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Abstract The set covering problem is a classical opti-

mization benchmark that finds application in several real-

world domains, particularly in line balancing production,

crew scheduling, and service installation. The problem

consists in finding a subset of columns in a zero-one matrix

such that they cover all the rows of the matrix at a mini-

mum cost. In this paper, we present two new approaches

for efficiently solving this problem, the first one based on

cuckoo search and the second one on black hole opti-

mization. Both are relatively modern bio-inspired meta-

heuristics that have attracted much attention due to their

rapid convergence, easy implementation, and encouraging

obtained results. We integrate to the core of both meta-

heuristics an effective pre-processing phase as well as

multiple transfer functions and discretization methods. Pre-

processing is employed for filtering the values from

domains leading to infeasible solutions, while transfers

function and discretization methods are used for efficiently

handling the binary nature of the problem. We illustrate

interesting experimental results where the two proposed

approaches are able to obtain various global optimums for

a set of well-known set covering problem instances, out-

performing also several recently reported techniques.

Keywords Metaheuristic � Bio-inspired � Set covering
problem � Cuckoo search � Black hole

1 Introduction

The set covering problem (SCP) is one of the well-known

Karp’s 21 NP-complete problems. The goal of such a

problem is to find a subset of columns in a zero-one matrix

such that they cover all the rows of the matrix at a mini-

mum cost. The non-unicost SCP is a slight variant of this

problem where the cost of columns are different. Several

applications of the non-unicost SCP can be seen in the real

world, particularly related to line balancing production

(Salveson 1955), crew scheduling (Baker et al. 1979;

Bartholdi 1981; Rubin 1973), service installation (Toregas

et al. 1971; Walker 1974), databases (Munagala et al.

2004), and Boolean expressions (Breuer 1970). The liter-

ature reports various algorithms to solve this problem

which range from classical exact methods (Balas 1997;

Beasley 1987; Yelbay et al. 2014; Avis 1980; Rushmeier

and Nemhauser 1993) to very recent bio-inspired meta-

heuristics (Crawford et al. 2014; Karaboga 2005).

In this paper, we present two new approaches for effi-

ciently solving different instances of the SCP: cuckoo

search and black hole optimization. Both are relatively

recent bio-inspired metaheuristics that have attracted much

attention during the last years, both being succesfully used

in different application domain, such as data clustering,

image processing, data mining, and computervision (Ku-

mar et al. 2015; Yang and Deb 2014). Important features

that share these metaheuristics are the rapid convergence
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and the notably easy implementation in order to model and

solve the problem at hand. We integrate to the core of both

metaheuristics an effective pre-processing phase as well as

multiple transfer functions and discretization methods. Pre-

processing is used for eliminating those values that do not

lead to any feasible solutions. The goal is to alleviate the

work of the metaheuristic. Transfers function are used to

map the real values generated by the movement operator of

both metaheuristics to a [0, 1] real interval. This interval is

then used by the discretization method to generate a binary

value according to the nature of the SCP. We perform a

large set of experiments involving 8 transfer functions and

3 discretization methods in order to select the best per-

forming combination of them. Interesting experimental

results are obtained, where the two proposed approaches

are able to obtain various global optimums for a set of 65

well-known SCP instances, outperforming also several

recently reported techniques.

The remainder of this paper is organized as follows: The

related work is introduced in the next section. A brief

description of the SCP and pre-processing phases are

detailed in Sect. 3. Sect. 4 presents the metaheuristics

employed in this work, followed by their corresponding

binary representations. Sects. 6 and 7 illustrate the repair of

infeasible solutions and the experimental results, respec-

tively. Finally, we conclude and suggest some lines of

future research.

2 Related work

The SCP has widely been explored in the optimization and

mathematical programming sphere. Preliminary works

relied on the proper use of branch-and-bound and branch-

and-cut algorithms (Balas 1997) and (Beasley 1987), which

are exact methods commonly unable to tackle large

instances of the SCP. Greedy algorithms have also been

proposed, however their deterministic nature hinders the

generation of high quality solutions (Chvatal 1979). This

problem may be improved by the incorporation of memory

and random components as detailed in Lan and DePuy

(2006). As noted in Ceria et al. (1998) and Caprara et al.

