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Abstract
Matrix insertion-deletion systems combine the idea of matrix control (a control mechanism well established in regulated

rewriting) with that of insertion and deletion (as opposed to replacements). Given a matrix insertion-deletion system, the

size of such a system is given by a septuple of integers ðk; n; i0; i00;m; j0; j00Þ. The first integer k denotes the maximum number

of rules in (length of) any matrix. The next three parameters n; i0; i00 denote the maximal length of the insertion string, the

maximal length of the left context, and the maximal length of the right context of insertion rules, respectively. The last

three parameters m; j0; j00 are similarly understood for deletion rules. In this paper, we improve on and complement previous

computational completeness results for such systems, showing that matrix insertion-deletion systems of size (1)

(3; 1, 0, 1; 1, 0, 1), (3; 1, 0, 1; 1, 1, 0), (3; 1, 1, 1; 1, 0, 0) and (3; 1, 0, 0; 1, 1, 1) (2) (2; 1, 0, 1; 2, 0, 0), (2; 2, 0, 0; 1, 0, 1),

(2; 1, 1, 1; 1, 1, 0) and (2; 1, 1, 0; 1, 1, 1), are computationally complete. Further, we also discuss linear and metalinear

languages and we show how to simulate grammars characterizing them by matrix insertion-deletion systems of size

(3; 1, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), (2; 2, 1, 0; 1, 0, 0) and (2; 2, 0, 1; 1, 0, 0). We also generate non-semilinear languages

using matrices of length three with context-free insertion and deletion rules.

Keywords Matrix ins-del systems · Matrix control · Descriptional complexity · Computational completeness ·

(Meta)linear languages

1 Introduction

Inserting or deleting words in between parts of sentences

often take place when processing natural languages; such

insertions and deletions are usually based on context

information. To some surprise, this is also happening in

biology, especially, in DNA processing and in RNA editing

(see Benne 1993; Biegler et al. 2007; Păun et al. 1998).

Based on the insertion operation, Marcus (1969) introduced

external contextual grammars as an attempt to mathemat-

ically model natural language phenomena. A different

variety of linguistically motivated contextual grammars are

the semi-contextual grammars studied by Galiukschov

(1981), which can be also viewed as insertion grammars.

The deletion operation as a basis of a grammatical

derivation process was introduced in Kari (1991), where

the deletion was motivated as a variant of the right-quotient

operation that does not necessarily happen at the right end

of the string. Insertion and deletion together were first

studied in Kari and Thierrin (1996). The corresponding

grammatical mechanism is called insertion-deletion system

(abbreviated as ins-del system). Informally, the insertion

and deletion operations of an ins-del system are defined as

follows: if a string g is inserted between two parts w1 and

w2 of a string w1w2 to get w1gw2, we call the operation

insertion, whereas if a substring d is deleted from a string
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w1dw2 to get w1w2, we call the operation deletion. Suffixes

of w1 and prefixes of w2 are called contexts.

Several variants of ins-del systems have been considered

in the literature and among them the important variants

(from our perspective) are ins-del P systems (Alhazov et al.

2011), tissue P systems with ins-del rules (Kuppusamy and

Rama 2003), context-free ins-del systems (Margenstern

et al. 2005), graph-controlled ins-del systems (Fernau et al.

2017a; Freund et al. 2010; Ivanov and Verlan 2017), matrix

insertion systems (Marcus and Păun 1990), matrix ins-del

systems (Kuppusamy et al. 2011; Petre and Verlan 2012;

Kuppusamy and Mahendran 2016), random context and

semi-conditional ins-del systems (Ivanov and Verlan 2015),

etc. We refer to the survey (Verlan 2010) for more details

of several variants of ins-del systems.

Most variants of ins-del systems that we mentioned,

even ins-del systems themselves, are known to be com-

putationally complete, i.e., they characterize the family RE

of recursively enumerable languages. In such circum-

stances, in the area of descriptional complexity of formal

languages, one aims at investigating which of the resources

are really needed to obtain computational completeness.

For instance, is it really necessary to permit insertion

operations that check out contexts of arbitrary length? Such

considerations are also well-motivated from biology,

assuming now that an insertion operation should model

what is happening in RNA editing (Benne 1993. Clearly, it

would be even dangerous for an organism if such opera-

tions would be based on checking (parts of) molecules of

arbitrary length, as such an operation would inevitably

introduce failures. We would also like to mention that from

the very beginning of Theoretical Computer Science, there

has been a certain interest in designing Turing machines

that use little resources, yet achieving computational

completeness. For instance, Shannon showed back in 1956

that two internal states are sufficient for Turing machines to

remain computationally complete (see Shannon 1956).

This result was complemented by Herman (1968) who

proved that one-state machines are not computationally

complete, even on a multi-dimensional tape. Such results

inspired many further studies, for instance on deterministic

Turing machines with m tape symbols and n states, see

Kudlek (1996) for a 20-year old survey. A more recent

overview can be found in Neary and Woods (2012). Even

more, the origins of two now well-established conference

series in Formal Languages, namely that of MCU and that

of DCFS can be traced back to this type of considerations.

On the other side, for resource restrictions that do not

suffice to achieve computational completeness, one is

interested in seeing which known families of languages can

be still modeled; we refer to Neary (2017) as a very recent

paper on 2-symbol 2-state Turing machines.

Similar considerations have been undertaken for gram-

matical mechanisms, as well. In that context, restricted

models are often known as normal forms. Such normal

form results are often valuable as a starting point to obtain

new descriptional complexity results for other devices. For

instance, considering type-0 grammars, important normal

form results have been obtained by Kuroda (1964) and

Penttonen (1974) and most notably by Geffert (1991a, b).

In fact, these normal form have been the basis for obtaining

most descriptional complexity results in the area of regu-

lated rewriting, also confer the textbook (Dassow and Păun

1989). This paper follows this tradition. However, notice

that each normal form has its own advantages and disad-

vantages if it comes to the task of using it as a basis of

computational completeness results. Therefore, we found it

quite surprising that we managed to improve on most

existing results by making use only of one particular

variant called Special Geffert Normal Form (Freund et al.

2010), or SGNF for short, as formally introduced in the

next section.

We are now discussing the main topic of our study. In a

matrix ins-del system, the insertion-deletion rules are given

in matrix form. If a matrix is chosen for derivation, then all

the rules in that matrix are applied in order and no rule of

the matrix is exempted. In the size ðk; n; i0; i00;m; j0; j00Þ of a
matrix insertion-deletion system, the parameters (from left

to right) denote the maximum number of rules in any

matrix (also known as the length of the matrix), the max-

imal length of the inserted string, the maximal length of the

left context for insertion, the maximal length of the right

context for insertion, the maximal length of the deleted

string, the maximal length of the left context for deletion,

maximal length of the right context for deletion. We denote

the language classes generated by matrix ins-del systems of

size s by MATðsÞ. It is shown in Petre and Verlan (2012)

that the following matrix ins-del systems are computa-

tionally complete; we provide precise references for each

case.

● MATð3; 1; 1; 0; 1; 1; 0Þ (Theorem 2),

● MATð3; 1; 1; 0; 1; 0; 1Þ (Theorem 3),

● MATð2; 1; 1; 0; 2; 0; 0Þ (Theorem 9),

● MATð2; 2; 0; 0; 1; 1; 0Þ (Theorem 8),

● MATð8; 1; 1; 1; 1; 0; 0Þ (Theorem 5) y,
● MATð8; 1; 0; 0; 1; 1; 1Þ (Theorem 6) y.
Notice that all results listed above were also proved using

SGNF, except for the ones marked by y. In our paper, we

prove that the following classes of languages are also

computationally complete:

● MATð2; 1; 0; 1; 2; 0; 0Þ (Theorem 2),
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● MATð2; 2; 0; 0; 1; 0; 1Þ (Theorem 2),

● MATð3; 1; 0; 1; 1; 0; 1Þ (Theorem 2),

● MATð3; 1; 0; 1; 1; 1; 0Þ (Theorem 2),

● MATð2; 1; 1; 0; 1; 1; 1Þ (Theorem 5),

● MATð2; 1; 1; 1; 1; 1; 0Þ (Theorem 6),

● MATð3; 1; 1; 1; 1; 0; 0Þ (Theorem 4),

● MATð3; 1; 0; 0; 1; 1; 1Þ (Theorem 3).

The first four results can be seen as relatively easy con-

sequences of results published in Petre and Verlan (2012),

listed here mainly to complete the picture concerning

descriptional complexity aspects of matrix ins-del systems.

The last four results constitute the main results of this

paper. The last two results improve on the results shown

in Petre and Verlan (2012) by large, reducing the lengths of

the matrices from eight to three. This also shows again the

power of SGNF, as the previous results were the only

(previous) ones that have been derived in a different

fashion. In the conference version Fernau et al. (2016), a

computational completeness result for matrix ins-del sys-

tem with size (2; 1, 1, 1; 1, 0, 0) was claimed whose

underlying construction turned out to be dubious and hence

is replaced by the result on MATð3; 1; 1; 1; 1; 0; 0Þ. Notice
that the construction from Fernau et al. (2016) was based

on Penttonen normal form, while the new construction in

the present paper uses SGNF. We like to emphasize that

the result concerning MATð2; 1; 1; 0; 1; 1; 1Þ is not

improvable in the sense that MATð1; 1; 1; 0; 1; 1; 1Þ is

known not to coincide with RE (see Krassovitskiy et al.

2008). However, it remains open if, say,

MATð2; 1; 1; 0; 1; 1; 0Þ is computationally complete. All

these results are proved in Sect. 4.

Further, we consider two smaller families of (context-

free) languages—namely, the linear and the metalinear

languages, where the latter are obtained as unions of con-

catenations of an arbitrary number of linear languages. We

show that the following matrix ins-del systems all strictly

contain the families of linear (LIN) and metalinear (MLIN)

languages:

● MATð2; 2; 1; 0; 1; 0; 0Þ,
● MATð2; 2; 0; 1; 1; 0; 0Þ,
● MATð3; 1; 1; 0; 1; 0; 0Þ, and
● MATð3; 1; 0; 1; 1; 0; 0Þ.
The reader can find proofs and detailed explanations of

these results in Sect. 5. Notice that the idea of simulating

linear and metalinear grammars with very small sizes of

matrix ins-del systems is also a novel direction of research

within matrix ins-del systems. This is a very sensible idea

whenever it is unknown if the size under consideration

allows for a computational completeness result or not. In

the cases that we considered, it is even unknown if or how

all context-free languages can be achieved. Similar con-

siderations have been undertaken before in the more clas-

sical areas of descriptional complexity issues within

regulated rewriting (see Dassow and Păun 1985; Păun

1984). Observe that the sizes of the simulating systems do

not increase when we generalize the simulation from linear

to metalinear. In this respect, matrix control differs from

graph control in connection with ins-del systems (see

Fernau et al. (2017a, b).

We also like to point the reader to Example 2 (which

again complements the conference version). This exhibits

that the well-known non-regular language fanbn j n� 1g
can be generated by a matrix ins-del system of size

(2; 1, 0, 0; 1, 1, 1) in a possibly surprisingly non-trivial

fashion.

We also briefly discuss the semilinearity of Parikh

images of matrix ins-del languages. Our findings are col-

lected in Sect. 7. In particular, it is shown that already

MATð3; 1; 0; 0; 1; 0; 0Þ contains non-semi-linear languages.

Also, consequences to computational linguistics are dis-

cussed. These considerations have been continued and

extended in Fernau and Kuppusamy (2017).

We conclude our paper by presenting several concrete

directions of future research in this area of Formal Lan-

guages. Further research should be also inspired by the

tables that summarize all that is known about matrix ins-del

systems concerning computational completeness aspects,

as collected in Sect. 6.

2 Preliminaries

We assume that the readers are familiar with the standard

notations used in formal language theory. However, we

now recall a few notations here that are important for the

understanding of the paper.

Let N denote the set of positive integers, and R� denote
the free monoid generated by the alphabet (finite set) R.
The elements of R� are called strings or words; k denotes

the empty string. For a string w 2 R�, |w| denotes the length
of a string w and wR denotes the reversal (also called

mirror image) of w. Likewise, LR and LR are understood

for languages L and language families L. The Kleene

closure of a language L is denoted as L�. The family of

recursively enumerable languages, linear and metalinear

languages are denoted by RE, LIN and MLIN respectively.

