize the population P0

Generate new population 
P1 using Eqs. (1)-(3)

Generate new population 
P2 using Eq. (15)

Generate new population P3
according to the fitness of the 
population P1 and P2

Update the population P1
compared with the population 
P0

Update the population P2
compared with the population 
P0

Sort the population P1
according to the fitness

Sort the population P2
according to the fitness

Output: the new population P3
and its fitness

Fig. 2 The flowchart of the alternative mutation method

Parameter setting: Randomly 
generate the F,CR, T1 and T2

Update the individual 
of the population P3

Recode the population 
P3 and its fitness f (x)

T1=0

Generate the mutation 
vector V using Eq. (9).

Generate the mutation 
vector V using Eq. (11).

T2=0

Produce the trial vector 
u using Eq. (13)

Produce the trial vector 
u using Eq. (12)

Recode the trial population P
and its fitness f (u)

f (u)≤f (x)

Update the parameters 
F, CR, T1 and T2

Yes

Yes No

Yes No

Output: the new trial population P3

and the parameters F, CR, T1 and T2

Fig. 3 The flowchart of the ensemble strategy of mutation and

crossover
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3.3 The pseudo-code of EPSODE

Effective termination criteria can save a lot of computation

time while achieving superior solutions (Wong et al. 2016).

In general, if the maximum number of generations is sat-

isfied or the best value of fitness is found, the simulation

process of this algorithm terminates. In EPSODE, the

function evaluations have been performed more than once.

Therefore, the original termination condition is prone to

consume excessive computation because of the repeated

fitness evaluation. To reduce computational complexity,

the maximum number of function evaluations FESis

employed as the termination criteria (Lynn and Suganthan

2017). The pseudo-code of EPSODE is given in Table 1.

As displayed in Table 1, in the simulation of EPSODE,

the initial individual, generated using Eq. (4), is described

as the initial target individualx. Based on the alternative

mutation method, the population is updated using the

updated velocity strategy of PSO and the modified muta-

tion method of DE. The new trial individual u is generated

according to the ensemble strategy of mutation and cross-

over. In order to obtained optimal generation, the function

evaluation value of new trial individualu is compared with

the function evaluation value of target individualx. If the

new trial individualu is better than the target individualx,

the trial individualu is regarded as an updated target vector.

Otherwise, the target vector xis reserved as the target

individual of the next generation [i.e. Eq. (14)].

4 Experiments and analyses

4.1 Benchmark functions and algorithms

Twenty-five benchmark functions (Suganthan et al. 2005)

are applied to test the performance of the proposed

EPSODE algorithm. According to the CEC2005 bench-

mark competition (Suganthan et al. 2005), those twenty-

five functions can be divided into two categories: unimodal

functions(i.e. functions F1–F5)and multimodal functions

(F6–F25). Multimodal functions contain basic multimodal

functions (i.e. functions F6–F12), expanded functions (i.e.

functions F13–F14) and hybrid composition functions (i.e.

functions F15–F25). The initialization ranges, search ran-

ges and bias values of these benchmark functions are given

in Table 2. The initialization range is set in accordance

with CEC2005 (Suganthan et al. 2005).

To verify the performance of the proposed algorithm,

some classic algorithms [i.e. PSO, DE and comprehensive

learning PSO (CLPSO) (Liang et al. 2006)] and recently

proposed algorithms [e.g. differential evolution algorithm

with ensemble of parameters and mutation strategies

(EPSDE) and ensemble PSO (EPSO) (Lynn and Suganthan

2017)] are introduced.

• Inertia weight PSO (PSO) (Shi and Eberhart 1998).

• Differential evolution algorithm (DE) (Storn and Price

1997).

• Differential evolution algorithm with ensemble of

parameters and mutation strategies(EPSDE) (Mal-

lipeddi and Suganthan 2010).

• Comprehensive learning PSO (CLPSO) (Liang et al.

2006).

• Ensemble particle swarm optimizer (EPSO) (Lynn and

Suganthan 2017).

The first three algorithms are the original algorithms and

have been used in the proposed EPSODE algorithm. In

CLPSO algorithm, the historical best information of all

Table 1 The pseudo-code of EPSODE
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other particles is applied to update the velocity. The

CLPSO algorithm obtains good performances in dealing

with the multimodal problem (Liang et al. 2006). EPSO

algorithm, combined with a variety of PSO strategies, has

been demonstrated to be superior in dealing with real-pa-

rameter optimization problems (Lynn and Suganthan

2017). All experiments are conducted through MATLAB

R2014a software.

