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Abstract We study a simple triangular partitioned cellular
automaton (TPCA), and clarify its complex behavior. It is a
CA with triangular cells, each of which is divided into
three parts. The next state of a cell is determined by the
three adjacent parts of its neighbor cells. This framework
makes it easy to design reversible triangular CAs. Among
them, isotropic and eight-state (i.e., each part has only two
states) TPCAs are called elementary TPCAs (ETPCAs).
They are extremely simple, since each of their local tran-
sition functions is described by only four local rules. In this
paper, we investigate a specific reversible ETPCA T;47,
where 0347 is its identification number in the class of 256
ETPCA:s. In spite of the simplicity of the local function and
the constraint of reversibility, evolutions of configurations
in Ty347 have very rich varieties. It is shown that a glider,
which is a space-moving pattern, and glider guns exist in
this cellular space We also show that the trajectory and the
timing of a glider can be fully controlled by appropriately
placing stable patterns called blocks. Furthermore, using
gliders to represent signals, we can implement universal
reversible logic gates in it. By this, computational univer-
sality of Ty347 is derived.
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1 Introduction

A three-neighbor triangular cellular automaton (TCA) is
one whose cell is triangular, and communicates with its
three neighbor cells. Bays (1994) investigated a class of
TCAs with the local functions of the type of the Game-of-
Life CA (Gardner 1970, 1971), and showed their interest-
ing behavior. On the other hand, Gajardo and Goles (2001)
proposed a three-state TCA (defined on a hexagonal lat-
tice), and proved its computational universality. Imai and
Morita (2000) studied a reversible TCA, and showed that
there is an eight-state universal reversible TCA. Morita
(2016b) also showed another eight-state universal rever-
sible TCA.

The framework of TCAs used in Imai and Morita (2000)
is a triangular partitioned cellular automaton (TPCA)
where each cell is divided into three parts, and each part
has its own state set. Thus, TPCAs are a subclass of TCAs,
where the state set of a cell is the Cartesian product of the
state sets of the three parts. In a TPCA, the next state of a
cell is determined depending only on the three adjacent
parts of the neighbor cells (not depending on the states of
the whole three neighbor cells). This framework is useful
for designing reversible TCAs. This is because injectivity
of the local transition function is equivalent to that of the
global transition function.

An elementary TPCA (ETPCA) is one such that each
part of a cell has only two states (i.e., the state set is {0, 1},
and hence a cell has eight states), and its local function is
isotropic (i.e., rotation-symmetric). There are 256 ETPCAs
in total, and there are 36 reversible ETPCAs (RETPCAs).
Note that the reversible TPCAs given in Imai and Morita
(2000) and Morita (2016b) are RETPCAs, which are also
conservative, i.e., the total number of the state 1’s is con-
served throughout their evolution processes. ETPCAs are
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extremely simple, since each of their local functions is
described by only four local rules. But, they still show
interesting behavior as in the case of one-dimensional
elementary  cellular automata (ECAs) (Wolfram
1986, 2002).

In this paper, we investigate a specific non-conservative
RETPCA Ty347 having the identification number 0347 in
the class of 256 ETPCAs. It somewhat resembles the
Game-of-Life CA (Gardner 1970, 1971; Berlekamp et al.
1982), and exhibits complex behavior. In particular, there
exist a glider and glider guns. The glider in Ty347 i a
moving object with period 6. There are glider guns that
generate gliders in three directions as well as in one
direction. There is also a gun that generates gliders to the
negative time direction. We can compose right-turn, left-
turn, backward-turn and U-turn modules out of
stable blocks, which can change the moving direction of a
glider. It is also possible to change the direction of a glider
by colliding another glider appropriately. Based on these
basic operations, we can implement gate modules that
simulate universal reversible logic gates in the cellular
space of Ty347. By this, computational universality of To347
is concluded.

2 Elementary triangular partitioned cellular
automata

In this section, we give definitions on elementary triangular
partitioned cellular automata (ETPCAs), their reversibility,
and some related notions.

A partitioned cellular automaton (PCA) is a subclass of
a standard CA, where a cell is divided into several parts,
and each part has its own state set. Thus, the set of states of
a cell is the Cartesian product of these state sets. Figure la
illustrates the cellular space of a two-dimensional three-
neighbor triangular PCA (TPCA). In a TPCA, the next
state of a cell is determined by the states of the adjacent
parts of the three neighbor cells, not by the states of the
whole three cells. More precisely, it is determined by a set
of local rules of the form shown in Fig. 1b. We assume
there is no pair of distinct rules that have the same left-
hand sides. Namely, TPCAs considered here are

deterministic. A set of local rules, thus, defines a local
function of a TPCA. A configuration of a TPCA is a state
of the whole (infinite) cellular space of it. Applying the
local function to all the cells in a configuration in parallel, a
global function, which gives a transition relation among
configurations, is obtained.