We will provide more details on metalinear languages in

Sect. 2.3. Occasionally, we use the shuffle operator, written

as ш.
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For the computational completeness results, we are

using the fact that type-0 grammars in the so-called special

Geffert normal form are known to characterize the recur-

sively enumerable languages. Consider a type-0 grammar

G ¼ ðN; T; S;PÞ, where (as usual), N is the nonterminal

alphabet, T is the terminal alphabet, S 2 N is the start

symbol and P is the set of production rules. According

to Freund et al. (2010), G is said to be in special Geffert

normal form, SGNF for short, if

● N decomposes as N ¼ N 0 [ N 00, where N 00 ¼
fA;B;C;Dg and N 0 contains at least the two nontermi-

nals S and S0,

● the only non-context-free rules in P are the two erasing

rules AB ! k and CD ! k,

● the context-free rules are of the following forms: X !
Yb or X ! bY where X; Y 2 N 0;X 6¼ Y , b 2 T [ N 00, or
S0 ! k.

How to construct this normal form is described in Freund

et al. (2010). This construction is based on the one in

Geffert’s paper (1991a). From this construction, it is clear

that the derivation of a string is performed in two phases.

First, the context-free rules are applied repeatedly and the

phase I is completed by applying the rule S0 ! k in the

derivation. In phase II, only the non-context-free erasing

rules are applied repeatedly and the derivation ends. Notice

that as these context-free rules are more of a linear type, it

is easy to see that there can be at most only one nonter-

minal from N 0 present in the derivation of G. We exploit

this observation in our proofs. Also, note that X 6¼ Y for

X; Y 2 N 0 in the context-free rules.

Wewill often use labels from ½1. . .jPj� to uniquely address
the rules of a grammar in SGNF. Then, such labels (and

possibly also primed version thereof) will be used as rule

markers that are therefore part of the nonterminal alphabet of

the simulating matrix ins-del system. A bit surprisingly,

context-free rules appear to be harder to simulate by ins-del

systems compared to the non-context-free rules. For the ease

of reference, we collect in Pll the labels of the context-free

rules of the form X ! Yb (which resemble left-linear rules)

and in Prl the labels of the context-free rules of the form

X ! bY (which resemble right-linear rules).

2.1 Insertion-deletion systems

We now give the basic definition of insertion-deletion

systems, following Kari and Thierrin (1996) and Păun et al.

(1998).

Definition 1 An insertion-deletion system is a construct

c ¼ ðV ; T;A;RÞ, where V is an alphabet, T � V is the

terminal alphabet, A is a finite language over V, R is a finite

set of triplets of the form ðu; g; vÞins or ðu; d; vÞdel, where
ðu; vÞ 2 V� � V�, g; d 2 Vþ.

The pair (u, v) is called the context, g is called the

insertion string, d is called the deletion string and x 2 A is

called an axiom. For all contexts of t where t 2 fins; delg,
if u ¼ k (v ¼ k), then we call the operation t to be right

context (left context). If u ¼ v ¼ k for a rule, then the

corresponding insertion/deletion can be done freely any-

where in the string and is called context-free insertion/

deletion. An insertion rule will be of the form ðu; g; vÞins,
which means that the string g is inserted between u and v.

A deletion rule will be of the form ðu; d; vÞdel, which means

that the string d is deleted between u and v. Applying

ðu; g; vÞins corresponds to the rewriting rule uv ! ugv, and
ðu; d; vÞdel corresponds to the rewriting rule udv ! uv.

Consequently, for x; y 2 V� we write x ) y if y can be

obtained from x by using either an insertion rule or a

deletion rule which formally means the following:

1. x ¼ x1uvx2; y ¼ x1ugvx2, for some x1; x2 2 V� and

ðu; g; vÞins 2 R.

2. x ¼ x1udvx2; y ¼ x1uvx2, for some x1; x2 2 V� and

ðu; d; vÞdel 2 R.

The language generated by c is defined by

LðcÞ ¼ fw 2 T� j x )� w; forsomex 2 Ag ;
where )� is the reflexive and transitive closure of the

relation ).

Observe that, if u ¼ v ¼ k for an insertion rule

ðu; g; vÞins, then x ) y (by applying this rule) implies that

y 2 x ш g. In other words, g can now be inserted arbitrarily

into x.

2.2 Matrix insertion-deletion systems

In this subsection, we describe the matrix insertion-dele-

tion systems as in Kuppusamy et al. (2011) and Petre and

Verlan (2012).

Definition 2 A matrix insertion-deletion system is a

construct C ¼ ðV ; T;A;RÞ where V is an alphabet, T � V ,

A is a finite language over V, R is a finite set of matrices

fr1; r2; . . .rlg, where each ri, 1� i� l, is a matrix of the

form ri ¼ ½ðu1; a1; v1Þt1 ; ðu2; a2; v2Þt2 ; . . .; ðuk; ak; vkÞtk � with
tj 2 fins; delg, 1� j� k.

For 1� j� k, the triple ðuj; aj; vjÞtj is an ins-del rule.

Consequently, for x; y 2 V� we write x ) x0 ) x00 ) . . .

) y, if y can be obtained from x by applying all the rules of a

matrix ri; 1� i� l, in order; in this case, we write x ¼)ri y.

At this point, we make a note that in a derivation, the

rules of a matrix are applied sequentially one after another

in the given order and no rule is used in appearance
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checking, as it is often the case in more classical matrix

grammars with rewriting rules (see Dassow and Păun

1989). By w ¼)� z, we denote the relation

w ¼)ri1
w1 ¼)ri2

. . . ¼)rik
z, where for all j; 1� j� k, we

have 1� ij � l. This notation should help prevent confusion

with applications of single ins-del rules. The language LðCÞ
generated by C is defined as follows.

LðCÞ ¼ fw 2 T� j x ¼)� w; forsomex 2 Ag:
If a matrix ins-del system has at most k rules in a matrix

and the size of the underlying ins-del system is

ðn; i0; i00;m; j0; j00Þ, then we denote the corresponding class of
language by MATðk; n; i0; i00;m; j0; j00Þ.

We now discuss a few examples of matrix ins-del sys-

tems. These are used later in proving some theorems. More

specifically, the languages used in Examples 1, 3, and 4 are

used as witness languages in the hierarchy of families of

languages between the linear languages and even beyond

the context-free languages (see Fig. 1). The idea used in

constructing the matrix rules of Example 2 is used later in

the proofs of Theorems 5 and 6.

Example 1 The language L1 ¼ fanbmcndm j m; n� 1g of

cross-serial dependencies can be generated by a binary

matrix insertion-deletion system as follows:

C1 ¼ ðfa; b; c; dg; fa; b; c; dg; fabcdg;RÞ, where R ¼
fm1;m2g consists of two matrices:

m1 ¼ ½ða; a; kÞins; ðc; c; kÞins� m2 ¼ ½ðb; b; kÞins; ðd; d; kÞins�

We note that the rules m10 ¼ ½ðk; a; aÞins; ðk; c; cÞins�, m20 ¼
½ðk; b; bÞins; ðk; d; dÞins� also generate L1. This shows that

L1 2 MATð2; 1; 1; 0; 0; 0; 0Þ \MATð2; 1; 0; 1; 0; 0; 0Þ :
We refer to Stabler (2004) for further variants and a dis-

cussion of the linguistic relevance of this type of example.

In the next example, we generate a linear language that is

not that easily generated with binarymatrices having context-

free insertion rules; rather, this requires a clever manipulation

in constructing the matrix rules (and axiom too).

Example 2 The following non-regular language L2 ¼
fanbn j n� 1g can be generated by a matrix ins-del system

with size (2; 1, 0, 0; 1, 1, 1).

Consider the matrix ins-del system

C2 ¼ ðfX; Y ; a; b;#; $; yg; fa; bg; f#$g;RÞ, where the rule
matrices, collected in R, are given as below.’

m1 ¼½ðk;X; kÞins; ðk; y; kÞins�
m3 ¼½ð#; $;XÞdel�
m5 ¼½ðk; a; kÞins; ða;X; aÞdel�
m7 ¼½ðk; b; kÞins; ðb; Y ; bÞdel�
Let us explain how and why this grammar C2 works. The

derivation has to start with the axiom #$. One has to begin

with applying m1, as it is easy to check that no other matrix

can be applied. This will introduce an X and a y in the

string, which must be now from #$ ш X ш y. Now, only
m1 and m2 are applicable.

To delete an occurrence of the non-terminal y, the

matrix m2 has to be applied, which will introduce a Y and

ensures that the symbol y introduced by m1 was actually

placed between # and $ and is now deleted. So, the

resulting string is from Y ш X ш #$, although not all such

strings are possible, as no X or Y occurs in between # and

$. More formally, this can be described by using a new

letter c and a homomorphism h : fX; Y ; a; b; c; yg� !
fX; Y ; a; b;#; $; yg�, given by c 7!#$ and x 7!x for

x 2 fX; Y ; a; b; yg. Namely, the set of derivable words (as

explained above) is then h(X ш Y ш c).

Also, this checks that m1 was not repeatedly applied,

because there is always (at most) only one occurrence of #

and one occurrence of $, which means that other occur-

rences of y have been inserted elsewhere in the string,

where they cannot be deleted anymore.

By a similar argument, we can rule out applying first m1

and then m3 (which might be enabled if y was not placed in

between # and $); namely, again there is no way to delete

the y symbol introduced when applying m1 at any time in

the future.

So, we have to apply m1 and m2 in this sequence, and

applying m1 and then m2 produces one occurrence of X and

one occurrence of Y in the string. If m1 and m2 are applied

alternatingly for n times, we will get n occurrences of X

and n occurrences of Y in the string. More formally, re-

considering the homomorphism h defined above, we obtain

at this stage any word from hðXn ш Yn ш c), for n� 1.

LIN

MLIN

CF

L2 L3 L4 L1

L1 = {anbmcndm | n, m ≥ 1} ∈ MAT(2; 1, 1, 0; 0, 0, 0)

L2 = {anbn | n ≥ 1} ∈ MAT(2; 1, 0, 0; 1, 1, 1)

L3 = {anbncmdm | n, m ≥ 0} ∈ MAT(2; 1, 1, 0; 1, 0, 0)

L4 ∈ MAT(1; 2, 0, 0; 0, 0, 0), with L4 described by the
context-free grammar with the rules S → SS, S → aSb,
and S → λ, also known as the Dyck language.

Fig. 1 Witness languages in the

hierarchy of LIN, MLIN and

CF: L1, L2, L3, and L4
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Now, if we want to proceed the derivation, then we have

to start applying m3. This verifies that at least one

occurrence of X should appear immediately to the right

of #$ in the string. Once m3 is applied, we cannot apply

m1 again (neither m2); otherwise, there will be at least one

y which cannot be deleted by m2 (as the symbol $ was

already deleted by m3). Now, m4 can be applied and this

forces that the symbol a introduced by m4 should be placed

after #X and the X is deleted. Note that m4 can be applied

only once and cannot be applied further, as now a is to the

right of the symbol #. Recall that previously no occur-

rences of a were in the string, which means that m5 was not

previously applicable, as the second of its rules requires (at

least) two occurrences of a in the string. To make all

situations possible at this stage formally more precise,

consider a new letter c0 and a homomorphism

h0 : fX; Y; a; b; c0; yg� ! fX; Y; a; b;#; $; yg�, given by

c0 7!#a and x 7!x for x 2 fX; Y ; a; b; yg. Namely, the set

of derivable words (as explained above) is then h0ðXn�1 ш
Yn ш c0Þ for any n� 1. Now, in order to remove further

occurrences of X (if any), m5 has to be applied repeatedly

and this process ensures that all the occurrences of X were

(originally) placed next to each other, so they formed a

substring that was placed after the symbol $ in the string.

As the a’s are later placed where the X’s are deleted, they

also form a substring. So, the set of words obtainable at this

stage can be described as follows. Let cn be a new symbol.

Define the homomorphism hn : fX; Y; a; b; cn; yg� !
fX; Y ; a; b;#; $; yg� by setting hnðcnÞ ¼ #an and hnðxÞ ¼
x else. Then, the derivable strings are represented by

hnðYncnÞ for any n� 1.

To move further on with a terminating derivation, now,

m6 has to be applied (m7 cannot be applied before applying

m6 once, since there are no two occurrences of b available

to execute the second rule in m7). Applying m6 and then

repeatedly m7 ensures that all the Y’s were placed actually

one next to each other, and this substring of Y’s was

originally placed after the last occurrence of X (in the

meantime, the X’s have been changed to a’s). The process

of repeated applications of m7 also rewrites all the Y to b.

The derivation can be completed by applying m8, so that

the non-terminal # is also deleted. If m8 had already been

applied, say, sometimes after applying m4, then the

derivation ends when all the Y’s are changed to b’s.

With the details provided we can see that the language is

the double agreement language, which is linear, but not

regular. A sample derivation about how the rules are

applied for the word a2b2 is given below.

