
Verification in staged tile self-assembly

Robert Schweller1 • Andrew Winslow1
• Tim Wylie1

Published online: 1 August 2018
� Springer Nature B.V. 2018

Abstract
We prove the unique assembly and unique shape verification problems, benchmark measures of self-assembly model

power, are coNPNP-hard and contained in PSPACE (and in PP
2s for staged systems with s stages). En route, we prove that

unique shape verification problem in the 2HAM is coNPNP-complete.

Keywords DNA computing � Biocomputing � 2HAM � Hierarchical

1 Introduction

Here we consider the complexity of two standard problems

in tile self-assembly: deciding whether a system uniquely

assembles a given assembly or shape. These so-called

unique assembly and unique shape verification problems

are benchmark problems in tile assembly, and have been

studied in a variety of models, including the aTAM

(Adleman et al. 2002; Bryans et al. 2013), the q-tile model

(Cheng et al. 2005), and the 2HAM (Cannon et al. 2013).

The unique assembly and unique shape verification

problems ask whether a system behaves as expected: does a

given system yield a unique given assembly or assemblies

of a given unique shape? The distinct rules by which

assemblies form in various tile assembly models yield the

potential for such problems to have varying complexity.

For instance, assuming P 6¼ NP, the unique assembly

verification problem is known to be a strictly easier prob-

lem in the aTAM than in the 2HAM.

However, several open questions remain. For instance,

such a separation between the aTAM and 2HAM for the

unique shape verification problem had not been known.

Here we prove such a separation (see Table 1).

Additionally, a popular generalization of the 2HAM

called the staged tile assembly model (Demaine et al. 2008)

has been shown to be capable of extremely efficient

assembly across a range of parameters (Chalk et al. 2016;

Demaine et al. 2008, 2011, 2015; Winslow 2015). Does

this power come from the increased complexity of verify-

ing that systems assemble intended assemblies and shapes?

We achieve progress on these questions, proving a

separation between the 2HAM and staged model for the

unique assembly verification problem (coNP-complete

versus coNPNP-hard) utilizing a promising technique that

may lead to proving a stronger separation for the unique

shape verification problem (coNPNP-complete versus a

conjectured PSPACE-complete).

The coNPNP-hardness results are also interesting as the

first, to our knowledge, verification problems in irreversible

tile assembly that are decidable but not contained in NP or

coNP.

2 The staged assembly model

Tiles A tile is a non-rotatable unit square with each edge

labeled with a glue from a set R. Each pair of glues g1; g2 2
R has a non-negative integer strength, denoted strðg1; g2Þ.
Every set R contains a special null glue whose strength

with every other glue is 0.

An extended abstract of this work that omitted several proofs

and details was previously published in Unconventional

Computation and Natural Computation, LNCS, vol. 10240,

pp. 98–112, Springer International Publishing (2017).

& Andrew Winslow

andrew.winslow@utrgv.edu

Robert Schweller

robert.schweller@utrgv.edu

Tim Wylie

timothy.wylie@utrgv.edu

1 Department of Computer Science, University of Texas Rio

Grande Valley, Edinburg, USA

123

Natural Computing (2019) 18:107–117
https://doi.org/10.1007/s11047-018-9701-2(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-018-9701-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-018-9701-2&domain=pdf
https://doi.org/10.1007/s11047-018-9701-2

Configurations, assemblies, and shapes A configuration

is a partial function A : Z2 ! T for some set of tiles T, i.e.,

an arrangement of tiles on a square grid. For a configura-

tion A and vector u ¼ hux; uyi 2 Z2, Aþ u denotes the

configuration A � f , where f ðx; yÞ ¼ ðxþ ux; yþ uyÞ. For

two configurations A and B, B is a translation of A, written

B ’ A, provided that B ¼ Aþ u for some vector u. For a

configuration A, the assembly of A is the set
~A ¼ fB : B ’ Ag. An assembly ~A is a subassembly of an

assembly ~B, denoted ~AY~B, provided that there exists an

A 2 ~A and B 2 ~B such that A � B.

Bond graphs and stability For a configuration A, define

the bond graph GA to be the weighted grid graph in which

each element of domðAÞ is a vertex, and the weight of the

edge between a pair of tiles is equal to the strength of the

coincident glue pair. A configuration is s-stable for s 2 N

if every edge cut of GA has strength at least s, and is s-
unstable otherwise. Similarly, an assembly is s-stable
provided the configurations it contains are s-stable.

Assemblies ~A and ~B are s-combinable into an assembly ~C

provided there exist A 2 ~A, B 2 ~B, and C 2 ~C such that

A
S
B ¼ C, domðAÞ

T
domðBÞ ¼ ;, and ~C is s-stable.

Two-handed assembly and bins We define the assembly

process via bins. A bin is an ordered tuple ðS; sÞ where S is

a set of initial assemblies and s 2 N is the temperature. In

this work, s is always equal to 2 for upper bounds, and at

most some constant for lower bounds. For a bin ðS; sÞ, the
set of produced assemblies P0

ðS;sÞ is defined recursively as

follows:

1. S � P0
ðS;sÞ.

2. If A;B 2 P0
ðS;sÞ are s-combinable into C, then C 2 P0

ðS;sÞ.