Here, we do not give formal definitions of a TPCA, its
configuration, and its global function, since their descrip-
tions become complex (note that a triangular CA can be
formally defined as a CA on a Cayley graph as in Roka
1999). However, various notions on TPCAs given below
will be clearly understood without giving formal
definitions.

We say a PCA is locally reversible if its local function is
injective, and globally reversible if its global function is
injective. Local reversibility of a given PCA is easily tested
by checking if there is no pair of local rules that have the
same right-hand sides. It has been shown that global
reversibility and local reversibility are equivalent
(Lemma 1). Therefore, such a PCA is simply called a re-
versible PCA (RPCA). Note that the lemma is given for
one-dimensional PCAs in Morita and Harao (1989), but it
is easy to extend it for two-dimensional PCAs.

Lemma 1 (Morita and Harao 1989) A PCA A is globally
reversible iff it is locally reversible.

By this lemma, to obtain a reversible CA, it is sufficient
to give a locally reversible PCA. Thus, the framework of
PCAs makes it easy to design reversible CAs.

A TPCA is called isotropic (or rotation-symmetric), if,
for each local rule, the rules obtained by rotating both sides
of it by a multiple of 60° exist. It should be noted that, if a
TPCA is isotropic, then all three parts of a cell must have
the same state set. In the following, we study only isotropic
TPCA:s.

An eight-state isotropic TPCA is called an elementary
TPCA (ETPCA). Thus, each part of a cell has the state set
{0,1} (in the following figures, the states 0 and 1 are
indicated by a blank and a particle e, respectively). In fact,
ETPCAs are the simplest ones among two-dimensional
PCAs. Yet, this class still contains many interesting PCAs
as in the case of one-dimensional elementary CAs (ECAs)
(Wolfram 1986, 2002).
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Fig. 1 A three-neighbor Ve X X
triangular partitioned cellular
automaton (TPCA). a Its
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Since an ETPCA is isotropic, and each part of a cell has
two states, its local function is defined by only four local
rules. Hence, an ETPCA can be specified by a four-digit
number wxyz where w, z € {0,7} and x,y € {0, 1,...,7} as
shown in Fig. 2. Thus, there are 256 ETPCAs. Here, w and
z must be 0 or 7, because ETPCAs are isotropic and
deterministic. The ETPCA with the identification number
wxyz is denoted by T),,.. Figure 3 shows the local function
of the ETPCA Ty347.

A reversible ETPCA is denoted by RETPCA. 1t is easy
to see the following: An ETPCA T,,,, is reversible iff

(w,2) € {(0,7),(7,0)} A
(x,y) € {1,2,4} x {3,5,6} U {3,5,6} x {1,2,4}.

Let T, be an ETPCA. We say T,,,, is conservative (or
bit-conserving), if the total number of particles (i.e., ®’s) is
conserved in each local rule. Thus, the following holds: An
ETPCA T,,y. is conservative iff

w=0 A xe{l,2,4} N ye{3,56} AN z=T.

By above, it is easy to see that, if an ETPCA is conser-
vative, then it is reversible. The ETPCA To347 (Fig. 3) is
reversible but not conservative.

In ETPCAs, there are two kinds of cells, i.e., an up-
triangle cell and a down-triangle cell, as in Fig. 4. But, they
differ only on their directions, and, of course, they have the
same local function. Here, we denote their states shown in
Fig. 4 by a triplet (s, 52,53) € {0,1}°.

For an ETPCA where w = 0 (i.e., Toy, for some x,y €
{0,...,7} and z € {0,7}), we define a quiescent state as
the state (0, 0, 0). In such an ETPCA, if all the neighbor
cells are quiescent states, then the center cell becomes
quiescent at the next time step. A finite configuration is one
such that all but finite number of cells are in the quiescent
state. An infinite configuration is one such that infinitely
many cells are in non-quiescent states.

A pattern is a finite segment of a configuration. In what
follows, various useful patterns will be given. Placing such

MIARYNES
CQ-AIAIAIAIAIAILIA
S AIAIAIAIAIAILIA
AR

Fig. 2 Representing an ETPCA by a four-digit number wxyz, where
w,z€{0,7} and x,y € {0,1,...,7}. The states 0 and 1 are
represented by a blank and e, respectively. Vertical bars indicate
alternatives of the right-hand side of each local rule

A AN A R NR AR

Fig. 3 Local function of the non-conservative RETPCA T{347 defined
by four local rules

Fig. 4 a An up-triangle cell, and b a down-triangle cell in the space
of ETPCA, whose states are (s1,s2,s3) € {0, 1}3

patterns appropriately in the cellular space we can con-
struct configurations that perform interesting tasks.