#$ )m1 # y $X )m2 #$XY )m1 # y $XX )m2 #$XXYY

)m3 #XXYY )m4 #aXYY )m8 aXYY )m5 aaYY

)m6 aabY )m7 aabb:

Thus, LðC2Þ ¼ fanbn j n� 1g 2 MATð2; 1; 0; 0; 1; 1; 1Þ:
Example 3 Let L3 ¼ fanbncmdm j n;m� 0g: Consider the
matrix ins-del system

C3 ¼ ðf#1;#2;#3;#4; a; bg; fa; bg; f#1#2#3#4g;R3Þ;
where R3 is given by the following rules:

m1 ¼ ½ð#1; a; kÞins; ð#2; b; kÞins� m2 ¼ ½ðk;#1; kÞdel; ðk;#2; kÞdel�
m3 ¼ ½ð#3; c; kÞins; ð#4; d; kÞins� m4 ¼ ½ðk;#3; kÞdel; ðk;#4; kÞdel�

Starting from the axiom#1#2#3#4, applyingm1 repeatedly

(n times) will yield #1a
n#2b

n#3#4. To terminate the gen-

eration of a and b, m2 is applied to get the string anbn#3#4.

Now, m1 is no longer applicable. Then m3 is applied repeat-

edly (m times) to get anbn#3c
m#4d

m. Finally, m4 is applied

for stopping the derivation yielding the terminal string

anbncmdm. Now, none of the matrices is applicable any more.

Notice that applications ofm1 andm3 canmix, but oncem2 is

applied,m1 can no longer be applied, and oncem4 is applied,

m3 is no longer applicable. With this, it is easy to see that

LðC3Þ ¼ L3 and L3 2 MATð2; 1; 1; 0; 1; 0; 0Þ.
Note that in the example above, if we consider thematrices

m1,m2 and m4 alone, then, we can generate the language L2,

thus only three matrices are sufficient when contexts are

considered for insertion. On the other hand, Example 2 had

contexts for deletion, but that did not help much to reduce the

number of matrices. Thus, it seems that having contexts for

insertion is more useful/powerful than to have on deletion.

The following example is awell-known example of a context-

free language that is not metalinear (Salomaa 1973). It is also

interesting as there are even regular languages that cannot be

described byMATðk; 2; 0; 0; 2; 0; 0Þ for any k, (see Petre and
Verlan 2012, Theorem 7).

Example 4 Let L4 be the Dyck language (the set of bal-

anced parenthesis) over the alphabet fa; bg, with a serving

as left and b serving as right parenthesis.

Consider the following matrix ins-del system

C4 ¼ ðfa; bg; fa; bg; fkg; fm1 ¼ ½ðk; ab; kÞins�gÞ:
Starting from k, applying m1 for repeated times always

yield another string in Dyck language. Thus, LðC4Þ ¼ L4
and hence L4 2 MATð1; 2; 0; 0; 0; 0; 0Þ.

From our examples and discussions, the hierarchical

relationship among these families of languages is depicted

in Fig. 1. In the figure, also the witness languages from the

previous examples are placed.

2.3 Metalinear languages

Recall that a linear grammar is a context-free grammar

G ¼ ðN; T; S;PÞ whose productions are of the form A ! x,
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where A is a non-terminal symbol, and x is a word over N,

with at most one occurrence of a non-terminal symbol. The

language class LIN collects all languages that can be

described by linear grammars.

LIN is not closed under concatenation. This motivates to

consider the class MLIN of metalinear languages, which is

inductively defined as follows:

● LIN � MLIN;

● If L1; L2 2 MLIN, then L1 	 L2 2 MLIN and

L1 [ L2 2 MLIN.

● No other languages are in MLIN.

For a detailed study of metalinear languages, we refer to

Kutrib and Malcher (2007). It is known that MLIN is

closed under union, concatenation, regular intersection,

homomorphism and inverse homomorphism but not under

Kleene closure. We now observe that the class MLIN is

closed under reversal, as well, basically since ðL1 	 L2ÞR ¼
LR2 	 LR1 for two MLIN languages L1 and L2, where R is the

reversal operator.

MLIN can be alternatively described via special gram-

mars. We next define metalinear grammars as in Salomaa

(1973) and Kutrib and Malcher (2007). To do so, we first

define k-linear grammars.

The concept of a linear grammar can be generalized as

follows: define a k-linear grammar as a context-free

grammar G ¼ ðN; T ; S;PÞ such that every production in P

has one of the three forms: (1) A ! u, (2) A ! uBv, (3)

S ! W , where A, B are non-terminal symbols, not equal to

the start symbol S, u, v are terminal words, and W is a word

over N with no more than k occurrences of non-terminal

symbols, and none of which is the start symbol S. A lan-

guage is said to be k-linear if it can be generated by a k-

linear grammar. Note that a language is 1-linear iff it is

linear. A grammar is said to be metalinear if it is k-linear

for some positive integer k. It should be clear that a lan-

guage is metalinear if and only if it is generated by some

metalinear grammar.

In our simulations, we need another grammatical char-

acterization of metalinear languages (see Fernau et al.

2017c). Just notice that the rules in P0 (in the description

given below) start the linear grammars Gi one by one.

Proposition 1 Let L � T�. Then, L 2 MLIN if and only if

there are context-free grammars Gj ¼ ðNj; T ; Sj;PjÞ,
j ¼ 1; . . .; n, with pairwise disjoint nonterminal alphabets,

satisfying
Sn

j¼1 LðGjÞ ¼ L, together with some integer

k� 1, satisfying the following properties.

● Nj can be partitioned into N
j
0;N

j
1; . . .;N

j
k, where, for

each i ¼ 1; . . .; k, Sji 2 N
j
i .

● Pj can be partitioned into P
j
0;P

j
1; . . .;P

j
k such that G

j
i ¼

ðNj
i ; T ; S

j
i;P

j
iÞ forms a linear grammar for each

i ¼ 1; . . .; k.

● P
j
0 ¼ fSj ! S

j
1ðSj2Þ0; ðSj2Þ0 ! S2ðSj3Þ0; . . .; ðSjkÞ0 ! S

j
k

ðSjkþ1Þ0; ðSjkþ1Þ0 ! kg and N
j
0 ¼ fSj; ðSj2Þ0; . . .; ðSjkþ1Þ0g.

3 Auxiliary results

In order to simplify the proofs of some of our main results,

the following observations are helpful.

Theorem 1 For all non-negative integers k; n; i0; i00;
m; j; j00, we have that

MATðk; n; i0; i00;m; j0; j00Þ ¼ ½MATðk; n; i00; i0;m; j00; j0Þ�R :
Proof To an ins-del rule r ¼ ðx; y; zÞl with l 2 fins; delg,
we associate the reversed rule qðrÞ ¼ ðzR; yR; xRÞl. Let C ¼
ðV; T ;A;RÞ be a matrix insertion-deletion system. Map a

matrix l ¼ ½r1; . . .; rk� 2 R to qðlÞ ¼ ½qðr1Þ; . . .; qðrkÞ� in

qðRÞ. Define CR ¼ ðV; T ;AR;qðRÞÞ. Then, an easy induc-

tive argument shows that LðCRÞ ¼ ðLðCÞÞR. Observing the

sizes of the system shows the claim. h

From Theorem 1, we can immediately deduce the fol-

lowing two corollaries:

Corollary 1 Let k; n; i0;m; j0 be non-negative integers.

The family of languages MAT

ðk; n; i0; i0;m; j0; j0Þ is closed under reversal.

Proof By Theorem 1, MATðk; n; i0; i0;m; j0; j0Þ ¼ ½MAT

ðk; n; i0; i0;m; j0; j0Þ�R. This is nothing else than the claimed

closure property. h

Corollary 2 Let L be a language class that is closed

under reversal. Then, for all non-negative integers

k; n; i0; i00;m; j0; j00, we conclude that

1. L ¼ MATðk; n; i0; i00;m; j0; j00Þ if and only if

L ¼ MATðk; n; i00; i0;m; j00; j0Þ.
2. L � MATðk; n; i0; i00;m; j0; j00Þ if and only if

L � MATðk; n; i00; i0;m; j00; j0Þ.

4 Computational completeness results

Recall that the matrix ins-del systems MATð2; 1; 1; 0; 2;
0; 0Þ, MATð2; 2; 0; 0; 1; 1; 0Þ, MATð3; 1; 1; 0; 1; 1; 0Þ, and
MATð3; 1; 1; 0; 1; 0; 1Þ are known to equal RE (cf. Petre

and Verlan 2012). As RE is closed under reversal, the
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following theorem holds true as an easy consequence from

Corollary 2.

Theorem 2 (1) MATð2; 1; 0; 1; 2; 0; 0Þ ¼ RE, (2)

MATð2; 2; 0; 0; 1; 0; 1Þ ¼ RE,

(3) MATð3; 1; 0; 1; 1; 0; 1Þ ¼ RE, (4) MATð3; 1; 0;
1; 1; 1; 0Þ ¼ RE. h

In the following, we discuss further completeness results

which are improvements over some of the existing results

in terms of the maximal length of the matrix. Therefore, in

each of the following theorems we also describe the key

ideas and technical issues that brought along these

improvements before delving into the details of the con-

structions. Notice that giving all the details including

detailed arguments may look cumbersome, yet it is nec-

essary, as with restricted resources, we are moving within

dangerous terrain, i.e., it is very easy to design simulations

that look convincing at first glance but fail a detailed

analysis. Often enough, small changes in the simulations

will make the difference. We will give a concrete account

of this delicate issue before we present Theorem 4.

In Petre and Verlan (2012), matrices of maximum

length 8 and size (1, 0, 0; 1, 1, 1) were used. This maxi-

mum length was reduced to 4 in Fernau et al. (2016), which

is further reduced even to 3 in the following theorem.

Theorem 3 MATð3; 1; 0; 0; 1; 1; 1Þ ¼ RE.

Before we formally construct a matrix ins-del system of

size (3; 1, 0, 0; 1, 1, 1) to describe RE, we describe some

key issues of our construction.

● At least one of the rules of every matrix has a rule

marker as a context or the marker itself is deleted. A

matrix of this type is said to be guarded. The

importance of a matrix being guarded is that it can be

applied only in the presence of the corresponding rule

marker. This will avoid interference of any other matrix

application.

● After successful application of every matrix, either a

rule marker remains or the intended simulation is

completed.

Proof Formally, consider a type-0 grammar G ¼
ðN; T ;P; SÞ in SGNF. The rules from P are supposed to be

labelled injectively with labels from the set ½1. . .jPj�, with
label sets Pll and Prl as defined above. Also recall that the

nonterminal alphabet decomposes like N ¼ N 0 [ N 00,
N 00 ¼ fA;B;C;Dg, S; S0 2 N 0, according to the normal

form. We construct a matrix insertion-deletion system

C ¼ ðV; T ; fSg;MÞ, where the alphabet of C is

V ¼ N [ T [ fp; p0 j p 2 Prlg [ fq; q0 j q 2 Pllg [ ff ; f 0; g; g0g :

The set of matrices M of C consists of the matrices

described case-by-case in the following.

We simulate the rule p: X ! bY , X; Y 2 N 0, b 2 N 00 [ T ,

i.e., p 2 Prl, by the following matrices:

p1 ¼ ½ðk; p; kÞins; ðk; p0; kÞins; ðp0;X; pÞdel�
p2 ¼ ½ðk; b; kÞins; ðk; Y ; kÞins; ðb; p; YÞdel�
p3 ¼ ½ðk; p0; bÞdel�
We simulate the rule q: X ! Yb, X; Y 2 N 0, b 2 N 00 [ T , i.

e., q 2 Pll, by the following matrices:

q1 ¼ ½ðk; q; kÞins; ðk; q0; kÞins; ðq;X; q0Þdel�
q2 ¼ ½ðk; b; kÞins; ðk; Y ; kÞins; ðY ; q; bÞdel�
q3 ¼ ½ðb; q0; kÞdel�
We simulate the rule f: AB ! k, A;B 2 N 00, by the fol-

lowing two matrices:

f1 ¼ ½ðk; f ; kÞins; ðk; f 0; kÞins; ðf ;A;BÞdel�
f2 ¼ ½ðf ;B; f 0Þdel; ðk; f 0; kÞdel; ðk; f ; kÞdel�
Similarly, we simulate the rule g: CD ! k, C;D 2 N 00, by
the following matrices:

g1 ¼ ½ðk; g; kÞins; ðk; g0; kÞins; ðg;C;DÞdel�
g2 ¼ ½ðg;D; g0Þdel; ðk; g0; kÞdel; ðk; g; kÞdel�
Finally, we simulate the rule h : S0 ! k by the ins-del rule

½ðk; S0; kÞdel�.
We now proceed to prove that LðCÞ ¼ LðGÞ. We

initially prove that LðGÞ � LðCÞ by showing that C
correctly simulates the application of the rules of the types

p, q, f, g, h, as discussed above. We explain the working of

the simulation matrices for the cases p and f mainly, as the

working of q and g simulation matrices are similar, and as

the working of the simulation of the h rule is simple and

direct.