A produced assembly is terminal provided it is not s-
combinable with any other producible assembly, and the

set of all terminal assemblies of a bin ðS; sÞ is denoted

PðS;sÞ. That is, P0
ðS;sÞ represents the set of all possible

assemblies that can assemble from the initial set S, whereas

PðS;sÞ represents only the set of assemblies that cannot grow

any further.

The assemblies in PðS;sÞ are uniquely produced iff for

each x 2 P0
ðS;sÞ there exists a corresponding y 2 PðS;sÞ such

that xYy. Unique production implies that every producible

assembly can be repeatedly combined with others to form

an assembly in PðS;sÞ.

Staged assembly systems An r-stage b-bin mix graph M

is an acyclic r-partite digraph consisting of rb vertices mi;j

for 1� i� r and 1� j� b, and edges of the form

ðmi;j;miþ1;j0 Þ for some i; j; j0. A staged assembly system is a

3-tuple hMr;b; fT1; T2; . . .; Tbg; si where Mr;b is an r-stage

b-bin mix graph, Ti is a set of tile types, and s 2 N is the

temperature. Given a staged assembly system, for each

1� i� r, 1� j� b, a corresponding bin ðRi;j; sÞ is defined
as follows:

1. R1;j ¼ Tj (this is a bin in the first stage);

2. For i� 2, Ri;j ¼
[

k: ðmi�1;k ;mi;jÞ2Mr;b

PðRði�1;kÞ;sÞ

0

@

1

A.

Thus, bins in stage 1 are tile sets Tj, and each bin in any

subsequent stage receives an initial set of assemblies con-

sisting of the terminally produced assemblies from a subset

of the bins in the previous stage as dictated by the edges of

the mix graph.1 The output of a staged system is the union

of the set of terminal assemblies of the bins in the final

stage.2 The output of a staged system is uniquely produced

provided each bin in the staged system uniquely produces

its terminal assemblies.

Shapes The shape of an assembly ~A is fdomðAÞ : A 2
~Ag where dom is the domain of a configuration. A shape S0

is a scaled version of shape S provided that for some k 2 N

and D 2 S,
S

ðx;yÞ2D
S

ði;jÞ2f0;1;...;k�1g2ðkxþ i; kyþ jÞ 2 S0.

3 The 2HAM unique shape verification
problem is coNPNP-complete

This section serves as a warm-up for the format and

techniques used in later sections. We begin by proving the

2HAM USV problem is in coNPNP by providing a (non-

Table 1 Known and new results

on the unique assembly and

unique shape verification

problems

Model Unique assembly Unique shape

aTAM P Adleman et al. (2002) coNP-complete Cheng et al. (2005)

2HAM coNP-complete Chalk et al. (2017) coNPNP-complete (Sect. 3)

Staged coNPNP-hard (Sect. 5), in PSPACE (Sect. 6)

1 The original staged model (Demaine et al. 2008) only considered

O(1) distinct tile types, and thus for simplicity allowed tiles to be

added at any stage (since Oð1Þ extra bins could hold the individual

tile types to mix at any stage). Because systems here may have super-

constant tile complexity, we restrict tiles to only be added at the initial

stage.
2 This is a slight modification of the original staged model (Demaine

et al. 2008) in that there is no requirement of a final stage with a

single output bin. This may be a slightly more capable model, and so

it is considered here. However, all results in this paper apply to both

variants of the model.

108 R. Schweller et al.

123

deterministic) algorithm for the problem that can be exe-

cuted on such a machine. This is followed by a reduction

from a SAT-like problem complete for coNPNP (89SAT).

Definition 1 (2HAM unique shape verification (2HAMUSV)

problem) Given a 2HAM system C and shape S, does every

terminal assembly of C have shape S?

Theorem 1 The 2HAMUSV problem (for s ¼ 2 systems) is

coNPNP -hard.

Definition 2 (89SAT) Given a 3-SAT formula

/ðx1; x2; . . .; xk; xkþ1; . . .; xnÞ, is it true that for every

assignment of x1; x2; . . .; xk, there exists an assignment of

xkþ1; xkþ2; . . .; xn such that /ðx1; x2; . . .; xnÞ is satisfied?

The 89SAT problem was shown to be coNPNP-com-

plete by Stockmeyer (1976) [see Schaefer and Umans

(2002) for further discussion].

Proof The reduction is from 89SAT; the reduction will

yield a 2HAM system with multiple terminal assemblies if

and only if the 89SAT instance has an assignment of

x1; . . .; xk with no satisfying assignment of xkþ1; . . .; xn.

Roughly speaking, the system output by the reduction

behaves as follows. First, a distinct assembly encoding

each possible assignment of the variables of the 89SAT
instance is assembled. Further growth ‘‘tags’’ each assem-

bly as either a true or false assembly, based upon the truth

value of the input 3-SAT formula / for the variable

assignment encoded by the assembly.

False assemblies further grow into a slightly larger

target shape S. A separate set of test assemblies are created,

one for each variable assignment of the variables x1; . . .xk.

Each test assembly attaches to any true assembly with the

same assignment of these variables to form an assembly

with shape S—the same shape as false assemblies.

Terminal assemblies then consist of false assemblies

(corresponding to non-satisfying assignments), true test

assemblies with shape S (corresponding to satisfying

assignments with specific assignments of x1; . . .; xk), and
possibly test assemblies (corresponding to specific assign-

ments of x1; . . .; xk with no satisfying assignment of

xkþ1; . . .; xn). So there is a terminal test assembly if and

only if there is some assignment of x1; . . .; xk with no

satisfying assignment of xkþ1; . . .; xn, i.e. the solution to the

89SAT instance is false.