The same parameters of the six algorithms are described

in detail (Lynn and Suganthan 2017). The maximum

number of the generation (Gmax) is a constant value i.e.

Gmax¼ 7500. The maximum number of function evalua-

tions (FES) varies with the population size Nand the

maximum number of the generation Gmax, i.e. FES¼N �
Gmax (Lynn and Suganthan 2017). Therefore,

FES¼ 300;000 and N = 40 are used in the simulation of

30-dimensional problems. When the problem dimension is

50, FES is 600,000 and N is 80. If the maximum number of

the generation Gmax is satisfied while the maximum num-

ber of function evaluations (FES) is not satisfied, the cur-

rent number of generation would decrease in order. Other

parameters of all algorithms are shown as follow:

• In CLPSO (Liang et al. 2006), inertia weightxis also

from 0.9 to 0.2, (i.e. xmax = 0.9 and xmin = 0.2), and

acceleration coefficient c is from 3 to 1.5.

• In inertia weight PSO (Shi and Eberhart 1998), inertia

weightxis from 0.9 to 0.2, c1 ¼ 2; c2 ¼ 2 .

• In EPSO, some parameters of the integrated inertia

weight PSO and CLPSO such as inertia weight x and

acceleration coefficient c, are same as above. Other

parameters are from the literature (Lynn and Suganthan

2017).

Table 2 CEC 2005 test functions

Functions Initialization range Search range F(x*) f_bias

Unimodal functions

F1: Shifted sphere function [- 100,100] [- 100,100] - 450

F2: Shifted Schwefel’s problem 1.2 [- 100,100] [- 100,100] - 450

F3: Shifted rotated high conditioned elliptic function [- 100,100] [- 100,100] - 450

F4: Shifted Schwefel’s problem 1.2 with noise in fitness [- 100,100] [- 100,100] - 450

F5: Schwefel’s problem 2.6 with global optimum on bounds [- 100,100] [- 100,100] - 310

Multimodal functions

F6: Shifted Rosenbrock’s function [- 100,100] [- 100,100] 390

F7: Shifted rotated Griewank’s function without bounds [0,600] [- 600,600] - 180

F8: Shifted rotated Ackley’s function with global optimum on bounds [- 32,32] [- 32,32] - 140

F9: Shifted Rastrigin’s function [- 5,5] [- 5,5] - 330

F10: Shifted rotated Rastrigin’s function [- 5,5] [- 5,5] - 330

F11: Shifted rotated Weierstrass function [- 0.5,0.5] [- 0.5,0.5] 90

F12: Schwefel’s problem 2.13 [- 100,100] [- 100,100] - 460

Expanded functions

F13: Expanded extended Griewank’s plus Rosenbrock’s function (F8F2) [- 3,1] [- 3,1] - 130

F14: Shifted rotated expanded Scaffer’s F6 [- 100,100] [- 100,100] - 300

Hybrid composition functions

F15: Hybrid composition function [- 5,5] [- 5,5] 120

F16: Rotated hybrid composition function [- 5,5] [- 5,5] 120

F17: Rotated hybrid composition function with noise in fitness [- 5,5] [- 5,5] 120

F18: Rotated hybrid composition function [- 5,5] [- 5,5] 10

F19: Rotated hybrid composition function with a narrow basin for the global optimum [- 5,5] [- 5,5] 10

F20: Rotated hybrid composition function with the global optimum on the bounds [- 5,5] [- 5,5] 10

F21: Rotated hybrid composition function [- 5,5] [- 5,5] 360

F22: Rotated hybrid composition function with High Condition Number Matrix [- 5,5] [- 5,5] 360

F23: Non-continuous rotated hybrid composition function [- 5,5] [- 5,5] 360

F24: Rotated hybrid composition function [- 5,5] [- 5,5] 260

F25: Rotated hybrid composition function without Bounds [- 2,5] [- 5,5] 260
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Table 3 Experiment results on benchmark functions with dimensionality 30