Simulation of p : X ! bY : Consider the string aXb
derivable from S in G, with X 2 N 0 and a; b 2 ðN 00 [ TÞ�.
We now show that on applying the matrices introduced for

simulating rules from Prl, we can derive abYb within C,
starting from aXb. We start by applying the rules of matrix

p1. The markers p and p0 are randomly inserted by the first

two rules, leading to a string from p ш p0 ш aXb. However,
the third rule of p1 is applicable only when p0 and p are

inserted before and after the non-terminal X. This shows

that aXb )p1 c is possible if and only if c ¼ ap0pb. After
the X has been deleted by the third rule, we note that matrix

p1 cannot be applied again, since there was only one non-

terminal of N 0 (in this case, X) present in aXb, and this is

deleted. On applying matrix p2, b and Y are inserted

anywhere, so intermediately we arrive at a string from b ш
Y ш ap0pb; then, p is deleted in the contexts of b and Y. The
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importance of p0 here is to make sure that the left context of

p is the introduced b only, so that now we know that we

arrived at the string ap0bYb. Finally, p0 is deleted by the

matrix p3. The right context b in the singleton matrix p3

makes it applicable only after applying p2. The intended

sequence of derivations is hence: aXb )p1 ap0pb
)p2 ap0bYb )p3 abYb.

Simulation of f : AB ! k: Let aABb be a sentential form

derivable in G with A;B 2 N 00 and a; b 2 ðN 00 [ TÞ�. The
deletion of AB can be simulated as follows. The application

of f1 to aABb leads to the string afBf 0b. Note that, strictly

speaking, at this point the (derived) marker f 0 can be placed
anywhere in the string. Also, it is possible to apply f1

again, but then there should be some other A and B present

together somewhere in the string. Applying now f2 forces

the f 0 to be placed after the intended B. At the end of

applying all the rules of f2, we end up at ab as desired.

To prove the reverse relation (LðCÞ � LðGÞ), we

observe that the rules of C are applied in groups and each

group of rules corresponds to one of p, q, f, g, h. Let us

indicate the observations necessary to conclude this in the

following.

1. It can be seen by induction that, before and after

successfully applying a matrix to any sentential form,

this sentential form contains at most one symbol of N 0.
2. A matrix of the form p1 can only be successfully

applied to a sentential form of the form aXb, and

applying p1 would result in ap0pb. In particular, the

resulting sentential form contains no symbol from N 0.
Notice that, before and after successfully applying a

matrix to any sentential form, this sentential form

either does not contain p at all or contains p0

immediately left of p, respectively.

3. A matrix of the form p2 can only be successfully

applied to a sentential form of the form ap0pb, and
applying p2 would result in ap0bYb.

4. A matrix of the form p3 can only be successfully

applied to a sentential form of the form ap0b if b starts

with b. Therefore, it can only be applied after p2 has

been applied, so that ap0bYb would be turned into

abYb.
5. Summarizing the previous three observations, we can

conclude that once we start using p1, then p2 and p3

have to follow, and all in all this converts aXb into

abYb, so this corresponds to applying the context-free

rule X ! bY . Also, there is no other possibility to

successfully apply p2 or p3.

6. We can establish a similar reasoning for the matrices

q1, q2 and q3, corresponding to q 2 Pll.

7. A matrix of the form f1 can only be successfully

applied to a sentential form like aABb. First, f and f 0

are introduced at some arbitrary positions in the

sentential form, and then A is deleted with f and B as

its left and right contexts, leading to a sentential form

from f 0 ш afBb. Then, applying f2 ensures that f 0 was
actually placed just after B and now B and the markers

f and f 0 are deleted. In the case that, before applying f2,
f1 is applied again, then it is applied for some other AB

that is present in the string. But, this does not affect

applying f2 at some other point. As both f1 and f2 are

guarded, it will have no interference with other

matrices like g1 and g2. As the rule marker f (and

similarly, g) act as placeholders for A (and similarly,

for C), it could well happen that f1 and g1 are applied

several times before removing these rule markers again

by applying f2 and g2. However, by the placeholder

observation, such a derivation can only be (finally)

terminating if the primed rule markers can match up.

In that case, we could as well apply, say, f2 immedi-

ately after we applied f1. This way we can disentangle

possibly interleaved applications of f1, f2, g1 and g2.

With these details provided, we can see that if aABb
was a sentential form and on applying f1 and f2, we

will get the sentential form ab, and this happens

without loss of generality.

These observations complete the proof. h

In Fernau et al. (2016), a computational completeness

result for matrix ins-del systems with size

(2; 1, 1, 1; 1, 0, 0) was claimed. However, as noticed by S.

Verlan (personal communication), the proof is prone to

error for the following reason that we were unable to cir-

cumvent. For this discussion, we refer the reader to the

proof sketch in Fernau et al. (2016). When the (deletion)

rules are applied in a context-free manner in Penttonen

normal form and if a variable (say X) can appear several

times in a sentential form, then, an application of a deletion

rule for a variable (X) can be misused at some other

position where it is present. In order to make sure the result

is correct, now, we increase the matrix length from 2 to 3

and also we use SGNF instead of the Penttonen normal

form as in the mentioned proof sketch. Thus, in the next

theorem, we will prove a (weaker) computational com-

pleteness result for matrix ins-del system with size

(3; 1, 1, 1; 1, 0, 0). However, this is still an improvement

over the computational completeness result of Petre and

Verlan (2012), as discussed in the Introduction.

Theorem 4 MATð3; 1; 1; 1; 1; 0; 0Þ ¼ RE.

Let us again highlight some key features of this con-

struction first.

● Again, we make use of rule markers to guard the

simulation of rules applications.
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● In order to simulate, say, AB ! k, when we use the

deletion rules ðk;A; kÞdel and ðk;B; kÞdel, it may be the

case we are deleting unintended occurrences. Notice

that deletions cannot be performed under contexts. So

we have to carefully place markers before, after and

between the nonterminals A and B in order to check that

only the intended nonterminal occurrences are deleted.

● Though we are allowed to use both the contexts for

insertion rules, we use only one context (left or right) in

most of our insertion rules.

Proof Consider a type-0 grammar G ¼ ðN; T;P; SÞ in

SGNF, with the rules uniquely labelled with ½1. . .jPj�.
Again, we use the label subsets Prl and Pll as described

above. Recall the decomposition N ¼ N 0 [ N 00 by SGNF.

We can construct a matrix ins-del system C ¼
ðV; T ; fSg;MÞ with alphabet

V ¼ N [ T [ Prl [ Pll [ ff ; f 0; f 00; g; g0; g00g:
The set of matrices M is defined as follows.

We simulate the rule p : X ! bY , i.e., p 2 Prl, by the

following matrices:

p1 ¼ ½ðk; p;XÞins; ðk;X; kÞdel�
p2 ¼ ½ðp; Y ; kÞins; ðp; b; kÞins; ðk; p; kÞdel�
We simulate the rule q : X ! Yb, i.e., q 2 Pll by the fol-

lowing matrices:

q1 ¼ ½ðk; q;XÞins; ðk;X; kÞdel�
q2 ¼ ½ðq; b; kÞins; ðq;Y ; kÞins; ðk; q; kÞdel�
We simulate the rule f : AB ! k by the following matrices:

f1 ¼ ½ðk; f ;AÞins; ðB; f 00; kÞins�
f2 ¼ ½ðk;A; kÞdel; ðk;B; kÞdel; ðf ; f 0; f 00Þins�
f3 ¼ ½ðk; f 0; kÞdel; ðk; f ; kÞdel; ðk; f 00; kÞdel�
We simulate the rule g : CD ! k by the following

matrices:

g1 ¼ ½ðk; g;CÞins; ðD; g00; kÞins�
g2 ¼ ½ðk;C; kÞdel; ðk;D; kÞdel; ðg; g0; g00Þins�
g3 ¼ ½ðk; g0; kÞdel; ðk; g; kÞdel; ðk; g00; kÞdel�
We simulate the rule h : S0 ! k by the matrix ½ðk; S0; kÞdel�.

We now proceed to prove that LðCÞ ¼ LðGÞ. We

initially prove that LðGÞ � LðCÞ by showing that C
correctly simulates the application of the above rules

p, q, f, g, h. We discuss the working of the simulation rules

p and f mainly as the working of rules q and g are similar to

the working of p and f, respectively, and the working of

h rule is straightforward.

Simulation of p : X ! bY: Consider the string aXb,
X 2 N 0, a; b 2 ðN 00 [ TÞ�, derivable from S in G. We now

show that on applying p-rules, we can derive abYb from

aXb. We start by applying the rules of matrix p1. The rule

marker p is inserted to the left of X and then X is deleted.

Since we are using SGNF, we note that there is only one

variable (actually X) of N 0 present in the string and hence

this deletion of X is unique. This also ensures that the

matrix p1 cannot be applied immediately again. Hence at

this point, a single application of p1 on the string aXb
yields apb. Next, on applying matrix p2, Y and b are

inserted after p (in order) and then p is deleted. The matrix

p2 cannot be applied for a second time as the unique p (one

application of p1 yielded one p) is deleted and this gives

abYb. This unique derivation can be represented as

aXb )p1 apb )p2 abYb:
Simulation of f : AB ! k: Let aABb be a sentential form

derivable in G, with A;B 2 N 00 and a; b 2 ðN 00 [ TÞ�. The
application of f1 (say, k1 times) to aABb leads to the string

af k1ABðf 00Þk1b. Note that, strictly speaking, an application

of f1 can place the marker f 00 after any occurrence of B that

is not necessarily right of the occurrence of A that we chose

to discuss here. Starting for example from aABdBb0, an
application of f1 may yield the string afABdBf 00b0. In this

case, we cannot apply f2 and hence also not f3, thus leaving

the markers f and f 00 not deleted from the string. Hence, the

markers f and f 00 have to be inserted on either sides of one

occurrence of AB (as chosen in our discussion) for further

continuation. Now applying f2, the substring AB (situated

between f k1 and ðf 00Þk1 ) is deleted; if not, i.e., if other

occurrences of A and B are deleted, the third rule of f2

cannot be applied. Hence on applying f2 on the string

af k1ABðf 00Þk1b, we get af k1 f 0ðf 00Þk1b. On applying f3 once,

one occurrence of all markers is deleted and we obtain

af k1�1ðf 00Þk1�1b. If k1 � 2 at this point, no matrix is

applicable. Thus, to have a terminating derivation, k1 has

to be 1, i.e., f1 has to be applied only once, corresponding

to simulating AB ! k. The intended working of the

simulation of the f rule is represented as

aABb )f1 afABf 00b )f2 aff 0f 00b )f3 akb:
To prove the reverse relation (LðCÞ � LðGÞ), we

observe that the rules of C are applied in groups and each

group of rules corresponds to one of p, q, f, g, h. Let us

indicate the observations necessary to conclude this in the

following. The Items 1.-4. from the proof of Theorem 3

carry over (nearly) literally and are hence omitted. For Item

2., the last sentence should read: Notice that, before

successfully applying the p1 matrix to any sentential form,

this sentential form does not contain p at all; and after

successfully applying the p1 matrix to any sentential form,

this sentential form contains exactly one p. For Item 4.,

observe that the result of applying p2 is abYb.
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● Summarizing Items 4. and 5., we can conclude that

once we start using p1, then p2 has to follow, and all in

all this converts aXb into abYb, so this corresponds to

applying the context-free rule X ! bY . Also, there is no

other possibility to successfully apply p2 in the absence

of a p1 application.

● We can establish a similar reasoning for the matrices q1

and q2.

● A matrix of the form f1 can be successfully applied to a

sentential form like aAd1AdBd2Bb. First, f and f 00 are
introduced to the left and right of A and B respectively,

leading to the sentential form aAd1fAdBf 00d2Bb. If f1 is

applied for the second time, then the string becomes

afAd1fAdBf 00d2Bf 00b. At this point, no matrix can be

applied (specifically, due to the last rule in f2 and first

rule in f3) unless d ¼ k, if we want to avoid applying f1

once more. The only matrix that can handle the newly

introduced nonterminals f and f 00 is f2. On applying f2,

the string becomes afAd1ff 0f 00d2Bf 00b. Finally, with the

string afAd1ff 0f 00d2Bf 00b in hand, the only matrix that

can deal with f ; f 0 and f 00 is matrix f3 which deletes all

these markers and yields either aAd1ff 00d2Bb or

afAd1d2Bf 00b. In the former case, there is no possibility

to apply any matrix further. In the latter case, matrix f2

is applicable if d1 ¼ d2 ¼ k, in which case the resultant

string is aff 0f 00b. On reapplying f3, we get ab.

● It is important to observe that the above derivation

which takes the string aAd1AdBd2Bb to ab was possible

under the assumptions d1 ¼ d ¼ d2 ¼ k which implies

that the initial string (before the start of simulation) was

aAABBb. The simulation of aAABBb to ab is intended.