SAT assemblies Consider a given input formula C and

input value k for the 89SAT problem. From this input we

design a corresponding 2HAM system C ¼ ðT; 2Þ and

shape S such that the terminal assemblies of C share a

common shape S if and only if the 89SAT instance is

‘‘true’’, i.e. each assignment of the variables x1; . . .; xk can
be combined with some assignment of the variables

xkþ1; . . .; xm such that the 3-SAT instance is satisfied.

The system has temperature 2, and the tile set T of the

system output by the reduction is sketched in Fig. 1. The

first subset of tiles is a minor modification of the commonly

used 3-SAT solving system from Lagoudakis and Labean

(1999).

(a) (b)

(c) (d)

Fig. 1 Steps of the 2HAM USV coNPNP-hardness reduction. a
Assemblies encoding all possible variable assignments are assembled.

b Test assemblies encoding all possible assignments of x1; . . .; xk are
assembled. c Non-satisfying variable assignments grow into reject

assemblies that forbid attachment of test assemblies. d Satisfying

variable assignments grow into accept assemblies permitting attach-

ment of the test assembly corresponding to the specific assignment of

x1; . . .; xk . The terminal shape S of the system is seen in (c) and (d). If
the solution to the 89SAT instance is false, one or more test

assemblies (with shape other than S) will also be terminal

Verification in staged tile self-assembly 109

123

For each variable xi, the system has two tile subsets.

These collections assemble into 1� 4 assemblies with

exposed north and south glues representing the values ‘‘0’’

and ‘‘1’’, respectively, encoding the assignment of a

specific variable to true or false. These 1� 4 assemblies

further assemble into 1� 4n assemblies encoding complete

assignments of the variables x1; . . .; xn. The non-determin-

istic assembly process of 2HAM implies that such an

assembly for every possible variable assignment will be

assembled.

An additional column is attached to this bar of height

equal to m, the number of clauses in the formula C (Fig. 1).

An additional set of tiles are added that evaluate the 3-SAT

formula / based upon the variable assignments encoded by

the initial 1� 4n assembly following the approach of

Lagoudakis and Labean (1999). These tiles place a tile in

the upper right corner of the resulting assembly with

exposed glue labeled ‘‘T’’ or ‘‘F’’, indicating the truth value

of / based upon the variable assignments.

The resulting assemblies are categorized as true and

false assemblies. Additional tiles are added so that every

false assembly further grows, extending the left 4k

columns (corresponding to the variables x1 to xk)

southward by 3 rows, and the remaining right 4ðn� kÞ
columns southward by 1 row (Fig. 1c). The resulting

shape is the shape S output by the reduction, i.e. the only

shape assembled by the system if the solution to the

89SAT instance is ‘‘true’’.

Test assemblies Additional tiles are also added so that

true assemblies also grow southward, but extending the left

4k columns by various amounts based upon each variable

assignment. The result is a sequence of geometric ‘‘bumps

and dents’’ that encode the truth values of these variables.

A set of test assemblies with complementary geometry

for each possible assignment of variables x1 through xk are

assembled (Fig. 1b). Test assemblies use two strength-1

glues that cooperatively attach to any true assembly with a

matching assignment of variables x1 through xk (Fig. 1d).

The assembly formed by a test assembly attaching to a true

assembly has shape S: the same shape as a false assembly.

Terminal assemblies If the solution to the 89SAT
instance is ‘‘false’’, there is some truth assignment for

variables x1. . .xk with no corresponding assignment of the

variables xkþ1. . .xn such that /ðx1; . . .; xnÞ is ‘‘true’’. Thus,
the test assembly with this assignment of variables

x1; . . .; xk has no compatible true assembly to attach to,

and this test assembly is a terminal assembly of C with

shape not equal to S.

On the other hand, if the solution to the 89SAT instance

is ‘‘true’’, every test assembly attaches to a true assembly

and thus every terminal assembly (true-test assemblies and

false assemblies) has shape S. h

Theorem 2 The 2HAM USV problem is in coNPNP.

Proof The solution to an instance ðC; SÞ of the 2HAM

USV problem is ‘‘true’’ if and only if:

1. Every producible assembly of C has size at most |S|.

2. Every assembly of size at most |S| and without shape

S is not a terminal assembly.

Algorithm 1 solves the 2HAM USV problem by verifying

each of these conditions, using an NP subroutine to verify

the second condition. The algorithm is executed by a coNP

machine, implying that ‘‘false’’ is returned if any of the

non-deterministic branches return ‘‘false’’, and otherwise

returns ‘‘true’’. h

Algorithm 1 A coNPNP algorithm for the 2HAM USV
problem
1: Non-deterministically select a τ -stable assembly A with

|S| < |A| ≤ 2|S|.
2: if A is producible then � In P by Theorem 3.2 of [10]
3: return false.
4: end if
5: Non-deterministically select a τ -stable assembly B with

|B| ≤ |S| and shape not equal to S.
6: if not F(Γ, B, |S|) then � Algorithm 2
7: return false.
8: end if
9: return true.

Algorithm 2 An NP algorithm subroutine of Algo-
rithm 1
1: procedure F(Γ, B, n) � Returns whether B is not

terminal.
2: Non-deterministically select a τ -stable assembly C

with |C| ≤ n.
3: if C cannot attach to B at temperature τ then
4: return false.
5: end if
6: if C is a producible assembly of Γ then � In P by

Theorem 3.2 of [10]
7: return false.
8: end if
9: return true.

