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Abstract
How to rationally inject randomness to control population diversity is still a difficult problem in evolutionary algorithms.

We propose balanced-evolution genetic algorithm (BEGA) as a case study of this problem. Similarity guide matrix (SGM)

is a two-dimensional matrix to express the population (or subpopulation) distribution in coding space. Different from

binary-coding similarity indexes, SGM is able to be suitable for binary-coding and symbol-coding problems, simultane-

ously. In BEGA, opposite-direction and forward-direction regions are defined by using two SGMs as reference points,

respectively. In opposite-direction region, diversity subpopulation always tries to increase Hamming distances between

themselves and the current population. In forward-direction region, intensification subpopulation always tries to decrease

Hamming distances between themselves and the current elitism population. Thus, diversity subpopulation is more suit-

able for injecting randomness. Linear diversity index (LDI) measures the individual density around the center-point

individual in coding space, which is characterized by itself linearity. According to LDI, we control the search-region ranges

of diversity and intensification subpopulations by using negative and positive perturbations, respectively. Thus, the search

efforts between exploration and exploitation are balanced. We compared BEGA with CHC, dual-population genetic

algorithm, variable dissortative mating genetic algorithm, quantum-inspired evolutionary algorithm, and greedy genetic

algorithm for 12 benchmarks. Experimental results were acceptable. In addition, it is worth noting that BEGA is able to

directly solve bounded knapsack problem (i.e. symbol-coding problem) as one EA-based solver, and does not transform

bounded knapsack problem into an equivalent binary knapsack problem.

Keywords Population diversity control � Feedback control scheme � Similarity guide matrix � Linear diversity index �
Symbol-coding problem � Bounded knapsack problem

1 Introduction

Evolutionary algorithms (EAs) are widely used as global

optimizers, such as genetic algorithms (GAs) (De Jong

1975; Holland 1975) and simulated annealing (Dekkers and

Aarts 1991). Population diversity control is important to

obtain desired solutions in each EA. However, how to

rationally inject randomness to control population diversity

is still a difficult problem. In the above problem, there are

two sub-problems: (1) How to determine which subpopu-

lations are more suitable for injecting randomness (i.e. first

sub-problem)? (2) How much randomness is injected is

suitable for population diversity control (i.e. second sub-

problem)?
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We propose balanced-evolution genetic algorithm

(BEGA). BEGA realizes the balanced evolution of the

population, which is controlled by population diversity

measures. BEGA is characterized by this balanced-evolu-

tion strategy. From a coding-space perspective, this is a

case study for solving first and second sub-problems. Note

that, coding space is also called genotypic space that is

related to coding type and coding position, and solution

space is also called phenotypic space that is related to the

individual fitness. Our contributions are as follows.

About first sub-problem. Similarity guide matrix (SGM)

is defined by us to express the population (or subpopula-

tion) distribution in coding space, and two SGMs (i.e. the

population SGM SG and the elitism population SGM SE)

are used as reference points. Diversity subpopulation

searches in opposite-direction region (od-Region), which is

obtained by using SG and negative perturbation. This

behavior of diversity subpopulation in Fig. 7 always tries

to increase Hamming distances between themselves and

the current population. Conversely, intensification sub-

population searches in forward-direction region (fd-Re-

gion), which is obtained by using SE and positive

perturbation. This behavior of intensification subpopulation

in Fig. 8 always tries to decrease Hamming distances

between themselves and the current elitism population.

Therefore, the subpopulation (i.e. diversity subpopulation),

which always tries to increase Hamming distances between

themselves and the current population, is more suitable for

injecting randomness.

About second sub-problem. Linear diversity index (LDI)

is defined by us to measure the individual density in coding

space. According to LDI, we control the search efforts of

diversity and intensification subpopulations in od-Region

and fd-Region, respectively. Therefore, by using popula-

tion diversity measure (i.e. LDI), we decide how much

randomness is injected to different behavior-based sub-

populations (i.e. diversity and intensification

subpopulations).

The rest of the paper is organized as follows. In Sect. 2,

we review related works. In Sect. 3, we introduce BEGA.

In Sect. 4, we provide experimental results. In Sect. 5, we

give our findings.

2 Related works

2.1 Population diversity measures

Burke et al. (2002, 2004) make a detailed survey of pop-

ulation diversity measures, and analyze the correlated

relationships among different measures. Črepinšek et al.

(2013) categorize population diversity measures into

genotype level, phenotype level, composite genotype–

phenotype level measures. In essence, high genotype-level

diversity of a population maybe not lead to high behavioral

diversity, and behavioral diversity is more important than

genotype-level diversity (Darwen and Yao 2001).

2.1.1 Widely used diversity measures

Widely used diversity measures are based on the distances

of individual coding. This kind of population diversity

measures are based on summing (or averaging) Euclidean

distances from every individual coding to the center-point,

or based on summing (or averaging) Euclidean distances

between all pairs of individual coding (Morrison and De

Jong 2002; Ursem 2002). Their linearity features are based

on the distance’s linearity in coding space, and this is also

their widely used reason. When using these measures,

computation cost should be considered.

2.1.2 Recently proposed diversity measures

Mattiussi et al. (2004) propose a diversity measure that is

able to be used for the variable length or highly reorgani-

zable coding. Lacevic et al. propose a measure based on

Euclidean minimum spanning trees, a class of power-

mean-based measures, and three measures based on dis-

crepancy (Lacevic et al. 2007; Lacevic and Amaldi 2010).

McGinley et al. (2011) propose healthy population diver-

sity that expresses the population diversity in solution

space. These measures are able to improve the perfor-

mances of one EA, when their features are consistent with

specific problems. These measure definitions are generally

based on nonlinear functions. This has an effect on their

generalities.

2.2 Population diversity controls

Exploration (i.e. diversity-based search in the entirely new

regions) and exploitation (i.e. intensification-based search

in the neighborhoods of the previously visited regions) are

two cornerstones of problem solving by search (Eiben and

Schippers 1998; Črepinšek et al. 2013). De Jong (2007)

gives us a historical overview of parameter setting, which

includes parameter tuning before the run and parameter

control during the run (Eiben et al. 1999). In this paper,

parameter-tuning-based, parameter-control-based, and

strategy-based controls are reviewed as follows.