(1999) Lagrangian relaxation-based heuristics are in gen-

eral much more effective. A more detailed description of

efficient exact methods and heuristics devoted to SCPs can

be found in Caprara et al. (2000).

It is well-known that exact methods are in general

unable to tackle large instances of NP-complete problems,

consequently much research work has been devoted to the

study of efficient metaheuristics to solve hard SCP

instances in a bounded amount of time. For instance ant

colony optimization (Crawford et al. 2011, 2013; Valen-

zuela et al. 2014), tabu search (Caserta 2007), simulated

annealing (Brusco et al. 1999), and genetic algorithms

(Yelbay et al. 2014) have extensively been proposed to

tackle the classic SCP. More recent metaheuristics for

solving this problem can also be found in the literature,

such as firefly optimization (Crawford et al. 2014), cat

swarm optimization (Crawford et al. 2015b, d), shuffled

frog leaping (Crawford et al. 2015a, c), artificial bee col-

ony (Karaboga 2005), electromagnetism-like (Birbil and

Fang 2003), among others.

As top-level general search strategies, metaheuristics

have also largely been applied to solve SCPs in recent

years.

3 Problem description

In this section we provide the formal definition of the SCP

(Gass and Fu 2013). Let A be an n-row and m-column

incidence matrix, where ai;j denotes the value taken by

position (i, j) of A, being i ¼ 1; . . .; n and j ¼ 1; . . .;m. Let

us note that a row i is covered by column j if aij ¼ 1. Every

column j hold a non-negative cost cj, for the non-unicost

SCP, cj vary for each column. The goal is to find a min-

imun cost such that each row i is covered by at least one

column j. The corresponding mathematical is stated in the

following:

Minimize z ¼
Xm

j¼1

cjxj ð1Þ

subject to

Xm

j¼1

aijxj � 1; 8i ¼ 1; . . .; n
ð2Þ

xj 2 f0; 1g; 8j ¼ 1; . . .;m ð3Þ

The idea is to minimize the summation of the costs of the

columns, where xj ¼ 1 if column j belongs to the solution

and xj ¼ 0 otherwise. The constraints of the SCP guarantee

that every row i is covered by at least one column j.

For clarifying the problem, we present an example of a

unicost SCP, therefore the cost vector cj ¼ 1;

8j ¼ 1; . . .;m.
There are six cities (city1 to city6) in region R. The

region must determine where to build fire stations. The

region wants to build the minimum number of fire stations

and ensure that at least one fire station is near 15 min of

each city. The times (in minutes) required to drive between

cities are illustrated in Table 1.

To formulate the integer-programming model, we con-

sider the following decision variable:

xj ¼
1; if a fire station is built in cityi
0; otherwise

�
ð4Þ
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Objective function is given by minimum sum of the deci-

sion variables activated (xj ¼ 1).

Minimize z ¼
X6

j¼1

xj ð5Þ

Constraints: A fire station within 15 min of each city. This

can be seen in the following summary:

city1 city1; city2 ) x1 þ x2 � 1

city2 city1; city2; city6 ) x1 þ x2 þ x6 � 1

city3 city3; city4 ) x3 þ x4 � 1

city4 city3; city4; city5 ) x3 þ x4 þ x5 � 1

city5 city4; city5; city6 ) x4 þ x5 þ x6 � 1

city6 city2; city5; city6 ) x2 þ x5 þ x6 � 1

Thus, the integer-programming model is as follows:

Minimize z ¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6

subject to :

x1 þ x2 � 1

x1 þ x2 þ x6 � 1

x3 þ x4 � 1

x3 þ x4 þ x5 � 1

x4 þ x5 þ x6 � 1

x2 þ x5 þ x6 � 1

xj 2 f0; 1g; 8j ¼ 1; . . .; 6

ð6Þ

Optimal solution is given by ðz; x1; x2; x3; x4; x5; x6Þ ¼
ð2; 0; 1; 0; 1; 0; 0Þ and it represented by the binary vector in

Fig. 1: where each value xj is a component of the solution.

The optimal solution represents the cities in which

should be built the fire station (minimum), such that the

distance between one city and one fire station is not greater

than 15 min.

