
Revisiting the cutting of the firing squad synchronization

Antonios Dimitriadis1 • Martin Kutrib2 • Georgios Ch. Sirakoulis1

Published online: 28 July 2017

� Springer Science+Business Media B.V. 2017

Abstract Various synchronization algorithms have been

introduced in literature during the last decades to deal with

the firing squad synchronization problem on cellular

automata (CA). Among others defective CA algorithms,

where the CA cell is able to transmit information without

previous processing, have been also presented. In our case,

originating from the classical Mazoyer’s paper, where a

minimum-time solution is presented with 6 states, a one-

dimensional CA where one cell may permanently fail is

presented. In the proposed algorithm, the defective cell can

neither process nor transmit information any longer, while

it is considered that such dynamic defects may become

apparent in any time step of computation. A thorough

analysis of the synchronization, in terms of location and

time at which cell fails, for the cells found in both sides of

defective cell is delivered to decipher the corresponding

maximal possible number of synchronized cells in each

part of the cut, due to defect, CA array. The proposed

algorithm is properly extended to consider more than one

defective cells that may occur in the under study one-di-

mensional CA. Based on the aforementioned analysis, we

provide the generalization of synchronization with multiple

totally defective cells, while application examples of the

generalized CA algorithm in case of two defective cells are

also presented. Finally, another intriguing aspect refers to

handling of states that could be tentatively characterized as

unknown, in a confrontation similar to the previous

defective state but also different, since now this(these)

cell(s) are not stated as faulty but unknown. As a result, a

new one-dimensional CA with less states, compared to the

previous CA defective algorithms, able to synchronize the

maximal possible number of cells in each part occurs.

Keywords Defective cellular automata � Firing squad

synchronization problem � Fault tolerance �
Synchronization algorithm � Multiple totally defective

cells � Unknown states

1 Introduction

Nowadays it becomes possible to build massively parallel

computing systems that consist of hundred thousands of

processing elements. Each single component is subject to

failure such that the probability of misoperations and loss

of function of the whole system increases with the number

of its elements. It was von Neumann (1956) who first

stated the problem of building reliable systems out of

unreliable components. Here we consider one-dimensional

CA as a model for homogeneously structured parallel

systems as are linear processor arrays. Such devices of

interconnected parallel acting finite-state machines have

been studied from the viewpoint of fault tolerance in sev-

eral ways. In Gács (1986) reliable arrays are constructed

under the assumption that a cell (and not its links) at each

time step fails with a constant probability. Moreover, such

a failure does not incapacitate the cell permanently, but

only violates its rule of operation in the step when it occurs.

& Georgios Ch. Sirakoulis

gsirak@ee.duth.gr

Antonios Dimitriadis

andimitr@ee.duth.gr

Martin Kutrib

kutrib@informatik.uni-giessen.de

1 Department of Electrical and Computer Engineering,

Democritus University of Thrace, Xanthi, Greece

2 Institut für Informatik, Universität Giessen, Arndtstr. 2,

35392 Giessen, Germany

123

Nat Comput (2018) 17:455–465

https://doi.org/10.1007/s11047-017-9628-z

http://orcid.org/0000-0001-8240-484X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-017-9628-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-017-9628-z&domain=pdf
https://doi.org/10.1007/s11047-017-9628-z

Under the same constraint that cells themselves (and not

their links) fail (that is, they cannot process information but

are still able to transmit it unchanged with unit speed)

fault-tolerant computations have been investigated, for

example, in Harao and Noguchi (1975), Nishio and

Kobuchi (1975) where encodings are established that allow

the correction of so-called K-separated misoperations,

in Kutrib and Löwe (2002) where the studies are in terms

of syntactical pattern recognition, in Kutrib and Vollmar

(1991, 1995), Umeo (1994, 2004), Yunès (1996) where the

firing squad synchronization problem is considered in

defective cellular arrays, and in Fay and Kutrib (2004)

where the early bird problem (Rosenstiehl et al. 1972) is

investigated.

However, in the previous studies defective cells are

considered such that cells still can transmit information

without processing it. Here we consider defective CA

where the dynamic defects are such that a defective cell

totally fails (Dimitriadis et al. 2016). The failures are

permanent and may occur at any time in the computation.

In this way the array is cut into two parts. Our study is in

terms of the famous Firing Squad Synchronization Problem

(FSSP). This is done because in our opinion the FSSP is

characteristic of hard parallel problems. Its solutions are

myopic: from local properties a global behavior is

achieved. Moreover, synchronization problems are of

practical relevance. The FSSP was raised by Myhill in

1957 and emerged in connection with the problem to start

several parts of a parallel machine at the same time. The

first published reference appeared with a solution found by

McCarthy and Minsky in Moore (1964). Roughly speak-

ing, the problem is to set up a CA such that all cells change

to a special state for the first time after the same number of

steps. Many modifications and generalizations of the FSSP

have been investigated. Just to mention a few of them, in

Čulik (1989) Culik II has used some variations of the FSSP

to design parallel algorithms for one-way automata net-

works. Waksman Waksman (1966) and Balzer Balzer

(1967) have given minimal time solutions to the ordinary

FSSP. Mazoyer Mazoyer (1987) has obtained a six-state

algorithm. A variety of generalizations have been consid-

ered. Synchronization speed-ups in cellular automata with

busses have been shown by Vollmar (1991). Solutions for

higher dimensions can be found in Grasselli (1975),

Kobayashi (1978b), Rosenstiehl et al. (1972), Shinahr

(1974), Szwerinski (1982), Umeo et al. (2006). Herman

et al. (1974) give solutions for cellular arrays, the lengths

of which ‘‘grow’’. The problem of starting the synchro-

nization from non-border automata has been solved by

Moore and Langdon (1968). General networks have been

considered in Čulik and Dube (1991), Jiang (1992),

Kobayashi (1978a, b), Romani (1978), Rosenstiehl et al.

