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Abstract Cellular Automata (CA) have widely been

studied to design cryptographic primitives such as stream

ciphers and pseudorandom number generators, focusing in

particular on the properties of the underlying local rules.

On the other hand, there have been comparatively fewer

works concerning the applications of CA to the design of

S-boxes and block ciphers, a task that calls for a study of

CA global rules in terms of vectorial boolean functions.

The aim of this paper is to analyze some of the most basic

cryptographic criteria of the global rules of CA. We start

by observing that the algebraic degree of a CA global rule

equals the degree of its local rule. Then, we characterize

the Walsh spectrum of CA induced by permutive local

rules, from which we derive a formula for the nonlinearity

of such CA. Additionally, we prove that the 1-resiliency

property of bipermutive local rules transfers to the corre-

sponding global rules. This result leads us to consider CA

global rules from a coding-theoretic point of view: in

particular, we show that linear CA are equivalent to linear

cyclic codes, observing that the syndrome computation

process corresponds to the application of the CA global

rule, while the error-correction capability of the code is

related to the resiliency order of the global rule.

Keywords Cellular automata � Boolean functions � S-
boxes � Nonlinearity � Resiliency � Cyclic codes

Mathematics Subject Classification 37B15 � 68Q80 �
94B15 � 94A55

1 Introduction

Block ciphers constitute one of the most fundamental

building blocks in the design of several cryptographic

protocols. The security of block ciphers frequently depends

on the involved Substitution boxes (S-boxes), which can be

considered as vectorial boolean functions. As a matter of

fact, S-boxes are usually the only nonlinear component in a

block cipher. Thus, particular care must be taken in

choosing S-boxes with good cryptographic properties, so

that the overall block cipher design can withstand partic-

ular attacks like linear and differential cryptanalysis.

Cellular Automata (CA) are a nature-inspired parallel

computational model initially introduced by Ulam (1952)

and Von Neumann (1966) to study self-reproduction phe-

nomena. CA represent an interesting computational model

for developing S-boxes, for a twofold reason: first,

depending on the local rule, CA can exhibit chaotic and

unpredictable dynamic behaviors, a characteristic which is

useful to achieve the confusion principle set forth

by Shannon (1949) that every secure symmetric cryp-

tosystem should satisfy. Second, being a massively parallel

model, CA can be efficiently realized in hardware, and thus

they are interesting for implementing S-boxes on devices

with limited computational resources.

However, one can observe that most of the literature

pertaining cryptographic applications of CA is centered on

the design of stream ciphers and pseudorandom number

generators. In fact, it was Wolfram (1985) who pioneered

the use of CA for keystream generation, using the ele-

mentary rule 30. However, the design was discovered to be
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insecure first by Meier and Staffelbach (1991), and then

by Koc and Apohan (1997). In particular, Meier and

Staffelbach showed a correlation attack on the sequences

produced by Wolfram’s generator which exploited the fact

that rule 30 is not 1-resilient, while Koc and Apohan

described an inversion attack based on the low nonlinearity

of such rule. Since then, some researchers (see Martin

2008; Leporati and Mariot 2014; Formenti et al. 2014)

focused on the search of CA local rules having good

cryptographic profiles in order to thwart these kinds of

attacks, but retaining Wolfram’s overall design of CA

pseudorandom generator.

On the other hand, the design of S-boxes based on CA is

a research topic which has received relatively little atten-

tion in the literature. This could be the reason why, at least

as far as our knowledge goes, there is almost no work

concerning the cryptographic properties of CA global

rules. One remarkable exception in this regard is Daemen

et al. (1994), where the authors analyzed the propagation

and correlation characteristics of a CA equipped with rule

v, which corresponds to the elementary rule 210 in Wol-

fram’s numbering convention (see Wolfram 1983). Inter-

estingly, v is an example of a CA-based S-box employed in

real-world applications, since it is the only nonlinear

component of the KECCAK sponge construction, selected by

the NIST as the SHA-3 standard for cryptographic hash

functions (see Bertoni et al. 2013).

The aim of this paper, which is an extended version

of Mariot and Leporati (2016), is to undertake an investi-

gation of the cryptographic properties of CA global rules

by considering them as a particular kind of vectorial boo-

lean functions, and to relate them to the properties of the

underlying local rules. To this end, we consider criteria that

are relevant both for the design of S-boxes in block ciphers,

like nonlinearity, and for stream ciphers, like resiliency. In

addition, we also exploit the connection between resiliency

and minimum distance of linear codes to analyze CA from

the standpoint of coding theory. Nevertheless, the moti-

vation for this coding theoretic aspect of our work is again

related to cryptography, since certain classes of linear

codes (especially MDS codes) can be used to implement

the diffusion layer of block ciphers.

To begin with, we first observe that the algebraic degree

of the global rule of a CA equals the algebraic degree of its

local rule, leveraging on the fact that the coordinate func-

tions of a CA correspond to its local rule applied to dif-

ferent neighborhoods. Next, we narrow our attention to the

class of CA equipped with permutive rules, a property

which allows us to characterize the Walsh spectrum of the

CA global rule. In particular, we show how the Walsh

spectrum in a left or right permutive CA changes by adding

a new cell. From this result, we then prove that the non-

linearity of a left or right permutive CA with m output cells

is 2m�1 times the nonlinearity of the local rule. Subse-

quently, we show that the global rules of bipermutive CA

are always at least 1-resilient, thus generalizing the result

in Leporati and Mariot (2014) about bipermutive local

rules. We then prove an equivalence between linear CA

and linear cyclic codes. In particular, we show how the

systematic encoding of cyclic codes actually corresponds

to the preimage computation process of the all-zeros con-

figuration in linear CA, while syndrome computation is

equivalent to the application of the CA global rule. Lev-

eraging on the theory of resilient vectorial functions, we

remark that the resiliency order of a linear CA can be used

to determine the minimum distance of its associated cyclic

code, and we show as an example how encoding and

decoding of the (7, 4, 3) cyclic Hamming code can be

realized using the dynamics of a CA with radius r ¼ 2 and

length n ¼ 7.

The rest of the paper is organized as follows. Section 2

collects some basic facts about vectorial boolean functions

and their cryptographic criteria, and introduces the model

of cellular automaton we adopt throughout the paper.

Section 3 is devoted to the analysis of the global rules of

CA, focusing on their algebraic degree, nonlinearity and

resiliency order. Section 4 recalls some key concepts about

the theory of error-correcting codes, presents the connec-

tion between linear cyclic codes and linear CA and shows

how to simulate the (7, 4, 3) cyclic Hamming codes using

linear CA. Finally, Sect. 5 summarizes the main contri-

butions of the paper and discusses some directions for

future research on the topic.

2 Preliminary definitions

In this section, we outline the basic concepts concerning

vectorial boolean functions and cellular automata which we

use in the remainder of the paper.