Result PSO EPSO CLPSO DE EPSDE EPSODE

F1 Mean 1.42E-13 5.68E-14 5.68E-14 0.00E?00 0.00E?00 0.00E?00

SD 4.02E-14 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

F2 Mean 2.41E-01 6.20E-11 1.89E?03 1.22E?03 5.68E-14 5.68E-14

SD 2.52E-01 3.26E-11 5.66E?02 8.23E?02 0.00E?00 0.00E?00

F3 Mean 3.83E?06 2.34E?05 2.24E?07 1.20E?08 1.99E?05 1.97E?05

SD 1.89E?06 2.29E?04 1.43E?07 6.98E?06 9.90E?03 7.33E?04

F4 Mean 3.84E?02 4.13E?02 1.25E?04 3.00E?03 2.63E-04 1.02E-04

SD 3.69E?02 5.80E?01 1.79E?03 4.98E?02 3.71E-04 1.93E-05

F5 Mean 4.24E?03 4.93E?03 4.76E?03 2.55E?01 1.70E?00 1.77E?00

SD 1.62E?01 2.30E?03 8.67E?02 2.56E?01 8.07E-01 2.50E?00

F6 Mean 8.44E?01 5.28E?00 9.77E?00 4.73E?01 2.84E-14 1.99E-14

SD 8.85E?01 7.40E?00 1.27E?01 4.22E?01 4.02E-14 2.82E-14

F7 Mean 5.35E?03 4.70E?03 4.70E?03 4.70E?03 4.70E?03 4.70E?03

SD 4.33E-01 0.00E?00 0.00E?00 9.09E-13 0.00E?00 0.00E?00

F8 Mean 2.10E?01 2.09E?01 2.10E?01 2.09E?01 2.09E?01 2.09E?01

SD 4.00E-02 7.38E-02 1.40E-02 7.36E-02 1.86E-02 5.45E-02

F9 Mean 1.64E?01 2.49E?00 2.84E-14 8.54E?01 0.00E?00 0.00E?00

SD 3.52E?00 2.11E?00 4.02E-14 7.05E?00 0.00E?00 0.00E?00

F10 Mean 1.46E?02 6.61E?01 1.00E?02 2.03E?02 5.94E?01 6.03E?01

SD 6.32E?01 5.01E?00 5.96E-01 3.68E?00 1.57E?00 1.68E?01

F11 Mean 2.08E?01 2.81E?01 2.57E?01 3.97E?01 3.12E?01 2.94E?01

SD 2.29E?00 1.08E?00 1.70E?00 1.50E-01 1.43E?00 8.00E-01

F12 Mean 6.70E?04 1.71E?04 1.96E?04 4.20E?04 1.90E?04 2.36E?04

SD 3.63E?04 1.61E?04 8.56E?03 3.05E?04 1.59E?04 9.57E?03

F13 Mean 2.93E?00 1.91E?00 1.94E?00 1.48E?01 2.14E?00 1.89E?00

SD 7.85E-01 4.57E-02 5.28E-01 4.42E-02 2.57E-01 1.37E-01

F14 Mean 1.23E?01 1.28E?01 1.27E?01 1.36E?01 1.30E?01 1.29E?01

SD 3.01E-01 6.28E-01 4.94E-01 1.05E-01 2.61E-02 2.76E-01

F15 Mean 3.51E?02 2.02E?02 5.51E?01 2.00E?02 2.00E?02 2.00E?02

SD 2.14E?02 2.79E?00 1.55E?01 0.00E?00 0.00E?00 0.00E?00

F16 Mean 1.07E?02 1.11E?02 2.02E?02 2.95E?02 1.26E?02 8.20E?01

SD 4.06E?01 4.61E?01 2.13E?01 2.64E?00 4.60E?01 8.53E?00

F17 Mean 3.75E?02 8.04E?01 2.25E?02 2.46E?02 1.45E?02 1.50E?02

SD 2.33E?02 7.92E?00 1.60E?01 3.67E?00 5.15E?00 3.07E?01

F18 Mean 9.25E?02 9.06E?02 9.09E?02 9.06E?02 9.06E?02 9.05E?02

SD 7.55E-01 2.74E-03 1.57E?00 9.81E-02 2.45E?00 2.00E?00

F19 Mean 9.29E?02 9.09E?02 9.08E?02 9.06E?02 9.04E?02 9.04E?02

SD 2.54E?00 6.05E-01 4.28E-01 4.87E-02 7.69E-01 3.44E-01

F20 Mean 9.25E?02 9.09E?02 9.09E?02 9.05E?02 9.04E?02 9.01E?02

SD 6.64E-01 8.41E-01 5.69E-01 1.24E-02 3.18E-01 2.97E?00

F21 Mean 5.00E?02 5.00E?02 6.18E?02 7.93E?02 5.00E?02 5.00E?02

SD 0.00E?00 0.00E?00 2.10E?01 4.14E?02 3.22E-13 3.22E-13

F22 Mean 9.37E?02 8.46E?02 9.17E?02 8.63E?02 8.58E?02 8.60E?02

SD 1.76E?01 9.23E?00 9.29E-01 1.09E?00 3.54E?00 4.36E?00

F23 Mean 5.34E?02 8.20E?02 6.33E?02 8.25E?02 5.34E?02 5.34E?02

SD 6.26E-04 4.04E?02 3.01E?01 3.83E?02 1.61E-13 2.52E-04

F24 Mean 3.50E?02 9.39E?02 9.57E?02 9.49E?02 2.00E?02 2.00E?02

SD 2.12E?02 1.79E?00 4.09E?00 1.41E?00 0.00E?00 0.00E?00

F25 Mean 1.12E?03 9.81E?02 9.97E?02 9.88E?02 9.79E?02 9.81E?02

SD 1.36E?01 7.95E?00 2.24E?00 1.82E?00 5.58E?00 3.12E?00
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Table 4 Experiment results on benchmark functions with dimensionality 50