(1972). Fault tolerant synchronizations are studied

in Kutrib and Vollmar (1995), Umeo (2004), and in Imai

and Morita (1996) the problem is solved for reversible

cellular spaces. There are many more papers dealing with

the FSSP. A valuable source of further references and

topics is the survey by Umeo (2009).

In this paper, based on the aforementioned confrontation

that the defective cell can neither process nor transmit

information any longer, while it is considered that such

dynamic defects may become apparent in any time step of

computation, a novel CA algorithm originated from

Mazoyer’s 6-state algorithm is presented able to address

the problem of more than one totally defective cells. For

doing so, initially, a thorough analysis of the synchro-

nization, in terms of location and time at which cell fails,

for the cells found in both sides of defective cell is deliv-

ered to decipher the corresponding maximal possible

number of synchronized cells in each part of the cut, due to

defect, CA array. Moreover, application examples of the

presented CA algorithm for randomly selected defective

cells are also discussed. It has been found that Imple-

mentations of the proposed algorithm show that the algo-

rithm has an average of 78% synchronization success,

which means that in some cases a small number of cells

could finally remain unsynchronized. In this context,

another aspect of misbehaving cells is considered; namely

handling of states that could be tentatively characterized as

unknown, in a confrontation similar to the previous

defective state but also different, since now this(these)

cell(s) are not stated as faulty but unknown, is also inves-

tigated. As a result, a new one-dimensional CA with less

states but also different synchronization time, compared to

the previous CA defective algorithms, able to synchronize

the maximal possible number of cells in each part occurs.

Finally, the concept of more than one totally defective CA

cells that totally fail during the synchronization process is

also introduced. Based on the provided analysis, the gen-

eralization of synchronization with multiple totally defec-

tive cells is proposed. Application examples of the

generalized CA algorithm in case of two defective cells are

also presented.

2 Preliminaries

Let A denote a finite set of letters. Then we write A� for the
set of all finite words (strings) built with letters from A and

Aþ for the set of all non-empty words. We use � for set

inclusion and � for strict set inclusion. For a set S and a

symbol a we abbreviatory write Sa for S [fag.
A one-dimensional CA is a linear array of identical

deterministic finite-state machines, called cells. Except for

the leftmost cell and rightmost cell each one is connected

to its both nearest neighbors. We identify the cells by

456 A. Dimitriadis et al.

123

positive integers. The state transition depends on the cur-

rent state of a cell itself and the current states of its two

neighbors, where the outermost cells receive a permanent

boundary symbol on their free input lines (Fig. 1).

Definition 1 A cellular automaton (CA) is a system

M ¼ hS;A; #; di, where S is the finite, nonempty set of cell

states, A � S is the nonempty set of input symbols, # 62 S is

the permanent boundary symbol, d : S# � S� S# ! S is the

local transition function.

A configuration ct ofM at time t� 0 is a string of the form

#S�#, that reflects the cell states from left to right. The

computation starts at time 0 in a so-called initial configura-

tion, which is defined by the inputw ¼ a1a2 � � � an 2 Aþ. We

set c0 ¼ #a1a2 � � � an#. During the course of its computation

a CA steps through a sequence of configurations, whereby

successor configurations are computed according to the

global transition function D: Let ct be a configuration

reached at time t� 0 in some computation. Then its

successor configuration ctþ1 ¼ DðctÞ is as follows. For

2� i� n	 1, ctþ1ðiÞ ¼ dðctði	 1ÞÞ; ctðiÞ; ctðiþ 1ÞÞ; and

for the leftmost and rightmost cell we set ctþ1ð1Þ ¼
dð#; ctð1Þ; ctð2ÞÞ and ctþ1ðnÞ ¼ dðctðn	 1Þ; ctðnÞ; #Þ, for

t� 0. Thus, the global transition function D is induced by d.
Next, we consider CA with dynamic defects. In Kutrib

and Löwe (2002) dynamic defects have been studied so

that a defective cell can still transmit information without

processing it. In this way the array is not cut into pieces.

Here we investigate dynamic defects so that a defective

cell totally fails, such failures are permanent and may occur

at any time in the computation. In order to define CA with

this type of defects more formally, a possible failure is seen

as a weak kind of nondeterminism for the local transition

function.

Definition 2 A cellular automaton M ¼ hS;A; #; di is a

cellular automaton with (totally) dynamic defects (TDCA),

if d is extended so that it may map any triple from S# �
S� S# to S#, that is, either to a state from S or alternatively

to the boundary symbol #.

If a cell works fine the local transition function maps to

a state from S. Otherwise it maps to #. In the latter case, for

the remaining computation the cell behaves as the bound-

ary to its both neighbors. Since the transition function is

not defined for #, the failure is permanent and the cell can

be seen as totally defective. The time step at which a cell

enters the boundary symbol from a non-boundary symbol is

said to be the time step at which the cell fails or its failure

time. We assume that initially all cells are intact and, thus,

no cell fails at time 0.