2.2.1 Parameter-tuning-based controls

Smit and Eiben discuss three layers (i.e. design, algorithm,

and application layers) of parameter tuning (Smit and

Eiben 2009; Eiben and Smit 2011). Generally, parameter

setting of one operator is easy to be set, because this
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operator function is single. For instance, the function of

each operator is single in simple GA (SGA). Thus, to find a

satisfactory parameter setting is easy in SGA. Choosing

random number generators (RNGs) is important to the

robustness of EAs, and the study between RNGs and the

robustness of EAs is a neglected research (Eiben and Smit

2011).

2.2.2 Parameter-control-based controls

CHC (Eshelman 1991) uses convergence threshold to

decide whether to reinitialize the population. According to

saw-tooth function, saw-tooth GA reinitializes a part of

populations (Koumousis and Katsaras 2006). According to

the numbers of successful matings and failed matings,

variable dissortative mating GA (VDMGA) adjusts con-

vergence threshold (Fernandes and Rosa 2006, 2008).

Instead of the fixed crossover probability and mutation

probability, zhang et al. (2007) propose the fuzzy-con-

trolled crossover probability and mutation probability.

Alba and Dorronsoro (2005) study the influence of the ratio

for structured dynamical populations in cellular GA. In

dual-population GA (DPGA), according to the distance

fitness function, reserve population adjusts the distance

from main population that is evaluated by using the fitness

function (Park and Ryu 2010). Through crossbreeding,

DPGA protects population diversity. According to different

parameter-control-based rules, these researches realize

population behavior diversities. In addition, population

behavior diversities are able to be evaluated by using multi

criteria analysis to improve the robustness of EAs.

2.2.3 Strategy-based controls

Multi optimized rules for tournament selection are pro-

posed by Chen et al. (2009), and these rules are charac-

terized by their dynamic properties. The individuals, with

the poor fitness and lower contribution to population

diversity, are replaced with offspring in contribution of

diversity/replace worst strategy (Lozano et al. 2008). Brain

storm optimizations (BSOs) are proposed as a new swarm-

based algorithm (Shi 2015). Finding the search regions

with the promising solutions in BSOs is worthwhile work.

But, it is difficult in real coding space. For instance, one

dimension in binary coding space only contains two coding

types: ‘0’ and ‘1’. However, one dimension in real coding

space contains infinitely many real numbers. BSOs are

characterized by grouping strategies, such as K-means-

clustering, K-medians-clustering, simple, random, and

objective-space-based grouping strategies (Zhu and Shi

2015; Zhan et al. 2012; Cao et al. 2015; Shi 2015). In

addition, BSOs are inspired by brain storm process, and

brain storm process includes the thinking process. In some

sense, the thinking process is a highlight of BSOs. Instead

of Gaussian distribution, Lee and Yao (2004) propose a

mutation based on Levy distribution, and this distribution

has an infinite second moment. Thus, this mutation is more

likely to generate offspring, which are far away from

parents. Scatter search (Glover 1997) explores solution

space by using a set of reference individuals to generate

offspring, which simultaneously uses diversification and

intensification strategies (Resende et al. 2010). Based on

this systematic set of reference individuals, offspring

generally obtain better performances.

These strategies are important to balance exploration

and exploitation in EAs. To find optimal solutions, there

are three obstacles: the huge size of coding space, the huge

size of solution space, and various fitness-function-map-

ping relationships (FRs). If one FR is one-to-one linear

mapping, finding optimal solutions is easy by using uni-

formly-spaced sampling method, even for the huge sizes of

coding and solution spaces. Of the three obstacles, various

FRs are the most difficult. Dynamic varying rules for

population diversity strategies are the interesting research

to solve various FRs.

2.2.4 Discussions

In essence, population diversity measures indirectly or

directly express the population distribution in coding,

solution, or composite coding-solution spaces. Population

diversity controls are different in many respects, especially

for balancing exploration and exploitation.

How to control population diversity by using diversity

measures is an interesting problem. Generally, feedback

control is a good scheme. According to diversity measures,

feedback control schemes do population diversity controls

in real time. In feedback control schemes, realizing popu-

lation behavior diversities is the key to success. Each

behavior-based method should only search a single region.

Moreover, we should avoid that two or more behavior-

based methods search a same region.

3 Balanced-evolution genetic algorithm

In BEGA, SG and SE are reference points for diversity and

intensification subpopulations, respectively.

3.1 Similarity guide matrix

3.1.1 Motivation

Population similarity researches focus on the similarity of

individual coding. Schema is a template that identifies a

subset of strings with similarities at certain string positions
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(Holland 1975). Probability vector in compact GA

expresses coding similarity in binary-coding problems

(Harik et al. 1999). As a kind of estimation of distribution

algorithms, quantum-inspired evolutionary algorithm

(QEA) uses Q-bit to represent the population in binary-

coding problems (Han and Kim 2002; Platel et al. 2009).

The motivation of SGM is to express the population

distribution in coding space. Different from the above

researches, we use SGM as the reference point in coding

space. According to different reference points, we define

different search regions. Different from probability vector

and Q-bit, SGM is able to be suitable for binary-coding and

symbol-coding problems, simultaneously.

3.1.2 Definition

SGM is a two-dimensional matrix to express the population

(or subpopulation) distribution in coding space. The hori-

zontal and vertical axes of this matrix correspond to coding

position (also called gene location, i.e. j in Eq. (1)) and

coding type (also called gene type, i.e. i in Eq. (2)),

respectively. The definition of SGM is given by

SG ¼ f sv1 sv2 . . . svj . . . svN g 1� j�N ð1Þ

svj ¼ ½s0;j � � � si;j � � � sbj;j�
T 0� i� bj ð2Þ

B ¼ f b1 b2 . . . bj . . . bN g 1� bj � bmax ð3Þ

X ¼ f x1 x2 . . . xj . . . xN g ð4Þ

si;j ¼ pi;j=P 0� i� bj ð5Þ

8j Pbj

i¼0

si;j ¼ 1 0� i� bj ð6Þ

where N is coding length, and svj is similarity guide vector

(SGV). bj is the upper bound of each genome xj, and bmax is

the upper bound of each bj (1 B bj B bmax). In symbol-

coding problems, bmax is greater than 1, and bj may be any

integer from 1 to bmax. In binary-coding problems, bmax and

bj are always equal to 1. X is individual coding, and xj is the

value of each genome (0 B xj B bj). pi,j is the number of

individuals with i’s at the jth position, and P is population

size.