In a three-neighbor TPCA, the states in the up-triangle
cells, and those in the down-triangle cells at time O never
interact. The reason is that the next state of an up-triangle
(down-triangle, respectively) cell is determined only by the
neighboring three down-triangle (up-triangle) cells (Fig. 1
b). An up-triangle configuration (down-triangle configu-
ration, respectively) is one such that all the down-triangle
(up-triangle) cells are in the quiescent state. Thus, if we start
from an up-triangle (down-triangle) configuration, then the
next one is a down-triangle (up-triangle) configuration.
From the above observation, any task performed by a TPCA
can be done by giving an up-triangle (or down-triangle)
configuration at time 0. However, in such configurations,
“stable patterns” (Sect. 3.1.1) cannot exist. Since
stable patterns are convenient for designing larger patterns
and for considering their evolving processes, we use both
types of cells to give stable patterns.

3 RETPCA Tjy347 and its properties

In this section, we focus on the specific non-conservative
RETPCA Ty347 (Fig. 3), and investigate its properties. We
present several basic patterns, and examine how they
evolve. We shall see that, in Tj347, many patterns show
interesting behavior as in the case of the Game-of-Life CA
(Berlekamp et al. 1982; Gardner 1970, 1971). In particular,
a space-moving pattern called a “glider” exhibits complex
behavior when it interacts with other basic patterns. Actu-
ally, it is a useful pattern for designing functional configu-
rations. In Sect. 4, gliders and some basic patterns will be
used to implement reversible logic gates in Ty347.
Generally, it is not easy to follow evolving processes of
configurations of Ty347 by hand. So, we made a program for
simulating them. In Morita (2016a) various examples of
evolving processes can be seen by movies obtained by it. In
addition, we created an emulator of Tys4; on a general
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purpose CA simulator Golly (Trevorrow et al. 2005),
whose file is available in the Rule Table Repository of
Golly or in Morita (2017).

3.1 Patterns in 7347

There are three kinds of patterns in Tp347. They are a
periodic pattern, a space-moving pattern, and an expanding
pattern. Here, several examples of them are given.

3.1.1 Periodic pattern

A pattern is called a periodic pattern (or a pattern of period
p), if the following holds: Starting from the configuration
consisting of one copy of it, the same pattern appears at the
same position after p time steps (p > 0). As a special case,
a pattern of period 1 is called a stable pattern. It should be
noted that in Ty347 there is no “eventually periodic pattern”
(i.e., a pattern that becomes periodic after one or more
transient steps), since Ty347 1S reversible.

A block is a stable pattern shown in Fig. 5a or b. There
are two kinds of blocks, i.e., type I (Fig. 5a) and type 1I
(Fig. 5b). As we shall see in Sect. 3.2, moving direction of
a glider can be controlled by placing several blocks of type
I and II appropriately.

The pattern at + = 0 in Fig. 6 is a reflected block (i.e., a
mirror image of a block). Unlike a block, it is not stable. In
this case, the same pattern first appears at the same position
after 8 steps, and thus it is of period 8.

A fin is a periodic pattern consisting of three particles
shown in Fig. 7. It simply rotates clockwise with the period
6. A fin can also go around a block as in Fig. 8. It rotates
around a block by 120° in 14 steps. Thus, the whole pattern
consisting of a block and a fin is of period 42. Furthermore,
a fin can travel around a sequence of blocks as in Fig. 9.

A rotator is a periodic pattern shown in Fig. 10. Like a
fin, it rotates around some point. Since it rotates by 60° in 7
steps, its period is 42.

(a) (b)

Fig. 5 Blocks of a type I and b type II. They are stable patterns
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Fig. 6 The pattern at = 0 is called a reflected block, which is a
mirror image of a block. It is a pattern of period 8

1=0 r=1 1=2 1=3
.o.’ o... o* <2,
t=4 t=35 tr=6
'.o ..(; .o.'

Fig. 7 A fin is a pattern of period 6. It rotates around the point
indicated by o clockwise

3.1.2 Space-moving pattern

A space-moving pattern (or a spaceship) is one such that
after some time steps p (p > 0) the same pattern (not
rotated one) appears at a different position. Thus, it moves
straight ahead in the cellular space of Ty347 if no obstacle
exists. The integer p is also called the period of the space-
moving pattern.

A glider shown in Fig. 11 is a space-moving pattern. It
swims in the cellular space like a fish (or an eel). It travels a
unit distance, the side-length of a triangle, in 6 steps. Thus,
its speed is 1/6. The patterns in Fig. 11 at time
t=0,...,5, and 6 are said to be of phase 0, ...,5, and 0,
respectively. Hereafter, we regard the pattern of phase 0 as
a standard glider pattern. By rotating it appropriately, it
can move in any of the six directions. A glider will be used
as a “signal” when we construct logic circuits in the cel-
lular space of Ty347. So far, it is not known whether there is
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t=0

t=1

=3 t=4 tr=5 t=3 t=4 t=5
VAV S ATAVARAVAV - VAN A VAV VAVARAVAVAVATAVA Ve
VA S JAVANIAVAN S AV Vi

t=06 t=17 t=38 r=6 t=17

Fig. 8 A fin can travel around a block clockwise. It takes 42 steps to
return to the initial position. Note that the block changes its pattern

transiently, but it becomes the initial pattern again at r = 14

t=0 t=125
VAVAVACE
APV TN AVAVANIVAA U T AVAVAL
A VAV S VA
ol AVAV.=AVAVAVAVAVAY
t =50 t=114
SEx Ay
PR FAVPY T ATAYAN
s VA Ay
- RN AVAVAVAVAVAY
PAVAC S AAVAVAVAVAVARIINAV I S