10: end procedure

4 Staged unique assembly verification is
coNP-hard

Definition 3 (Staged unique assembly verification (Staged

UAV) problem) Given a staged system C and an assembly

A, does C uniquely assemble A?

Theorem 3 The staged UAV problem (for 4-stage systems

at s ¼ 2) is coNP-hard.

110 R. Schweller et al.

123

Proof The reduction is from 3-SAT, outputting a staged

system C and assembly A such that the 3-SAT instance is

satisfiable if and only if A is not the unique terminal

assembly of C. We reduce from 3-SAT: Given a 3-SAT

formula /, we design a staged assembly system and an

assembly A such that / is not satisfied if and only if A is

uniquely assembled by C.
The tileset The tiles used in our construction are shown

in Fig. 2a. In particular, for each variable xi 2
fx1; x2; . . .; xng and clause cj 2 fc1; c2; . . .; cmg in /, there
is a block of tiles labeled ai;j; bi;j; ci;j; di;j; ei;j; fi;j; gi;j. The set

of tile types for each block is denoted blocki;j.

The strength-2 (s ¼ 2) glues connecting adjacent tiles

are unique with respect to adjacent tiles, and are unlabelled

in the figures for clarity. Note that for each block (i, j), the

top four tiles of the block occupy the same locations as the

bottom four tiles of block ði; jþ 1Þ. Finally, the tileset

includes a length 4m chain of green tiles, with each green

tile sharing a strength-2 glue with its neighbors, along with

four light-grey tiles which together attach to the green

assembly.

Stage 1: variable assignments The specific formula / is

encoded within the output staged system via the initial

choice of tiles placed into a O(1)-sized collection of stage-1

bins. For each variable xi and clause cj combination, we

select two subsets of the blocki;j tileset. The first subset

encodes a variable choice of ‘‘false’’ for xi. The tile sets in

Fig. 2b(i) and (iv) are used if xi satisfies (and xi does not

satisfy) clause cj, respectively. Similarly, the tile sets in

Fig. 2b(ii–iii) are used if xi does not (and xi does satisfy)

clause cj.

Beyond utilizing two types of blocki;j tile sets, tile sets

are further distinguished between odd and even values of

i and j. In total, 16 distinct bins (satisfied or not, negated or

not, odd or even i, odd or even j) are used.

We include the grey and green tiles of Fig. 2(a) sepa-

rately in two additional bins. An additional four bins are

used in the construction to maintain a set of single copies of

all tiles used within the system. Separating these tile

subsets into four bins ensures that the tiles do no interact

(until mixed with other assemblies at a later stage).

Stage 2: assembling rows In stage 2 we combine all

blocki;j assemblies for even j into one bin, and all blocki;j
assemblies for odd j into a second bin. Within each bin and

for each value j, rows encoding each possible variable

assignment assemble non-determistically via attaching 0�
blocki;j and 1� blocki;j assemblies for each i 2 f1;
2; . . .; ng. We refer to these assemblies as rowj assemblies.

There are 2n such assemblies for each j-one per variable

assignment. Example rowj assemblies are shown in Fig. 3.

Stage 3: combining rows with shared assignments and

satisfied clauses Stage 3 is where the real action happens.

All rowj assemblies are combined, along with the green

and grey assemblies of Fig. 2.

Consider the possible assembly of a rowj and a rowjþ1

assembly. If the two respective rows encode distinct

variable assignments, geometric incompatibility prohibits

any possible connection (Fig. 3b). If the rows encode the

same truth assignment, then the rows may attach if any of

the rowj variable pieces expose the extended tip via the red

s ¼ 2 strength glues (Fig. 3a). Such an attachment indi-

cates that the variable assignment of both rows satisfies cj.

If the variable assignment encoding does not satisfy cj, no

extended tip exists and the rows cannot attach (Fig. 3c).

A satisfying assignment of / corresponds to m rows

attaching to form a complete ‘‘satisfying’’ assembly

(b)(a)

Fig. 2 a The tile set used in the staged coNP-hardness reduction. b The subsets of tiles included in separated initial bins within the first stage of

the system

Verification in staged tile self-assembly 111

123

(Fig. 4b). The green assembly attaches cooperatively to

such assemblies using the rowm assembly glue and a glue

from the grey tiles, which attach uniquely to row0. The

attachment of a green assembly verifies that all rows are

present and the variable assignment satisfies /.

A second copy of the green assembly attaches to any

assembly containing row0, regardless of whether all rows

are present or not (Fig. 4a). In a separate bin, the green

assembly tiles and grey assemblies are combined, yielding

a combined grey-green product (for mixing in stage 4).

(a) (b) (c)

Fig. 3 In stage 2, rows non-deterministically form encoding each of

the 2n possible variable assignments. In stage 3 the rows are

combined allowing for geometrically compatible, sequential rows

with exposed red glue to attach. a Combinable rows. b Geometrically

incompatible rows. c Rows with no glues for attachment. (Color

figure online)

(a) (b) (c)

Fig. 4 a Non-satisfying variable assignments will not be able to grow

from row 0 to row m. b Assemblies encoding satisfying variable

assignments will allow for complete assemblies with all rows,

allowing for a green assembly to attach. c The target assembly

A given as output of the reduction. (Color figure online)

112 R. Schweller et al.

123

Stage 4: merging assignments In stage 4, the set of all

blocki;j individual tiles are added to the assemblies

constructed in stage 3 as well as the the grey-green

assembly produced in the previous stage. Note that the

green assembly is not an input assembly to this mixing.