In Fig. 1, a symbol-coding example of SGM is given to

demonstrate the relationships among coding position,

coding type, individuals, and SGM. In addition, a binary-

coding example of SGM is given in Fig. 2. In a global

view, Fig. 2 demonstrates the relationship between coding

space and its uniform distribution. Conversely, in a local

view, Fig. 2 explains the relationship between individuals

and their SGM. By comparing this global view with this

local view, SGM is suitable for using as a reference point

to express the population distribution in coding space.

3.1.3 Principle analysis

The principle of SGM is analyzed as follows. First, SGM

indicates the search directions of the promising solutions

(i.e. solutions with development potential), especially for

SE. In unimodal problems, the promising solutions may be

near the local/global optimal solutions. In multimodal

problems, the promising solutions may be near the local/-

global optimal solutions, or may be development-potential

solutions that are able to make populations escape from the

local optimal solutions. Secondly, SGMs are used as ref-

erence points to define different search regions. This is

feasible. In coding space, we only know individual coding.

By comparing with the huge size of coding space, these

information is very little. But, based on SGMs in Eq. (1),

this kind of reference point is sensitive to reflect the coding

change of each individual. Therefore, by using this kind of

reference point, the search regions of different subpopu-

lations are able to be defined.

To further demonstrate the principle of SGM, a uni-

modal problem case is analyzed as follows. Figure 3a

shows the relationships among coding position, coding

type, coding space, its uniform distribution, individual

coding, fitness, and the global optimal solution. With

generations increasing (from Fig. 3b–c), SGM becomes

nonuniform. In Fig. 3c, each SGV gives the value judg-

ment at each position of the promising solution. In addi-

tion, these indicate that SGM is sensitive to the coding

change of each individual.

The process of breeding new individuals, based on

SGM, is given in Algorithm 1.

0 0 0

0 0 2

0.75 0.75 0.25

0.25 0.25 0.25

B= 1 1 2

Individual No. 1 X =

1 0 1

0 1 2

Individual No. 2 X =

Individual No. 3 X =

Individual No. 4 X =

ct = 0

ct = 1

0.50 ct = 2

cp No. 1

Similarity 
Guide Matrix = 

cp No. 2 cp No. 3

cp No. 1 cp No. 2 cp No. 3

Population

Fig. 1 A symbol-coding example to demonstrate the relationships

among coding position, coding type, individuals, and similarity guide

matrix (N = 3, P = 4, bmax = 2)
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3.2 Linear diversity index

3.2.1 Motivation

In biology, biological diversity measures are important to

understand the degree of species richness, such as Jaccard

Index (Jaccard 1912). Diversity-related concepts in biology

are also suitable for EAs. We make some modifications to

Jaccard Index for its applications in EAs. These modifi-

cations mainly focus on the differences between biology

and EAs. Inspired by Jaccard Index, we propose LDI. The

motivation of LDI is to measure the individual density in

coding space. From a coding-space perspective, LDI is able

to be used for population diversity control.

3.2.2 Definition

First, we define the center-point individual Xcp of the

population by

Xcp ¼ fIndexMaxðsv1Þ; . . .IndexMaxðsvjÞ; . . .IndexMaxðsvNÞg
ð9Þ

where IndexMax() returns the index of the maximum value

in SGV. Xcp includes the index of the maximum value in

0 0 0

0 0 1

0 1 0

0 1 1

0.50 0.50 0.50

0.50 0.50 0.50

B= 1 1 1

1 0 0

1 0 1

1 1 0

1 1 1

coding    space

0 0 0

0 1 0

0.50 0.50 0.75

0.50 0.50 0.25

B= 1 1 1

Individual No. 1 X=

1 0 0

1 1 1

Individual No. 2 X=

Individual No. 3 X =

Individual No. 4 X=

the uniform distribution
of coding space

=

cp No. 1 cp No. 2 cp No. 3 cp No. 1 cp No. 2 cp No. 3

cp No. 1 cp No. 2 cp No. 3

cp No. 1 cp No. 2 cp No. 3

Similarity 
Guide Matrix = 

ct = 0

ct = 1

ct = 0

ct = 1

Population

Fig. 2 A binary-coding example to demonstrate that similarity guide matrix is suitable for using as a reference point to express the population

distribution in coding space (N = 3, P = 4, bmax = 1)
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fitness

0
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14

15

Global optimal solution

Fig. 3 A unimodal problem case analysis to demonstrate the principle

of similarity guide matrix. a Three-dimensional graph about coding

position, fitness, and individuals in coding space. b The population

distribution and similarity guide matrix in the early-evolution

generations. c The population distribution and similarity guide matrix

in the later-evolution generations
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each SGV. The reason is that the index of the maximum

value in each SGV is equal to the majority value for all of

coding values in the corresponding coding position. For

instance, the index of the maximum value in SGV Sv1 of

Fig. 1 is equal to 0, and the majority value in coding

position No. 1 of Fig. 1 is also equal to 0.

LDI Dl expresses the individual density around Xcp in

coding space, which is defined by

Dl ¼
XP

p¼1

Dp=P 1� p�P ð10Þ

Dp ¼ HamdisðXp;XcpÞ=N ð11Þ

where P is population size, N is coding length, and Ham-

dis() returns Hamming distance between Xcp and the pth

individual Xp.

3.2.3 Principle analysis

The principle of LDI is analyzed as follows. First, Xcp

always exists in coding space, and does not always exist in

solution space. In Eq. (9), Xcp may be regarded as indi-

vidual coding. However, this individual may not be a

feasible solution in the solution space of constrained

optimization problems. The reason is that this Xcp is not

satisfied with constraints, and we cannot obtain the fitness

value of Xcp. However, Xcp always exists in coding space,

because coding space is not related with constraints and

fitness. Secondly, in coding space, linearity is an important

condition to control population diversity. In Eq. (9), the

approximation between Xcp and SG is acceptable. From a

coding-position estimation perspective, each element in Xcp

is the majority value in each coding position. Using the

majority value as the center point in each coding position is

suitable for the center-point meaning to measure diversity.

In addition, Hamming distance between two individuals is

linear, and LDI is also linear. Thus, LDI is suitable for

population diversity control.