To transform this example in a non-unicost problem, is

necessary to differentiate the installation cost of each fire

station (cost vector cj). In that case, the objective function

is given by:

Minimize z ¼
X6

j¼1

cjxj ð7Þ

where cj is the cost vector associated to each xj; 8j ¼
1; . . .; 6. If we consider the cost for each fire station is

started in Table 2.

The n-tuple ðz; x1; x2; x3; x4; x5; x6Þ ¼ ð120; 1; 0; 1; 0;
0; 1Þ is the vector that describes the new optimal solution

and it depicted in Fig. 2.

Finally, for applying correct way the proposed algo-

rithms, we define xi-binary vector-as the solution i of SCP

and x j as a component part of solution, whose values can

be 1, if this component is part of solution or 0 it is not.

4 Bio-inspired approaches

The bio-inspired algorithms, have been placed among the

best algorithms for solving optimization problems. In this

paper, we solve the SCP by using two bio-inspired

approaches: cuckoo search and black hole optimization.

4.1 Cuckoo search algorithm

Cuckoo search algorithm (Fouladgar and Lotfi 2015; Yang

and Deb 2009) is inspired from the obligate brood para-

sitism of some cuckoo species by laying their eggs in the

nests of other bird species. For simplicity in describing the

cuckoo search, here we use the following three idealized

rules:

1. Each cuckoo lays one egg at a time and dumps it in a

randomly chosen nest.

2. The best nests with high-quality eggs will be carried

over to the next generations.

3. The number of available host nests is fixed, and the egg

laid by a cuckoo is discovered by the host bird with a

probability pa 2 ½0; 1�. In this case, the host bird can

either get rid of the egg or simply abandon the nest and

build a completely new nest.

A new solution is generated by using Lévy flight (Yang and

Deb 2009) and it is given via Eqs. 8 and 9.

xdi ðt þ 1Þ ¼ xdi ðtÞ þ a� LevyðbÞ
8i 2 f1; . . .; ng ^ 8d 2 f1; . . .;mg

ð8Þ

where xdi ðtÞ is the component d of a solution i at iteration

t. Analogously, xdi ðt þ 1Þ is the component d of a solution

i at iteration t þ 1. a� 0 is the step size, which is associ-

ated to the range of values that the problem needs (scale

value), being determined by upper and lower bounds.

Table 1 Times required to drive between cities

From To

city1 city2 city3 city4 city5 city6

city1 0 10 20 30 20 20

city2 10 0 25 35 30 10

city3 20 25 0 15 30 20

city4 30 35 15 0 15 25

city5 20 30 30 15 0 14

city6 20 10 20 25 14 0

0 1 0 1 0 0
x1 x2 x3 x4 x5 x6

Fig. 1 Representation of binary unicost solution
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Levy� u ¼ t�b; ð1\b\3Þ ð9Þ

The Lévy flight represents a random trajectory and it is the

length of the step obtained by means of a Lévy distribution

which has infinite mean and variance. In this case, the

consecutive steps of a cuckoo form a process of random

walk that follows a distribution of powers law with double

tail step length (Fouladgar and Lotfi 2015).

Algorithm 1 depicts the proposed procedure. At the

beginning in Line 1, input data from SCP is processed and

loaded. Then, at Lines 3–8, an initial population of n nests

is randomly generated as a vector of m binary values that

corresponds to one nest or one potential solution (Line 5).

For each nest (potential solution), the fitness value is cal-

culated by evaluating the objective function z (Line 7).

For generating new solutions, the while loop manages

the actions which are self-explanatory, at Lines 11–32. As

previously mentioned, the SCP is a minimization problem.

This evaluation is handled in comparison presented at Line

13. If the new min value is lower than min global, the min

global is changed by the new min value and the best

solution is stored in x̂.

Next for loop statement (Lines 17–23) allows to select

worst solutions according to random a value rand 2 ½0; 1�
greater than pa.

Finally, the last for loop statement (Lines 24–31) gen-

erates new solutions according to Eq. (8), for each

dimension j. This value belongs to a real domain and it

must be brought to a binary domain, thus we used a

T function that transform the real value to a binary one. In

this paper, we test different binarization approaches

described in Sect. 5.