3 The firing squad synchronization problem

Roughly speaking, the problem is to set up a CA such that

all cells change to a special state for the first time after the

same number of steps. Originally, the problem has been

stated as follows: Consider a finite but arbitrary long chain

of finite automata that are all identical except for the

automata at the ends. The automata are called soldiers, and

the automaton at the left end is the general. The automata

work synchronously, and the state of each automaton at

time step t þ 1 depends on its own state and on the states of

its both immediate neighbors at time step t. The problem is

to find states and state transitions such that the general may

initiate a synchronization in such a way that all soldiers

enter a distinguished state, the firing state, for the first time

at the same time step. At the beginning all non-general

soldiers are in the quiescent state. More formally, the FSSP

is defined as follows.

Definition 3 Let C be the set of all configurations of the

form #GQQ � � �Q#. The Firing Squad Synchronization

Problem is to specify a CA hS;A; #; di so that for all c 2 C,

1. there is a synchronization time tf � 1 such that

Dtf ðcÞ ¼ #FF � � �F#,
2. for all 0� t\tf , D

tðcÞ ¼ #X1X2 � � �Xn# with Xi 6¼ F,

1� i� n, and

3. dðQ;Q;QÞ ¼ dð#;Q;QÞ ¼ dðQ;Q; #Þ ¼ Q.

While the first solution of the problem takes 3n time

steps to synchronize n cells (Moore 1964), Goto (1962)

was the first who presented a minimal-time solution that

uses several thousand states (see Umeo (1996), Yunès

(2009) for a reconstruction of this algorithm). The min-

imal solution time for the FSSP is 2n	 2 (Waksman

1966).

Apart from time optimality there is a natural interest in

efficient solutions with respect to the number of states or

the number of bits to be communicated to neighbors. While

there exists a time optimal solution where just one bit of

information is communicated (Mazoyer 1989), the minimal

number of states is still an open problem. The first time

optimal solution (Goto 1962) uses several thousand states.

The algorithm from Waksman (1966) takes 16 states.

About one year later, an eight state time optimal solution

was published (Balzer 1967). Currently, a six-state solution

is known (Mazoyer 1987). In the same paper it is proved

that there does not exist a time optimal four-state algo-

rithm. It is a challenging open problem to prove or disprove

that there exists a five-state solution.

· · ·# a1 a2 a3 an #

Fig. 1 A one-dimensional cellular automaton

Revisiting the cutting of the firing squad synchronization 457

123

Since the algorithm to be presented here relies on

Mazoyer’s solution, we next sketch the basic idea

from Mazoyer (1987).

Algorithm 4 The FSSP is solved by iteratively dividing

the array of length n into parts on which the same algo-

rithm is applied recursively (see Fig. 2). First the array is

divided into two parts. Then the process is applied to both

parts in parallel, etc. The cut-points are chosen so that one

of the parts is twice as long as the other (up to the

remainder of n modulo 3). Exactly when all cells are cut-

points they enter the firing state synchronously.

In order to divide the array into two parts, the general

sends two signals to the right. One signal moves with speed

1, that is, one cell per time step, and the other signal with

speed 1/2, that is, one cell every other time step. The fast

signal is bounced at the right end and is sent back to the left

with speed 1. Both signals meet at position 2=3 � n (up to

the remainder of n modulo 3), where the cell becomes a

general. Now the right part is treated as an array of length

ðnþ iÞ=3, where i 2 f0; 1; 2g so that the synchronization

starts with 0, 1, or 2 steps delay.

The next cut-point in the left part, which is at total

position ð2=3Þ2, can be determined by another signal sent

at initial time by the general at the left end. This signal

moves with speed 2/7. It meets the bounced signal from

above at the required position. In order to determine the

cut-point at total position ð2=3Þ3 in this way, the general

has to send a further signal with speed 4/23, and so on.

Altogether, for a solution the general has to send a number

of signals that depends on the length of the array.

In order to send this number of signals with a finite state

set, an approach shown in Waksman (1966) can be

adopted. The idea is rather simple, the additional signals

are generated and moved by trigger signals. The left-

moving trigger signals themselves are emitted by the initial

right-moving signal. Whenever a trigger signal reaches a

triggered signal, the latter is moved. A triggered signal

deletes every other trigger signal that arrives at it.

Moreover, whenever a trigger signal reaches the leftmost

cell, a new signal to be triggered is generated. That way,

the desired behavior is achieved in Waksman (1966), and a

minimal-time solution for the FSSP is obtained. Since in

Mazoyer’s solution, the array is not split in the middle but

at position 2=3 � n the implementation of the trigger signals

is more involved but follows the same underlying idea.

These signals are referred to as family of slow signals

in Mazoyer (1987). h

4 Synchronization with a totally defective cell

In this section we turn to consider the effect of a cell

becoming totally defective on Mazoyer’s algorithm that is

extended. For non-defective CA, the algorithm runs in

optimal time, that is, in time 2n	 2 where n is the number

of cells to be synchronized. For the case that a cell k with

1\k\n fails the array is cut into two independent parts,

that is, into the cells 1; 2; . . .; k 	 1 on the left and the cells

k þ 1; k þ 2; . . .; n on the right. The problem is now to

synchronize these two parts independently of each other, if

possible at all. However, this may yield extended syn-

chronization times. The main goal in the sequel is to

determine for a given situation how many cells can still be

synchronized, and how many time steps are needed. The

algorithm depends naturally on the time step at which a cell

fails (recall that this is the time step at which it enters the

boundary symbol from a non-boundary state) and its

position in the array. For our notation, in the following we

assume that at most one cell k with 1\k\n fails at time

step td with 0\td � 2n	 2.

In general, cell k 	 1 has to detect that the failure

occurred. This means, it has to distinguish between a

boundary symbol to its right that is due to a failure and a

boundary symbol that is initial. On the other hand, this

distinction is irrelevant if the failure occurs when cell k 	 1

has not received the initial signal. So, it is sufficient that

each cell remembers the information whether or not its

right neighbor is the boundary symbol when the cell

receives the initial signal. To this end, no further copies of

the states are used, but the remembering is successfully

encapsulated in the transition function.