To further demonstrate the principle of LDI, we give a

case analysis. In Fig. 4a, individual-loose distribution

means long Hamming distances between Xcp and each

individual, and indicates good diversity. In Fig. 4b, indi-

vidual-close-together distribution means short Hamming

distances between Xcp and each individual, and indicates

poor diversity. With generations increasing, Xcp changes

continually. Meanwhile, population diversity gradually

decreases from individual-loose distribution to individual-

close-together distribution.

fitness

Global optimal solution

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(c) 

Fig. 3 continued
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Fig. 4 A case analysis of linear diversity index to demonstrate the individual density around the center-point individual Xcp. a Individual-loose

distribution. b Individual-close-together distribution
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3.3 Algorithm design

According to SG and SE as reference points, BEGA use

negative and positive perturbations to control the search

directions of diversity and intensification subpopulations,

respectively. In addition, we explain the balanced-evolu-

tion strategy in Sects. 3.3.2 and 3.3.3.

3.3.1 Framework

The procedure of BEGA is given in Algorithm 2.

Balanced-evolution procedure in Fig. 5 corresponds to

Step 3–Step 7 in Algorithm 2.

We define the first and second stages by using LDI Dl,

control amplitude CA, and shift limit of population diver-

sity Dsl. The first stage is the generations for LDI Dl[Dsl,

and the second stage is the generations for LDI Dl B Dsl. In

Fig. 6a, LDI Dl decreases gradually in BEGA, because this

is a general law of population diversity in EAs. In addition,

CA is used to control the amplitudes of negative and pos-

itive perturbations in diversity and intensification methods,

respectively. In Fig. 6b, CA is equal to LDI Dl in the first

stage, and is equal to Dsl in the second stage.

Intensification and diversity subpopulations after

updating are 50% of the best individuals in the population.

In addition, the procedure of updating elitism population is

as follows. In the first stage, by using elite selection, elitism

population after updating (EPAU) is obtained for elitism

population and intensification subpopulation after updat-

ing. In the second stage, EPAU is also obtained by using

elite selection. Moreover, Hamming distance between two

fitness-adjacent individuals in EPAU is required to be

greater than the minimal distance md. If the size of the

chosen individuals is less than the size of elitism popula-

tion Pe, we use the best fitness individuals as other indi-

viduals in EPAU.

Algorithm 2 Balanced-evolution genetic algorithm

1: Input: population size P, coding length N, shift limit of population diversity Dsl, the size of elitism population Pe

2: Step 1: Generate the uniform-distribution initial population, and evaluate this population.

3:

4:

Step 2: According to the initial population, initialize diversity and intensification subpopulations.

Step 3: Compute SG and LDI Dl of the population.

5:

6:

Step 4: Carry out elite selection to update diversity and intensification subpopulations.

Step 5: Compute control amplitude CA, and update the elitism population.

7: Step 6: Carry out diversity method, and evaluate the new diversity subpopulation.

8: Step 7: Carry out intensification method, and evaluate the new intensification subpopulation.

9: Step 8: Check whether termination condition is satisfied or not. If it is not satisfied, go to Step 3.

10: Step 9: The individual with the best fitness represents the final solution.
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3.3.2 Diversity method

od-Region is determined by MN. In Fig. 7a, negative per-

turbation changes the coding distribution of temporary

individuals. In Fig. 7b, comparing with Hamming dis-

tances between diversity subpopulation and diversity sub-

population, Hamming distances between temporary

individuals and diversity subpopulation increase. More-

over, the new diversity subpopulation is obtained by using

temporary individuals and diversity subpopulation.

Therefore, Hamming distances between the new diversity

subpopulation and diversity subpopulation also increase.

This realizes the exploration of the new diversity subpop-

ulation, and improves the robustness of BEGA.

To explain the behavior features of diversity subpopu-

lation about the balanced-evolution strategy, we use the

examples in Figs. 6 and 7. The behavior features of

diversity subpopulation are as follows. CA is important to

Algorithm 3 Diversity method

1:

2:

3:

Step 1: According to SG, compute each vector of np-SGM MN as follows.

if rand()<control amplitude CA

Compute negative perturbation rn, and inject negative perturbation rn by using

4: () ( )n vjrand Maxr CA s× ×= (12)

5: , ,k j k j nm s r= − (13)

6: , ,l j l j nm s r= + (14)

7:

8:

9:

10:

11:

12:

Except for mk, j and ml, j, other elements in the jth vector of MN are equal to the corresponding elements

in the jth SGV svj of SG. rand() generates a random number uniformly distributed in (0, 1), and Max() 

computes the maximum of a vector. k is the index of the maximal element of svj in SG. l is a randomly 

selected index (k≠l).

else

The jth vector of MN is equal to the jth vector of SG.

13: Step 2: Breed temporary individuals by using np-SGM MN and Algorithm 1, and execute crossover by using

14: { }1 2 j NQ q q q q= K K (15)

15:
0 0.5
0.5 1

j j
j

j j

q r
o

x r
≤ ≤⎧⎪= ⎨ < ≤⎪⎩

(16)

16:

17:

18:

where Q is a temporary individual, and rj is a random number uniformly distributed in (0, 1). xj is the 

value at the jth position of a decision variable X (corresponding to diversity subpopulation after updating), 

and oj is the value at the jth position of a new individual O.

19: Step 3: Execute mutation according to mutation probability pm in Eq. (17), and ms is multiplier factor.

20: (1.0 )/
m s

p m NCA= + × (17)
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control the amplitude of negative perturbation. In Fig. 6b,

with LDI Dl decreasing, CA is decreasing in the first stage,

and then is equal to Dsl in the second stage. This kind of CA

setting is suitable for improving the exploration abilities of

diversity subpopulation, when the population diversity is

decreasing in Fig. 6a. In Fig. 7, CA setting is also suit-

able for increasing Hamming distances between temporary

individuals and diversity subpopulation.

Diversity Method

diversity subpopula�onintensifica�on subpopula�on

Popula�on

Elite selec�on for upda�ng diversity subpopula�on 
and intensifica�on subpopula�on

Compute linear 
diversity index

Compute similarity 
guide matrix 

linear 
diversity index of the 

popula�on

similarity 
guide matrix of the 

popula�on

diversity 
subpopula�on
a�er upda�ng

intensifica�on 
subpopula�on
a�er upda�ng

Compute control amplitude of 
popula�on diversity as follows .