2.1 Vectorial boolean functions

We cover only the fundamental definitions and results

related to the theory of cryptographic boolean functions,

referring the reader to Carlet (2010a, b) for a more thor-

ough treatment of the subject.

A boolean function is a mapping f : Fn
2 ! F2 where F2

denotes the finite field with two elements. The basic way to

represent a boolean function f : Fn
2 ! F2 is by means of its

truth table, which specifies for each of the possible 2n input

vectors of Fn
2 the corresponding output value of f. Hence,

for any n 2 N the set of boolean functions of n variables is

composed of 22
n

functions. Once an ordering of the input

variables x1; . . .; xn has been established, a truth table can
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be compactly described just by the 2n-bit string repre-

senting the output values of the corresponding function.

Another common representation of boolean functions is

the Algebraic Normal Form (ANF). In particular, the ANF

of a function f : Fn
2 ! F2 is defined by the following

multivariate polynomial:

Pf ðxÞ ¼ a
I2PðNÞaI

Y

i2I

xi

 !
; ð1Þ

where N ¼ f1; . . .; ng and PðNÞ denotes the power set of

N, and aI 2 F2 for all I 2 PðNÞ. Hence, the ANF repre-

sents a boolean function as a sum of products over F2. The

relationship between the ANF coefficients and the truth

table of f is given by the Möbius transform, defined for all

x 2 Fn
2 as:

f ðxÞ ¼ a
I�suppðxÞaI ; ð2Þ

where suppðxÞ ¼ fi : xi 6¼ 0g is the support of x.

A third representation which is useful to characterize

several cryptographic properties of boolean functions is the

Walsh transform. Given f : Fn
2 ! F2, the Walsh transform

of f is the function Wf : F
n
2 ! R defined for all x 2 Fn

2 as

Wf ðxÞ ¼
X

x2Fn
2

ð�1Þf ðxÞ�x�x; ð3Þ

where x � x ¼ x1x1 � � � �xnxn is the scalar product of x
and x. The value Wf ðxÞ is also called the Walsh coefficient

of f with respect to x 2 Fn
2. The set of all Walsh coeffi-

cients of f is the Walsh spectrum of f, while the maximum

coefficient in absolute value is called the spectral radius of

f.

The boolean functions adopted in cryptography must

satisfy several criteria in order to resist various types of

attacks. In this paper we consider four cryptographic

properties, namely balancedness, algebraic degree, non-

linearity and resiliency, which we briefly define below

along with a description of the corresponding design

criterion.

A boolean function f : Fn
2 ! F2 is balanced if its truth

table is composed of an equal number of 0s and 1s, or

equivalently if its Walsh transform vanishes on the null

vector, i.e. Wf ð0Þ ¼ 0. As a general criterion, all boolean

functions used in the design of both stream and block

ciphers should be balanced.

The algebraic degree of a boolean function f is the

degree of its ANF. Considering Eq. (1), the degree of f can

formally defined as:

degðf Þ ¼ maxI2PðNÞfjIj : aI 6¼ 0g: ð4Þ

Functions having degree 1 are also called affine functions.

As a cryptographic criterion, the algebraic degree of

boolean functions used in both stream and block ciphers

should be as high as possible.

The nonlinearity of f : Fn
2 ! F2 is the minimum Ham-

ming distance of f from the set of affine functions, and it is

defined through the Walsh transform by the following

formula:

Nlðf Þ ¼ 2n�1 � 1

2
max
x2Fn

2

jWf ðxÞj: ð5Þ

Similarly to the algebraic degree criterion, the nonlinearity

of boolean functions involved in stream and block ciphers

should be as high as possible.

Finally, a boolean function f : Fn
2 ! F2 is said to be t-

resilient if, by fixing at most t input coordinates, the

resulting restriction of f is balanced. This is equivalent to

say that the Walsh transform of f vanishes for all those

input vectors x having Hamming weight at most t. As a

cryptographic criterion, the resiliency of boolean functions

of stream ciphers should be as high as possible, to avoid

correlation attacks. Notice that the case t ¼ 0 corresponds

to balancedness.

We now turn our attention to vectorial boolean func-

tions. Let n�m. A vectorial boolean function (also called a

S-box in the cryptographic context) is a mapping F : Fn
2 !

Fm
2 with n input variables and m outputs. By f1; . . .; fm :

Fn
2 ! F2 we denote the coordinate functions of F, that is,

the m boolean functions which specify the value of each

output bit of F:

Fðx1; . . .; xnÞ ¼ f1ðx1; . . .; xnÞ; . . .; fmðx1; . . .; xnÞð Þ:

The component functions of F are defined as v � F for all

v 2 ðFm
2 Þ

� ¼ Fm
2 n f0g. Since

v � F ¼ v1f1ðx1; . . .; xnÞ � � � � � vmfmðx1; . . .; xnÞ;

it follows that the component functions are the (non-trivial)

linear combinations of the coordinate functions of F.

In the remainder of this section, we show how the

vectorial counterparts of the cryptographic properties of

boolean functions are characterized in terms of either the

coordinates or the component functions of S-boxes.

A vectorial boolean function F : Fn
2 ! Fm

2 is balanced if

for all output vectors y 2 Fm
2 the cardinality of the fiber

F�1ðyÞ is 2n�m. Equivalently, F is balanced if and only if

all its component functions are balanced.

The algebraic degree of a vectorial function F : Fn
2 !

Fm
2 is defined as the maximal degree of its coordinate

functions. On the other hand, the nonlinearity of F is the

minimal nonlinearity of all its component functions, i.e.

Nl Fð Þ ¼ min
v2 Fn

2ð Þ� 2n�1 � 1

2
max
x2Fn

2

fjWv�FðxÞjg
� �

: ð6Þ
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Resiliency for vectorial functions is defined analogously to

the single-output case. In particular, F : Fn
2 ! Fm

2 is t-re-

silient if, by fixing any t input variables xi1 ; . . .; xit , the

resulting restriction ~F : Fn�t
2 ! Fm

2 is balanced, i.e. for all

y 2 Fm
2 it follows that j ~F�1ðyÞj ¼ 2n�t�m. Note that the

definition of vectorial t-resiliency is actually equivalent to

t-resiliency for boolean functions. Similarly to nonlinearity

and balancedness, the resiliency of a vectorial function can

also be characterized by the resiliency of its component

functions, as the next result reported in Carlet (2010b)

shows:

Proposition 1 Let F : Fn
2 ! Fm

2 be a vectorial boolean

function in n variables and m outputs. Then, F is t-resilient

if and only if for all v 2 ðFm
2 Þ

�
the component function

v � F is t-resilient.

2.2 Cellular automata

In what follows, we consider exclusively one-dimensional

boolean cellular automata, formally defined below.

Definition 1 A one-dimensional boolean cellular

automaton (CA) is a triple hC; d; f i, where C is a finite one-

dimensional array of binary cells, d 2 N is the diameter

and f : Fd2 ! F2 is the local rule.