In general, since the leftmost cell is cell 1, the running

time of the initial signal to cell k is k 	 1 time steps.

123 · · · n
t = 0

t = n− 1

t = 2n− 2

Fig. 2 Scheme of the time-optimal 6-state FSSP solution. The

vertical solid lines are cells in the general state. For the sake of clarity

not all signals are depicted

458 A. Dimitriadis et al.

123

4.1 Analysis for the left part

When cell k fails at time td, its left neighbor enters a state

that may depend on the fact that a failure occurs at the

earliest at time td þ 1. The actual behavior of cell k 	 1 at

time td þ 1 depends on the position of the defective cell,

that is, on k and on td. See Figs. 3 and 4 for examples.

Case 1 If td � k 	 3, then the initial signal sent by the

leftmost cell of the FSSP still did not arrive at cell k 	 1

when its neighbor failed. The running time of this signal to

cell k 	 1 is k 	 2 time steps. So, cell k acts a boundary cell

for the FSSP that synchronizes all the k 	 1 cells of the left

part in 2ðk 	 1Þ 	 2 ¼ 2k 	 4 steps. This behavior does not

apply to the case k 	 2� td. The reason is that the state of

cell k 	 1 at time k 	 2 is given by the transition function

that sees the quiescent state in cell k at time k 	 3. So, if

cell k fails at time k 	 2, then the state of cell k 	 1 does

not reflect the bounced signal.

Case 2 Let k 	 2� td � 2n	 k 	 1. Then cell k 	 1 was

already reached by the initial signal and the synchroniza-

tion is in progress. Therefore, the algorithm we consider is

set up so that cell k 	 1 informs the cells of the left part

about the failure and to stop the running FSSP. To this end,

it sends a signal to the left. This signal is started at time

td þ 1 and arrives at time td þ 1þ k 	 2 ¼ td þ k 	 1. If

the synchronization time 2n	 2 of the running FSSP is

after the arrival time of the signal in cell 1, none of the cells

in the left part will fire according to the running FSSP. This

happens if 2n	 2� td þ k 	 1 and, thus, td � 2n	 k 	 1.

Now the algorithm is further extended such that the

signal that stops the running synchronization is additionally

the initial signal of a new (mirrored) FSSP instance where

the synchronization is initiated by the rightmost cell of the

array. In particular, this implies that the left part is syn-

chronized in 2ðk 	 1Þ 	 2 steps after the signal has been

emitted. That is, the synchronization takes place at time

step td þ 1þ 2ðk 	 1Þ 	 2 ¼ td þ 2k 	 3.

For example, if k ¼ 2 and td ¼ 2 then Case 1 cannot

apply, but Case 2 may. Thus, the sole cell 1 is synchronized

at time step 2.

It is worth mentioning that the mirrored FSSP costs

extra states. Here we can trade states for a slowdown as

follows. Cell k 	 1 still sends the signal to the left in order

to stop the running FSSP. If the signal arrives in cell 1 a

new (non-mirrored) FSSP is initiated that synchronizes the

left part in further 2ðk 	 1Þ 	 2 steps, that is, at time

td þ 1þ k 	 2þ 2ðk 	 1Þ 	 2 ¼ td þ 3k 	 5. Since the

new signal requires just one additional state, we trade one

state for k 	 2 additional time steps.

Case 3 Let 2n	 k� td � 2n	 2. In this case, the signal

emitted by cell k 	 1 to stop the running FSSP does not

1 · · · kk − 2
t = 0

td = k − 3
t = k − 2

tf = 2k − 4 fire

1 · · · k-1 k
t = 0

t = k − 1

td

td + 1

tf = td + 2k − 3 fire

Fig. 3 Examples for the

analysis for the left part; Case 1

(left) and Case 2 (right). The

vertical fat solid lines show the

defect of cell k. For the sake of

clarity only the initial right-

moving signal and its returns are

depicted

1 · · · k-1 k n
t = 0

t = 2n− k − 1

td

td + 1

tf = 2n− 2 fire

Fig. 4 Example for Case 3 of the analysis for the left part. The

vertical fat solid line shows the defect of cell k. For the sake of clarity

only the initial right-moving signal and its returns are depicted

Revisiting the cutting of the firing squad synchronization 459

123

reach all cells of the left part before time step 2n	 2 at

which the running synchronization takes place. However,

at time td þ x the signal has affected x cells, where x� 1.

Setting 2n	 2 ¼ td þ x implies x ¼ 2n	 2	 td. So, 2n	
2	 td cells are affected and, thus, not synchronized by the

running FSSP. Conversely, this means that k 	 1	 ð2n	
2	 tdÞ ¼ td 	 2nþ k þ 1 cells are synchronized at time

step 2n	 2.

For example, if td ¼ 2n	 k then just one cell is syn-

chronized. This is the leftmost cell that cannot be reached

by the signal in due time. Setting td ¼ 2n	 2 gives k 	 1

synchronized cells. These are all cells in the left part since

the synchronization takes place at the time cell k fails.

Table 1 summarizes the results for the left part.

4.2 Analysis for the right part

As for the left part, when cell k fails at time td, its right

neighbor enters a state that may depend on the fact that a

failure occurs at the earliest at time td þ 1. The actual

behavior of cell k þ 1 at time td þ 1 depends on the posi-

tion of the defective cell, that is, on k and on td. See Figs. 5

and 6 for examples.