IF Dl> Dsl //The first stage
control amplitude  = Dl ;

update the eli�sm popula�on 
according to the fitness

ELSE         //The second stage
control amplitude  = Dsl ;

update the eli�sm popula�on 
according to the fitness and the 
distance constraint.

eli�sm 
popula�on 

a�er upda�ng Intensifica�on
Method

control 
amplitude of 
popula�on 

diversity 

New popula�on
new diversity 
subpopula�on

new intensifica�on 
subpopula�on

Fig. 5 The balanced-evolution

procedure of the population in

each generation

Fig. 6 An example of linear diversity index Dl, control amplitude CA, and shift limit of population diversity Dsl in the first and second stages
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3.3.3 Intensification method

fd-Region is determined by MP. Similarly to Fig. 7, an

example of intensification method is given in Fig. 8. Pos-

itive perturbation is the reason that Hamming distances

between the new intensification subpopulation and elitism

population decrease. This realizes the exploitation of the

new intensification subpopulation, and improves the effi-

ciency of BEGA.

To explain the behavior features of intensification sub-

population about the balanced-evolution strategy, we use

the examples in Figs. 6 and 8. The behavior features of

intensification subpopulation are as follows. CA is impor-

tant to control the amplitude of positive perturbation. In

Fig. 6b, with LDI Dl decreasing, CA is decreasing in the

first stage, and then is equal to Dsl in the second stage. This

kind of CA setting is suitable for improving the exploitation

abilities of intensification subpopulation, when the popu-

lation diversity is decreasing in Fig. 6a. In Fig. 8, CA

setting in Fig. 6a is also suitable for reducing Hamming

distance between temporary individuals and elitism

population.

3.4 Discussions

3.4.1 Cooperation

The relationship between diversity subpopulation and

intensification subpopulation is a kind of cooperation. First,

the definitions of od-Region and fd-Region are the foun-

dation of the cooperation. To search od-Region and fd-

Region, diversity and intensification subpopulations coop-

erate with each other. The diversity-subpopulation size is

equal to the intensification-subpopulation size. Thus, their

search efforts are the same. Secondly, another kind of

cooperation is the individual exchanges between diversity

subpopulation and intensification subpopulation. In the

second stage, there are more and more individual exchan-

ges, which should be called individual shuffling. This kind

of individual shuffling is important to find the new

promising solutions.

Algorithm 4 Intensification method

1: Step 1: Compute SE, and copy the best individual into the next generation.

2:

3:

Step 2: According to SE, compute each vector of pp-SGM MP as follows.

Compute positive perturbation rp, and inject positive perturbation rp by using

4: () ( )p vjr CA rand Min s= × × (18)

5: , ,k j k j pm s r= − (19)

6: , ,l j l j pm s r= + (20)

7:

8:

9:

10

Except for mk, j and ml, j, other elements in the jth vector of MP are equal to the corresponding elements in

the jth SGV svj of SE. rand() generates a random number uniformly distributed in (0, 1), and Min() 

computes the minimum of a vector. k is the index of the minimal element of svj in SE. l is a randomly 

selected index (k≠l).

11:

12:

Step 3: Breed temporary individuals by using pp-SGM MP and Algorithm 1. Similar to Algorithm 3, execute

crossover between temporary individuals and intensification subpopulation after updating.

13: Step 4: Execute mutation according to mutation probability pm (pm = 1/N).
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Fig. 7 An example to demonstrate that Hamming distances between

temporary individuals and diversity subpopulation increase (N = 4,

bmax = 1). a The relationship between negative perturbation and

temporary individuals. b The sum of all-pair-individual Hamming

distances between temporary individuals and diversity-subpopulation

individuals is 50. Conversely, the sum of all-pair-individual Hamming

distances between diversity-subpopulation individuals and diversity-

subpopulation individuals is 36
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Fig. 8 An example to demonstrate that Hamming distances between

temporary individuals and elitism population individuals decrease

(N = 4, bmax = 1). a The relationship between positive perturbation

and temporary individuals. b The sum of all-pair-individual Hamming

distances between temporary individuals and elitism-population

individuals is 44. Conversely, the sum of all-pair-individual Hamming

distances between elitism-population individuals and elitism-popula-

tion individuals is 48
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Fig. 9 A multimodal problem example to demonstrate how popula-

tion escapes from the local optimal solution by using similarity guide

matrices of the population and the elitism population. a Three-

dimensional graph about coding position, fitness, and individuals in

coding space. b Most of individuals in the population fall into the

local optimal solution. c Population gradually escapes from the local

optimal solution by using similarity guide matrix of the elitism

population
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3.4.2 Efficiency

The no-free-lunch-theorem is always there. Although SGM

and LDI are useful, their computation costs have an effect

on the efficiency of BEGA. Thus, each kind of computation

must promote the population evolution. To realize this

goal, we pay more attention to selecting the reasonable

search region of each individual. Details are as follows.

First, we use SE in intensification method, and use positive

perturbation to reduce Hamming distances between tem-

porary individuals and elitism population. This method is

effective to improve the convergence speed of BEGA,

especially in the first stage. Secondly, we use SG in

diversity method, and use negative perturbation to increase

Hamming distances between temporary individuals and

diversity subpopulation. In addition, we use the multiplier

factor of mutation operator ms to scatter diversity sub-

population. These methods of scattering diversity

subpopulation are good to explore much more search

regions in the first stage. Thus, this strategy is able to

improve the convergence speed of BEGA, especially in the

second stage.

3.4.3 Adaptability

To avoid falling into the local optimal solution, we use SG
and SE. The multimodal problems lead to the differences

between SG and SE. These differences are useful for making

the population escape from the local optimal solution. To

demonstrate the abilities of escaping from the local optimal

solution, a multimodal problem example is given in Fig. 9.

First, Fig. 9a presents a multimodal problem about the

relationships among coding position, fitness, and individ-

uals in coding space. Secondly, in Fig. 9b, most of indi-

viduals in the population (i.e. individual No. 1–No. 4) are

close to the local optimal solution, and fall into the local
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Fig. 9 continued
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optimal solution. However, two SGMs are different in

Fig. 9b. SG is based on the population, which includes

individual No. 1–No. 5. SE is based on the elitism popu-

lation, which includes individual No. 2 and No. 5. These

differences between SG and SE are useful for escaping from

the local optimal solution. Thirdly, with the population

fitness increasing in Fig. 9c, the fitness threshold of the

elitism population also increases. Therefore, SE gradually

changes the population distribution from Fig. 9b to Fig. 9c.