Given an array C of length n� d, the update of a CA is

done as follows. If the diameter d is odd with d ¼ 2r þ 1

for r 2 N, then each cell i in the range fr þ 1; . . .; n � rg
synchronously updates its state by applying rule f to the

neighborhood fi � r; . . .; i; . . .; i þ rg. Otherwise, if d is

even and r ¼ d=2, then each cell i in the range fr; . . .; n �
rg synchronously updates its state by applying rule f to the

neighborhood fi � r þ 1; . . .; i þ rg. In both cases, the

parameter r is called the radius of the CA.

From the discussion above, one can observe that we do

not consider any boundary condition in our definition of

CA, since only the central cells having sufficiently enough

left and right neighbors are allowed to update their states.

This contrasts with the approach usually adopted in the CA

literature, in which null or periodic boundary conditions

are considered (see for example Kari 2012), which makes

the CA having the same number of input and output cells.

In particular, periodic boundary conditions are commonly

used in the design of CA-based S-boxes, as in the case of

the CA v employed in KECCAK. This is because several

block ciphers are based on the Substitution-Permutation

Network paradigm, where decryption depends on the fact

that the involved S-boxes are invertible (thus implying an

equal number of input and output bits). However, our CA

model without boundary conditions does not limit the

cryptographic applicability of the results presented in this

paper, since there are also block ciphers models where

decryption does not rely on the invertibility of the under-

lying S-boxes [such as for example in Feistel ciphers, see

Stinson (1995)].

We now define the global rule of a CA:

Definition 2 The global rule of a CA hC; d; f i of length
n ¼ m þ d� 1 is the vectorial function F : Fn

2 ! Fm
2

defined for all possible states x ¼ ðx1; . . .; xnÞ 2 Fn
2 of array

C as follows:

FðxÞ ¼ f ðx1; . . .; xdÞ; . . .; f ðxn�dþ1; . . .; xnÞð Þ: ð7Þ

In what follows, we identify a CA hC; d; f i with its

global rule F : Fn
2 ! Fm

2 .

Since the local rule of a CA is a boolean function of d
variables, the most common way to represent it is by means

of its truth table. Another convenient way of representing a

CA rule f is through its Wolfram code (see Wolfram 1983),

which is the decimal encoding of the truth table of f.

3 Cryptographic properties of CA global rules

In this section we investigate the cryptographic properties of

CAglobal rules, starting from their algebraic degree.We then

introduce the class of permutive CA, and use this additional

property to characterize the Walsh spectra of the component

functions of such CA. As a consequence, this result allows us

to determine a formula for the nonlinearity of the global rules

of permutive CA. Finally, we employ the quasi-linearity of

permutive local rules to prove that bipermutiveCAare always

at least 1-resilient. This last result generalizes the work

of Leporati and Mariot (2014) that was carried out on

bipermutive local rules to the case of global rules.

3.1 Algebraic degree

We begin with the following remark:

Remark 1 Let F : Fn
2 ! Fm

2 be a one-dimensional boolean

cellular automaton of length n ¼ m þ d� 1 defined by a

local rule f : Fd2 ! F2 of diameter d. Since each output cell

yi depends only on the input cells xi; . . .; xiþd�1 under

application of the local rule, the coordinate functions of

F are fiðx1; . . .; xnÞ ¼ f ðxi; . . .; xiþd�1Þ for i 2 f1; . . .;mg.

Since the algebraic degree of a vectorial boolean func-

tion equals the maximal degree of its coordinate functions,

we obtain the following result:

Proposition 2 Let F : Fn
2 ! Fm

2 be a CA with n ¼
m þ d� 1 defined by a local rule f : Fd2 ! F2. Then, the

algebraic degree of F equals the degree of f.
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Proof For k 2 f1; . . .;mg, define Nk ¼ fk; . . .; k þ d� 1g
and let us denote by PðNkÞ the power set of Nk. Notice that

N1 ¼ N, where N is the index set for the ANF of the local

rule f. For all I ¼ fI1; . . .; Ijg 2 PðNÞ, let us define the

shifted subset of I as rkðIÞ ¼ fI1 þ k � 1; . . .; Ij þ k � 1g,
which ranges in the power set PðNkÞ. On the other hand,

given L 2 PðNkÞ one can recover the original subset I 2
PðNÞ by computing

I ¼ r�kðLÞ ¼ fL1 � k þ 1; . . .; Lj � k þ 1g. Then, by

Eq. (1) we have that

PfkðxÞ ¼ a
L2PðNkÞaL

Y

l2L

xl

 !
: ð8Þ

Since for every L 2 PðNkÞ there exists I 2 PðNÞ such that

I ¼ r�kðLÞ, by Remark 1 it also follows that aL ¼ aI , so

we can rewrite (8) as:

PfkðxÞ ¼ a
L2PðNkÞaI

Y

l2L

xl

 !
;whereI ¼ r�kðLÞ: ð9Þ

Since the shifting operation does not change the cardinality

of subsets, we have

maxI2PðNÞfjIj : aI 6¼ 0g ¼ maxL2PðNkÞfjLj : aI 6¼ 0g;
ð10Þ

from which one obtains that deg fkð Þ ¼ deg f1ð Þ ¼ degðf Þ.h

3.2 Walsh spectra and nonlinearity of permutive

CA

The result about the algebraic degree laid out in the pre-

vious section holds for CA with generic local rules. In what

follows, we narrow our analysis to CA equipped with

permutive local rules, showing that in this case further

information can be obtained on the Walsh spectra of the

associated global rules. This allows us to express the

nonlinearity of permutive global rules in terms of the

nonlinearity of their local rules.

We first recall the notion of permutive boolean function.

To this end, let us denote by ðx; ~xÞ; ð~x; xÞ 2 Fn
2 the two

vectors of length n obtained by appending x 2 F2 respec-

tively to the left and to the right of ~x 2 Fn�1
2 . Then, per-

mutive functions are formally defined as follows:

Definition 3 A boolean function f : Fn
2 ! F2 is called left

permutive (respectively, right permutive) if, for all ~x 2
Fn�1
2 and x; x0 2 F2 such that x 6¼ x0, it results that f ðx; ~xÞ 6

¼ f x0; ~xð Þ (respectively, f ð~x; xÞ 6¼ f ð~x; x0Þ). A function

which is both left and right permutive is called

bipermutive.

As shown in Leporati and Mariot (2014), permutive

functions have a simple characterization in terms of gen-

erating functions. In particular, f : Fn
2 ! F2 is left permu-

tive if there exists a function g : Fn�1
2 ! F2 of n � 1

variables (called the generating function of f) such that

f ðx1; x2; . . .; xnÞ ¼ x1 � gðx2; . . .; xnÞ; ð11Þ

for all x ¼ ðx1; x2; . . .; xnÞ. Right permutive functions are

characterized symmetrically by XORing xn with the value

of the generating function computed on the leftmost n � 1

variables. Hence, a bipermutive function f : Fn
2 ! F2 can

be equivalently defined by a generating function g :

Fn�2
2 ! F2 of n � 2 variables such that

f ðx1; x2; . . .; xn�1; xnÞ ¼ x1 � gðx2; . . .; xn�1Þ � xn: ð12Þ

The next result shows how the Walsh coefficients of the

component functions in a permutive CA are affected by

adding a new cell. We state and prove the theorem just for

the right permutive case, since the left permutive one can

be obtained by a simple symmetrical argument.