Fig. 9 A fin can also travel around a sequence of blocks

a space-moving pattern that is essentially different from a
glider (here, “essentially different” means that it is not
composed of two or more glider patterns).

Fig. 10 A rotator is a pattern of period 42. It moves around the point
indicated by o

t=3 t=4 t=5
t=6

INONONON/
\VAVAVAV.N
AVAV..VAV
VAVAVAVAN

Fig. 11 A glider. It is a space-moving pattern of period 6

3.1.3 Expanding pattern

An expanding pattern (or more precisely, an eventually
expanding pattern), is one such that the diameter of the
pattern grows indefinitely as it evolves (though we do not
give a definition of “diameter” here, it should be defined
appropriately). Namely, for any integer dy > 0, there exists
an integer fo > 0 such that the diameter of the pattern at
time #( is greater than or equal to dj.

A pattern consisting of one particle is an example of an
expanding pattern. If we start from it, a disordered pattern
and gliders are generated, and the whole pattern grows
bigger and bigger (Fig. 12).
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t=75

t =340

Fig. 12 Evolution process from the configuration consisting of a
single particle (+ = 0). The sizes of the patterns grow indefinitely as it
evolves. Thus, every pattern in this evolution is an expanding pattern

It should be noted that any expanding pattern also
expands to the negative time direction. Namely, if a pattern
p at t =0 is an expanding pattern, then for any dy > 0,
there is a pattern p’ at 7y <0 that becomes p at t = 0, and its
diameter is greater than or equal to dy. This fact is
explained as follows. At first, we can observe that for each
pattern p, at time ¢, the previous pattern p,_; at t — 1 is
easily obtained by reversely applying the local rules given
in Fig. 3. Now, assume, on the contrary, there is an integer

@ Springer

dmax such that the diameter of the pattern p, at time ¢ is less
than d,,,x for all t<0. Then, the total number of different
patterns that appear at <0 is finite. Hence, there are two
integers t; <t, <0 for which the patterns p;, and p,, are the
same. Therefore, p,, is either a periodic pattern or a space-
moving pattern, and not an expanding pattern.

Figure 13 shows that the one-particle pattern expands
indefinitely to the negative time direction.

In the RETPCA Tj347, a disordered pattern like the one
in Fig. 12 often appears, even if we compose a configu-
ration out of periodic patterns and gliders. Therefore, when
we want to give a configuration that performs some
intended task, it should be designed so that it never gen-
erates a disordered pattern.

3.2 Controlling a glider by blocks

We now develop methods of controlling a glider, i.e., we
investigate how we can change the move direction of a
glider, and how we can adjust its timing. We first show
several turn modules, such as left-turn and right-turn
modules, by which the moving direction of a glider is
changed. Then, we show a method of adjusting the delay
time of a glider by them.

3.2.1 Backward-turn module

We can see that a single block acts as a backward-turn
module. We place a glider that moves eastward, and a
single block of type I as shown in Fig. 14 (t =0). At ¢t =
12 they collide. Then, the glider is split into a rotator and a
fin. The rotator is, so to say, a “body” of the glider. Since
the body has no fin, it cannot swim, and thus begins to
rotate around the point indicated by o (# = 16). The fin
travels around the block (r = 38). When it comes back to
the original position, it interacts with the body (+ = 50). By
this, the rotation center of the body is shifted upward by
two cells, and the fin travels around the block once more
(t =61). At t =94, the body and the fin meet again. By
this, the fin is attached to the body, and a glider is recon-
structed. Finally, the glider goes westward (t = 97). By
above, backward-turn of the glider is realized.

In the above process, if we use a type II block instead of
a type I block, then the glider goes to the north-east
direction, but the block cannot be re-used, since several
garbage particles remain (Fig. 15). Therefore, an appro-
priate type of a block should be used depending on the
coming direction of the glider. Figure 16 shows the
allowed input positions of a glider in each type of a block.
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1 =—340

Fig. 13 The pattern at t = — 340 shrinks to the single-particle pattern
at t = 0. After that, it evolves as shown in Fig. 12. Hence, every
pattern that appears at <0 is also an eventually expanding pattern,
though it first shrinks to a single particle

t =50 t =61
NN/
t =94 t=97

Fig. 14 Colliding a glider with a type I block. It works as a
backward-turn module

3.2.2 Right-turn modules

Right-turn of a glider by 120° is realized by colliding a
glider with a sequence of two blocks (Fig. 17). As in the
case of one block (Fig. 14), the glider is first split into a
rotator and a fin (r = 56). The fin travels around the blocks
three times without interacting with the rotator. At the end
of the fourth round, they meet to reconstruct a glider. Then,
it goes to the south-west direction (¢ = 334). Hence, two
blocks act as a 120°-right-turn module.