Case 1 If td � k 	 1, then the initial signal sent by the

leftmost cell of the FSSP still did not arrive at cell k þ 1

when its left neighbor failed. The running time of this

signal to cell k þ 1 is k time steps. So, when cell k þ 1 is

still in the quiescent state with a boundary to its left, it can

start a new instance of a FSSP that synchronizes the right

part. Here we note that a quiescent cell next to the left

boundary does not occur without a failure, since initially

the leftmost cell is in the general state. The new instance is

set up when cell k þ 1 enters the general state at time

td þ 1. Then it takes another 2ðn	 kÞ 	 2 steps to syn-

chronize all the n	 k cells of the right part. That is, the

right part is synchronized at time td þ 1þ 2ðn	 kÞ	
2 ¼ td þ 2n	 2k 	 1.

Case 2 Let k� td � nþ k 	 2. Then cell k þ 1 was

already reached by the initial signal and the synchroniza-

tion is in progress. Therefore, the algorithm we consider is

set up so that cell k þ 1 informs all cells of the right part

Table 1 Summary of synchronization times and cells in the left part,

where td denotes the time of failure, the columns with head Cells

show the number of cells synchronized, and tf denotes the time step at

which the cells are synchronized

td Cells tf

Left part

½1; . . .; k 	 3
 All 2k 	 4

½k 	 2; . . .; 2n	 k 	 1
 All td þ 2k 	 3

½2n	 k; . . .; 2n	 2
 td 	 2nþ k þ 1 2n	 2

1 · · · k k+1 · · · n
t = 0

t = k − 1

td

td + 1

td + n− k

tf = td + 2n− 2k − 1 fire

1 · · · k k+1 · · · n
t = 0

t = k − 1

td

td + 1

td + n− k

tf = td + 2n− 2k − 1 fire

Fig. 5 Examples for the

analysis for the right part;

Case 1 (left) and Case 2 (right).

The vertical fat solid lines show

the defect of cell k. For the sake

of clarity only the initial right-

moving signal and its returns are

depicted

1 · · · k k+1 · · · n
t = 0

t = n− 1

td

td + 1

tf = 2n− 2 fire

Fig. 6 Example for Case 3 of the analysis for the right part. The

vertical fat solid line shows the defect of cell k. For the sake of clarity

only the initial right-moving signal and its returns are depicted

460 A. Dimitriadis et al.

123

about the failure and to stop the running FSSP. To this end,

it sends a signal to the right. This signal is started at time

td þ 1 and arrives at time td þ 1þ n	 k 	 1 ¼ td þ n	 k.

If the synchronization time 2n	 2 of the running FSSP is

after the arrival time of the signal in cell n, none of the cells

in the right part will fire according to the running FSSP.

This happens if 2n	 2� td þ n	 k and, thus,

td � nþ k 	 2.

Now, as for the left part, the algorithm is extended such that

the signal that stops the running synchronization is additionally

the initial signal of a new FSSP instance. This implies that the

right part is synchronized in 2ðn	 kÞ 	 2 steps after the signal

has been emitted. That is, the synchronization takes place at

time step td þ 1þ 2ðn	 kÞ 	 2 ¼ td þ 2n	 2k 	 1.

Case 3 Let nþ k 	 1� td � 2n	 2. In this case, the

signal emitted by cell k þ 1 to stop the running FSSP does

not reach all the cells of the right part before time step

2n	 2 at which the running synchronization takes place.

However, at time td þ x the signal has affected x cells,

where x� 1. Setting 2n	 2 ¼ td þ x implies x ¼
2n	 2	 td. So, 2n	 2	 td cells are affected and, thus,

not synchronized by the running FSSP. Conversely, this

means that n	 k 	 ð2n	 2	 tdÞ ¼ td 	 n	 k þ 2 cells

are synchronized at time step 2n	 2.

For example, if td ¼ nþ k 	 1 then just one cell is

synchronized. This is the rightmost cell that cannot be

reached by the signal in due time. Setting td ¼ 2n	 2 gives

n	 k synchronized cells. These are all cells in the right

part since the synchronization takes place at the the time

cell k fails.

Table 2 summarizes the results for the right part.

Furthermore, we have dealt with the situation where a CA

cell is found in an unknown state, not including in any of the

previous states as mentioned before. In order to handle this

situation a new CA algorithm, based on the aforementioned

CA algorithm, is proposed minimizing the total number of

requested states to 11. The analysis and the functionality of

this novel algorithm is similar with the one presented and

their main difference occurs at the confrontation of the extra

state, characterized as unknown and results to different time

for synchronization, namely 2n	 1 in case no unknown

states occurs. In case of an unknown CA cell state, the

previously presented analysis occurs with similar time

frames, i.e. tf for the left part and tf þ 1 for the right part. It

should be mentioned that these changes in the provided

synchronization times result from the new 11-state algorithm

due to different number of transition rules.

5 Graphical representation of two examples

In the first example a CA with 17 cells is considered. Let

cell 9 fail at time step 15. A simulation of the original

algorithm from Mazoyer (1987) is depicted in the left part

of Fig. 7. The boundary cells are represented in yellow.

The cells to the right of the failure are left unsynchronized

and are depicted in orange, while the cells to the left of the

failure which are still synchronized are drawn in brown.

At the middle part of Fig. 7 the extended algorithm is

simulated. In particular, all non-defective cells are syn-

chronized (though the left and the right part fire indepen-

dently at different time steps).

Moreover, for exactly the same example, namely a CA

with 17 cells and cell 9 found in an unknown state at time

step 15 and remaining at the same state for the rest of the

CA time evolution, the results of the proposed algorithm

are shown in Fig. 7 at the bottom part. Please consider that

boundary cells are depicted in lime color, while the finally

synchronized cells are depicted in brown color.