Theorem 1 Let F : Fn
2 ! Fm

2 be a CA of length n ¼
m þ d� 1 defined by a right permutive local rule f : Fd2 !
F2 with diameter d. Additionally, let F0 : Fnþ1

2 ! Fmþ1
2 be

the corresponding CA of length n þ 1 obtained by

appending an additional cell to the right, and let v � F0 be

the component function of F0 determined by

v ¼ ~v; vnþ1ð Þ 2 Fmþ1
2

� ��
, with ~v 2 Fn

2 and vnþ1 2 F2. Then,

for all ~x 2 Fn
2 and xnþ1 2 F2, the Walsh coefficient of

F0 over x ¼ ð ~x;xnþ1Þ can assume only the following

values:

– Wv�F0 ðxÞ ¼ 0

– Wv�F0 ðxÞ ¼ 2 � W ~x�FðxÞ.

Proof We proceed by induction on m 2 N.

Let m ¼ 1. We have that F ¼ f , i.e. the global rule of

the CA corresponds to its local rule, and by appending a

cell to the right we obtain a CA F0 with dþ 1 input cells

and 2 output cells. We will show that in this case

Wv�F0 ðxÞ ¼ 0 or Wv�F0 ðxÞ ¼ 2 � Wf ðxÞ for all x 2 Fdþ1
2

and for all component functions v � F0. Since m þ 1 ¼ 2,

there is a total of 22 � 1 ¼ 3 component functions to

consider, namely those determined by the vectors (1, 0),

(0, 1) and (1, 1). Assume that v ¼ ð1; 0Þ. Then, the

component function in this case coincides with local rule

f computed on the input variables x1; . . .; xd of F0. By

Eq. (3), this means that for ~x 2 Fd2 and xdþ1 2 F2 the

Walsh coefficient of v � F0 over x ¼ ð ~x;xdþ1Þ is:
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Wv�F0 ðxÞ ¼
X

x2Fdþ1
2

ð�1Þv�F0ðxÞ�x�x

¼
X

x2Fdþ1
2

ð�1Þf ðx1;...;xdÞ�x�x:
ð13Þ

Since x � x ¼ x1x1 � � � � � xdxd � xdþ1xdþ1, we can split

Eq. (13) by grouping the terms with xdþ1 ¼ 0 in one sum

and the terms with xdþ1 ¼ 1 in another sum.

Wv�F0 ðxÞ ¼
X

x 2 Fdþ1
2 :

xdþ1 ¼ 0

ð�1Þf ðx1;...;xdÞ�x1x1�����xdxd

þ
X

x 2 Fdþ1
2 :

xdþ1 ¼ 1

ð�1Þf ðx1;...;xdÞ�x1x1�����xdxd�xdþ1 :

ð14Þ

Notice that the term xdþ1 in the exponent of the second

sum of (14) corresponds to a multiplicative constant

ð�1Þxdþ1 , which can thus be extracted from the sum:

Wv�F0 ðxÞ ¼
X

x 2 Fdþ1
2 :

xdþ1 ¼ 0

ð�1Þf ðx1;...;xdÞ�x1x1�����xdxd

þ ð�1Þxdþ1 �
X

x 2 Fdþ1
2 :

xdþ1 ¼ 1

ð�1Þf ðx1;...;xdÞ�x1x1�����xdxd :

ð15Þ

Remark now that the two sums in (15) are the same and

correspond to the Walsh coefficient Wf ð ~xÞ of rule f:

Wv�F0 ðxÞ ¼ Wf ð ~xÞ þ ð�1Þxdþ1 � Wf ð ~xÞ: ð16Þ

Therefore, it results that Wv�F0 ðxÞ ¼ 2 � Wv�F0 ðxÞ if

xdþ1 ¼ 0, and Wv�F0 ðxÞ ¼ 0 when xdþ1 ¼ 1, which proves

the statement for v ¼ ð1; 0Þ. An analogous argument holds

also for v ¼ ð0; 1Þ. Hence, to conclude the base of the

induction, it remains to be analyzed the case v ¼ ð1; 1Þ,
where the Walsh coefficient of v � F0 over x ¼ ð ~x;xdþ1Þ 2
Fdþ1
2 equals:

Wv�F0 ðxÞ ¼
X

x2Fdþ1
2

ð�1Þv�F0ðxÞ�x�x

¼
X

x2Fdþ1
2

ð�1Þf ðx1;...;xdÞ�f ðx2;...;xdþ1Þ�x�x:
ð17Þ

Like in the previous case, we split the sum of Eq. (17) with

respect to the value of xdþ1 and extract the multiplicative

constant ð�1Þxdþ1 from the second sum. Denoting by

~x ¼ ðx1; . . .; xdÞ, this yields:

Wv�F0 ðxÞ ¼
X

x 2 Fdþ1
2 :

xdþ1 ¼ 0

ð�1Þf ðx1;...;xdÞ�f ðx2;...;0Þ� ~x�~x

þ ð�1Þxdþ1 �
X

x 2 Fdþ1
2 :

xdþ1 ¼ 1

ð�1Þf ðx1;...;xdÞ�f ðx2;...;1Þ� ~x�~x:

ð18Þ

By separating the terms f ðx2; . . .; 0Þ and f ðx2; . . .; 1Þ in the

exponents of Eq. (18), we obtain:

Wv�F0 ðxÞ ¼
X

x 2 Fdþ1
2 :

xdþ1 ¼ 0

ð�1Þf ðx1;...;xdÞ� ~x�~x � ð�1Þf ðx2;...;0Þ

þ ð�1Þxdþ1 �
X

x 2 Fdþ1
2 :

xdþ1 ¼ 1

ð�1Þf ðx1;...;xdÞ� ~x�~x � ð�1Þf ðx2;...;1Þ

ð19Þ

Notice that the two sums in Eq. (19) correspond to the

Walsh coefficient Wf ðxÞ, with the exception that in the first
sum each term is multiplied by ð�1Þf ðx2;...;0Þ and in the

second by ð�1Þf ðx2;...;1Þ. Since f is right permutive, we have

that ð�1Þf ðx2;...;0Þ 6¼ ð�1Þf ðx2;...;1Þ for all ðx2; . . .; xdÞ 2 Fd�1
2 .

It follows that for each vector ~x 2 Fd2 the corresponding

terms in the two sums of (19) always have different signs.

Hence, one has Wv�F0 ðxÞ ¼ 0 for xdþ1 ¼ 0, and Wv�F ¼
2 � Wf ðxÞ for xdþ1 ¼ 1.