Since all blocki;j assemblies are included, each terminal

assembly from stage 3 may grow into the unique terminal

assembly shown in Fig. 4c with one exception: assemblies

from stage 3 encoding satisfying variable assignments.

These assemblies have one additional copy of the green bar

assembly attached. Therefore, the assembly of Fig. 4c is

uniquely assembled if an only if no such satisfying

assembly exists. h

5 Staged unique assembly verification is
coNPNP-hard

Theorem 4 The staged UAV problem (for s ¼ 2 7-stage

systems) is coNPNP-hard.

Proof We reduce from 89SAT by combining ideas from

the reductions of Theorems 1 and 3.

Stages 1–3: the SAT assemblies The first 3 stages

follows those of the reduction in Theorem 3 but without

the inclusion of the green assembly and light grey tiles. The

result is a collection of assemblies encoding satisfying

variable assignments with all m rows, as well as partial

assemblies of less than m rows encoding non-satisfying

assignments. For clarity, the bottom half of the j ¼ 0

blocks for values i[k are removed, exposing the ‘‘geo-

metric teeth’’ only for the first k variables.

Stages 1–3: the test assemblies Additionally, in a

separate set of bins, we non-deterministically generate a

set of test assemblies. The test assemblies are similar to

row assemblies and generated in a similar fashion. An

example test assembly is shown in Fig. 5 (Stages 1–4). A

test assembly for each of the 2k possible truth assignments

of x1; x2; . . .; xk is grown, and a green bar assembly is

attached to the side of each test assembly.

Stage 4: the magic happens The SAT assemblies and

test assemblies are combined in a bin. Test assemblies

attach to SAT assesmblies encoding satisfying variable

assignments by utilizing cooperative bonding based on the

two strength-1 green glues on the green assembly.

SATassemblies encoding non-satisfying assignments must

each lack the topmost or bottommost row, and therefore

cannot attach to a test assembly.

Due to the geometric interlocking teeth from the test

assembly and the bottom of SAT assemblies, test assem-

blies may only attach to SAT assemblies that encode the

same variable assignment (of variables x1; x2; . . .; xk).

Fig. 5 The assemblies at respective stages for the coNPNP-hardness reduction for the staged UAV problem

Verification in staged tile self-assembly 113

123

Stages 1–4 of Fig. 5 show an example test assembly and a

attaching SAT assembly.

Note that if there exists a truth assignment for x1; x2; . . .
; xk with no satisfying assignment of the remaining

variables xkþ1; xkþ2; . . . ; xn, then the corresponding test

assembly does not attach to any SAT assembly and is a

terminal assembly of this bin. On the other had, if every

assignment of the variables x1; x2; . . . ; xk has at least one

satisfying assignment of the remaining variables, i.e. the

solution 89SAT instance is ‘‘true’’, then there are no

terminal test assemblies of this bin

Stage 5: tagging non-satisfying assignments In Stage 5,

we add preassembled duples which attach to the bottom of

any assembly containing row 0 and encodes a non-

satisfying variable assignment. This attachment ensures

that in subsequent stages, these assemblies will be

geometrically incompatible with any remaining test assem-

blies from Stage 4.

It is possible that some duples have no non-satisfying

SAT assembly to attach to. As a solution, an additional

height-1 assembly of the row-0 assembly that ‘‘absorbs’’

each duple is added at this stage. The subsequent stages

enable these, as well as all other SAT assemblies, to grow

into a single common (potentially) unique assembly.

Stage 6: attaching test assemblies The result of Stage 5

is mixed with an assembly consisting of:

• The light-grey bar of the test assemblies.

• A second complete layer of dark grey tiles.

• The green bar.

This assembly attaches to any non-satisfying SAT assem-

bly that includes row 0, ensuring that all assemblies con-

taining row 0 now have a version of the test assembly

attached (Stage 6 in Fig. 5).

Stage 7: merging In the final stage, every individual tile

of the target assembly (seen in Stage 7 of Fig. 5) is added

to the result of Stage 6, with the exception of the green tiles

and the tiles in rows 1 through 5 of the SAT assemblies.

These tiles complete each SAT assembly in the

assembly in Fig. 5 (Stage 7). Morever, the height-1

assembly used to absorb duples from Stage 5 grows into

the assembly from Fig. 5 (Stage 7). However, because of

the lack of tiles from rows 1 through 5, any leftover test

assembly from Stage 4 remains terminal.

Thus the target assembly is the unique terminal assem-

bly of the system if and only if the solution to the 89SAT
instance is ‘‘yes’’. h

Observe that every staged system output by the reduc-

tion has the property that if it does not have a unique

terminal assembly, then it also does not have a unique

terminal shape. Thus the same reduction suffices to prove

that the staged USV problem is coNPNP-hard.

Corollary 1 The staged USV problem is coNPNP-hard.