4.2 Black hole optimization

Black hole optimization is a population-based method

inspired on the black hole phenomenon (Hatamlou 2013;

Kumar et al. 2015). A black hole is a region of space that

has so much mass concentrated in it that there is no way for

a nearby object to escape its gravitational pull. Anything

falling into a black hole, including light, cannot escape.

Similar to other population-based algorithms, the black

hole algorithm starts with an initial population of potential

Table 2 Costs required to build the fire stations in each city

Fire station in the city i To (l)

city1 35

city2 65

city3 40

city4 65

city5 45

city6 45

1 0 1 0 0 1
x1 x2 x3 x4 x5 x6

Fig. 2 Representation of binary non-unicost solution
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solutions to an optimization problem and an objective

function that is calculated for them. At each iteration of the

black hole algorithm, the best candidate is selected to be

the black hole, which then starts pulling other candidates

around it, called stars. If a star gets too close to the black

hole, it will be swallowed and it is gone forever. In such a

case, a new star (potential solution) is randomly generated

and placed in the search space and starts a new search.

The black hole has the ability to absorb the stars that

surround it. After initializing the black hole and stars, the

black hole begins by absorbing the stars around it and all

the stars start moving towards the black hole. The

absorption of stars by the black hole is formulated as

follows:

xdi ðt þ 1Þ ¼ xdi ðtÞ þ r½xdBH � xdi ðtÞ�; 8i 2 f1; . . .;Ng ð10Þ

where xdi ðtÞ and xdi ðt þ 1Þ are the components of a solution

i at iterations t and ðt þ 1Þ, respectively. xdBH is the com-

ponent of best solution (black hole) in the search space. r is

a random number in the interval [0, 1]. N is the number of

stars (potential solutions).

While moving towards the black hole, a star may reach a

location with lower cost than the black hole. In such a case,

the black hole moves to the location of that star and vice

versa. Then the algorithm will continue with the black hole

in the new location and then stars start moving towards this

new location.

In addition, there is the probability of crossing the event

horizon during moving stars towards the black hole. Every

star (or potential solution) that crosses the event horizon of

the black hole will be swallowed by the black hole. Every

time a candidate is sucked in by the black hole, another

potential solution (star) is born and distributed randomly in

the search space and starts a new search. This is done to

keep the number of potential solutions constant. The next

iteration takes place after all the stars have been moved.

The radius of the event horizon in the black hole algo-

rithm is calculated using the following equation:

R ¼ fBHPN
i¼1 fi

ð11Þ

where fBH is the fitness value of the black hole and fi is the

fitness value of the i-th star. N is the number of stars (po-

tential solutions).

When the distance between a star and the black hole

(best candidate) is less than R, that candidate is collapsed

and a new star is created and distributed randomly in

the search space. Based on the above description the

main steps in the black hole algorithm are detailed in

Algorithm 2.

Similar to the Cuckoo Search Algorithm, the Black Hole

optimization begins with the loading and processing pha-

ses. Then, at Lines 3–8, an initial population of n stars is

randomly generated as a vector of m binary values that

corresponds to one star or potential solution (Line 5). For

each star, the fitness value is calculated by evaluating the

objective function z (Line 7).

Then, while a termination criterion (a maximum number

of iterations or a sufficiently good solution was not

reached) is met, each fitness of a potential solution is

evaluated (Lines 11–34). As previously mentioned, the

SCP is a minimization problem. This evaluation is handled

in comparison presented at Line 13. If the new min value is

less than min global, the min global is changed by the new

min value and the best solution is stored in x̂ (black hole).

Solving the non-unicost set covering problem by using cuckoo… 217
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If a star crosses the event horizon of the black hole

(calculated via Eq. 11), replace it with a new star in a

random location in the search space. This process is

described in the for loop statement at Lines 17–25.

Finally, the last for loop statement (Lines 26–33) gen-

erates new solutions according to Eq. (10), for each

dimension d. As in the Cuckoo Search algorithm, this value

belongs to real domain and it must be brought to a binary

domain, thus a T function is used again to transform the

real value in a binary one.

5 Binary approaches

The set covering is a problem whose domain is limited to

binary values, namely, xdi 2 f0; 1g; 8j 2 f1; . . .;mg. Due to
this reason, we use a binary representation for the SCP

solution as showed in Fig. 3, where:

xdi ¼
1; if the dimension d belongs to the solution

0; otherwise

�

In this work, we use the standard forms in both algorithms;

for the cuckoo search algorithm (Pereira et al. 2014), each

nest holds only one egg and represents a potential solution

and for the black hole optimization (Nemati et al. 2013),

each star represent a potential solution.