Result PSO EPSO CLPSO DE EPSDE EPSODE

F1 Mean 1.99E-13 8.53E-14 1.14E-13 5.68E-14 0.00E?00 0.00E?00

SD 4.02E-14 4.02E-14 0.00E?00 0.00E?00 0.00E?00 0.00E?00

F2 Mean 9.14E?02 2.29E-07 2.56E?04 8.82E?04 2.58E-03 2.24E-03

SD 2.15E?02 1.35E-07 6.37E?03 3.97E?03 7.94E-04 2.22E-03

F3 Mean 2.65E?07 1.09E?06 7.81E?07 6.80E?08 4.63E?06 5.77E?05

SD 3.35E?07 6.54E?05 1.49E?07 7.33E?07 1.80E?06 1.01E?06

F4 Mean 1.17E?04 3.80E?03 5.92E?04 1.03E?05 6.95E?01 4.00E?01

SD 8.47E?02 1.26E?03 2.30E?03 6.50E?03 2.45E?01 6.94E?00

F5 Mean 7.95E?03 9.90E?03 1.29E?04 5.45E?03 1.58E?03 1.65E?03

SD 1.58E?02 3.10E?03 1.14E?03 3.03E?02 5.18E?02 5.22E?02

F6 Mean 6.35E?01 2.35E?01 6.02E?00 4.29E?01 1.33E-07 1.99E?00

SD 3.78E?01 4.06E?00 1.72E?00 1.09E?00 1.75E-07 2.82E?00

F7 Mean 7.16E?03 6.20E?03 6.20E?03 6.20E?03 6.20E?03 6.20E?03

SD 4.87E?01 0.00E?00 0.00E?00 0.00E?00 0.00E?00 9.09E-13

F8 Mean 2.12E?01 2.10E?01 2.11E?01 2.11E?01 2.11E?01 2.11E?01

SD 1.02E-02 1.42E-02 4.25E-02 1.75E-02 6.64E-02 2.87E-02

F9 Mean 3.33E?01 8.57E?00 4.97E-01 2.29E?02 2.84E-14 1.42E-14

SD 6.33E?00 1.95E?00 7.04E-01 6.42E?00 4.02E-14 4.02E-14

F10 Mean 1.94E?02 1.13E?02 2.96E?02 3.96E?02 1.63E?02 9.76E?01

SD 1.87E?02 1.27E?01 8.22E?00 7.66E?00 1.54E?01 3.75E?00

F11 Mean 4.73E?01 4.73E?01 5.05E?01 7.26E?01 5.67E?01 5.64E?01

SD 1.41E?00 3.22E?00 1.28E?00 7.95E-01 2.23E?00 9.87E-01

F12 Mean 3.68E?05 2.16E?05 9.05E?04 1.08E?06 1.50E?05 7.58E?04

SD 2.65E?05 6.29E?04 4.77E?03 1.03E?05 3.01E?03 2.49E?04

F13 Mean 5.57E?00 4.06E?00 3.92E?00 3.04E?01 4.96E?00 2.32E?00

SD 5.78E-01 2.08E-01 7.77E-02 2.63E?00 2.02E-02 6.76E-01

F14 Mean 2.25E?01 2.27E?01 2.22E?01 2.31E?01 2.27E?01 2.26E?01

SD 1.06E-01 2.03E-02 6.78E-01 4.97E-01 2.16E-01 3.74E-01

F15 Mean 4.01E?02 2.57E?02 7.79E?01 2.00E?02 2.00E?02 3.00E?02

SD 7.22E-01 6.06E?01 5.44E?00 2.33E-12 0.00E?00 0.00E?00

F16 Mean 1.02E?02 8.58E?01 2.32E?02 3.03E?02 1.32E?02 6.38E?01

SD 1.93E?01 9.29E?00 2.65E?01 2.29E?00 8.32E-01 4.87E?00

F17 Mean 3.39E?02 9.36E?01 3.58E?02 3.28E?02 2.16E?02 1.02E?02

SD 1.31E?02 3.76E?00 1.99E?01 1.32E?01 6.59E?00 1.71E?01