6 Staged PSPACE containment

Here we prove that the staged UAV and USV problems are

in PSPACE. Parameterized versions of the results are also

obtained; these prove that both problems restricted to

systems with any fixed number of stages lie in the poly-

nomial hierarchy. Both results are obtained via upper

bounds on the complexities of the following three

problems:

Definition 4 (Stage-sproducible-in-bin verification (PIBV s)

problem) Given a staged system C, a bin b in stage s of C, an
assembly A, and an integer n:

1. is A a producible assembly of b?

2. and does every producible assembly of every bin in

stage s� 1 of C have size at most n?

Definition 5 (Stage-s undersized-in-bin verification (UIBV s)

problem)Givena staged systemC, a binb in stage sofC, and an
integer n:

1. does every producible assembly of b have size at most

n?

2. and does every producible assembly of every bin in

stage s� 1 of C have size at most n?

Definition 6 (Stage-s terminal-in-bin verification (TIBV s)

problem) Given a staged system C, a bin b in stage s of C,
an assembly A, and an integer n:

1. is A a terminal assembly of b?

2. and does every producible assembly of b have size at

most n?

3. and does every producible assembly of every bin in

stage s� 1 of C have size at most n?

The statements and proofs of the following results use

terminology related to the polynomial hierarchy. For an

introduction to the polynomial hierarchy, see Stockmeyer

(1976). As a reminder, RP
iþ1 ¼ NPRP

i , PP
iþ1 ¼ coNPRP

i , and

RP
0 ¼ PP

0 ¼ P.

Lemma 1 For all s 2 N:

• The PIBV s problem is in RP
2s�2.

• The UIBV s and TIBV s problems are in PP
2s�1.

Proof The proof is by induction on s. We begin by

proving that PIBV1 2 RP
2s�2 ¼ P and UIBV1, TIBV1 2

PP
2s�1 ¼ coNP (the base case). Then we provide recursive

algorithms of the correct complexity for PIBVs, UIBVs,

114 R. Schweller et al.

123

and TIBVs, assuming that such algorithms exist for

PIBVs�1, UIBVs�1, and TIBVs�1 (the inductive step).

Algorithms for the PIBV 1, UIBV 1, and TIBV 1 problems

All three problems contain, as a subproblem, ‘‘does every

producible assembly of every bin in stage s� 1 of C have

size at most n?’’. The answer to this is trivially yes—so

only the complexity of the other subproblems needs

consideration.

Theorem 3.2 of Doty (2014) states that there exists a

polynomial-time algorithm for PIBV1. The UIBV1 problem

can be solved by a coNP machine via non-deterministi-

cally selecting an assembly of size in (n, 2n] consisting of

tile types input into bin b and returning ‘‘no’’ if the

assembly is producible (the machine returns ‘‘no’’ if any

non-deterministic branch returns ‘‘no’’). The TIBV1 prob-

lem can be solved by a coNP machine by (1) returning

‘‘no’’ if A is not producible, (2) returning ‘‘no’’ if a second

assembly (non-deterministically selected) is producible and

attaches to A, (3) returning ‘‘yes’’ otherwise.

An algorithm for the PIBV s problem We now assume

from now on that there exist algorithms Ps�1, Us�1, and

T s�1 for the PIBVs�1, UIBVs�1, and TIBVs�1 problems in

RP
2s�4, PP

2s�3, and PP
2s�3, respectively, by the inductive

hypothesis.

Algorithm 3 A ΣP
2s−2 algorithm for the PIBVs prob-

lem
1: procedure Ps(Γ, b, A, n) � Bin b is in stage s of Γ

2: if not A is τ -stable then � In P via min-cut
3: return no.
4: end if
5: I ← {A}
6: while non-deterministically choosing to continue and

|I| < |A| do
7: Decompose an assembly B in I into two stable sub-

assemblies B1, B2.
8: I = (I − B) ∪ {B1, B2} � Replace B with B1 and

B2
9: end while

10: Non-deterministically assign a bin bBi
in stage s − 1

to each Bi ∈ I.
11: for all Bi ∈ I do
12: if not Ts−1(Γ, bBi

, Bi, n) then � Function call is
in ΠP

2s−3
13: return no.
14: end if
15: end for
16: for all bins b′ in stage s − 1 do � Subproblem 2
17: if not Us−1(Γ, b′, n) then � Function call is in

ΠP
2s−3

18: return no.
19: end if
20: end for
21: return yes.
22: end procedure

The algorithm runs as an NP machine (making calls to

other machines). Lines 5–9 non-deterministically compute

an assembly process for A in bin b. Line 10 non-

deterministically assigns the initial assemblies of this

process to input bins, and lines 11–15 check that the input

assemblies are indeed terminal assemblies of these

assigned bins. Lines 16–20 check that the condition of

subproblem 2 is satisfied.

The complexity of the algorithm is NP with polynomi-

ally many calls to algorithms in PP
2s�3. That is,

NPPP
2s�3 ¼ NPRP

2s�3 ¼ RP
2s�2.

An algorithm for the UIBV s problem Since we have

already proved that there exists a RP
2s�2 algorithm Ps, we

assume this as well.

Algorithm 4 A ΠP
2s−1 algorithm for the UIBVs prob-

lem
1: procedure Us(Γ, b, n) � Bin b is in stage s of Γ
2: Non-deterministically select an assembly A with n <

|A| ≤ 2n.
3: if Ps(Γ, b, A, n) then � Function call is in ΣP

2s−2
4: return no.
5: end if
6: for all bins b′ in stage s − 1 do
7: if Ps(Γ, b′, A, n) then � Function call is in ΣP

2s−4
8: return no.
9: end if

10: end for
11: return yes.
12: end procedure

The algorithm runs as a coNP machine, returning ‘‘no’’

unless every non-deterministic branch returns ‘‘yes’’. Lines

2–5 solve subproblem 1, while lines 6–10 address

subproblem 2.