Moreover, we could have obtained the same result by

the following derivation which uses f1, f2, f3 in this

order, which was the way we explained this type of

simulation before.

aAABBb )f1 aAfABf
00b )f 2 aAff

0f 00b )f 3 aABb )f1 . . . )f3 ab

This idea shows that we can always disentangle

derivations that mix f1 and f2 applications.

● Similar observations apply to g1, g2 and g3. We can

even disentangle applications of matrices f1, f2, g1 and

g2 so that f2 immediately follows on f1, and g2

immediately follows g1.

The observations above complete our reasoning. h

It was proved in Petre and Verlan (2012) that

MATð3; 1; 1; 0; 1; 1; 0Þ and MATð2; 1; 1; 0; 2; 0; 0Þ both

describe RE. As a trade-off between the two, we prove that

MATð2; 1; 1; 0; 1; 1; 1Þ describe RE in the following theo-

rem. Given a size (1, 1, 0; 1, 1, 1), it is proved in Krasso-

vitskiy et al. (2008) that a ins-del systems (corresponding

to matrix ins-del systems of length one) are not computa-

tionally complete. Hence one needs at least length 2 for

matrix ins-del systems to describe RE. In the following, we

show that length 2 is sufficient and hence this length is

optimal.

Theorem 5 MATð2; 1; 1; 0; 1; 1; 1Þ ¼ MATð2; 1; 0; 1; 1;
1; 1Þ ¼ RE.

In this construction, along with the axiom, we introduce

two dummy symbols # and $ in order to restrict certain

matrix rules to be applied only once. This trick was crucial

to achieve the desired computational completeness results

with the given resource restrictions. Notice that a similar

unusual use of nonterminal symbols can be found in

Example 2

Proof Consider a type-0 grammar G ¼ ðN; T;P; SÞ in

SGNF. The rules from P are supposed to be labelled

injectively with labels from the set ½1. . .jPj�, with label sets

Prl and Pll as introduced above. Recall the decomposition

N ¼ N 0 [ N 00 of the nonterminal alphabet N of G. We now

construct a matrix ins-del system C ¼ ðV ; T; fS#$g;MÞ
with alphabet

V ¼ N [ T [ f#; $g [ fx; x0; x00; x000 j x 2 Prl [ Pllg
[ ff ; f 0; g; g0g:

The set of matrices M is defined as follows.

The rules p: X ! bY and q: X ! Yb are simulated by

the following set of ins-del matrices shown on the left and

right side, respectively:

p1 ¼ ½ðX; p; kÞins; ð#; p0; kÞins� q1 ¼ ½ðX; q; kÞins; ð#; q0; kÞins�
p2 ¼ ½ðk;X; pÞdel; ð#; p00; kÞins� q2 ¼ ½ðk;X; qÞdel; ð#; q00; kÞins�
p3 ¼ ½ðp; Y ; kÞins; ð#; p000; kÞins� q3 ¼ ½ðq; b; kÞins; ð#; q000; kÞins�
p4 ¼ ½ðp; b; kÞins; ðp000; p00; p0Þdel� q4 ¼ ½ðq; Y; kÞins; ðq000; q00; q0Þdel�
p5 ¼ ½ðk; p; bÞdel; ðp000; p0; $Þdel� q5 ¼ ½ðk; q; YÞdel; ðq000; q0; $Þdel�

p6 ¼ ½ð#; p000; $Þdel� q6 ¼ ½ð#; q000; $Þdel�

The rules f: AB ! k and g: CD ! k are simulated by the

set of matrices shown on the left and right side,

respectively:

f1 ¼ ½ðB; f ; kÞins; ð#; f 0; kÞins� g1 ¼ ½ðD; g; kÞins; ð#; g0; kÞins�
f2 ¼ ½ðk;B; f Þdel; ðk;A; f Þdel� g2 ¼ ½ðk;D; gÞdel; ðk;C; gÞdel�
f3 ¼ ½ðk; f ; kÞdel; ð#; f 0; $Þdel� g3 ¼ ½ðk; g; kÞdel; ð#; g0; $Þdel�

A rule h: S0 ! k is simulated by the matrix ½ðk; S0; kÞdel�.
The whole simulation is then terminated by applying the

matrix ½ð#; $; kÞdel; ðk;#; kÞdel�.
If this matrix was not applied at the end, possibly earlier,

then the rules p, q, f, g cannot be simulated. Also, once a

simulation is started, there will be a rule marker between #
and $, so that the termination matrix cannot be applied in

the middle of a simulation.
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We now discuss the working of the simulation of rules

p and f mainly. The working of the rules q and g are similar

to the working of the simulation of rules p and f and hence

not discussed. The working of the matrix h is

straightforward.

Simulation of p : X ! bY Let the string aXb#$ be

derived from the axiom S#$ within C, with X 2 N 0 and
a; b 2 ðN 00 [ TÞ�, having simulated the derivation of aXb
from S in G. Using p1, the rule marker p is introduced right

to X and another marker p0 is introduced right to #. In

principle, the matrix p1 can be repeatedly applied several

times, say k1 � 1 times, yielding the string aXpk1b#ðp0Þk1$.
Now, when p2 is applied, it will introduce p00 to the right of

# and delete the only symbol of N 0, which is X. Thus, p2

cannot be applied for a second time, as there will be no X

present in the string. With the string of the form

apk1b#p00ðp0Þk1$, now, the matrix p3 is applied, which

will introduce a Y after the marker p, and p000 is introduced
after #. Let p3 be applied repeatedly for k2 � 1 times,

yielding possibly apk1Yk2b#ðp000Þk2p00ðp0Þk1$. As X 6¼ Y ,

X; Y 2 N 0, repeated applications of either of the matrices

p1, p2 is not possible. On applying p4 once, we have

apk1bYk2b#ðp000Þk2ðp0Þk1$. Note that the matrix p4 cannot be

applied for a second time, since there was only one p00 and
it was deleted by the application of p4. The matrix p5 can

be applied to the string apk1bYk2b#ðp000Þk2ðp0Þk1$ only if

k1 ¼ 1 due to the presence of p000, with p000 and $ as left and

right context of p00, respectively. In this case, the resultant

string is abYk2b#ðp000Þk2$. At this point, the only applicable

matrix is p6, since the other matrices demand the marker p,

but p was already deleted in the previous step. To apply the

matrix p6, the left and right contexts demand k2 ¼ 1 and

the resulting string is abYb#$. Thus, with the string

apYb#p000p00p0$, on applying the matrix p4, b 2 N 00 [ T in

the p rule is introduced after p and the marker p00 placed in

between p000 and p0 is deleted. This will end up with the

string apbYb#p000p0$ and using the matrix p5, the markers

p and p0 are deleted. Finally, the matrix p6 is applied which

will delete the marker p000 available in between # and $ and

end up with the string abYb#$, thus the p rule is simulated.

Notice that, after Y is introduced in the derivation, and if Y

shows up as the left-hand side of a rule of G, say,

r : Y ! cZ, then r cannot be introduced (during the

simulation of p rule), by using the matrix r1, as there are

some primed markers present in between # and $. Thus,

one can notice that the matrices are applied in quite a

deterministic way during the simulation. We show the

intended whole derivation simulating the application of a

p-rule below.

aXb#$)p1 aXpb#p0$)p2 apb#p00p0$)p3 apYb#p000p00p0

)p4 apbYb#p000p0$)p5 abYb#p000$)p6 abYb#$:

Simulation of f :AB! k: Let aABb#$ be a sentential form

derivable in C, such that aABb is derivable in G with A;B2
N 00 and a;b2 ðN 00 [TÞ�. We can only start from f1 (in order

to simulate rule f), as other matrices f2 and f3 contain some

deletion rules based on the symbols f or f 0 introduced by

matrix f1. Applying f1 introduces the rule marker f to the

right of some occurrence of B and another marker f 0 to the

right of #, yielding, for instance in our case, aABfb#f 0$.
Though, in principle, f1 can be repeatedly applied, a further

application of the matrix is thwarted by the use of f3; if f3

is applied at some other point to delete the introduced

markers f and f 0 (and these markers must be deleted in

order to successfully terminate a derivation and can only

be deleted by using matrix f3), then matrix f1 must have

been used only once, as otherwise there cannot be a

marker f 0 with # to its left and $ to its right. Now, if f2 is

applied, this will delete the occurrence of B that is to the

left of the previously introduced marker f and the occur-

rence of A which is left to the occurrence of B that got

deleted by the first rule of f2, thus, the correctly chosen

occurrences of A and B are deleted. The previously

introduced rule markers f and f 0 are deleted by the matrix

f3 and this yields the string ab#$. If f3 is applied

immediately after applying f1, this will make no change in

the sentential form all in all and such applications are

neither useful nor harmful. The above discussed intended

working is represented as follows.

aABb#$ )f1 aABfb#f 0$ )f2 afb#f 0$ )f3 ab#$:

The marker deletion matrix ½ð#; $; kÞdel; ðk;#; kÞdel� is

applied at the end of the derivation of words. Hence on

starting at S#$ and by repeatedly applying the simulations

of the rules p, q, f, g, h, and the marker deletion rule we

eventually get S#$ ¼)� w. This proves that LðGÞ � LðCÞ.
To prove the reverse relation (LðCÞ � LðGÞ), we

observe that the rules of C are applied in groups and each

group of rules corresponds to one of p, q, f, g, h. We

already gave several arguments why the simulation of the

rules of G work in quite a deterministic fashion. Let us

indicate some further observations necessary to conclude

LðCÞ � LðGÞ in the following.

● It can be seen by induction that, before and after

successfully applying a matrix to any sentential form,

this sentential form contains at most one symbol of N 0,
or such a derivation cannot terminate (as discussed

above).

● As either the rule markers (like p or f) are introduced or

used as guards in each matrix (which means that they
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serve as contexts or are deleted), interference by

mixing-up the simulations is avoided. In particular,

the primed rule markers (like p0, p00, p000, or f 0) are meant

to be introduced between # and $, which is tested upon

deleting. If more than one primed marker is introduced,

trying to open up a derivation that mixes up two

simulations, then these primed markers can never be

deleted, so that such a derivation can never terminate.

This has been explained in details above.

● Once a simulation of rule x has started by applying a

matrix x1, the matrices x2 etc. have to be applied, in this

order, as argued above when explaining how the

simulation of the rules (should) work.

As RE is closed under reversal, Corollary 2 yields

MATð2; 1; 0; 1; 1; 1; 1Þ ¼ RE. h

Theorem 6 MATð2; 1; 1; 1; 1; 1; 0Þ ¼ MATð2; 1; 1; 1;
1; 0; 1Þ ¼ RE.

The trick of using auxiliary symbols # and $ in the

axiom carries over from the previous construction. How-

ever, notice that allowing one-sided deletions only is dis-

tinctively different from allowing one-sided insertions only

(as int he previous construction). Important checks have to

be undertaken in different parts of the simulation of a rule

of the given SGNF grammar.

Proof Consider a type-0 grammar G ¼ ðN; T;P; SÞ in

SGNF. In particular, this means that N is split into N 0 and
N 00. The rules from P in G are supposed to be labelled

injectively with labels from the set ½1. . .jPj�, with Pll and

Prl being disjoint subsets of labels (as explained above).

We now construct a matrix ins-del system C ¼
ðV; T ; fS#$g;MÞ with
V ¼ N [ T [ f#; $g [ fx; x0; x00; x000 j x 2 Pll [ Prlg

[ ff ; f 0; g; g0g:
The set of matrices M is defined as follows.

The rules p: X ! bY and q: X ! Yb are simulated by

the following ins-del matrices shown on the left and right,

respectively:

p1 ¼ ½ðk; p;XÞins; ð#; p0; $Þins� q1 ¼ ½ðk; q;XÞins; ð#; q0; $Þins�
p2 ¼ ½ðp;X; kÞdel; ð#; p00; p0Þins� q2 ¼ ½ðq;X; kÞdel; ð#; q00; q0Þins�
p3 ¼ ½ðk; b; pÞins; ð#; p000; p00Þins� q3 ¼ ½ðk;Y ; qÞins; ð#; q000; q00Þdel�
p4 ¼ ½ðb;Y ; pÞins; ðp000; p00; kÞdel� q4 ¼ ½ðY ; b; qÞins; ðq000; q00; q0Þdel�
p5 ¼ ½ðp000; p0; kÞdel� q5 ¼ ½ðq000; q0; kÞdel�
p6 ¼ ½ðY; p; kÞdel; ð#; p000; kÞdel� q6 ¼ ½ðb; q; kÞdel; ð#; q000; kÞdel�

The rules f: AB ! k and g: CD ! k are simulated by the

following ins-del matrices shown on the left and right,

respectively:

f1 ¼ ½ðk; f ;AÞins; ð#; f 0; $Þins� g1 ¼ ½ðk; g;CÞins; ð#; g0; $Þins�
f2 ¼ ½ðf ;A; kÞdel; ðf ;B; kÞdel� g2 ¼ ½ðg;C; kÞdel; ðg;D; kÞdel�
f3 ¼ ½ðk; f ; kÞdel; ð#; f 0; kÞdel� g3 ¼ ½ðk; g; kÞdel; ð#; g0; kÞdel�

A rule h: S0 ! k is simulated by the matrix ½ðk; S0; kÞdel�.
The whole simulation is then terminated by applying the

matrix ½ð#; $; kÞdel; ðk;#; kÞdel�. If this matrix was not

applied at the end, possibly earlier, then the rules

p, q, f, g cannot be simulated.