Thus, the population escapes from the local optimal

solution.

4 Experiments and discussions

4.1 Experimental scheme

4.1.1 Benchmarks

We used 12 combinatorial optimization problems as

benchmarks in Appendix 1.

4.1.2 Compared algorithms

We used CHC, DPGA, VDMGA, and QEA as compared

algorithms for binary-coding problems, and used greedy

GA (GGA) as the compared algorithm for symbol-coding

problems in Appendix 2.

4.1.3 Used parameter settings

See Table 1.

4.2 Experiments on convergence

To demonstrate the effectiveness of BEGA, the effective-

ness results were given in Table 2. BEGA were acceptable.

In Fig. 10, we provided the mean of the best-individual-

fitness ranks in binary-coding problems. This indicates that

the convergence performances of BEGA are consistent for

100 runs.

Because SGM is an estimation parameter, the compu-

tation-time test is necessary to demonstrate the efficiency

of BEGA. In Table 2, BEGA was first in 8 benchmarks,

and second in other 4 benchmarks. This implies that

intensification method is effective to improve the conver-

gence speed.

The objective of BEGA is only to improve the best

individual fitness, and BEGA does not consider other fit-

ness-related indexes. This is the difference of BEGA. As

shown in Fig. 11, the fitness-mean and fitness-minimum

curves of BEGA were not better than others. The reason is

that diversity subpopulation always tries to increase

Hamming distances between themselves and the current

population. This indicates that the balanced-evolution

strategy is effective.

4.3 Experiments on different parameters

4.3.1 Different scale problems

In Fig. 12, we demonstrated the robustness of BEGA for

different scale problems. With coding length increasing,

the best individual fitness of BEGA became much better

than others. This indicates that the advantage of SGM as an

Table 1 Used parameter settings in this paper

Items Parameters

CHC Population size P = 90, the convergence threshold of initialization = 50

DPGA The main population size = 30, the reserve population size = 60, pc = 1, pm = 1/N, a = 0.2, s1 = 50, s2 = 10

VDMGA Population size P = 90, the convergence threshold of initialization = 0.25 N, pm = 0.005

QEA Population size P = 90, the increment of the rotation angle Delta decreased linearly from 0.1 in the first generation to

0.005 in the last generation

GGA Population size P = 90, pc = 1, pm = 0.03

BEGA Population size P = 90, the size of elitism population Pe = 15, shift limit of population diversity Dsl = 0.075, the

minimal distance of two adjacent individuals in elitism population md = 3, the multiplier factor of mutation operator

ms = 5

Initial population In each run, initial population that was randomly generated was the same for all algorithms

Termination

condition

In effectiveness test of Sect. 4.2 and the test of Sect. 4.3, termination condition was 600 generations. In efficiency test of

Sect. 4.2, fitness threshold was the main termination condition, and maximal generation was the default termination

condition

Program and

computer

We implemented all algorithms in C??, used complementary multiply with carry generators, and executed on Intel

(R) Core (TM) i7 CPU M 620, 4G DDR, Visual Studio 2005, and Windows XP
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Table 2 Effectiveness results: MEAN and STD are the mean and standard deviation of the best individual fitness for 100 runs, respectively.

Efficiency results: ACT is the average computation time for 20 runs

Problem Algorithm Effectiveness results Efficiency results

MEAN STD Termination condition ACT(s)

Trap problem

N = 2160

Optimal value: 13,200

BEGA 11,669.96 70.55 Fitness threshold = 0.8 9 optimal value = 10,560

Maximal generation = 6000

5.057

CHC 7115.66 94.64 53.336

DPGA 11,404.56 62.39 6.339

VDMGA 11,406.36 52.50 4.090

QEA 11,556.78 70.40 26.873

Deceptive problem

N = 2700, order-3

Optimal value: 27,000

BEGA 25,068.68 64.03 Fitness threshold = 0.9 9 optimal value = 24,300

Maximal generation = 6000

2.280

CHC 17,108.20 171.59 178.841

DPGA 24,414.64 80.00 3.070

VDMGA 22,734.64 132.47 3.954

QEA 24,286.74 103.83 5.693

Deceptive problem

N = 3000, order-4

Optimal value: 22,500

BEGA 20,445.28 53.43 Fitness threshold = 0.9 9 optimal value = 20,250

Maximal generation = 6000

28.569

CHC 13,766.70 148.62 192.752

DPGA 19,500.94 81.29 30.800

VDMGA 18,994.56 80.08 25.182

QEA 19,565.20 74.15 158.517

Partially deceptive problem

N = 3000, order-4

Optimal value: 22,500

BEGA 20,361.60 102.77 Fitness threshold = 0.9 9 Optimal value = 20,250

Maximal generation = 6000

31.955

CHC 13,737.98 150.30 197.607

DPGA 19,184.74 113.63 40.047

VDMGA 19,572.96 92.29 21.525

QEA 19,606.74 98.13 140.658

Overlapping deceptive problem

N = 2002, order-3

2-bit overlapping

Optimal value: 2000

BEGA 1693.17 8.89 Fitness threshold = 0.9 9 optimal value = 1800

Maximal generation = 30,000

130.130

CHC 1283.73 11.94 393.398

DPGA 1650.34 8.16 136.123

VDMGA 1683.03 10.61 290.083

QEA 1659.46 8.59 392.193

PPeaks problem

N = 900, 250 peaks

Optimal value: 1

BEGA 0.99,998 0.00,011 Fitness threshold = 0.98 9 optimal value = 0.98

Maximal generation = 6000

47.874

CHC 0.61,657 0.01,205 1315.310

DPGA 0.99860 0.00102 63.902

VDMGA 0.99777 0.00080 33.030

QEA 0.99,905 0.00,109 334.814
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Table 2 (continued)

Problem Algorithm Effectiveness results Efficiency results

MEAN STD Termination condition ACT(s)