Figures 18 and 19 show that sequences of three blocks
and five blocks also act as 120°-right-turn modules. They
have shorter delays than the case of two blocks. Note that,
as in Fig. 19, blocks need not be placed in a straight line.
More precisely, the sequence of blocks can be bent by
4 60° at each block. But, if we do so, the other type of a
block must be used at the next position. Otherwise, blocks
will be destroyed.

If we collide a glider with a sequence of four, six, or
seven blocks, they will be destroyed. On the other hand, a
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t=0 tr=12
... - .. :..::. ... ’ ..::.
t=20 =28

s/

Fig. 15 If we collide a glider moving eastward with a type II block,
garbage particles remain. Thus, it cannot be re-used as a turn module

(a) (b)

Fig. 16 Allowed input positions for a the type I block, and b the type
1I block

tr=0 t =156
L i
t =334

Fig. 17 120°-right-turn module composed of two blocks

sequence of eight blocks acts as a backward-turn module
like one block, and that of nine blocks acts as a right-turn
module like two blocks. Generally, a sequence of n+ 7
blocks (n > 0) shows a similar behavior as that of n blocks
though the total delay is longer. The reason is as follows.
The period that the fin goes around the n + 7 blocks is
36(n + 7) + 6. Thus, when the fin comes back to the initial

@ Springer
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t =208

o % oo o0
o\ /% . .

Fig. 19 120°-right-turn module composed of five blocks, which are
not linearly placed

position, the phase of the rotator becomes the same as in
the case of n blocks, since the period of a rotator is 42, and
36 x 7 is a multiple of 42.

It is also possible to make a 60°-right-turn module as in
Fig. 20. It is composed of a 120°-right-turn module with
three blocks and a backward-turn module consisting of one
block. First, the input glider makes 120°-right-turn by the
three blocks (r = 250). Next, the glider is reflected by the
backward-turn module (r = 341). Then, it makes 120°-
right-turn by the three blocks again (+ = 585). Thus, the
whole pattern acts as a 60°-right-turn module. Note that, by
replacing the three blocks by two or five blocks, we obtain
a 60°-right-turn module having a different delay time. We
can also adjust the total delay time by changing the dis-
tance between the backward-turn module and the 120°-
right-turn module. By this, the travelling distance of a
glider is changed.

This mechanism can be used as an interface between a
bidirectional signal path and unidirectional signal paths as
shown in Fig. 21. A bidirectional signal path is one on
which a glider, which is regarded as a signal, moves in both
directions. Sometimes we have to use such a signal path.
For example, as shown in Fig. 28, three gliders are gen-
erated by a head-on collision of two gliders, and one of the
three gliders goes backward on one of the input paths.
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t =250

t =341

t =585

Fig. 20 60°-right-turn module composed of a 120°-right-turn module
and a backward-turn module

Input

Bidirectional signal path

Output

Fig. 21 Interface between a bidirectional signal path, and unidirec-
tional signal paths

Using the structure shown in Fig. 21, the input and the
output to/from a bidirectional path are split.

3.2.3 U-turn module

A U-turn module is given in Fig. 22. Also in this case, the
glider is first split into a rotator and a fin (+ = 36). But,

t=0 t=36
AR, AT
t=113

Fig. 22 U-turn module

slightly before the fin comes back to the start position, it
meets the rotator, and a glider is reconstructed, which
moves westward (¢ = 113). Note that, here the output path
is different from the input path, while in the backward-turn
module they are the same (Fig. 14).

3.2.4 Left-turn module

Figure 23 shows a 120°-left-turn module. It is more
sophisticated than the right-turn and U-turn modules. The
glider is split into a rotator and a fin as before (t = 78). The
fin first travels outside of the module, and then inside. But,
around the middle of the module it meets the rotator. A
glider is reconstructed from them, and it moves to the
north-west direction (r = 366).

3.2.5 Adjustment of the delay time of a glider

Using the turn modules given above, we can also adjust the
delay of a glider. We first calculate the delay and the phase
shift caused by each turn module.

The net delay d of a turn module is the additional delay
caused by the module. For example, consider the case of
120°-right-turn module with five blocks (Fig. 19). We can
regard the travelling distance of the glider (along the arrow
line) from t = 0 to 208 is 5 [note that the glider patterns at
t = 0 and 208 are both standard ones (i.e., of phase 0)]. If a
glider travels straight the distance of 5, then it takes
5/(1/6) = 30 steps, since the speed of a glider is 1/ 6.
Therefore, the net delay for this module is
d =208 —-30=178.