The complexity of the algorithm is then coNP with two

calls to algorithms in RP
2s�2. That is, coNP

RP
2s�2 ¼ PP

2s�1.

An algorithm for the TIBV s problem Since we have

already proved that there exists a PP
2s�1 algorithm Us, we

assume this as well.

Algorithm 5 An ΠP
2s−1 algorithm for the TIBVs prob-

lem
1: procedure Ts(Γ, b, A, n) � Bin b is in stage s of Γ
2: if not Ps(Γ, b, A, n) then � Function call in ΣP

2s−2
3: return no.
4: end if
5: Non-deterministically select an assembly B with |B| ≤

n.
6: if Ps(Γ, b, B, n) and A and B can attach at tempera-

ture τ then
7: return no.
8: end if
9: if not Us(Γ, b, n) then � Subproblems 2 and 3

10: return no.
11: end if
12: return yes.
13: end procedure

Verification in staged tile self-assembly 115

123

The algorithm runs as a coNP machine, returning ‘‘no’’

unless every non-deterministic branch returns ‘‘yes’’. Lines

2–8 verify that A is a terminal assembly of bin b (subprob-

lem 1): A is not a terminal assembly if and only if (1) A is

not producible (lines 2–4), or (2) another producible

assembly B can attach to A (lines 5–8).

The complexity of the algorithm needs a slightly careful

analysis. Lines 2–8 can be seen as a coNP algorithm with

two calls to algorithms in RP
2s�2, i.e. a coNPRP

2s�2 ¼ PP
2s�1

algorithm. Then the entire algorithm is a P algorithm with

a call to a PP
2s�1 algorithm (lines 2–8) and another call to a

PP
2s�1 algorithm (line 9). That is, a PPP

2s�1 ¼ PP
2s�1

algorithm.

A remark on the reoccurring subproblem All three

problems have the subproblem ‘‘does every producible

assembly of every bin in stage s� 1 of C have size at most

n?’’ Removing this subproblem from the TIBVs problem

makes the problem undecidable, since arbitrarily large

assemblies (carrying out unbounded computation) may

attach to A. Seen from another perspective, line 5 of T s is

only correct because we may assume that any attaching

assembly B has size at most n. The PIBVs and UIBVs

problems are also similarly undecidable when the sub-

problem is removed.

In a system with a unique terminal assembly/shape, no

producible assembly of any bin has size exceeding that of

the unique terminal assembly/shape. Thus adding such a

subproblem does not change the answer to staged UAV/

USV problem instances (a ‘‘no’’ with the added subprob-

lem implies a ‘‘no’’ without it as well). h

With this algorithmic machinery in place, we move to

the first main result:

Definition 7 (Stage-s unique assembly verification (Stage-

s UAV) problem) Given a staged system C with s stages

and an assembly A, is A the unique terminal assembly of C?

Theorem 5 The stage-s UAV problem is in PP
2s.

Proof We give an algorithm for the stage-s UAV prob-

lem. The stage-s UAV problem may be restated as:

1. is every assembly B with jBj � jAj and B 6¼ A not a

terminal assembly of any bin in stage s?

2. and does every producible assembly of every bin in

stage s� 1 of C have size at most |A|?

Algorithm 6 A ΠP
2s algorithm for the stage-s UAV

problem
1: procedure UAVs(Γ, A) � Γ has s stages.
2: Non-deterministically select an assembly B with |B| ≤

|A| and B �= A.
3: for all bins b in stage s of Γ do
4: if Ts(Γ, b, B) then � Function call is in ΠP

2s−1
5: return no.
6: end if
7: end for
8: if not Us(Γ, b, |A|) then � Function call is in ΠP

2s−1
9: return no.

10: end if
11: return yes.
12: end procedure

The algorithm runs as a coNP machine, returning ‘‘no’’

unless every non-deterministic branch returns ‘‘yes’’. Lines

2–7 solve subproblem 1, while lines 8–10 solve subprob-

lem 2. h

Every staged system has some number of stages s 2 N,

but there is no limit to the number of stages a staged system

may have. Thus the staged UAV problem is not contained

in any level of PH, but every instance can be solved by an

algorithm that runs at a fixed level (PP
2s) of the hierarchy.

Since it is well-known that PH � PSPACE, this gives the

desired result:

Corollary 2 The staged UAV problem is in PSPACE.

Next, we move to shape verification:

Definition 8 (Stage-s unique shape verification (Stage-s

USV) problem) Given a staged system C with s stages and a

shape S, is S the unique terminal shape of C?

Theorem 6 The stage-s USV problem is in PP
2s.

Proof The stage-s USV problem can be restated as:

1. is every assembly B with jBj � jSj and shape not equal

to S not a terminal assembly of any bin in stage s?

2. and does every producible assembly of every bin in

stage s� 1 of C have size at most |S|?