In the second example a CA with 26 cells is presented

(see Fig. 8) and is supposed that cell 12 fails at time step

14. Again, at the upper part of the figure a simulation of the

original algorithm is shown. The colors are as before. Note,

that none of the cells fires. At the middle part of Fig. 8, a

simulation based on the extended algorithm is presented.

As in the first example, now all non-defective cells are

synchronized, where the firing times for the left and right

part necessarily differ. Finally, like before, for the same

example, i.e. CA with 26 cells and cell 12 found in an

unknown state at time step 14 and remaining at the same

state for the rest of the CA time evolution, the results of the

proposed algorithm for handling unknown state cell are

shown in Fig. 8 at the bottom part. Please consider that the

same colors apply as before.

6 Generalization of synchronization with multiple
totally defective cell

As before we consider one-dimensional cellular automata

of n cells, and we will present the application of our pro-

posed algorithm in the case of more than one totally

defective cell. In particular, as depicted in Fig. 9, we

consider that the coloured red cell found in place n1 fails at

Table 2 Summary of synchronization times and cells in the right

part, where td denotes the time of failure, the columns with head Cells

show the number of cells synchronized, and tf denotes the time step at

which the cells are synchronized

td Cells tf

Right part

½1; . . .; k 	 1
 All td þ 2n	 2k 	 1

½k; . . .; nþ k 	 2
 All td þ 2n	 2k 	 1

½nþ k 	 1; . . .; 2n	 2
 td 	 n	 k þ 2 2n	 2

Revisiting the cutting of the firing squad synchronization 461

123

time step t1. However, in the examined case, a second cell

located at cells 1; . . .; n1 	 1½
 or n1 þ 1; . . .; n½
 stops to

function and it is characterized as defective (Fig. 9).

Moreover, it is understood that the second cell, coloured

orange, is defective at time t2, where t2 � t1 and t2 is the

exact time step when n2 is no more functional, in corre-

spondence to time t1 of cell n1. As a result, we end up with

two possible cases referring to the location of n2 in cor-

respondence to n1.

Case 1 n2 2 1; . . .; n1 	 1½
. This case applies when

n1 [n2 (Fig. 9a). Consequently, three different areas are

formed, namely 1; . . .; n2 	 1½
; n2 þ 1; . . .; n1 	 1½
 and

n1 þ 1; . . .; n½
. As already shown earlier, our proposed

scheme aims to synchronize the areas 1; . . .; n2 	 1½
 and
n2 þ 1; . . .; n1 	 1½
 placed at the left and right side of cell

n2, while for the right part n1 þ 1; . . .; n½
, it will synchro-
nized according to the synchronization scheme of the first,

that is n1, defective cell, described in Sect. 4.2.

Fig. 7 Simulations of the first example. The original algorithm

(upper) and the extended algorithm for totally defective cell (middle)

and the new algorithm (below) for unknown state cell. Boundary cells

are depicted in yellow (for original algorithm), turquoise (extended

defective algorithm) and lime (unknown state algorithm), respec-

tively, finally synchronized cells in orange and brown, and non-

synchronized cells in orange. For all the algorithms, time t ¼ 0

corresponds to the upper row as provided in the previous theoretical

examples. (Color figure online)

Fig. 8 Simulations of the second example. The original algorithm

(upper) and the extended algorithm for totally defective cell (middle)

and the new algorithm (below) for unknown state cell. Boundary cells

are depicted in yellow (for original algorithm), turquoise (extended

defective algorithm) and lime (unknown state algorithm), respec-

tively, finally synchronized cells in orange and brown, and non-

synchronized cells in orange. For all the algorithms, time t ¼ 0

corresponds to the upper row as provided in the previous theoretical

examples. (Color figure online)

462 A. Dimitriadis et al.

123

Case 2 n2 2 n1 þ 1; . . .; n½
. In this case, n1\n2 applies

(Fig. 9b). As a result we have the following three parts,

1; . . .; n1 	 1½
; n1 þ 1; . . .; n2 	 1½
 and n2 þ 1; . . .; n½
.
Based on the proposed algorithm, each defective cell is

efficient enough to synchronize left and right parts beyond

it. As a result, for n2, the n1 þ 1; . . .; n2 	 1½
 and

n2 þ 1; . . .; n½
 parts found in both sides of n2 will be syn-

chronized accordingly. The missing part, that is

1; . . .; n1 	 1½
, is synchronized as shown in Sect. 4.1.

6.1 Generalization in case of almost all cells

Initially, let us assume that beyond the above mentioned

two defective cells, a third one, that is cell n3, fails. In the

provided analysis the algorithm categorizes hierarchically

the defective cells based on their failure times. So, if we

consider cell n3 as the latest cell that failed, it should be

located either between parts 1; . . .; n2 	 1½
, or

n2 þ 1; . . .; n1 	 1½
 or n1 þ 1; . . .; n½
 as described in Case

1, or between parts 1; . . .; n1 	 1½
 or n1 þ 1; . . .; n2 	 1½
 or
n2 þ 1; . . .; n½
. In any of the above parts where cell n3
might be located in, it will synchronize the right and left

parts found at its both sides, as analyzed earlier in Sect. 4.

The other two cells, that is n2 and n1, will be synchronized

as found in the previous analysis. In other words, every cell

that fails will affect only the part that is placed in corre-

spondence to the previously failed cells. This confrontation

will gradually result to a tree structure able to deal with

defective cells across CA grid and time.