Next, assume that m[ 1 and let F0 : Fnþ1
2 ! Fmþ1

2 be

the global rule of the CA obtained by appending a cell to

the right of F : Fn
2 ! Fm

2 . Given a component function of

F selected by v 2 ðFm
2 Þ

�
, one can construct two compo-

nent functions of F0 respectively as ðv; 0Þ � F0 and

ðv; 1Þ � F0.

In order to shorten the notation, let x ¼ ð~x; xnþ1Þ 2 Fnþ1
2

and x ¼ ð ~x;xnþ1Þ 2 Fnþ1
2 , where ~x ¼ ðx1; . . .; xnÞ 2 Fn

2

and ~x ¼ ðx1; . . .;xnÞ 2 Fn
2, and xnþ1;xnþ1 2 F2. Let us

now consider all those component functions ðv; 0Þ � F0, i.e.
those that do not select the last coordinate function

f ðxmþ1; . . .; xnþ1Þ in the linear combination. Then, the

Walsh coefficient over x in this case equals:

Wðv;0Þ�F0 ðxÞ ¼
X

x2Fnþ1
2

ð�1Þv�Fð~xÞ�x�x

¼
X

x2Fnþ1
2

ð�1Þv�Fð~xÞ� ~x�~x�xnþ1xnþ1 :
ð20Þ

By splitting the sum with respect to the value of xnþ1

Eq. (20) can be rewritten as:
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Wðv;0Þ�F0 ðxÞ ¼
X

x 2 Fnþ1
2 :

xnþ1 ¼ 0

ð�1Þv�Fð~xÞ�x�x

þ ð�1Þxnþ1 �
X

x 2 Fnþ1
2 :

xnþ1 ¼ 1

ð�1Þv�Fð~xÞ�x�x:

ð21Þ

Similarly to the base case v ¼ ð1; 0Þ, one can see that for

all x ¼ ð ~x; 0Þ the two sums in (21) have the same sign,

and these sums both correspond to Wv�Fð ~xÞ. Hence, one
obtains that Wðv;0Þ�F0 ð ~x; 0Þ ¼ 2 � Wv�Fð ~xÞ. On the other

hand, for all x ¼ ð ~x; 1Þ the two sums have different signs,

thus in this case it holds that Wðv;0Þ�F0 ð ~x; 1Þ ¼ 0.

The last case we need to consider includes all those

component functions of the form ðv; 1Þ � F0, where the last

coordinate function appears in the linear combination. The

Walsh coefficient over x is:

Wðv;1Þ�F0 ðxÞ ¼
X

x2Fnþ1
2

ð�1Þv�Fð~xÞ�f ðxmþ1;...;xnþ1Þ�x�x

¼
X

x2Fnþ1
2

ð�1Þv�Fð~xÞ� ~x�~x � ð�1Þf ðxmþ1;...;xnþ1Þ�xnþ1�xnþ1 :

ð22Þ

Again, let us split the sum of (22) with respect to the value

of xnþ1 as follows:

Wðv;1Þ�F0 ðxÞ ¼
X

x 2 Fnþ1
2 :

xnþ1 ¼ 0

ð�1Þv�Fð~xÞ�x�x � ð�1Þf ðxmþ1;...;0Þ

þ ð�1Þxnþ1 �
X

x 2 Fnþ1
2 :

xnþ1 ¼ 1

ð�1Þv�Fð~xÞ�x�x � ð�1Þf ðxmþ1;...;1Þ:

ð23Þ

Analogously to the case of v ¼ ð1; 1Þ for m ¼ 2 discussed

above, for each x 2 Fnþ1
2 the terms in the two sums of

Eq. (23) always have different signs. Since the first part of

the two sums coincides with the Walsh coefficient of ~v � F

over ~x, it results that Wðv;1Þ�F0 ðxÞ ¼ 0 for xnþ1 ¼ 0 and

Wðv;1Þ�F0 ðxÞ ¼ 2 � Wv�Fð ~xÞ for xnþ1 ¼ 1. h

From Theorem 1, we can now determine the nonlin-

earity of the global rule of a permutive CA in terms of the

nonlinearity of its local rule:

Corollary 1 Let F : Fn
2 ! Fm

2 a CA of length n ¼ m þ
d� 1 with left or right permutive local rule f : Fd2 ! F2.

Then, the nonlinearity of F equals

NlðFÞ ¼ 2m�1 � Nlðf Þ: ð24Þ

Proof We proceed by induction on m. For m ¼ 1, the

global rule coincides with the local rule and Eq. (24) is

trivially true. Let us now consider the case m[ 1 and

assume that the statement is true up to m � 1. Then, by

Theorem 1 we know that the Walsh coefficients of the

component functions of F0 : Fn
2 ! Fm

2 can only be zero or

twice the coefficients of the corresponding components of

F : Fn�1
2 ! Fm�1

2 obtained by removing the last coordinate

from the linear combination. This means that for each v ¼
ð~v; vmÞ 2 ðFm

2 Þ
�
the spectral radius of the component v � F0

is twice the spectral radius of ~v � F. Hence, the nonlinearity

of v � F0 is given by

Nlðv � F0Þ ¼ 2n�1 � 1

2
maxx2Fn

2
fjWv�F0 ðxÞjg

¼ 2n�1 � 1

2
� 2 � max ~x2Fn�1

2
fjW~v�Fð ~xÞjg

� �

¼ 2 � 2n�2 � max ~x2Fn�1
2
fjW~v�Fð ~xjÞg ¼ 2 � Nlð~v � FÞ

ð25Þ

By induction hypothesis, we know that

NlðFÞ ¼ 2m�2 � Nlðf Þ, and this is the minimal nonlinearity

among the component functions of F. Thus, by Eq. (25) it

means that the minimal nonlinearity among the compo-

nents of F0 is

2 � NlðFÞ ¼ 2 � 2m�2 � Nlðf Þ ¼ 2m�1 � Nlðf Þ; ð26Þ

which is by definition the nonlinearity of F0. h

3.3 Resiliency of bipermutive CA

We now show that bipermutive cellular automata are

always at least 1-resilient when considered as vectorial

boolean functions. To this end, we first recall a secondary

construction to obtain a ðt þ 1Þ-resilient boolean function

of n þ 1 variables from a t-resilient function of n variables,

originally proved in Siegenthaler (1985). This method is

formalized in the following result:

Proposition 3 Let I ¼ fi1; . . .; itþ1g � f1; . . .; ng and

J ¼ fj1; . . .; jn�t�1g ¼ f1; . . .; ng n I be complementary sets

of indices. Additionally, let f : Fn
2 ! F2 be a boolean

function of n variables defined as

f ðx1; . . .; xnÞ ¼ gðxj1 ; . . .; xjn�t�1
Þ � xi1 � � � � � xitþ1

;

where g : Fn�t�1
2 ! F2 is a boolean function of n � t � 1

variables. Then, f is t-resilient.