Binary knapsack problem

N = 2000

uncorrelated datasets

Optimal value: not known

BEGA 82,102.52 48.94 Fitness threshold = 75,000

Maximal generation = 6000

8.791

CHC 64,247.77 479.75 57.816

DPGA 81,659.39 84.35 17.884

VDMGA 81,555.40 58.53 10.304

QEA 81,738.21 86.51 22.812

Binary knapsack problem

N = 2000

weakly correlated datasets

Optimal value: not known

BEGA 54,404.75 15.34 Fitness threshold = 53,800

Maximal generation = 6000

12.581

CHC 51,919.43 90.99 126.943

DPGA 54,304.67 28.67 39.196

VDMGA 54,357.27 13.19 18.408

QEA 54,394.55 16.84 34.721

Binary knapsack problem

N = 2000

strongly correlated datasets

Optimal value: not known

BEGA 63,509.84 34.45 Fitness threshold = 63,000

Maximal generation = 6000

9.267

CHC 60,647.66 70.75 60.086

DPGA 63,126.22 50.78 30.327

VDMGA 63,466.24 18.12 10.427

QEA 63,447.13 26.21 23.646

Bounded knapsack problem

N = 2000, bmax = 4

uncorrelated datasets

Optimal value: not known

BEGA 191,858.65 637.57 Fitness threshold = 190,000

Maximal generation = 6000

9.528

GGA 175,816.93 856.70 48.777

Bounded knapsack problem

N = 2000, bmax = 4

weakly correlated datasets

Optimal value: not known

BEGA 136,387.99 74.38 Fitness threshold = 134,000

Maximal generation = 6000

4.576

GGA 133,640.73 126.56 43.540

Bounded knapsack problem

N = 2000, bmax = 4

strongly correlated datasets

Optimal value: not known

BEGA 158,442.11 106.49 Fitness threshold = 157,000

Maximal generation = 6000

10.606

GGA 155,084.59 107.93 46.171

We use different fitness thresholds as follows. In known-optimal-value problems, there are different threshold coefficients (i.e. 0.8, 0.9, and 0.98).

The reason is the different shapes of trap, deceptive-based, and PPeaks problems, as shown in Appendix 1. In unknown-optimal-value problems

(i.e. binary and bounded knapsack problems), the fitness thresholds are all less than MEANs of DPGA, VDMGA, QEA, and BEGA, because we

do not consider MEANs of CHC and CGA. In addition, maximal generation is 30,000 for overlapping deceptive problem. The reason is that CHC

will quickly finish than others, when maximal generation is 6000 (i.e. default termination condition is satisfied first)
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estimation parameter becomes obvious, when coding

length increases.

4.3.2 Different population sizes

In Fig. 13, we demonstrated the robustness of BEGA for

different population sizes. Different population sizes had a

little effect on the robustness of BEGA. For instance, there

were 3.9% differences of BEGA between population size

P = 90 and population size P = 40 in Fig. 13a.

4.3.3 Different shift limit of population diversities

In Fig. 14, we demonstrated the search-region-control

function of Dsl for diversity subpopulation in the second

stage. When Dsl was respectively set to 0.075 and 0.35, the

fitness and LDI curves simultaneously shifted in 50th

generation. Fitness-curve and LDI-curve gaps indicate that

the ranges of two od-Regions for Dsl = 0.075 and

Dsl = 0.35 are entirely different. This implies that the

search-region-control function of Dsl is effective for

diversity subpopulation.

Fig. 10 The mean of the best-individual-fitness ranks for 100 runs in binary-coding problems
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5 Conclusions

In BEGA, the balanced-evolution strategy realizes the

population-evolution balance between the exploration of

diversity subpopulation and the exploitation of intensifi-

cation subpopulation. From a coding-space perspective,

this case study solves first and second sub-problems in

Sect. 1, which also demonstrates the feasibility of the

feedback control scheme. It is worth noting that BEGA is

able to directly solve bounded knapsack problem (i.e.

symbol-coding problem) as one EA-based solver, and does

not transform bounded knapsack problem into an equiva-

lent binary knapsack problem.

Fig. 11 The fitness curves of PPeaks problem for 100 runs to demonstrate that the objective of BEGA is only to improve the best individual

fitness
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Fig. 12 100-run results to demonstrate the robustness of BEGA for different scale problems (N is the coding length)
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Fig. 13 100-run results to demonstrate the robustness of BEGA for different population sizes (P is population size)
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Fig. 14 5-run results to demonstrate the search-region-control function of Dsl for diversity subpopulation
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Appendix 1

Trap problem includes k basic functions, whose fitness is

equal to the fitness sum of k basic functions (Garcı́a-Mar-

tı́nez and Lozano 2008). The best solution of a basic

function, with all ones, has a fitness value of 220 (Table 3).

The basic function is defined by

f ðXÞ ¼
X3

i¼0

F3ðX 3i:3iþ2½ �Þ þ
X5

i¼0

F2ðX 12þ2i:13þ2i½ �Þ

þ
X11

i¼0

F1ðX 24þi½ �Þ ð21Þ

Analogous to trap problem, basic functions in order-3,

order-4, and partially deceptive problems (Garcı́a-Martı́nez

and Lozano 2008; Baluja 1992) are given in Tables 4, 5,

and 6, respectively.

Overlapping deceptive problem (Pelikan et al. 2000) is

defined by

f ðXÞ ¼
XN�2

i¼1

fdðX½i:iþ2�Þ ð22Þ

fdðX½i:iþ2�Þ ¼

0:9
0:8
0

1

8
>><

>>:

u ¼ 0

u ¼ 1

u ¼ 2

u ¼ 3

ð23Þ

where i is the first position of each substring X[i:i?2], N is

coding length, and u is the number of ones in the substring

X[i:i?2].

PPeaks problem (Spears 2000), whose optimal value is

1.0, is defined by

f ðXÞ ¼ 1

N
max
p�1

i¼0
fN � HamdisðX;PeakiÞg ð24Þ

where Hamdis() returns Hamming distance between X and

Peaki (i.e. a N-bit string).

Binary knapsack problem is as follow. Let pj be the

profit of type-j item, let wj be the weight of type-j item, and

C is the weight capacity of the knapsack. X = {x1, x2,… xj,

… xN} is a binary decision variable. If type-j item is loaded

in the knapsack, xj = 1. Otherwise, xj = 0. Binary knap-

sack problem is defined by using Eqs. (25) and (27). First,

we use the methods of generating uncorrelated, weakly

correlated, and strongly correlated datasets (Martello et al.