6.2 Graphical representations for the n1 and n2
example cases

In the case of two n1 and n2 defective cells example, a CA

with 25 cells is considered. The n1 located at cell 11 fails at

time step 14, while the n2 cell is located left of n1 at cell 5

and fails at time step 31 (upper part of Fig. 10). For sake of

the different examined cases, n2 is placed alternatively on

the right of n1, at cell 19 and fails at time 21 as shown in

the upper middle part of Fig. 10. The presented Fig-

ures correspond to the application of the generalized CA

algorithm able to handle multiple totally defective cells.

The boundary cells are represented in green color and it is

clear that the cells in both failure places of n1 and after in

n2 are still synchronized and are drawn in brown.

We also present application examples in case of more

than one cells found in unknown state. For reasons of

readability we use exactly the same conditions mentioned

above, i.e. a CA with 25 cells is considered and two n1 and

n2 cells are found in unknown state. The n1 located at cell

11 is found in unknown state at time step 14 and remains

for the rest of CA evolution, while the n2 cell is located left

of n1 at cell 5 and is found in unknown state at time step 31

(lower middle part of Fig. 10). For sake of the different

examined cases, once again, n2 is placed alternatively on

the right of n1, at cell 19 and turns to unknown state at time

21 as shown in the lower part of Fig. 10. Please consider

that this is the outcome of the new 11 state synchronization

algorithm responsible for handling more than one cells

found at some moment in unknown state and remaining for

the rest of the CA evolution. The boundary cells are rep-

resented in green color and it is clear that the cells in both

failure places of n1 and accordingly n2 are still synchro-

nized and are drawn in brown.

7 Conclusions

The time-optimal solution of the FSSP byMazoyer has been

considered for one-dimensional CAwhere atmost one cell or

more than one cells may totally fail, that is, it (they) can

neither process nor transmit information any longer. It is

worth mentioning that other time-optimal solutions of the

FSSPwhich obey the same recursive principle of splitting the

line could have been used for our investigations as well. For

example, this includes the solutions given in Balzer (1967),

Goto (1962),Waksman (1966) and others. However, herewe

used the most state efficient optimal-time solution known. In

order to synchronize as many cells as possible, the algorithm

has been extended by several features. The proposed algo-

rithm divides the initial array into two separated parts, which

are treated independently. When more than one cells are

found defective, e.g. two cells, the rest of the areas located in

both sides of the last defective cell are also divided in two

separated parts and also treated independently; the same

applies when more cells fail and the aforementioned cutting

of the synchronization scheme applies as many times as

needed. It has been shown that the number of the cells that

still can be synchronized in these cases and the

Fig. 9 The possible locations of two defective cells, n1, red coloured,

and n2, orange coloured. It is assumed that cell n1 failed earlier at

time step t1 than n2, that is, t2 � t1. a The case where

n2 2 1; . . .; n1 	 1½
, b The case where n2 2 n1 þ 1; . . .; n½

Revisiting the cutting of the firing squad synchronization 463

123

corresponding synchronization times naturally depend on

the position of the defective cell and the time at which

this(ese) cell(s) fails.

The proposed generalized algorithm able to deal with

more than one defective cells has been implemented with

14 states. It has been tested in experiments with all array

lengths between 4 and 500 and for all possible failure times

and positions. The tests were run on a commercially

available Windows PC and took several days running time.

It turned out that the algorithm has an average of 78%

synchronization success. Moreover, by a case-by-case

analysis the number of synchronized cells as well as their

synchronization times were derived. A definition of the

minimal time to solve the problem is not that obvious as it

depends on the number of cells that are synchronized.

Furthermore, the case of a new algorithm dealing suf-

ficiently with the case of just one and more than one cells

found in unknown state, is also introduced. This algorithm

is implemented with less states, compared to the defective

CA algorithm, namely 11 states, and different number of

transition rules and results in 2n	 1 synchronization time

in case no unknown states occurs. In case of an unknown

CA cell state, the previously presented analysis occurs with

similar time frames, i.e. tf for the left part and tf þ 1 for the

right part. Like before, application examples for both cases,

i.e. one cell with unknown state and two cells found in

unknown state, respectively, are given.

Finally, for all the introduced algorithms it clear that a

formal proof would require that the precise configuration of

an array at failure time is involved in the argumentation.

However, it is not hard to see that both algorithms proposed

in the context of this paper all work in minimal time for the

number of cells that each one synchronizes.

References

Balzer RM (1967) An 8-state minimal time solution to the firing

squad synchronization problem. Inf Control 10:22–42

Čulik K II (1989) Variations of the firing squad problem and

applications. Inf Process Lett 30:153–157

Čulik K II, Dube S (1991) An efficient solution of the firing mob

problem. Theor Comput Sci 91:57–69

Dimitriadis A, Kutrib M, Sirakoulis G Ch (2016) Cutting the firing

squad synchronization. In: El Yacoubi S, Was J, Bandini S (eds)

Cellular automata—12th international conference on cellular

automata for research and industry, ACRI 2016. Lecture notes in

computer science, vol 9863. Springer, pp 123–133

Fay B, Kutrib M (2004) The fault-tolerant early bird problem. IEICE

Trans Inf Syst E87–D:687–693

Gács P (1986) Reliable computation with cellular automata. J Comput

Syst Sci 32(1):15–78

Goto E (1962) A minimal time solution of the firing squad problem.

In: Course notes for applied mathematics, vol 298. Harvard

University, Cambridge, MA

Fig. 10 Simulations of the two n1 and n2 defective cells case are

depicted in the upper part of figure. The n2 cell can be located either

left to n1 originally failed cell (upper) or its right side (upper middle).