Hence, XORing one variable with g makes the resulting

function 0-resilient (or, equivalently, balanced), and then

any new XORed variable increases the resiliency order by

1.
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Clearly, by Proposition 3 any bipermutive local rule is

also a 1-resilient boolean function. A different proof of this

fact based on the zeros of the Walsh transform can be

found in Leporati and Mariot (2014).

The following result characterizes the component

functions of a bipermutive CA based on its associated

generating function:

Lemma 1 Let F : Fn
2 ! Fm

2 be a cellular automaton of

length n ¼ m þ d� 1 defined by a bipermutive rule

f : Fd2 ! F2. Then, for all v 2 ðFm
2 Þ

�
the component func-

tion v � F is bipermutive as well.

Proof Let f ðx1; x2; . . .; xd�1; xdÞ ¼ x1 � gðx2; . . .; xd�1Þ �
xd with g : Fd�2

2 ! F2. Given v 2 Fm
2

� ��
, the component

function v � F can be expressed as:

v � F ¼ xi1 � gðxi1þ1; . . .; xi1þd�2Þ � xi1þd�1

� � � � � xik � gðxikþ1; . . .; xikþd�2Þ � xikþd�1:
ð27Þ

Notice that the leftmost and rightmost variables xi1 and

xikþd�1 appear exactly once in Eq. (27), thus they are never

canceled. Let G be the boolean function defined as:

Gðxi1þ1; . . .; xikþd�2Þ ¼ gðxi1þ1; . . .; xi1þd�2Þ � xi1þd�1

� � � � � xik � gðxikþ1; . . .; xikþd�2Þ:
ð28Þ

Hence, the component function v � F has the form:

v � F ¼ xi1 � Gðxi1þ1; . . .; xikþd�2Þ � xikþd�1; ð29Þ

and thus it is bipermutive. h

Combining Lemma 1 and Proposition 3, we get the

following result:

Theorem 2 Let F : Fn
2 ! Fm

2 be a CA of length n ¼
m þ d� 1 defined by a bipermutive rule f : Fd2 ! F2. Then,

F is at least 1-resilient.

4 Linear CA and linear codes

Besides the applications to the design of stream ciphers, the

resiliency criterion has also relevance in coding theory,

since it is related to the minimum distance of linear codes.

Motivated by the result on the 1-resiliency of the global

rules of bipermutive CA, in this section we investigate

linear CA from the perspective of coding theory. We first

recall some basic concepts about binary linear codes. We

then show that linear CA are equivalent to cyclic linear

codes, and observe that the minimum distance of the latter

is related to the resiliency order of the former. To wrap up

the discussion, we finally show how the encoding and

decoding process in the cyclic Hamming code (7, 4, 3)

correspond respectively to preimage computation and for-

ward iteration of a bipermutive linear CA of radius 2 with a

2-resilient global rule.

4.1 Basics on linear codes

We now briefly discuss the basic definitions and results

related to linear and cyclic error-correcting codes. For a

thorough treatment of the subject, the reader can refer

to McEliece (2002).

Definition 4 Let n;m; d 2 N such that n�m, and let q ¼
qa be the power of a prime number q. A (n, m, d) linear

code C is a m-dimensional subspace of the vector space Fn
q,

such that the Hamming distance between any two vectors

c1; c2 2 C (called codewords) is at least d. The parameters

n, m and d are respectively called the length, the dimension

and the minimum distance of C.

In what follows, we focus on the case of binary linear

codes, where q ¼ 2.

Since a (n, m, d) linear code C is a subspace of

dimension m of Fn
2, it is possible to specify it using a m � n

matrix G whose rows form a set of m linearly independent

codewords of C. Such a matrix G is called a generator

matrix for code C. The encoding process simply amounts to

multiplying a message vector l 2 Fm
2 by matrix G, thus

obtaining the codeword c ¼ lG. Another matrix associated

to a linear code is its parity check matrix, which is useful

for error correction. The parity check matrix for C is a

matrix H of dimensions ðn � mÞ � n such that Hx> ¼ 0 if

and only if x 2 C. In general, the vector s ¼ Hx> is called

the syndrome of x 2 Fn
2.

The dual code of a (n, m, d) linear code C is the set

C? ¼ fx 2 Fn
2 : x � y ¼ 0; 8y 2 Cg, that is, the set of all

vectors in Fn
2 which are orthogonal to the codewords in

C. The parity check matrix H of C is a generator matrix for

C?, and vice versa the generator matrix G of C is a parity

check matrix for C?. Thus, A (n, m, d) linear code C � Fn
2

is called cyclic if it is closed under cyclic shifts, that is,

c0 ¼ ðc2; . . .; cn; c1Þ 2 C for all c ¼ ðc1; c2. . .; cnÞ 2 C. A

cyclic code is described by its generator polynomial:

gðxÞ ¼ g0 þ g1x þ � � � þ gn�mxn�m; ð30Þ

where gi 2 F2 for all i 2 f0; . . .; n � mg. If one represents

the m-bit message l ¼ ðl0; . . .; lm�1Þ by the polynomial

lðxÞ ¼ l0 þ l1x þ � � � þ lm�1x
m�1, then the polynomial

corresponding to the codeword c is cðxÞ ¼ lðxÞgðxÞ. There
exists a one-to-one correspondence between cyclic codes

and divisors of xn � 1. In particular, a (n, m, d) code C is

cyclic if and only if its generator polynomial g(x) divides

xn � 1.
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Given a (n, m, d) cyclic code C with generator poly-

nomial g(x) of degree n � m, the polynomial hðxÞ ¼ ðxn �
1Þ=gðxÞ of degree m is the parity check polynomial of

C. Analogously to the parity check matrix, h(x) satisfies the

property that the codeword associated to a polynomial

d(x) belongs to C if and only if dðxÞhðxÞ ¼ 0. The fol-

lowing result relates the generator/parity check polynomi-

als of a cyclic code C to its generator/parity check

matrices:

Theorem 3 Let C � Fn
2 be a (n, m, d) polynomialcyclic

linear code with generator gðxÞ ¼ g0 þ g1x þ � � � þ
gn�mxn�m and parity check polynomial

hðxÞ ¼ h0 þ h1x þ � � � þ hmxm. Then the following are

respectively a generator and a parity check matrix for C:

G ¼

g0 � � � gn�m 0 � � � � � � � � � � � � 0

0 g0 � � � gn�m 0 � � � � � � � � � 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 � � � � � � � � � � � � 0 g0 � � � gn�m

0

BBBB@

1

CCCCA

ð31Þ

H ¼

hm � � � h0 0 � � � � � � � � � � � � 0

0 hm � � � h0 0 � � � � � � � � � 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 � � � � � � � � � � � � 0 hm � � � h0

0
BBBB@

1
CCCCA
:

ð32Þ

As a consequence of Theorem 3, the dual code C> of a

cyclic code is again a cyclic code of length n and dimen-

sion n � m.