F18 Mean 9.56E?02 9.50E?02 9.27E?02 9.17E?02 9.15E?02 9.05E?02

SD 1.45E-01 4.94E?00 3.85E?00 8.83E-01 6.61E-01 3.84E-01

F19 Mean 9.49E?02 9.41E?02 9.26E?02 9.17E?02 9.17E?02 9.05E?02

SD 6.23E-01 5.23E?00 1.34E?00 9.66E-01 5.16E-01 5.19E-01

F20 Mean 9.55E?02 9.21E?02 9.29E?02 9.16E?02 9.16E?02 9.06E?02

SD 9.82E?00 3.26E?00 2.71E?00 7.44E-03 6.31E-01 8.55E-01

F21 Mean 9.39E?02 1.01E?03 1.02E?03 1.01E?03 1.01E?03 1.01E?03

SD 1.96E?02 2.39E?00 1.62E?00 4.78E?00 1.60E-01 3.41E?00

F22 Mean 9.79E?02 9.32E?02 9.43E?02 9.10E?02 8.99E?02 8.88E?02

SD 5.16E?00 3.13E?01 7.91E?00 6.71E-01 3.35E?00 1.61E?00

F23 Mean 1.07E?03 7.80E?02 1.02E?03 1.01E?03 1.01E?03 9.92E?02

SD 7.09E?00 3.40E?02 2.83E-01 1.79E-01 3.56E-01 1.30E?00

F24 Mean 2.00E?02 9.75E?02 1.02E?03 9.84E?02 1.00E?03 2.00E?02

SD 0.00E?00 4.09E?00 8.71E?00 2.46E?00 4.24E?00 0.00E?00

F25 Mean 1.27E?03 1.23E?03 1.26E?03 1.16E?03 1.19E?03 1.20E?03

SD 4.60E?00 6.14E?00 3.14E?00 9.67E?00 1.43E?01 1.27E?01
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Fig. 4 The generation process of the algorithms when dimensionality = 50
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• In DE (Storn and Price 1997), mutation factorFis 0.9,

and crossover probability CR is 0.5.

• In EPSDE (Mallipeddi and Suganthan 2010), mutation

factors F are 0.5 and 0.9, and crossover probabilities

CR are 0.1, 0.5 and 0.9.

• In the EPSODE, mutation factors F are also 0.5 and 0.9,

and crossover probabilities CR are 0.1, 0.5 and 0.9.

Inertia weight x is also from 0.9 to 0.2,

c1 ¼ 2; c2 ¼ 2 .

4.2 Experiment results and discussion

The mean fitness and the standard deviation obtained by six

algorithms are given in Tables 3 and 4. The best results

among these optimization algorithms are highlighted in

italics. Figure 4 shows the convergence curves of different

test functions with the dimension 50. In order to make the

graphical curve clear, the graphical interpretation labels are

provided only in the first and last functions (i.e.F1 and

F25). The legends in remaining subfigures are the same to

F1 and F25.