The phase shift s of a turn module is the shift value of
the phase of a glider by the module, and calculated by the
relation s = (—d) mod 6. In the case of 120°-right-turn
module with five blocks, the phase shift s is
(—178) mod 6 = 2.
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t=178

Fig. 23 120°-left-turn module

Table 1 shows the net delay and the phase shift of each
turn module. Assume a pattern composed of turn modules
is given. Then, its total delay is easily calculated by
Table 1. Consider the 60°-right-turn module in Fig. 20. It
is composed of a 120°-right-turn module with three blocks
and a backward-turn module. Therefore, its net delay is
220 x 24+ 73 =513, and its phase shift is (—513) mod
6 = 3 (note that the 120°-right-turn module in this pattern
is used twice).

We now explain a method of adjusting the delay of a
glider. Since the direction of a glider is freely controlled by

Table 1 Net delay and phase shift of the six turn modules

Module Net delay Phase shift
Backward-turn 73 +5
Right-turn (120°) by 2 blocks 304 +2
Right-turn (120°) by 3 blocks 220 +2
Right-turn (120°) by 5 blocks 178 +2
U-turn 77 41
Left-turn (120°) 342 0

@ Springer

the turn modules given above, we hereafter consider the
timing problem only for east-moving gliders.

At first, we observe that an extra delay of 6 steps can be
realized by modifying the signal path using 120°-right-turn
modules appropriately. For example, consider the signal
path shown in Fig. 24a. Note that, timing adjustment of a
glider is required when interacting it with another glider or
with a periodic pattern. Therefore, we can assume the given
pattern for a signal path has several 120°-right-turn mod-
ules (if otherwise, insert three turn modules as in Fig. 24a).
An extra delay of 6 steps is achieved by extending the
length of the signal path by 15, and replacing two occur-
rences of three-block sequences by five-block sequences as
in Fig. 24b. By these modifications, we have an extra delay
of 15/(1/6) — (220 — 178) x 2 = 6 steps. A delay of 6n
steps (n = 2,3,...) is also realized in a similar manner.

It is also possible to shift the phase of a glider (i.e., to
adjust the timing by a few steps that is less than 6). Note
that the phase shift of an odd number is impossible if a
glider moves in the same direction (say, eastward). This is
because the standard glider pattern of east-moving one
always occupies up-triangle cells. Therefore, it is sufficient
to show that the phase shift of 2 steps is possible (the phase
shift of 4 steps is realized by repeating the procedure).
Consider the signal paths shown in Fig. 25. There are three
120°-right-turn modules in Fig. 25a. Therefore, the total
phase shift value is (2 + 2 + 2) mod 6 = 0. In Fig. 25b, the
total phase shift is 2 40 = 2, since there are one 120°-
right-turn module and one 120°-left-turn module. Thus,
phase shift of + 2 relative to (a) is realized in (b).

By above, it is guaranteed that adjustment of timing of

gliders is always possible. But, in the following
t =888

(@)
t =894

(b)

Fig. 24 Adjustment of the delay. In b the delay of the glider is larger
than that in a by 6 steps
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Fig. 25 Adjustment of the phase. In b the phase of a glider is shifted
by 2 relative to that in a

constructions of larger patterns, ad hoc methods for
reducing the sizes of the patterns are employed.

3.3 Glider guns in Ty347

A glider gun is a pattern that generates gliders periodically.
It is well known that there is a glider gun in the Game-of-
Life CA (Gardner 1971). We show there are two types of
glider guns in the RETPCA Ty347. They are three-way and
one-way glider guns.

In Ty347, it is easy to create a three-way glider gun. As
shown in Fig. 26, it is obtained by colliding a glider with a
fin. Interestingly, there is a three-way glider absorber in
Toza7 (Fig. 27). It absorbs three gliders every 24 steps, and
if the input gliders run out, it finally produces a fin and a
glider. Thus, it is considered as a “backward glider gun”
that generates gliders to the negative time direction.
Combining the gun and the absorber, it is also possible to
create a three-way glider gun that generates gliders in both
positive and negative time directions (Morita 2016a).