One of the main advantages of cyclic codes is that they

can be easily implemented using Linear Feedback Shift

Registers (LFSR). A LFSR of order k is a discrete device

composed of k registers D0; D1; . . .; Dk�1. At each step

n 2 N, the elements sn; snþ1; . . .; snþk�1 2 F2 in the reg-

isters are shifted one place to the left, and Dk�1 is updated

with the linear combination a0 � sn þ � � � þ ak�1 � snþk�1

(see Fig. 1). The tap polynomial of the LFSR is the poly-

nomial over F2 of degree k defined by the coefficients

a0; . . .; ak�1 of the LFSR. As shown in (McEliece 2002, pp.

193–195), if the parity check polynomial h(x) of a

(n, m, d) cyclic code is such that h0 6¼ 0, the codeword of a

message l 2 Fm
2 can be generated by a LFSR of length

m whose tap polynomial is the reciprocal ~hðxÞ ¼ hð1=xÞ ¼
hm þ hm�1x þ � � � þ xm of h(x), i.e. the multiplicative

inverse of h(x) over the ring F2½x	. The registers are ini-

tialized to the values l0; . . .; lm�1 of l, and the LFSR is

evolved for n steps. The output of length n produced by the

LFSR is the codeword corresponding to l. Notice that the

first m output bits are exactly the original message l, while
the remaining n � m are the parity check bits. This

encoding procedure is called systematic, since the bits of

the message appear unaltered in the corresponding code-

word. If no errors are introduced by the channel, the

decoding process is immediate since it just consists of

truncating the codeword to its first m bits.

4.2 Linear CA and cyclic codes

A cellular automaton F : Fmþd�1
2 ! Fm

2 is called linear if

its local rule is defined as f ðx1; . . .xdÞ ¼ a1x1 � � � � � adxd,

with ai 2 F2 for all i 2 f1; . . .; dg. The global rule of F is

described by a m � ðm þ d� 1Þ transition matrix MF of

the following form:

MF ¼

a1 � � � ad 0 � � � � � � � � � � � � 0

0 a1 � � � ad 0 � � � � � � � � � 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 � � � � � � � � � � � � 0 a1 � � � ad

0

BBBB@

1

CCCCA
:

ð33Þ

In particular, when the CA is bipermutive and linear we

have a1 ¼ ad ¼ 1. The application of the CA global rule

F to a configuration x 2 Fmþd�1
2 corresponds to the multi-

plication y ¼ MFx>.
One can notice that the generator and parity check

matrices of Eqs. (31) and (32) in Theorem 3 have the same

form of the linear CA matrix in Eq. (33). In particular, the

systematic encoding for cyclic codes described above can

be simulated through cellular automata. As observed

in Mariot and Leporati (2015), computing a preimage of a

spatially periodic configuration in a linear bipermutive CA

is equivalent to a concatenation of LFSR, where the LFSR

associated to the local rule is disturbed by the LFSR which

generates the spatially periodic configuration. In our case,

we are only interested in a preimage of a finite configura-

tion. Thus the general scheme consists of the LFSR asso-

ciated to the rule where the feedback is additively disturbed

by the bits of the configuration. If one takes the all-zeros

configuration 0, it can be observed that the resulting con-

catenated LFSR of Fig. 2 is equivalent to the LFSR used

for the systematic encoding of a cyclic code.

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

Fig. 1 Example of linear feedback shift register
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As a matter of fact, adding a sequence of zeros to the

feedback of a LFSR does not change its dynamics. In the

context of cellular automata, the system represented in

Fig. 2 is equivalent to the computation of a preimage of

0 2 Fn�m
2 , in particular the preimage determined by the m-

bit block l.
To summarize the discussion above, we have thus

proved the following result:

Theorem 4 Let F : Fmþq
2 ! Fm

2 be a linear cellular

automaton defined by a local rule f ðxÞ ¼ a1x1 � � � � � adxd
of diameter d ¼ qþ 1 with q 2 N, and let gðxÞ ¼ a1 þ
a2x þ � � � þ adx

q be the polynomial associated with f. If

g(x) divides xn � 1 where n ¼ m þ q, then F is equivalent

to a cyclic code C of length n and dimension m. The gen-

erator matrix of C is the CA matrix MF associated to F,

while g(x) is the generator polynomial of C. Additionally,

let h(x) be the reciprocal of the parity check polynomial

hðxÞ ¼ ðxn � 1Þ=gðxÞ, defined as ~hðxÞ ¼ hm þ hm�1x þ
� � � þ h0xm and let ~f ðxÞ ¼ hmx1 � � � � � h0xmþ1 be the cor-

responding local rule. Then, the matrix M ~F associated to

the linear CA ~F : Fmþq
2 ! F

q
2 induced by rule ~f is a parity

check matrix for C, and C ¼ ~F�1ð0Þ.

In other words, by Theorem 4 we can employ a linear

CA in the encoding and decoding process of a linear cyclic

code of length n and dimension m as follows:

1. Given m and n ¼ m þ q with q 2 N, determine a local

rule f of diameter d ¼ qþ 1 such that the associated

polynomial g(x) divides xn � 1.

2. Compute the reciprocal ~hðxÞ of the parity check

polynomial hðxÞ ¼ ðxn � 1Þ=gðxÞ, and determine the

corresponding local rule ~f of diameter m þ 1.

3. Systematic encoding: let ~F : Fmþq
2 ! F

q
2 be the linear

CA of length n induced by ~f . A message l 2 Fm
2 is

encoded by computing the preimage x 2 ~F�1ð0Þ whose

leftmost m-bit block equals l. This preimage can be

computed by the LFSR in Fig. 2.

4. Syndrome computation: given x 2 F
mþq
2 , the syndrome

of x is s ¼ ~FðxÞ. If the syndrome s equals 0 2 F
q
2 then

x is a codeword of C. Otherwise, one can apply the

syndrome decoding procedure to retrieve the original

codeword.

Notice that up to now we did not consider the minimum

distance of the cyclic codes generated through linear CA,

which is necessary in order to assess their error-correction

capability. This is where the resiliency order of the CA

comes into play. In particular, the connection between

general linear resilient functions and linear codes is given

by the following theorem reported in Stinson (2004):

Theorem 5 A ðd � 1Þ-resilient linear function F : Fn
2 !

Fm
2 is equivalent to a (n, m, d) linear code C.

We already know from the previous section that all

bipermutive CA are always at least 1-resilient, thus a linear

and bipermutive CA which satisfies the hypotheses of

Theorem 4 is equivalent to a linear cyclic code with min-

imum distance at least 2. More in general, we can refine

Theorem 4 by using Theorem 5 as follows:

Theorem 6 Let F : Fmþq
2 ! Fm

2 be a linear CA satisfying

the hypotheses of Theorem 4. If F is ðd � 1Þ–resilient, then

the cyclic code associated to F has minimum distance d.