The maximum number of function evaluations (FES)

300,000 and population size 40 are used in the simulation

of 30-dimensional problems (Lynn and Suganthan 2017).

Experiment results are illustrated in Table 3. For unimodal

functions, EPSODE obtains the best results on functions

F1–F4, and the second-best result on the function F5.

EPSODE performs well as the EPSDE on functions F1 and

F2. For basic multimodal functions, EPSODE performs

best on functions F6–F9. EPSDE algorithm yields the best

results on functionF10. For the remaining basic multimodal

functions (i.e. functions F11 and F12), inertial weight PSO

and EPSO respectively get the best results. The proposed

EPSODE algorithm dedicates the best results on the

function F13 while inertial weight PSO complies the best

on functionF14. For hybrid composition functions, the

proposed EPSODE algorithm implements the superior

results on functions F15–F16, F18–F21 and F23–F24.

EPSO algorithm performs the best on F17 and F22.

EPSODE algorithm and EPSDE algorithm obtain the same

fitness values on functions F19, F21 and F23, but the

standard deviations of EPSODE are better than EPSDE

except the function F23. Therefore, the proposed algorithm

obtains good performance in most functions whether the

function is unimodal or multimodal.

The experiment results in 50-dimensional problems are

shown in Table 4. The number of function evaluations

(FES) is 600,000 and population size is 80. EPSODE

implements the best results on the functions F1 and F3–F4

while EPSO and EPSDE respectively perform the best on

functions F2 and F5. For basic multimodal functions,

EPSODE, EPSO, CLPSO, DE and EPSDE obtain the same

best results on functions F7. The performances of EPSODE

algorithm are significantly better than other algorithms on

function F9–F10 and F12. For expanded functions (i.e.

functions F13–F14), the proposed EPSDE successes to

maintain its good performance on functions F13. For

hybrid composition functions, DE and EPSDE comply the

same best results on function F15. EPSODE obtains the

best results on functions F16–F20 and F22–F23. Inertia

weight PSO algorithm gets the best results on function F21.

The proposed EPSODE gets the same performances as well

as inertial weight PSO on function F24, but the conver-

gence speed of EPSODE is evidently superior to the iner-

tial weight PSO in Fig. 4. Therefore, EPSODE algorithm

successful remained its superior performance in higher

dimension problems.

As shown in Fig. 4, the convergence speed of EPSODE

is faster than other algorithms on functions F1, F7, F10 and

F24. The convergence solutions are closer to optimal val-

ues on most functions e.g., F1, F3, F10, F13, F16, F24 and

so on. Altogether, the superior performance of EPSODE

algorithm can still be seen from the convergence curves.

In summary, the proposed algorithm is more powerful

than the other algorithms (i.e. inertial weight PSO, CLPSO,

EPSO, DE and EPSDE) in terms of the search ability.

Though EPSDE, and inertial weight PSO algorithm can

obtain the similar solutions on some benchmark functions

(e.g., functions F1 and F24), the convergence speed is not

better than the proposed EPSODE algorithms. In terms of

dimensionality, the proposed EPSODE algorithm performs

better than other algorithms when the dimension increases.

The main reasons of the superiority are as follows:

• One group uses the updating method of PSO to carry

out more in-depth exploration in the alternative muta-

tion method of EPSODE.

• The other group applies the mutative method of DE to

disturb the original direction in the alternative mutation

method of EPSODE.

• Hence, the new population is given a deeper ability to

explore and is different from the original updating

direction.

• Additionally, the non-single and fixed mutation cross-

over strategy contributes to increasing the diversity of

the population.

5 Conclusion

An ensemble PSO and DE algorithm (EPSODE), based on

the alternative mutation method, is proposed for solving

different types of functions. Modified DE algorithm are the

main program and PSO algorithm is the subprogram in the

proposed algorithm. The velocity update strategy of PSO
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combined with the modified mutation method is the key of

the proposed algorithm, which can avoid the premature

convergence and improve the search capability. Mean-

while, the strategies of multiple mutation and crossover can

improve convergence speed. Experiment results show that

EPSODE algorithm outperforms other algorithms in terms

of mean and standard deviation. Thus, the proposed alter-

native mutation method can enhance the performance of

EPSODE algorithm, which has been verified by testing on

the benchmark functions. In our future studies, the pro-

posed algorithm will be developed and applied to solving

the real-world problems.
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