Next, we construct a one-way glider gun. We first
observe that three gliders are generated by the head-on
collision of two gliders as in Fig. 28. Based on this
mechanism, we can design a one-way glider gun. Namely,
two of the three generated gliders are circulated and re-
used to generate the next three. Figure 29 shows such a
glider gun, where a glider is generated every 1422 steps

It is also possible to compose a one-way glider absorber.
Symmetrically to the process of Fig. 28, two gliders are
obtained by the collision of three gliders, i.e., one of the
three gliders is reversibly erased as shown in Fig. 30.
Based on this, we can construct a one-way glider absorber

t=0
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Fig. 26 Three-way glider gun. It generates three gliders every 24
steps

given in Fig. 31. This pattern is a “quasi-mirror-image” of
the one-way glider gun pattern (except the gliders). The
positions of the blocks are just the mirror images of those
in the glider gun. But, each block is replaced by the other
type of the corresponding block (note that the mirror image
of a block is not stable as shown in Fig. 6). To this one-way
glider absorber, an infinite number of gliders must be given
at the right timing (if the input gliders run out, this pattern
will be destroyed, and a disordered pattern will expand).
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t=-96

INONINININININININININININININININTNAN NN
ININININININININININININONINININONENININING
\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV.\VAVAVA

INONININONONINININININININONCNINANINININV,
A\VAVAVAVAVAVAVAVAVAVAVAVAVAVAV.VAVAVAVAVAVA

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
NOINININININININININININININANINININININ

INONININININININININININININININEANINI NN
INONONINININININININININININININININININING
NNININININININININININININONONENINONONON

INONINININININININININININIAANNININININTN
CNONONINININANINNTNANTNNTNININININININING
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

NNINININONONINININONINENENONINININON.

Fig. 27 Glider absorber. It is considered as a glider gun to the
negative time direction

Fig. 28 Generating three gliders by the head-on collision of two
gliders

Connecting a one-way glider gun and an absorber
appropriately, we have a pattern where an infinite stream of
gliders generated by the gun is absorbed by the absorber.
Figure 32 is such a pattern of period 1422.

@ Springer

Output of glider stream

Fig. 29 One-way glider gun. It generates a glider every 1422 steps

NOINININININININNINN
INONINONININONENINAN/
NONININISININININANINN
INONINONENININONINININS

Fig. 30 Generating two gliders by the collision of three gliders

Input of glider stream

Fig. 31 One-way glider absorber. It absorbs a glider every 1422 steps
4 RETPCA Tj347 is computationally universal

In this section, we show Turing universality of Tz47, i.€.,
any Turing machine can be simulated in it.
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Fig. 32 One-way glider gun and absorber. An infinite glider stream
generated by the gun (left) is absorbed by the absorber (right)

4.1 Showing Turing universality of a reversible CA

To prove Turing universality of a reversible CA, it is
sufficient to show that any reversible logic circuit com-
posed of switch gates (Fig. 33a), inverse switch gates
(Fig. 33b), and delay elements can be simulated in it
(Lemma 6).

Lemma 6 can be derived, e.g., in the following way.
First, a Fredkin gate (Fig. 34) can be constructed out of two
switch gates and two inverse switch gates (Lemma 2).
Second, any reversible sequential machine (RSM), in
particular, a rotary element (RE), which is a 2-state
4-symbol RSM, is composed only of Fredkin gates and
delay elements (Lemma 3). Note that an RE is a special
type of a reversible logic element with memory (RLEM)
(Morita et al. 2012). Third, any reversible Turing machine
is constructed out of REs (Lemma 4). Finally, any (irre-
versible) Turing machine is simulated by reversible one
(Lemma 5). Thus, Lemma 6 follows. Note that the circuit
that realizes a reversible Turing machine constructed by
this method becomes an infinite (but ultimately periodic)
circuit.

Lemma 2 (Fredkin and Toffoli 1982) A Fredkin gate can
be simulated by a circuit composed of switch gates and
inverse switch gates, which produces no garbage signals.

Lemma3 (Morita 1990) Any RSM (in particular RE) can
be simulated by a circuit composed of Fredkin gates and
delay elements, which produces no garbage signals.

¢ - y1=c Y1 —» >~ C
I Yo =cx V2 —»
X —» — X
>~ y3=cCx V3 —»
(@ (b)

Fig. 33 a Switch gate. b Inverse switch gate, where ¢ =y, and x =
¥2 + y3 under the assumption (y2 — yi) A (y3 — 1)

xX=c¢
y=cp+cq
q Z=cq+cp

Fig. 34 Fredkin gate

Lemma 4 (Morita 2001) Any reversible Turing machine
can be simulated by a garbage-less circuit composed only
of REs.

Lemma 5 (Bennett 1973) Any (generally irreversible)
Turing machine can be simulated by a garbage-less
reversible Turing machine.

Lemma 6 A reversible CA is Turing universal, if any
circuit composed of switch gates, inverse switch gates, and
delay elements is simulated in it.

So far, Turing universality of several kinds of reversible
two-dimensional CAs has been shown in this way. They
are the 2-state reversible block CA model by Margolus
(1984), the two models of 16-state reversible PCAs on
square grid by Morita abd Ueno (1992), the conservative
RETPCA Tpi57 by Imai and Morita (2000), and the con-
servative RETPCA Tj37 by Morita (2016b).

4.2 Making switch gate and inverse switch gate
in Ty347

We show a switch gate and an inverse switch gate can be
implemented in Tj347 using gliders as signals. The opera-
tion of a switch gate is realized by colliding two gliders as
shown in Fig. 35. It is important that, in this collision, the
glider from the input port ¢ travels to the south-east
direction with no delay even though it interacts with the
glider from x (hence its phase is not shifted also).