4.3 Cyclic hamming codes through linear CA

To sum up the results presented in the previous section, we

show an example of cyclic code generated by a linear CA.

In particular we focus on cyclic Hamming codes, which are

codes with minimum distance d ¼ 3 and thus they can

correct up to 1 error. The main reason for this choice is the

simplicity of syndrome decoding in Hamming codes. As a

matter of fact, the position of the column of the parity

check matrix H containing the value of the syndrome is the

position where the error occurred.

Example 1 Let F : F72 ! F42 be the linear CA induced by

the local rule f : F42 ! F2 defined as f ðxÞ ¼ x1 � x2 � x4.

The associated polynomial is gðxÞ ¼ 1þ x þ x3, while the

CA matrix is:

MF ¼

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

0
BBB@

1
CCCA: ð34Þ

The polynomial g(x) divides x7 � 1, and it results that

hðxÞ ¼ ðx7 � 1Þ=gðxÞ ¼ 1þ x þ x2 þ x4. Further, we can

µ0

D0

Output

hm hm−1

+

µ1

D1

· · ·

h2

+· · ·

µm−2

Dm−2

h1

+

µm−1

Dm−1

h0

+

0

E0

0

E1

· · · 0

En−m−2

0

En−m−1

Fig. 2 Concatenation of a LFSR with a sequence of n � m zeros,

which computes a preimage x 2 F�1ð0Þ. Each element li in the

registers correspond to a symbol of the message l
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deduce from matrix MF that F is 2-resilient. As a matter of

fact, it is not difficult to see by exhaustive enumeration that

each nonzero vector v results in a sum of rows which

always have at least 3 ones. Hence, by Theorem 6 the code

C associated to F is the (7, 4, 3) cyclic Hamming code.

Remark that the reciprocal of the parity check polynomial

h(x) is ~hðxÞ ¼ 1þ x2 þ x3 þ x4. The local rule ~f associated

to the polynomial ~hðxÞ is ~f ðxÞ ¼ x1 � x3 � x4 � x5, and

thus it has radius r ¼ 2. In particular, the Wolfram code

representing the truth table of ~f is 1768527510. The tran-

sition matrix of the linear CA ~F : F72 ! F32 induced by rule

~f is the following:

M ~F ¼
1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

0
B@

1
CA: ð35Þ

Let l ¼ ð0; 1; 1; 0Þ 2 F42 be a 4-bit message. The systematic

encoding of l under the Hamming code (7, 4, 3) can be

accomplished by computing the preimage x of (0, 0, 0)

under the action of ~F, with the leftmost 4 bits of x initial-

ized to l. This process is depicted in Fig. 3. Hence, the

codeword corresponding to l is x ¼ ð0; 1; 1; 0; 1; 0; 0Þ.
Let us now assume that x is transmitted through a noisy

channel and the fourth bit of x is flipped, thus yielding the

word ~x ¼ ð0; 1; 1; 1; 1; 0; 0Þ. The receiver applies to ~x the

CA ~F defined by rule 1768527510, thus obtaining the

syndrome s ¼ FðxÞ ¼ ð1; 1; 0Þ, as shown in Fig. 4a. To

correct the error, the receiver looks at the CA matrix M ~F

and finds that the syndrome appears in the fourth column.

Thus, the receiver knows that a transmission error has

occurred in the fourth position of ~x, and the original

codeword can be recovered as ~x � ð0; 0; 0; 1; 0; 0; 0Þ ¼ x.

5 Conclusions and future directions

In this work, we began investigating the cryptographic

properties of the global rules of CA with no boundary

conditions, focusing on their algebraic degree, nonlinearity

and resiliency. As a first result, we proved that the alge-

braic degree of a CA global rule coincides with the degree

of its local rule. Subsequently, by restricting our analysis to

the class of CA with permutive local rules, we investigated

how the addition of a new cell to the CA affects the Walsh

spectrum of its component functions. This allowed us to

determine the nonlinearity of permutive CA in terms of the

nonlinearity of their local rules. Then, we proved that the

global rule of a bipermutive CA F is always at least 1-re-

silient, since each component of F is still a bipermutive

boolean function. Since the resiliency criterion is also

related to the error correction capability of linear codes, we

analyzed CA from the point of view of coding theory,

proving an equivalence between linear cyclic codes and

linear CA. In particular, we observed that the syndrome

computation process in the former is equivalent to applying

the global rule to the received word in the latter. Finally,

the resiliency order of a linear and bipermutive CA can be

used to determine the minimum distance of the corre-

sponding cyclic code, and we applied these results by

showing how the encoding and decoding process of the

(7, 4, 3) cyclic Hamming code can be realized using a

2-resilient linear CA of radius r ¼ 2.

There are several directions along which the research

discussed in this paper can be extended. Concerning the

cryptographic properties of the global rules, an interesting

direction to develop is the study of the differential uni-

formity in CA, a criterion related to the resistance of

S-boxes to differential cryptanalysis (see Nyberg 1994).

Additionally, another direction to consider is the general-

ization of the results presented in this paper to the case of

0 = 0 0 0

110x = 0 ? ? ?

µ

0 = 0 0 0

110x = 0 1 0 0

µ

(a)

(b)

Fig. 3 Systematic encoding of l ¼ ð0; 1; 1; 0Þ 2 F42 using rule

1768527510, defined as ~f ðxÞ ¼ x1 � x3 � x4 � x5 a initialization

b complete codeword

s = 1 1 0

110x = 1 1 0 0
∗ ⎛

⎝
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞
⎠

↑
(a) (b)

Fig. 4 Example of error correction using rule 1768527510. The cell

marked by � indicates where the error occurred a syndrome

computation b error correction
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CA with periodic boundary conditions. As a matter of fact,

periodic CA whose length coincides with the diameter of

the local rule are known in the cryptographic literature

under the name of rotation-symmetric S-boxes (see Rijmen

et al. 2008). An interesting question to investigate in this

regard would be to show lower and upper bounds on the

nonlinearity of global rules with respect to the length and

the diameter of the CA. The trade-off to consider in this

case is the minimization of the diameter of the CA while

retaining a good nonlinearity on the resulting S-boxes, in

order to obtain strong S-boxes which can be efficiently

implemented in hardware, like rule v in the case of KECCAK.

About the coding-theoretic part of our work, cyclic

codes form a broad class including for example BCH and

Reed-Solomon codes. Hence, it could be interesting to

investigate how to implement these codes through CA by

elaborating on the method presented in this paper. As we

mentioned in the Introduction, MDS codes are also

employed to design the diffusion layers of block ciphers,

such as for example the MIXCOLUMNS operation of Rijndael,

the encryption algorithm which constitutes the AES stan-

dard (see Daemen and Rijmen 2002). Thus, another

direction of research worth exploring is to consider the

design of MDS codes by means of linear CA for light-

weight implementations of diffusion linear layers.
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