We now discuss the working of the simulation rules

p and f mainly, as the working of q and g rule are similar to

the working of p and f, respectively, and the working of h is

direct.

Simulation of p : X ! bY Let the string aXb#$ be

derived from the axiom S#$ in C, with X 2 N 0 and

a; b 2 ðN 00 [ TÞ�, corresponding to a derivation S )� aXb
in G. We explain how to simulate applying the rule p in G

to aXb, within C. As the first rules of the matrices p2 to p6

involve the introduced rule markers, we have to start from

p1 and applying it to the string, we obtain apXb#p0$. The
matrix p1 cannot be applied again until there is no symbol

present between # and $. Now, the only applicable matrix

is p2 (as no other matrix can cope with the substring #p0$),
which will delete X 2 N 0 and introduce another marker p00

between # and p0. Now, with the string apb#p00p0$, the
only applicable rule is p3 as all other matrices use p000 either
as context or for deletion and p000 is only introduced by p3.

On applying p3, the b that corresponds to the rule p : X !
bY is introduced to the right of p and the marker p000 is
inserted between # and p00. In view of the contexts present

in the second rule of the matrices p2 and p3, they cannot be

applied again. Now, with the resultant string

abpb#p000p00p0$, the only applicable matrix is p4 and

applying it will introduce the symbol Y of N 0 that is

associated with the p rule and delete the marker p00 placed
in between p000 and p0. Now, we have a choice to apply p5

or p6. However, if p6 is applied before applying p5, then

the marker p0 cannot be deleted at all, as that requires the

context p000 to be present in the string. Also, we cannot

introduce p000 again, as this would require to introduce p00

first, using matrix p2, but this is impossible, as X is not

present. Yet, if p0 is not deleted, then no other simulation is

possible (except the h rule) as starting the simulation of

p, q, f and g rules demand the substring #$ to be present in

the string. Thus, p5 and p6 are applied in this order, which

results in the string abYb#$. We present a sample

derivation of the intended simulation of rule p below.

aXb#$ )p1 apXb#p0$ )p2 apb#p00p0$ )p3 abpb#p000p00p0$
)p4 apbYb#p00p0$ )p5 abYb#p000$ )p6 abYb#$:
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Simulation of f : AB ! k: Let the string aABb#$ be

derived from the axiom S#$, with A;B 2 N 00 and

a; b 2 ðN 00 [ TÞ�, corresponding to a derivation S )�

aABb in G. As the first rules of the matrices f2 and f3

involve the rule marker f, we have to start from f1 and on

applying it to the string, we obtain afABb#f 0$. At this

point, if we apply f3, we get back to the starting point. Even

if f was introduced in front of some other occurrence of A

(e.g., afAdABb#f 0$) by applying f1, then the only appli-

cable matrix is f3, which takes us to the starting point

again. Hence to proceed further, the matrix f2 is applied,

which in turn yields afb#f 0$. On applying f3, the resultant

string is the intended one, ab#$.

aABb#$ )f1 afABb#f 0$ )f2 afb#f 0$ )f3 ab#$:

The marker deletion matrix ½ð#; $; kÞdel; ðk;#; kÞdel� is

applied at the end of the derivation of words. Hence on

starting at S and by repeatedly applying the simulations of

the rules p, q, f, g, h, and the marker deletion rule we

eventually get S ¼)� w. This proves that LðGÞ � LðCÞ.
To prove the reverse relation (LðCÞ � LðGÞ), we

observe the points discussed while proving the reverse

part (LðCÞ � LðGÞ) of Theorem 5 and also that the rules of

C are applied in groups and each group of rules

corresponds to one of p, q, f, g, h. Details are similar to

the previous proof and hence omitted. h

5 Simulating (meta-)linear grammars

Theorem 4 states that a matrix ins-del systems of size

(3; 1, 1, 1; 1, 0, 0) can describe RE. If we further desire to

have a one-sided context for insertion, then a matrix ins-del

system of the desired size can simulate linear and met-

alinear grammars, as we will show now. However, whether

or not one can simulate general context-free grammars with

MATð3; 1; 1; 0; 1; 0; 0Þ is left open. However, we believe

that this type of study comes along in a quite natural way

due to the special (linear) structure of the context-free rules

in SGNF grammars.

Theorem 7 LIN(MATð3; 1; 1; 0; 1; 0; 0Þ \MATð3; 1; 0;
1; 1; 0; 0Þ
Proof Consider a linear grammar G ¼ ðN; T ; S;PÞ. The
rules from P in G are supposed to be labelled injectively

with labels from the set ½1. . .jPj�. We construct a matrix

insertion-deletion system C ¼ ðV; T ; fSg;MÞ where the

alphabet of C is V ¼ N [ T [ ½1. . .jPj�. The set of matrices

of M of C is defined as follows.

We simulate the rule p : X ! aY by the following two

ins-del matrices:

p1 ¼ ½ðX; p; kÞins; ðk;X; kÞdel�
p2 ¼ ½ðp; Y ; kÞins; ðp; a; kÞins; ðk; p; kÞdel�
Similarly, we simulate the rule q: X ! Ya by the following

ins-del matrices:

q1 ¼ ½ðX; q; kÞins; ðk;X; kÞdel�
q2 ¼ ½ðq; a; kÞins; ðq; Y; kÞins; ðk; q; kÞdel�
We simulate the rule f: X ! a by the matrix

f ¼ ½ðX; a; kÞins; ðk;X; kÞdel�. The working of the matrices

above is rather simple and straightforward. Observe the use

of rule markers for simulating rules p and q. As there is

never more than one occurrence of a nonterminal in the

sentential form of G, repeated applications of x1 are

impossible, and as x2 deletes the rule marker again, also

repeated applications of x2 are impossible. So, an appli-

cation of matrix x1 has to be immediately followed by an

application of matrix x2, which corresponds altogether to

an application of rule x, where x is of type p or q as shown

above. Hence, LðCÞ ¼ LðGÞ. The second part of the theo-

rem (LIN(MATð3; 1; 0; 1; 1; 0; 0Þ) follows from Corollary

2 and the strictness of the inclusion follows from Example

1. h

Theorem 8 LIN(MATð2; 2; 1; 0; 1; 0; 0Þ \MATð2; 2; 0;
1; 1; 0; 0Þ
Proof We only give the matrix rules that work similar to

the rules of Theorem 7.

Rules of the form p : X ! aY are simulated by the

following ins-del matrices:

p1 ¼ ½ðX; p; kÞins; ðk;X; kÞdel�
p2 ¼ ½ðp; aY ; kÞins; ðk; p; kÞdel�
and rules of the form q: X ! Ya by the following ins-del

matrices:

q1 ¼ ½ðX; q; kÞins; ðk;X; kÞdel�
q2 ¼ ½ðq; Ya; kÞins; ðk; q; kÞdel�
We simulate the rule f: X ! a by the matrix

f ¼ ½ðX; a; kÞins; ðk;X; kÞdel�. The second part of the theo-

rem (LIN(MATð2; 2; 0; 1; 1; 0; 0Þ) follows from Corol-

lary 2 and the strictness of the inclusion follows from

Example 1. h

Theorem 9 MLIN(MATð3; 1; 1; 0; 1; 0; 0Þ \MATð3; 1;
0; 1; 1; 0; 0Þ
Proof We assume that the metalinear language L � T� is

described by a context-free grammar G ¼ ðN; T; S;PÞ in

the form described in Proposition 1. Taking over the

notations of this proposition, L is the union of the con-

catenation of k linear languages LðGj
1Þ; . . .; LðGj

kÞ, with
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G
j
i ¼ ðNj

i ; T; S
j
i;P

j
iÞ for j ¼ 1; . . .; n and i ¼ 1; . . .; k. More-

over, N ¼ Sn
j¼1

Sk
i¼0 N

j
i , where N

j
0 ¼ fSj; ðSj2Þ0; . . .; ðSjkÞ0g.

If k ¼ 1, then LðGÞ 2 LIN and the theorem follows from

Theorem 7. Henceforth, we assume k� 2.

We now formally construct a matrix ins-del system C ¼
ðV;R; fSj1ðSj2Þ0 j j ¼ 1; . . .; ng;RÞ for G. For 1� i� k, let

V
j
i be the alphabet resulting from the construction of matrix

ins-del system Cj
i for G

j
i according to Theorem 7. Let

V ¼ Sn
j¼1

Sk
i¼1 V

j
i [ fðSjiÞ0g [ ftji; ðtjiÞ0g

� �
. For all i,

1� i� k � 1, starting with the axiom S
j
iðSjiþ1Þ0 (for i ¼ k,

the axiom is S
j
k), all strings of LðGj

iÞ are derived from S
j
i

similar to Theorem 7. We present the simulation of rules of

P
j
i in the following.

For 1� i� k, a rule of the form p : X ! aY in P
j
i is

simulated by the following set of matrices

p:1 ¼½ðX; p; kÞins; ðk;X; kÞdel�
p:2 ¼½ðp; Y ; kÞins; ðp; a; kÞins; ðk; p; kÞdel�

For 1� i� k, a rule of the form q : X ! Ya in P
j
i is sim-

ulated by the following set of matrices

q:1 ¼½ðX; q; kÞins; ðk;X; kÞdel�
q:2 ¼½ðq; a; kÞins; ðqi; Y; kÞins; ðk; qi; kÞdel�

For 1� i� k � 2, a rule of the form f : X ! a in P
j
i is

simulated as follows:

f :1 ¼ ½ðX; f ; kÞins; ðf ; a; kÞins; ðk;X; kÞdel�
f :2 ¼ ½ðk; f ; kÞdel; ððSjiþ1Þ0; ðSjiþ2Þ0; kÞins; ððSjiþ1Þ0; f 0; kÞins�
f :3 ¼ ½ðk; f 0; kÞdel; ððSjiþ1Þ0; f 00; kÞins; ððSjiþ1Þ0; Sjiþ1; kÞins�
f :4 ¼ ½ðk; f 00; kÞdel; ðk; ðSjiþ1Þ0; kÞdel�

A rule of the form f : X ! a in P
j
k�1 is simulated as

follows:

f :1 ¼ ½ðX; f ; kÞins; ðf ; a; kÞins; ðk;X; kÞdel�
f :2 ¼ ½ðk; f ; kÞdel; ððSjkÞ0; Sjk; kÞins; ððSjkÞ0; f 0kÞins�
f :3 ¼ ½ðk; f 0; kÞdel; ðk; ðSjkÞ0; kÞdel�

A rule of the form f : X ! a in P
j
k is simulated as follows:

f :1 ¼ ½ðX; f ; kÞins; ðf ; a; kÞins; ðk;X; kÞdel�
f :2 ¼ ½ðk; f ; kÞdel�
We now prove that LðGÞ � LðCÞ. For simplicity, we omit

the index j indicating the choice of the specific grammar in

the following, but we add the index i to the rule labels for

clarity to indicate the number of the grammar within the

row of concatenated grammars that we simulate. Consider

a sentential form w1 	 	 	wi�1aXbS0iþ1 = w0aXbS0iþ1 (by

induction), where w1 2 LðG1Þ, ..., wi�1 2 LðGi�1Þ, and

a; b 2 T� such that the sentential form aXb is derivable in

Gi, starting from Si.

Simulation of pi : X ! aY Applying now pi:1 to the

string w0aXbS0iþ1 yields w0apibS0iþ1. The matrix pi:1 is

applicable exactly once, as there is at most one nonterminal

in a linear grammar. Applying now pi:2 to the string

w0apibS0iþ1 yields w0aaYbS0iþ1 as intended.

Simulation of qi : X ! Ya The working is similar to pi
rules.

Simulation of fi : X ! a The simulating fi matrices

actually do more than only simulating fi. It simulates X !
a as well as the transition rule (1) S0iþ1 ! Siþ1S

0
iþ2 for

1� i� k � 2 and (2) S0k ! Sk.