However, the approximate methods used for solving the

SCP are designed to solve problems with real domains.

This task is resolved by transforming domains, by applying

binarization strategies, which are responsible for forcing

elements to move in a binary space. The binarization

strategy is composed of a transfer function and a dis-

cretization method. In this work, we tested 32 different

binarization strategies.

We tested eight different functions (see Table 3), sepa-

rated into two families (Mirjalili and Lewis 2013): S-Shape
and V-Shape.

Once a transfer function is applied, the input real

number is mapped to a real number belonging to a [0, 1]

interval. Then, a discretization method is required to pro-

duce a binary value from the real one. For achieving this,

we test four different methods:

1. Standard If condition is satisfied, standard method

return 1, otherwise, return 0.

xdi ðt þ 1Þ ¼ 1; if rand �Tðxdi ðtþ 1ÞÞ
0; otherwise

�
ð12Þ

2. Complement If condition is satisfied, standard method

return the complement value.

xdi ðt þ 1Þ ¼ xdi ðt þ 1Þ0; if rand�Tðxdi ðtþ 1ÞÞ
0; otherwise

�

ð13Þ

3. Static probability A probability is generated and it is

evaluated with a transfer function.

xdi ðt þ 1Þ ¼

0; if Tðxdi ðtþ 1ÞÞ� a

xdi ðt þ 1Þ0; if a Tðxdi ðt þ 1ÞÞ� 1

2
ð1þ aÞ

1; if Tðxdi ðtþ 1ÞÞ� 1

2
ð1þ aÞ

8
>>>><

>>>>:

ð14Þ

4. Elitist Discretization method Elitist Roulette, also

known as Monte Carlo, is to select randomly among

the best individuals of the population, with a proba-

bility proportional to its fitness.

xdi ðt þ 1Þ ¼ xdi ðt þ 1Þ0; if rand�Tðxdi ðtþ 1ÞÞ
0; otherwise

(

ð15Þ

6 Heuristic feasibility operator

Bio-inspired algorithms may generate infeasible solutions.

In the SCP, an infeasible solutions corresponding to those

solutions that uncovered rows, clearly violates a subset of

constraints. Due to this problem, we employed an addi-

tional heuristic operator that achieves the generation of

feasible solutions, and additionally eliminates column

redundancy.

For making all feasible solutions, we calculate a per-

centage based on the cost of column j over the sum of all

the constraint matrix rows covered by a column j, as shown

in Eq. (16).

costðcolumnjÞ
coveredRowsðcolumnjÞ

ð16Þ

A unfeasible solution is repaired by covering the columns

of the solution that had the lower percentage. Then, the

heuristic applies a local optimization step for removing the

column redundancy. If a column is deleted and the feasi-

bility of the solution is not affected, then the column is

redundant.

i-th solution 1 0 1 . . . 0 1
xi x1

i x2
i x3

i . . . x
(d−1)
i xd

i

Fig. 3 Binary solution representation
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Algorithm 3 starts with the initialization of variables

from instance in Lines 1–5, The recognition of the rows

that are not covered are in Lines 6 and 7. Between the

statements 8 and 18 is ‘‘greedy’’ heuristic. On the one hand,

between the instructions 8 and 12, the columns with lower

ratio are added to the solution. On the other hand, between

lines 13 and 18, the redundant columns with higher costs

are deleted while the solution is feasible.

7 Experimental results

We have performed an experimental evaluation of the

proposed approaches on a set of 65 different well-known

instances, organized in 11 sets from the Beasley’s OR-

library.1 Table 4 describes instance set, number of rows or

constraints (m), number of columns or variables (n), range

of costs, density (percentage of non-zeroes in the matrix)

and if the optimal solution is known or unknown.

In order to reduce the instance size of SCP, we have

used a pre-processed instances set. Different pre-process-

ing methods have particularly been proposed for the SCP

(Fisher and Kedia 1990). We employ two of them, which

have been proved to be the most effective ones:

• Column Domination The non-unicost SCP holds dif-

ferent column costs, then once a set of rows Ij is

covered by another column j0 and cj0\cj, we say that

column j is dominated by j0, then column j is removed

from the solution.