Here, we implement a switch gate as a “gate module” in
the standard form. Otherwise, adjustment of signal timing,
in particular, adjustment of the phase of a glider becomes
very cumbersome when designing a larger circuit. A gate
module is a pattern embedded in a rectangular-like region
in the cellular space that satisfies the following (Fig. 36):
(1) It realizes a reversible logic gate. (2) Input ports are at
the left end. (3) Output ports are at the right end. (4) Delay
between input and output is constant and a multiple of 6.

Figure 37 shows a switch gate module. A switch gate
operation (Fig. 35) is performed around the center of this
pattern. The delay between input and output of this module
is 2232 steps, a multiple of 6, and thus satisfies the con-
dition (4) above.

Figure 38 shows the inverse switch gate operation in
Toza7. The process of collision of two gliders is just the
same as in Fig. 35. Only the positions of the input/output
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X 4= cx

Fig. 35 Switch gate operation realized by collision of two gliders

Input Gate module Output

Fig. 36 Gate module in the standard form

t=2232

Fig. 37 Switch gate module implemented in 7347

ports are different. An inverse switch gate module is given
in Fig. 39. It is a quasi-mirror-image of the switch gate
module (as in the case of a one-way glider gun and an
absorber). The delay between input and output is also 2232
steps.

@ Springer
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Fig. 38 Inverse switch gate operation realized by collision of two
gliders

t=2232

Fig. 39 Inverse switch gate module implemented in T(347. Here, ¢ =
y1 and x = y, + y3 under the assumption (y, — y1) A (y3 — ¥1)

4.3 Making larger circuits in 7347

If we use only 120°-right-turn modules to connect gate
modules, then there is no need of adjusting the phases of
gliders. This is because the total phase shift becomes 0, if
we make 120°-right-turns three times (see Table 1).
Therefore, we have to adjust the delay by 6n (n = 1,2,...)
steps, and this can be done by a similar manner as in
Fig. 24. In this way, we can construct a larger circuit
easily.
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t=9174

Fig. 40 Fredkin gate module implemented in To347. Here, x = cp +¢q and y = cq + ¢p

Figure 40 shows a Fredkin gate module in Ty347, which
is composed of two switch gate modules (left) and two
inverse switch gate modules (right). Here, the switch gate
and inverse switch gate modules are connected using only
120°-right-turn modules. The total delay between input and
output of the Fredkin gate module is 9174, which is again a
multiple of 6.

In a similar manner, we can construct any circuit com-
posed of Fredkin gates in the cellular space of Ty347. Thus,
we have the following theorem.

Theorem I The RETPCA Ty with infinite (but ulti-
mately periodic) configurations is Turing universal.

5 Concluding remarks

Among 256 ETPCAs, we investigated a specific ETPCA
To347, which is non-conservative and reversible. In spite of
its extreme simplicity of the local function and the con-
straint of reversibility, Ty347 shows interesting behavior.
Here, a glider plays the key role in T(347. By placing blocks
appropriately, trajectory and the timing of a glider can be
completely controlled. Logical operation is also performed
by interacting gliders. Using such properties and opera-
tions, the Fredkin gate is realized in this cellular space. In
this way, Turing universality of Ty34; with infinite config-
urations was proved.

There is another method of constructing reversible
Turing machines (RTMs) in the space of Tys47. This
method is to use a specific reversible logic element with
memory (RLEM) No. 4-31 as a basic element (Morita and
Suyama 2014). It is known that RLEM 4-31 can be
implemented in To347 directly (i.e., without using reversible
logic gates). By this, we can design a configuration of 7347
that simulates a given RTM rather simply. Files of such
configurations are available in Morita (2017), by which we
can see the whole computing processes of example RTMs
on Golly.

On the other hand, it is not known whether universal
systems are simulated in the finite configurations of T347.
In Morita et al. (2002), it has been shown that any rever-
sible two-counter machine, a Turing universal model, can
be realized as a finite configuration of the 3*-state rever-
sible 4-neighbor PCA on the square grid. There, a counter
is implemented by a “position marker” whose position can
be shifted (i.e., pushed or pulled) by colliding a signal with
it. However, in Tj347 such phenomena have not yet been
found.

It is also not known whether there is a universal con-
structor in Ty347, which can build any pattern in some
specified class of patterns (e.g., the class of all patterns
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consisting of blocks) as in the case of the Game-of-Life CA
(Berlekamp et al. 1982).

Besides Tys47, it has already been shown that the con-
servative RETPCAs Ty57 and Ty;37 with infinite configu-
rations are Turing universal (Imai and Morita 2000; Morita
2016b), where a single particle rather than a glider is used
to represent a signal. It is left for the future study to find
other ETPCAs that are universal.
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