Consider the rule fi : X ! a from Pi. Applying fi:1 to the

string w0aXbS0iþ1 results in w0afiabS0iþ1 for any 1� i\k

(Case (1)). The only matrix applicable at this point is fi:2

which yields (a) w0aabS0iþ1f
0
i S

0
iþ2 for 1� i� k � 2, or (b)

w0aabS0kf
0
k�1Sk for i ¼ k � 1. The only matrix that works

with the newly introduced marker f 0i is fi:3. On applying

fi:3, we get (a) w
0aabS0iþ1Siþ1f

00
i S

0
iþ2 for 1� i� k � 2 or (b)

w0aabSk for i ¼ k � 1. In the former case, the only

applicable matrix that could tackle the new f 00i is fi:4

whose application yields w0aabSiþ1S
0
iþ2 for 1� i� k � 2.

In Case (2), applying fk:1 to the string w0aXb results in

w0afkab, so that applying fk:2 gives the desired string

w0aab. The argument above shows that LðGÞ � LðCÞ.
Conversely, in C we have

w0aXbS0iþ1 ¼)fi:1 w
0afiabS0iþ1 ¼)fi:2 w

0aabS0iþ1f
0
i S

0
iþ2 ¼)fi:3

w0aabS0iþ1Siþ1f
00
i S

0
iþ2 ¼)fi:4 w

0aabSiþ1S
0
iþ2:

for any 1� i\k � 1, and similarly in the two remaining

cases. This derivation naturally corresponds to a derivation

step in G. Notice that the special symbols fi; f
0
i ; f

00
i that are

introduced and checked in the matrices fi:‘ prevent any

other sequence of matrix applications from happening but

the intended one, as explained above. So, once such a

simulation is started, it cannot be interrupted by another

simulation. The argument above shows that LðGÞ 
 LðCÞ.
Hence, MLIN � MATð3; 1; 1; 0; 1; 0; 0Þ. As MLIN is

closed under reversal, Corollary 2 yields

MLIN(MATð3; 1; 0; 1; 1; 0; 0Þ. The claimed strictness of

inclusion follows from Example 1 and hence the theorem

follows. h

Notice that in the previous proof, a lot of technicalities

were introduced by the fact that metalinear languages can

be represented as a finite union of languages that are again

finite concatenations of linear languages. However, since

the implicit union construction performed in the previous

proof can be easily adapted to the situation described in the

next theorem, we will simplify our considerations by
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assuming that a metalinear language is the concatenation of

k linear languages. For such languages, a simplified version

of Proposition 1 can be shown (see Fernau et al. 2017c),

which is used in the following theorem to avoid the men-

tioned complications.

Theorem 10 MLIN(MATð2; 2; 1; 0; 1; 0; 0Þ\MATð2; 2;
0; 1; 1; 0; 0Þ.
Proof We refer to Proposition 1 (in its simplified version

as discussed above). We now formally construct a matrix

ins-del system C ¼ ðV; T ; fS1S02g;RÞ for G. For 1� i� k,

let Vi be the alphabet resulting from the construction of

matrix ins-del system Ci for Gi according to Theorem 8.

Let V ¼ Sk
i¼1 Vi [ fS0ig [ fti; t0i; t00i g

� �
. Let Pi be the rule set

of Gi. For all i; 1� i� k � 1, starting with the axiom SiS
0
iþ1

(for i ¼ k, the axiom is Sk), all strings of LðGiÞ are derived
from Si similar to Theorem 8. We present the simulation of

the Pi rules in details now.

For 1� i� k, a rule pi : X ! aY in Pi of Gi, is simulated

by the matrix

pi:1 ¼½ðX; pi; kÞins; ðk;X; kÞdel�
pi:2 ¼½ðpi; aY ; kÞins; ðk; pi; kÞdel�
For 1� i� k, a rule qi : X ! Ya in Pi is simulated by the

matrix

qi:1 ¼½ðX; qi; kÞins; ðk;X; kÞdel�
qi:2 ¼½ðqi; Ya; kÞins; ðk; qi; kÞdel�
For 1� i� k � 2, a rule fi : X ! a in Pi is simulated as

follows:

fi:1 ¼ ½ðX; fia; kÞins; ðk;X; kÞdel�
fi:2 ¼ ½ðk; fi; kÞdel; ðS0iþ1; f

0
i S

0
iþ2; kÞins�

fi:3 ¼ ½ðk; f 0i ; kÞdel; ðS0iþ1; Siþ1f
00
i ; kÞins�

fi:4 ¼ ½ðk; f 00i ; kÞdel; ðk; S0iþ1; kÞdel�
The rule fk�1 : X ! a in Pk�1 is simulated as follows:

fk�1:1 ¼ ½ðX; fk�1a; kÞins; ðk;X; kÞdel�
fk�1:2 ¼ ½ðk; fk�1; kÞdel; ðS0k; f 0k�1Sk; kÞins�
fk�1:3 ¼ ½ðk; f 0k�1; kÞdel; ðk; S0k; kÞdel�
The rule tk : X ! a in Pk is simulated as follows:

fk:1 ¼ ½ðX; fka; kÞins; ðk;X; kÞdel�
fk:2 ¼ ½ðk; fk; kÞdel�
A proof of the correctness of this construction is com-

pletely analogous to the one given in the preceding theorem

and hence omitted. Notice that the rules given in this case

only summarize some of the rules of the previous

construction.

As MLIN is closed under reversal, Corollary 2 yields the

second part MLIN � MATð2; 2; 0; 1; 1; 0; 0Þ. This com-

pletes the proof, as the claimed strictness of the inclusion

immediately follows from Example 1. h

6 Summary of the results

In the Tables 1, 2 and 3, we summarize the generative

power of matrix ins-del systems of all possible sizes with

(1) n ¼ 1, m ¼ 1; (2) n ¼ 1, m ¼ 2; (3) n ¼ 2, m ¼ 1,

respectively. This should show the state of the art in the

area and help identify open problems in the area.

7 Semi-linearity and mild context-sensitivity

In this section, we discuss how matrix ins-del systems of

small sizes can be used to study certain aspects of (non-)

semilinear and mildly context-sensitive languages. This

discussion provides some connections to aspects of our

studies to formal linguistics. In order to facilitate following

this type of discussion, we at least provide some back-

ground on semilinearity in the following.

A subset A � Nn is said to be linear if there are

v; v1; . . .; vm 2 Nn such that

A ¼ fvþ k1v1 þ k2v2 þ 	 	 	 þ kmvm j k1; k2; . . .; km 2 Ng:

A subset A � Nn is said to be semilinear if it is a finite

union of linear sets.

A permutation of the coordinates in Nn preserves

semilinearity. Let R be a finite set of n elements. A Parikh

mapping w from R� into Nn is a mapping defined by first

choosing an enumeration a1; . . .; an of the elements of R
and then defining inductively wðkÞ ¼ ð0; . . .; 0Þ,
wðaiÞ ¼ ðd1;i; . . .; dn;iÞ, where dj;i ¼ 0 if i 6¼ j and dj;i ¼ 1 if

i ¼ j, and wðauÞ ¼ wðaÞ þ wðuÞ for all a 2 R, u 2 R�. Any
two Parikh mappings from R� into Nn differ only by a

permutation of the coordinates of Nn. Hence, the following

concept is well-defined.

Let R be a finite set of n elements. A subset A � R� is

said to be a language with the semilinear property, or slip

language for short, if wðAÞ is a semilinear subset of Nn for

a Parikh mapping w of R� into Nn. Parikh’s Theorem (see

Parikh 1966) shows that all context-free languages are slip

languages.

Kracht and Michaelis have shown in Michaelis and

Kracht (1997) that several languages possess features that

are non-semilinear. In particular, the example of Old-Ge-

orgian seems to be persuasive from a linguistic
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background. This finding motivated us to look for non-

semilinear languages that can be described by small matrix

ins-del systems. Conversely, recall that many linguistically

important languages can be also described by such systems,

as proven in the Introduction.

Hopcroft and Pansiot (Lemma 2.8 in 1979) proved that

vector addition systems with states (VASS) can describe

the non-semilinear language L0 ¼ fw 2 T� j jwjb þ jwjc

� 2jwjag. In Proposition 2, we show that a matrix ins-del

system with size MATð3; 1; 0; 0; 1; 0; 0Þ simulates the

VASS V presented in Hopcroft and Pansiot (1979). Hence,

it follows that MATð3; 1; 0; 0; 1; 0; 0Þ contains non-semi-

linear languages. Before proving the proposition, we define

VASS for the sake of keeping the presentation self-

contained.

Table 1 Overview on the power of matrix ins-del systems of size ðk; 1; i0; i00; 1; j0; j00Þ
Size ðk; 1; i0; i00; 1; j0; j00Þ i0; i00; j0; j00 2 f0; 1g k Language family relation Remarks

(k; 1, 0, 0; 1, 0, 0) 1 � REG Krassovitskiy et al. (2008) and Verlan (2007)

(k; 1, 0, 0; 1, 1, 0) � 1 OPEN

(k; 1, 0, 0; 1, 0, 1) � 1 OPEN

(k; 1, 0, 0; 1, 1, 1) 3 ¼ RE Theorem 3

(k; 1, 1, 0; 1, 0, 0) 3 � MLIN Theorem 9

(k; 1, 1, 0; 1, 1, 0) 3 ¼ RE See Petre and Verlan (2012)

(k; 1, 1, 0; 1, 0, 1) 3 ¼ RE See Petre and Verlan (2012)

(k; 1, 1, 0; 1, 1, 1) 2 ¼ RE Theorem 5

(k; 1, 0, 1; 1, 0, 0) 3 � MLIN Theorem 9

(k; 1, 0, 1; 1, 1, 0) 3 ¼ RE Theorem 2

(k; 1, 0, 1; 1, 0, 1) 3 ¼ RE Theorem 2

(k; 1, 0, 1; 1, 1, 1) 2 ¼ RE Theorem 5

(k; 1, 1, 1; 1, 0, 0) 3 ¼ RE Theorem 4

(k; 1, 1, 1; 1, 1, 0) 2 ¼ RE Theorem 6

(k; 1, 1, 1; 1, 0, 1) 2 ¼ RE Theorem 6

(k; 1, 1, 1; 1, 1, 1) 1 ¼ RE See Takahara and Yokomori (2003)

Table 2 Overview on the power of matrix ins-del systems of size ðk; 1; i0; i00; 2; j0; j00Þ
Size ðk; 1; i0; i00; 2; j0; j00Þ i0; i00; j0; j00 2 f0; 1g k Language family relation Remarks

(k; 1, 0, 0; 2, 0, 0) 1 � REG Krassovitskiy et al. (2008) and Verlan (2007)

(k; 1, 0, 0; 2, 1, 0) � 1 OPEN

(k; 1, 0, 0; 2, 0, 1) � 1 OPEN

(k; 1, 0, 0; 2, 1, 1) 3 ¼ RE Follows from Theorem 5

(k; 1, 1, 0; 2, 0, 0) 2 ¼ RE See Petre and Verlan (2012)

(k; 1, 1, 0; 2, 1, 0) 2 ¼ RE Follows from Petre and Verlan (2012)

(k; 1, 1, 0; 2, 0, 1) 2 ¼ RE Follows from Petre and Verlan (2012)

(k; 1, 1, 0; 2, 1, 1) 2 ¼ RE Follows from Theorem 5

(k; 1, 0, 1; 2, 0, 0) 2 ¼ RE Theorem 2

(k; 1, 0, 1; 2, 1, 0) 2 ¼ RE Follows from Theorem 2

(k; 1, 0, 1; 2, 0, 1) 2 ¼ RE Follows from Theorem 2

(k; 1, 0, 1; 2, 1, 1) 2 ¼ RE Follows from Theorem 5

(k; 1, 1, 1; 2, 0, 0) 1 ¼ RE See Păun et al. (1998)

(k; 1, 1, 1; 2, 1, 0) 1 ¼ RE Follows from Păun et al. (1998)

(k; 1, 1, 1; 2, 0, 1) 1 ¼ RE Follows from Păun et al. (1998)

(k; 1, 1, 1; 2, 1, 1) 1 ¼ RE See Takahara and Yokomori (2003)
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A vector addition system with states of dimension n is

described by a tuple ðW ; S;D; x0; p0;FÞ, where W is a finite

subset of Zn, S is a finite set, modelling a state control, x0 is

the starting point and p0 2 S is the starting state, and F � S

collects the final states. The transitions are collected in a

subset D of S� S�W , written like p ! ðq; uÞ. We define

ðp; vÞ )V ðq;wÞ, for p; q 2 S and v;w 2 Nn, if there is a

transition p ! ðq; uÞ in V such that w ¼ vþ u. The

reachability set of V (in a sense the multiset language

described by V is fx 2 Nn j 9q 2 S : ððp0; x0Þ )�
V ðq; xÞÞg,

where )�
V is the reflexive transitive closure of )V .

Proposition 2 MATð3; 1; 0; 0; 1; 0; 0Þ contains non-

semilinear languages.