Boundary cells are depicted in green and finally synchronized cells in

brown. More simulation results of two n1 and n2 cells found in

unknown state are depicted in the lower part of figure. The n2 cell can

be located either left to n1 cell found originally in unknown state

(lower middle) or its right side (lower). Once again, boundary cells

are depicted in green and finally synchronized cells in brown. For all

the algorithms, time t ¼ 0 corresponds to the upper row as provided

in the previous theoretical examples

464 A. Dimitriadis et al.

123

Grasselli A (1975) Synchronization of cellular arrays: the firing squad

problem in two dimensions. Inf Control 28:113–124

Harao M, Noguchi S (1975) Fault tolerant cellular automata. J Comput

Syst Sci 11:171–185

Herman GT, Liu WH, Rowland S, Walker A (1974) Synchronization

of growing cellular arrays. Inf Control 25:103–122

Imai K, Morita K (1996) Firing squad synchronization problem in

reversible cellular automata. Theor Comput Sci 165(2):475–482

Jiang T (1992) The synchronization of nonuniform networks of finite

automata. Inf Comput 97:234–261

Kobayashi K (1978a) The firing squad synchronization problem for a

class of polyautomata networks. J Comput Syst Sci 17:300–318

Kobayashi K (1978b) On the minimal firing time of the firing squad

synchronization problem for polyautomata networks. Theor

Comput Sci 7:149–167

Kutrib M, Löwe JT (2002) Massively parallel fault tolerant compu-

tations on syntactical patterns. Future Gener Comput Syst

18:905–919

Kutrib M, Vollmar R (1991) Minimal time synchronization in

restricted defective cellular automata. J Inf Process Cybern EIK

27:179–196

Kutrib M, Vollmar R (1995) The firing squad synchronization

problem in defective cellular automata. IEICE Trans Inf Syst

E78–D(7):895–900

Mazoyer J (1987) A six-state minimal time solution to the firing

squad synchronization problem. Theor Comput Sci 50:183–238

Mazoyer J (1989) A minimal time solution to the firing squad

synchronization problem with only one bit of information

exchanged. Technical Report TR 89-03, Ecole Normale Supér-

ieure de Lyon, Lyon

Moore EF (1964) The firing squad synchronization problem. In:

Moore EF (ed) Sequential machines—selected papers. Addison-

Wesley, Reading, pp 213–214

Moore FR, Langdon GC (1968) A generalized firing squad problem.

Inf Control 12:17–33

Nishio H, Kobuchi Y (1975) Fault tolerant cellular spaces. J Comput

Syst Sci 11:150–170

Romani F (1978) The parallelism principle: speeding up the cellular

automata synchronization. Inf Control 36:245–255

Rosenstiehl P, Fiksel JR, Holliger A (1972) Intelligent graphs:

networks of finite automata capable of solving graph problems.

In: Read RC (ed) Graph theory and computing. Academic Press,

New York, pp 219–265

Shinahr I (1974) Two- and three-dimensional firing-squad synchro-

nization problems. Inf Control 24:163–180

Szwerinski H (1982) Time optimal solution of the firing squad

synchronization problem for n-dimensional rectangles with the

general at an arbitrary position. Theor Comput Sci 19:305–320

Umeo H (1994) A fault-tolerant scheme for optimum-time firing

squad synchronization. In: Joubert GR, Trystram D, Peters FJ,

Evans DJ (eds) Parallel computing: trends and applications.

North-Holland, Amsterdam, pp 223–230

Umeo H (1996) A note on firing squad synchronization algorithms.

In: Kutrib M, Thomas W (eds) IFIP cellular automata workshop

1996. Universität Giessen, Giessen, p 95

Umeo H (2004) A simple design of time-efficient firing squad

synchronization algorithms with fault-tolerance. IEICE Trans Inf

Syst E87–D(3):733–739

Umeo H (2009) Firing squad synchronization problem in cellular

automata. In: Meyers R (ed) Encyclopedia of complexity and

systems science. Springer, Berlin, pp 3537–3574

Umeo H, Maeda M, Hisaoka M, Teraoka M (2006) A state-efficient

mapping scheme for designing two-dimensional firing squad

synchronization algorithms. Fundam. Inform. 74(4):603–623

von Neumann J (1956) Probabilistic logics and the synthesis of

reliable organisms from unreliable components. In: Shannon CE,

McCarthy J (eds) Automata studies. Princeton University Press,

Princeton, pp 43–98

Vollmar R (1991) FSSP for cellular automata with busses. Trans

IEICE E 74(9):2965–2968

Waksman A (1966) An optimum solution to the firing squad

synchronization problem. Inf Control 9:66–78

Yunès JB (1996) Fault tolerant solutions to the firing squad

synchronization problem. Technical Report LITP 96/06, Institut

Blaise Pascal, Paris

Yunès JB (2009) Goto’s construction and Pascal’s triangle: new

insights into cellular automata synchronization. In: Durand B

(ed) Symposium on cellular automata—journées automates

cellulaires (JAC 2008). MCCME Publishing House, Moscow,

pp 195–203

Revisiting the cutting of the firing squad synchronization 465

123

	Revisiting the cutting of the firing squad synchronization
	Abstract
	Introduction
	Preliminaries
	The firing squad synchronization problem
	Synchronization with a totally defective cell
	Analysis for the left part
	Analysis for the right part

	Graphical representation of two examples
	Generalization of synchronization with multiple totally defective cell
	Generalization in case of almost all cells
	Graphical representations for the n_1 and n_2 example cases

	Conclusions
	References