• Column Inclusion If a row is covered by only one

column after the above domination, means that there is

no better column to cover those rows, consequently this

column must be included in optimal solution.

The results are evaluated using the relative percentage

deviation (RPD). RPD value quantifies the deviation of the

objective value Z from Zopt that in our case is the best

known value for each instance (Zopt in Table 4) and it is

calculated as follows:

RPD ¼ Z � Zopt

Zopt

� �
	 100 ð17Þ

The minimum (Min), maximum (Max) and average (Avg)

of the solutions obtained were achieved running 30 exe-

cutions over each one of the 65 SCP test instances. To

calculate RPD value, we used Z ¼ Zmin. We test all the

combinations of transfer functions and discretization

methods over all these instances. Binarization strategies

that achieved the best results for the black hole algorithm

and cuckoo search are stated in Table 5:

Parameters tuning is known to be a complex task, being

itself recognized as an optimization problem. To select

these parameters, we performed a sampling test. In this pre-

evaluation, both algorithms were executed 10 times, each

one for the different population sizes: 1000, 100, 50, and 30

initial solutions and for the different number of genera-

tions; keeping all other parameters constant. To this end,

we can see that when the population size (n) decreased and

the number of generations (T) increased, the fitness value

converges more quickly towards a minimum value. Table 6

show the parameter tuning achieved.

The implementation of both algorithms has been done in

JavaTM and experiments have been launched on a 3.0 GHz

Quad Core with 8 GB RAMmachine running MSWindows

7 Ultimate. We compare our binary cuckoo search (BCS)

and binary black hole (BBH) algorithms with the global

optimum—or best known—(Zopt) as well as with very recent

approaches for solving SCPs based on modern bio-inspired

metaheuristics, namely binary cat swarm optimization

(BCSO) (Crawford et al. 2015b), binary firefly optimization

(BFO) (Crawford et al. 2014), binary shuffled frog leaping

algorithm (BSFLA) (Crawford et al. 2015c), binary artifi-

cial bee colony (BABC) (Cuesta et al. 2014) and binary

electromagnetism-like algorithm (BELA) (Soto et al.

2015c). In order to compare and understand the results, we

highlighted in bold the best result for each instance.

Table 7 illustrates the results obtained for instances from

groups 4 and 5. Regarding instance set 4, BCSO, BSFLA,

BELA and BABC are unable to achieve optimal values and

BFO reaches only two. BCS and BBH exhibit the best

performance for this data set reaching five and eight global

optimums, respectively. Now considering instance set 5,
1 Available at http://goo.gl/9jTqkX.
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once again BCSO and BELA are unable to optimally solve

any instance. BABC is capable to find two optimal values,

while BFO reach three and BSFLA four. Once again BCS

and BBH prove to be better methods, reaching both eight

optimal values. In terms of solving time (in ms) in 4 and 5

groups, we compare BCS and BBH and we can observe

that a big difference can not be seen. In some instances

BBH is faster than BCS and in others is the opposite.

Table 8 depicts the results for the instances set 6, A, B

and C. Firstly, for set instance 6, BCS and BBH behave

similar, three and four optimal values, respectively. In

contrast, previous approaches reach less than 10% in

average of optimal values. For the group A, BBH continues

exhibiting a good performance compared to its competi-

tors, achieving 3 of 5 optimal values. The best results for

the proposed approaches can be seen when solving the

instances set B, where both algorithms are capable to find

the 100% of global optimums. Finally, for the C group,

BBH again exhibits an efficient performance reaching 3 of

5 optimal values.

Now, comparing the results in terms of solving time, we

can see that for smaller instances -group 6- BCS converges

faster than BBH, but for bigger instances of groups A, B

and C, BBH finds the best solution more fast than BCS.

Table 9 describes the results for groups D, E, F and G.