Notice that the subproblems only differ from those of the

stage-s UAV problem in that S replaces A and ‘‘equal

shape’’ replaces ‘‘equals’’. Thus the algorithm differs from

the PP
2s algorithm for the stage-s UAV problem on only

line 5 (replace ‘‘A 6¼ B’’ with ‘‘shape not equal to S’’) and

line 8 (replace |A| with |S|). h

As for the UAV problem, since the stage-s USV prob-

lem is in PH for each s 2 N, the USV problem is in

PSPACE.

Corollary 3 The staged USV problem is in PSPACE.

116 R. Schweller et al.

123

7 Open problems

The most direct problem left open by this work is closing

the gap in the bottom row of Table 1 between the coNPNP-

hardness and PSPACE containment of the staged UAV

and USV problems. We believe that the approach of dif-

ferentiating between satisfying and non-satisying assign-

ments, then checking for the existence of various partial

assignments (the 8 portion of 89SAT) can be generalized

to achieve hardness for any number of quantifier alterna-

tions, using a number of stages proportional to the number

of alternations:

Conjecture 1 The staged UAV and USV problems are

PSPACE-complete.

Conjecture 2 The stage-s UAV and stage-s USV problems

are Pp
XðsÞ-hard.

The UAV and USV problems considered in this work

are two variants of the generic challenge of verification;

considering the same problems limited to temperature-1

systems or with different inputs is also interesting:

Problem 1 What are the complexities of the staged UAV

and USV problems restricted to temperature-1 systems?

Problem 2 What is the complexity (in any model) of the

following UAV-like problem: given a system C and an

integer n, does C have a unique terminal assembly of size

at most n?

Finally, the results and techniques presented here might

find use in the study of other problems in staged and two-

handed self-assembly, such as tile minimization. The

aTAM USV problem is coNP-complete, while the mini-

mum tile set problem of finding the minimum number of

tiles that uniquely assemble into a given shape is NPNP-

complete (Bryans et al. 2013). We now know that the

2HAM USV problem is coNPNP-complete (Sect. 3); does

the corresponding optimization problem also rise in the

hierarchy?

Conjecture 3 The 2HAM minimum tile set problem is

NPNPNP

-complete.

Acknowledgements This research was supported in part by National

Science Foundation Grants CCF-1117672 and CCF-1555626 .

References

Adleman LM, Cheng Q, Goel A, Huang MDA, Kempe D, de Espanés

PM, Rothemund PWK (2002) Combinatorial optimization

problems in self-assembly. In: Proceedings of the thirty-fourth

annual ACM symposium on theory of computing, pp 23–32

Bryans N, Chiniforooshan E, Doty D, Kari L, Seki S (2013) The

power of nondeterminism in self-assembly. Theory Comput

9(1):1–29

Cannon S, Demaine ED, Demaine ML, Eisenstat S, Patitz MJ,

Schweller RT, Summers SM, Winslow A (2013) Two hands are

better than one (up to constant factors): self-assembly in the

2HAM vs. aTAM. In: STACS 2013, LIPIcs, vol 20. Schloss

Dagstuhl, pp 172–184

Chalk C, Martinez E, Schweller R, Vega L, Winslow A, Wylie T

(2016) Optimal staged self-assembly of general shapes. In:

Proceedings of the 24th European symposium of algorithms,

LIPIcs, vol 57. Schloss Dagstuhl, pp 26:1–26:17

Chalk C, Schweller R, Winslow A, Wylie T (2017) Too hot

2HAMdle: high-temperature two-handed self-assembly. Under

submission

Cheng Q, Aggarwal G, Goldwasser MH, Kao MY, Schweller RT, de

Espanés PM (2005) Complexities for generalized models of self-

assembly. SIAM J Comput 34:1493–1515

Demaine ED, Demaine ML, Fekete SP, Ishaque M, Rafalin E,

Schweller RT, Souvaine DL (2008) Staged self-assembly:

nanomanufacture of arbitrary shapes with Oð1Þ glues. Nat

Comput 7(3):347–370

Demaine ED, Eisenstat S, Ishaque M, Winslow A (2011) One-

dimensional staged self-assembly. In: Proceedings of the 17th

international conference on DNA computing and molecular

programming, DNA’11, pp 100–114

Demaine ED, Fekete SP, Scheffer C, Schmidt A (2015) New

geometric algorithms for fully connected staged self-assembly.

In: DNA computing and molecular programming, LNCS, vol

9211. Springer, pp 104–116

Doty D (2014) Producibility in hierarchical self-assembly. In:

Proceedings of unconventional computation and natural compu-

tation (UCNC), LNCS, vol 8553. Springer, pp 142–154

Lagoudakis MG, Labean TH (1999) 2d dna self-assembly for

satisfiability. In: 5th international meeting on DNA based

computers

Schaefer M, Umans C (2002) Completeness in the polynomial-time

hierarchy: a compendium. SIGACT News 33(3):32–49

Stockmeyer LJ (1976) The polynomial-time hierarchy. Theor Comput

Sci 3(1):1–22

Winslow A (2015) Staged self-assembly and polyomino context-free

grammars. Nat Comput 14(2):293–302

Verification in staged tile self-assembly 117

123

	Verification in staged tile self-assembly
	Abstract
	Introduction
	The staged assembly model
	The 2HAM unique shape verification problem is {\textsf {coNP}}^{\rmsf {NP}}-complete
	Staged unique assembly verification is {\textsf {coNP}}-hard
	Staged unique assembly verification is {\textsf {coNP}}^{\rmsf {NP}}-hard
	Staged PSPACE containment
	Open problems
	Acknowledgements
	References