1999; Pisinger 1999; Truong et al. 2013). Uncorrelated

dataset: pj and wj are randomly distributed in (10, R).

Weakly correlated dataset: wj is randomly distributed in (1,

R), and pj (pj C 1) is randomly distributed in (wj - R/10,

wj ? R/10). Strongly correlated dataset: wj is randomly

distributed in (1, R), and pj is wj ? 10. In this paper, R is

100. Secondly, we use the constraint handling method

(Zitzler 1999) as follows. Items with the lowest profit/

weight ratio qj (i.e. qj = pj/wj 1 B j B N) are removed

first. Items are removed one by one, until the capacity

constraint is satisfied.

Table 3 Basic functions in trap

problem. ONESUM is the

number of bits, whose value is

equal to one

ONESUM 0 1 2 3

F3 4 2 0 10

F2 5 0 10

F1 0 10

Table 4 Order-3 deceptive problem

X 000 001 010 100 110 011 101 111

f(X) 28 26 22 14 0 0 0 30

Table 5 Order-4 deceptive problem

X 0000 0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 1110 1101 1011 0111 1111

f(X) 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30

Table 6 Order-4 partially deceptive problem

X 0000 0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 1110 1101 1011 0111 1111

f(X) 28 26 24 22 20 18 30 14 12 10 8 6 4 2 0 16
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Maximize
XN

j¼1

pjxj ð25Þ

C ¼ 0:5
XN

j¼1

wj ð26Þ

subject to

XN

j¼1

wjxj �C ð27Þ

Bounded knapsack problem is also formulated by using

Eqs. (25) and (27). The difference of bounded knapsack

problem is that xj expresses how many type-j item is loaded

in the knapsack. First, we also use the same methods of

generating test datasets (Martello et al. 1999; Pisinger

1999) for bounded knapsack problem. Secondly, similar to

binary knapsack problem, the difference of bounded

knapsack problem is that the constraint handling method

gradually decreases the number of each item. In this paper,

bmax is 4 for bounded knapsack problem. According to

1 B bj B bmax, bj is randomly generated. We assume that

pj, wj, bj, and C are greater than 0 and

XN

j¼1

wjbj [C ð28Þ

wjbj �C 1� j�N ð29Þ

C ¼ 0:5
XN

j¼1

wjbj ð30Þ

Appendix 2

CHC uses cross generational elitist selection, heteroge-

neous recombination, and cataclysmic mutation (Eshelman

1991). Two parents are only allowed to mate, when

Hamming distance between two parents is greater than the

threshold. CHC only carries out mutation to reinitialize the

population by keeping the best individual, when the

threshold drops to zero.

DPGA (Park and Ryu 2010) and VDMGA (Fernandes

and Rosa 2006, 2008) are given in Algorithms 5 and 6,

respectively.

Algorithm 5 Dual-population genetic algorithm

1:

2:

Input: the size of main population, the size of reserve population, crossover probability pc, mutation probability pm,

coding length N, the parameters of adjusting δ(α, τ1, and τ2)

3:

4:

Step 1: Initialize main population MP and reserve population RP. Evaluate main population by using the fitness 

function, and evaluate reserve population by using the distance fitness function.

5:

6:

Step 2: Based on main population, breed the inbred offspring IM by using two-point crossover and bitwise

mutation. Based on reserve population, breed the inbred offspring IR.

7: Step 3: Based on main population and reserve population, breed the crossbred offspring C.

8:

9:

Step 4: OM = IM C . OR = IR C. According to the fitness function, evaluate OM. According to the distance fitness 

function, evaluate OR.

10: Step 5: Update main population by using survival selection. Then, replace reserve population with OR.

11: Step 6: Check whether termination condition is satisfied or not. If it is not satisfied, go to Step 2.

12: Step 7: The individual with the best fitness represents the final solution.
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QEA (Han and Kim 2002, Platel et al. 2009) is inspired

by the principle of quantum computing. Quantum gate U(h)
is given in Eq. (31), and h is equal to s(ajbj) 9 Delta in

Table 7.

UðhÞ ¼ cosðhÞ � sinðhÞ
sinðhÞ cosðhÞ

� �

ð31Þ

In the bounded-knapsack-problem (i.e. symbol-coding

problem) field, dynamic programming, branch-and-bound

algorithm, and reduction algorithm are frequently used

(Martello and Toth 1990). Another kind of algorithm is to

transform bounded knapsack problem into an equivalent

binary knapsack problem (Martello and Toth 1990).

However, this implies much more computation cost,

because coding length increases. In EAs, there is little

research, which directly solves bounded knapsack problem.

Thus, GGA is used as the compared algorithm of bounded

knapsack problem.2

Algorithm 6 Variable dissortative mating genetic algorithm

1: Input: population size P, coding length N, the convergence threshold of initialization, mutation probability pm

2: Step 1: Initialize a population, and evaluate this population.

3: Step 2: Breed the new offspring as follows.

4: do{ for( i = 1 to P/2)

5: {   Randomly select two parents. Then, compute their Hamming distance HD.

6: If(HD threshold)  carry out uniform crossover and bit-flip mutation. }

7:

8:

9:

if( the number of failed matings > the number of successful matings) threshold = threshold - 1;

else threshold = threshold + 1;

}while( successful matings == 0 )

10: Step 3: Evaluate the new offspring.

11: Step 4: Carry out elite selection for the population and the new offspring, and choose the new population. 

12: Step 5: Check whether termination condition is satisfied or not. If it is not satisfied, go to Step 2.

13: Step 6: The individual with the best fitness represents the final solution.

Table 7 Lookup table of h

xj ej f(X) C f(E) Delta s(ajbj)

ajbj[ 0 ajbj\ 0 aj = 0 bj = 0

0 0 – 0 – – – –

1 1 – 0 – – – –

0 1 False Delta ? 1 - 1 0 ± 1

0 1 True Delta - 1 ? 1 ± 1 0

1 0 False Delta - 1 ? 1 ± 1 0

1 0 True Delta ? 1 - 1 0 ± 1

f() is the fitness function. s(ajbj) is the sign of h. ej and xj are the jth
bits of the best solution E and a binary decision variable X,
respectively
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