For the D and E group. BCS and BBH perform similar

again, finding in both cases between 60 and 40% of the

optimum values. For the F and G groups, three RPD ¼ 0

Table 3 Transfer functions S-Shape V-Shape

S1 : Tðxdi ðt þ 1ÞÞ ¼ 1

1þ e�2xd
i
ðtþ1Þ

V1 : Tðxdi ðt þ 1ÞÞ ¼ erf
ffiffi
p

p

2
xdi ðt þ 1Þ

� ����
���

S2 : Tðxdi ðt þ 1ÞÞ ¼ 1

1þ e�xd
i
ðtþ1Þ

V2 : Tðxdi ðt þ 1ÞÞ ¼ tanh xdi ðt þ 1Þ
	 
�� ��

S3 : Tðxdi ðt þ 1ÞÞ ¼ 1

1þ e
�xd

i
ðtþ1Þ
2

V3 : Tðxdi ðt þ 1ÞÞ ¼ xdi ðtþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½xd

i
ðtþ1Þ�2

p
����

����

S4 : Tðxdi ðt þ 1ÞÞ ¼ 1

1þ e
�xd

i
ðtþ1Þ
3

V4 : Tðxdi ðt þ 1ÞÞ ¼ 2
p arctan

p
2
xdi ðt þ 1Þ

	 
�� ��

Table 4 SCP instances from

the Beasley’s OR-Library
Instance set m n Cost range Density (%) Optimal solution

4 200 1000 [1,100] 2 Known

5 200 2000 [1,100] 2 Known

6 200 1000 [1,100] 5 Known

A 300 3000 [1,100] 2 Known

B 300 3000 [1,100] 5 Known

C 400 4000 [1,100] 2 Known

D 400 4000 [1,100] 5 Known

E 500 5000 [1,100] 10 Unknown

F 500 5000 [1,100] 20 Unknown

G 1000 10000 [1,100] 2 Unknown

H 1000 10000 [1,100] 5 Unknown

Table 5 Binarization strategies for cuckoo search and black hole

optimization

Algorithm Binarization strategy

Cuckoo search S2 þ Standard

Black hole S4 þ Elitist

Table 6 Parameter tuning for black hole and cuckoo search

algorithms

Parameter Algorithms

Cuckoo search Black hole

Population size n ¼ 15 (Nests) n ¼ 20 (Stars)

Number of generations T ¼ 4000 T ¼ 4000

Specifics pa ¼ 0:25;

a ¼ 0:01;

b ¼ 1:5;
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Table 7 Computational results for instance set of groups 4 and 5

Instance 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Zopt 429 512 516 494 512 560 430 492 641 514

New approaches

BCS Zmin 430 512 517 494 512 560 430 492 641 514

Zavg 432 516 519 503 516 563 431 495 645 526

RPD 0.23 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Time (ms) 1929.4 1922.6 2150.4 2073.8 2149.4 2094.0 1902.4 1950.8 1959.6 2169.3