Proof We translate the 3-dimensional vector addition

system with states

V ¼ ðf0; 1g � f�1; 0g � f0; 2g; fp; qg;D; ð0; 0; 1Þ; p; fpgÞ

with transitions t1 : p ! ðp; ð0; 1;�1ÞÞ, t2 : p ! ðq; ð0; 0;
0ÞÞ, t3 : q ! ðq; ð0;�1; 2ÞÞ, t4 : q ! ðp; ð1; 0; 0ÞÞ as given
by Hopcroft and Pansiot Hopcroft and Pansiot (1979) into

some system C ¼ ðfA;A0;B;B0B00; a; b; cg; fa; b; cg;
fAcg;RÞ where R consists of the following matrices:

m1 ¼ ½ðk;A; kÞdel; ðk; c; kÞdel; ðk;A0; kÞins�
m2 ¼ ½ðk;A0; kÞdel; ðk; b; kÞins; ðk;A; kÞins�
m3 ¼ ½ðk;A; kÞdel; ðk;B; kÞins�,
m4 ¼ ½ðk;B; kÞdel; ðk; b; kÞdel; ðk;B0; kÞins�
m5 ¼ ½ðk;B0; kÞdel; ðk; c; kÞins; ðk;B00; kÞins�
m6 ¼ ½ðk;B00; kÞdel; ðk; c; kÞins; ðk;B; kÞinsÞ

m7 ¼ ½ðk;B; kÞdel; ðk; a; kÞins; ðk;A; kÞins�
m8 ¼ ½ðk;A; kÞdel�
Hence, the language LðCÞ is in MATð3; 1; 0; 0; 1; 0; 0Þ.

The states p and q of V correspond to the nonterminals

A and B of C, respectively. The matrices m1, m2 together

simulate t1, m3 simulates t2, m4, m5, m6 together simulate

t3, m7 simulates t4, and m8 allows termination. We

consider the Parikh mapping w defined by a 7!ð1; 0; 0Þ,
b 7!ð0; 1; 0Þ, c 7!ð0; 0; 1Þ and claim that the reachability set

of V equals the Parikh image wðLðCÞÞ. To see this, we

provide some more details on the simulation of V by C.
Starting with the axiom Ac corresponds to the starting

state p and the starting point (0, 0, 1). On applying m1 and

m2, we have Ac )m1 A
0 )m2 b ш A : At this point, we note

that while going from Ac to b ш A, the number of a’s is

unaltered, the number of b’s increases by one and the

number of c’s decreases by one and the nonterminal A is

retained. Hence the first two matrices m1 and m2 of C
simulate the transition t1 : q ! ðq; ð0; 1;�1ÞÞ of V as

claimed.

The matrix m3 clearly rewrites A into B (b ш A )m3 b ш
B) which corresponds to the transition t2 of V. Next, on
applying m4, m5 and m6, we have

At this point, while moving from b ш B to c ш c ш B,

the number of a’s is unaltered, the number of b’s decreases

by one and the number of c’s increases by two and the

nonterminal B is retained. Hence, the three matrices m4,

m5 and m6 of C together simulate the transition t3 : q !
ðq; ð0;�1; 2ÞÞ of V.

Table 3 Overview on the power of matrix ins-del systems of size ðk; 2; i0; i00; 1; j0; j00Þ
Size ðk; 2; i0; i00; 1; j0; j00Þ i0; i00; j0; j00 2 f0; 1g k Language family relation Remarks

(k; 2, 0, 0; 1, 0, 0) 1 � REG Krassovitskiy et al. (2008) and Verlan (2007)

(k; 2, 0, 0; 1, 1, 0) 2 =RE See Petre and Verlan (2012)

(k; 2, 0, 0; 1, 0, 1) 2 =RE Theorem 2

(k; 2, 0, 0; 1, 1, 1) 1 =RE See Krassovitskiy et al. (2008)

(k; 2, 1, 0; 1, 0, 0) 2 � MLIN Theorem 10

(k; 2, 1, 0; 1, 1, 0) 2 =RE Follows from Petre and Verlan (2012)

(k; 2, 1, 0; 1, 0, 1) 2 =RE Follows from Theorem 2

(k; 2, 1, 0; 1, 1, 1) 1 =RE Follows from Krassovitskiy et al. (2008)

(k; 2, 0, 1; 1, 0, 0) 2 � MLIN Theorem 10

(k; 2, 0, 1; 1, 1, 0) 2 =RE Follows from Petre and Verlan (2012)

(k; 2, 0, 1; 1, 0, 1) 2 =RE Follows from Theorem 2

(k; 2, 0, 1; 1, 1, 1) 1 =RE Follows from Krassovitskiy et al. (2008)

(k; 2, 1, 1; 1, 0, 0) 3 =RE Follows from Theorem 4

(k; 2, 1, 1; 1, 1, 0) 2 =RE Follows from Theorem 6

(k; 2, 1, 1; 1, 0, 1) 2 =RE Follows from Theorem 6

(k; 2, 1, 1; 1, 1, 1) 1 =RE See Takahara and Yokomori (2003)
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Next on applying m7, we have c ш c ш B )m7 c ш c ш
a ш A which reflects that the number of a’s increases by

one, the numbers of b’s and c’s are unaltered and the

nonterminal B is changed to A. Clearly, this matrix m7

simulates the transition t4 : q ! ðp; ð1; 0; 0ÞÞ of V. Lastly,
the matrix m8 only serves to terminate if the simulated

system was in a certain state, namely p.

The explanations given so far should suffice to under-

stand that the reachability set of V is a subset of wðLðCÞÞ.
As the presence or absence of the nonterminals

A;A0;B;B0;B00 uniquely identify a certain stage of the

simulation of a transition of V, it can be also seen that no

malicious derivations are possible in C, i.e., wðLðCÞÞ
actually equals the reachability set of V. Moreover, LðCÞ is
the (full) pre-image of the reachability set of V under w, as
witnessed by writing, for instance, c ш c ш B to denote the

set of all strings derivable in a certain way in our discussion

above.

Hence, Lemma 2.8 in Hopcroft and Pansiot (1979)

shows that LðCÞ ¼ fw 2 fa; b; cg� j jwjb þ jwjc � 2jwjag.
As C has size (3; 1, 0, 0; 1, 0, 0), the claimed statement

follows. h

These observations motivated us to study Parikh images

of languages described by matrix ins-del systems, focusing

on context-free insertion-deletion rules, see Fernau and

Kuppusamy (2017). (Non-)semilinearity is not the only

question that could be raised in connection with matrix ins-

del systems of small weight like MATð3; 1; 0; 0; 1; 0; 0Þ;
mildly context-sensitive languages should extend the con-

text-free languages: Is CF � MATð3; 1; 0; 0; 1; 0; 0Þ (sim-

ilar with other matrix ins-del systems of small weight)?

This is an interesting question of future research.

Also, notice that (in particular monotone) insertion-

deletion systems with matrix control (also see Fernau and

Kuppusamy 2017) can be simulated by restarting automata

that jump back to the start of the string after simulating a

certain number of insertion or deletion steps (this number is

just the length of the matrix that is simulated). These

devices are quite important for linguistic purposes, see Otto

(2006), so that this provides a further natural link to lan-

guage processing.

8 Conclusions and further research
directions

In this paper, using matrix ins-del systems, we have

obtained some (improved) computational completeness

results and simulated linear and metalinear grammars with

small resource needs. It is interesting to note that with the

size used to simulate linear grammars, we were able to

simulate all metalinear grammars, as well. We have also

given a complete picture of the state of the art of the

generative power of the matrix ins-del systems with size

ðk; n; i0; i00;m; j0; j00Þ where n;m 2 f1; 2g with nþ m� 3 and

i0; i00; j0; j00 2 f0; 1g.
We now present some further concrete research direc-

tions below.

● Proving a non-trivial simulation result for all context-

free grammars by context-free matrix ins-del systems

with small size is left open. It is even not clear if we can

obtain the regular closure of the linear languages, i.e.,

all languages that can be obtained from linear languages

with the help of the regular operations union, concate-

nation and Kleene star. Notice that this family of

languages is a strict subclass of the context-free

languages (see Kutrib and Malcher 2007). We are

currently working in this direction.

● It would be also interesting to explore closure properties

for matrix ins-del systems of small sizes. For instance, it

would be interesting to know if the family

MATð2; 2; 1; 0; 1; 0; 0Þ is closed under reversal. If

this would be true, then MATð2; 2; 1; 0; 1; 0; 0Þ ¼
MATð2; 2; 0; 1; 1; 0; 0Þ, which would also mean that

the statement of theorems like Theorem 10 would

simplify.

● Simulate matrix ins-del systems with other ins-del

mechanisms, like graph-controlled ins-del systems,

where also many non-trivial computational complete-

ness results are known, with only small descriptional

complexities, or vice-versa. One of the drawbacks in

this approach is that the computational resources are

counted quite differently, so that a small graph-

controlled ins-del system would not necessarily lead

to a small matrix ins-del system, nor vice versa.

Supposedly, this situation would change if other types

of descriptional complexity measures would be used.

For instance, apart from Kuppusamy et al. (2016) and

the literature quoted therein, we are not aware of any

studies on the nonterminal complexity of controlled ins-

del systems. In the case of controlled context-free

grammars, it was then quite easy to transfer results

between different forms of regulations, see Fernau

(2003); Fernau et al. (2007); Freund and Păun (2001)

and the papers quoted therein.

● Do matrix ins-del systems of small weight allow for

efficient parsing? We are not aware of any research in

this direction. Also this area seems to be largely

neglected, although it is clear that this is of much

importance if it comes to finally applying these

generative devices in language processing.

Investigations on the power of matrix insertion-deletion... 267

123



● What type of relevant linguistic dependencies can be

captured by matrix ins-del systems of small weight,

beyond the example of cross dependencies we gave

above in Example 1?

● The linear growth property (not the same as the

semilinearity that we discussed in this paper) is related

to some on-going discussion of natural language

processing (see Kallmeyer 2010). We think it is

interesting to discuss (and relate) this property to

matrix ins-del systems.
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complexity of formal systems: 19th IFIP WG 1.02 international

conference, DCFS (LNCS), vol 10316. Springer, pp 128–139

Fernau H, Kuppusamy L, Raman I (2017b) On the generative power

of graph-controlled insertion-deletion systems with small sizes.

J Autom Lang Comb 22:61–92

Fernau H, Kuppusamy L, Raman I (2017c) Properties of language

classes between linear and context-free. Manuscript in

preparation

Galiukschov BS (1981) Semicontextual grammars (in Russian). Mat.

logica i mat. ling., Kalinin Univ., pp 38–50

Geffert V (1991a) How to generate languages using only two pairs of

parentheses. J Inf Process Cybern EIK 27(5/6):303–315

Geffert V (1991b) Normal forms for phrase-structure grammars.
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Margenstern M, Păun Gh, Rogozhin Y, Verlan S (2005) Context-free

insertion-deletion systems. Theor Comput Sci 330(2):339–348

Michaelis J, Kracht M (1997) Semilinearity as a syntactic invariant.

In: Retoré C (ed) Logical aspects of computational linguistics,

268 H. Fernau et al.

123



first international conference, LACL’96 (LNCS), vol 1328.

Springer, pp 329–345

Neary T (2017) 2-state 2-symbol Turing machines with periodic

support produce regular sets. In: Pighizzini G, Câmpeanu C (eds)
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Păun Gh, Rozenberg G, Salomaa A (1998) DNA computing: new

computing paradigms. Springer, Berlin

Penttonen M (1974) One-sided and two-sided context in formal

grammars. Inf Control (now Inf Comput) 25:371–392

Petre I, Verlan S (2012) Matrix insertion-deletion systems. Theor

Comput Sci 456:80–88

Salomaa AK (1973) Formal languages. Academic Press, Cambridge

Shannon CE (1956) A universal Turing machine with two internal

states. In: Shannon C E, McCarthy J (eds) Automata studies.

Annals of mathematics studies, vol 34. Princeton University

Press, pp 157–165

Stabler E (2004) Varieties of crossing dependencies: structure

dependence and mild context sensitivity. Cognit Sci 28:699–720

Takahara A, Yokomori T (2003) On the computational power of

insertion-deletion systems. Nat Comput 2(4):321–336

Verlan S (2007) On minimal context-free insertion-deletion systems.

J Autom Lang Comb 12(1–2):317–328

Verlan S (2010) Recent developments on insertion-deletion systems.

Comput Sci J Mold 18(2):210–245

Investigations on the power of matrix insertion-deletion... 269

123


	Investigations on the power of matrix insertion-deletion systems with small sizes
	Abstract
	Introduction
	Preliminaries
	Insertion-deletion systems
	Matrix insertion-deletion systems
	Metalinear languages

	Auxiliary results
	Computational completeness results
	Simulating (meta-)linear grammars
	Summary of the results
	Semi-linearity and mild context-sensitivity
	Conclusions and further research directions
	Acknowledgements
	References