BBH Zmin 430 512 516 495 514 560 430 493 644 514

Zavg 430 512 517 501 519 562 432 495 648 517

RPD 0.23 0.00 0.00 0.2 0.39 0.00 0.00 0.2 0.46 0.00

Time (ms) 1811.2 1926.0 1957.1 2108.1 1992.3 2102.2 2032.2 2202.6 2109.9 2017.1

Previous approaches

BCSO Zmin 459 570 590 547 545 637 462 546 711 537

Zavg 480 594 607 578 554 650 467 567 725 552

RPD 7 11.3 14.3 10.7 6.4 13.8 7.4 11 10.9 4.5

BFO Zmin 429 517 519 495 514 563 430 497 655 519

Zavg 430 517 522 497 515 565 430 499 658 523

RPD 0 0.97 0.58 0.2 0.39 0.53 0 1.01 2.18 0.97

BSFLA Zmin 430 516 520 501 514 563 431 497 656 518

Zavg 430 518 520 504 514 563 432 499 656 519

RPD 0.23 0.78 0.78 1.42 0.39 0.54 0.23 1.02 2.34 0.78

BELA Zmin 447 559 537 527 527 607 448 509 682 571

Zavg 448 559 539 530 529 608 449 512 682 571

RPD 4.20 9.18 4.07 6.68 2.93 8.39 4.19 3.46 6.40 11.09

BABC Zmin 430 513 519 495 514 561 431 493 649 517

Zavg 430 513 521 496 517 565 434 494 651 519

RPD 0.23 0.20 0.58 0.20 0.39 0.18 0.23 0.20 0.93 0.58

Instance 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10

Zopt 253 302 226 242 211 213 293 288 279 265

New approaches

BCS Zmin 253 304 226 242 212 213 293 288 279 265

Zavg 256 307 227 243 213 215 294 290 280 266

RPD 0.00 0.66 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.00

Time (ms) 2011.8 2084.6 2197.8 2219.5 2025.9 2302.9 2145.5 2135.1 2057.5 2142.7

BBH Zmin 253 305 228 242 211 213 293 288 279 265

Zavg 256 307 230 242 211 213 294 289 280 267

RPD 0.00 0.99 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Time (ms) 2001.7 2071.2 2221.8 2191.2 2127.4 2222.1 2332.1 2339.2 2271.2 2057.7

Previous approaches

BCSO Zmin 279 339 247 251 230 232 332 320 295 285

Zavg 287 340 251 253 230 243 338 330 297 287

RPD 10.3 12.3 9.3 3.7 9 8.9 13.3 11.1 5.7 7.5

BFO Zmin 257 309 229 242 211 213 298 291 284 268

Zavg 260 311 233 242 213 213 301 292 284 270

RPD 1.58 2.31 1.32 0 0 0 1.7 1.04 1.79 1.13

BSFLA Zmin 254 307 228 242 211 213 297 291 281 265

Zavg 255 307 230 242 213 214 299 293 283 266

RPD 0.4 1.66 0.88 0 0 0 1.37 1.04 0.72 0
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Table 7 continued

Instance 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10

Zopt 253 302 226 242 211 213 293 288 279 265

BELA Zmin 280 318 242 251 225 247 316 315 314 280

Zavg 281 321 240 252 227 248 317 317 315 282

RPD 10.67 5.30 7.08 3.72 6.64 15.96 7.85 9.38 12.54 5.66

BABC Zmin 254 309 229 242 211 214 298 289 280 267

Zavg 255 309 233 245 212 214 301 291 281 270

RPD 0.40 2.32 1.33 0 0 0.47 1.71 0.35 0.36 0.75

Table 8 Computational results for instances set of groups 6, A, B and C

Instance 6.1 6.2 6.3 6.4 6.5 A.1 A.2 A.3 A.4 A.5

Zopt 138 146 145 131 161 253 252 232 234 236

New approaches

BCS Zmin 140 146 145 131 161 254 256 233 237 236

Zavg 141 147 146 133 163 254 257 235 239 237

RPD 0.14 0.00 0.00 0.00 0.00 0.34 0.16 0.43 0.13 0.00

Time (ms) 2817.5 2842.7 2852.1 2904.6 2938.3 2889.3 2713.7 2824.2 2999.1 2923.1

BBH Zmin 140 147 145 131 161 253 253 233 234 236

Zavg 142 150 147 131 164 255 254 234 234 237

RPD 1.45 0.68 0.00 0.00 0.00 0.00 0.39 0.43 0.00 0.00

Time (ms) 2915.7 2791.6 2751.7 3003.7 3038.3 2967.1 2983.2 3104.9 3111.1 3012.3

Previous approaches

BCSO Zmin 151 152 160 138 169 286 274 257 248 244

Zavg 160 157 164 142 173 287 276 263 251 244

RPD 9.4 4.1 10.3 5.3 5 13 8.7 10.8 6 3

BFO Zmin 138 147 147 131 164 255 259 238 235 236

Zavg 140 149 150 131 157 256 261 240 237 237

RPD 0 0.68 1.37 0 1.86 0.79 2.77 2.58 0.42 0

BSFLA Zmin 140 147 147 131 166 255 260 237 235 236

Zavg 141 147 148 133 169 258 260 239 238 239

RPD 1.45 0.68 1.38 0 3.11 0.79 3.17 2.16 0.43 0

BELA Zmin 152 160 160 140 184 261 279 252 250 241

Zavg 152 161 163 142 187 264 281 253 252 243

RPD 10.14 9.59 10.34 6.87 14.29 3.16 10.71 8.62 6.84 2.12

BABC Zmin 142 147 148 131 165 254 257 235 236 236

Zavg 143 150 149 133 167 254 259 238 237 238

RPD 2.90 0.68 2.07 0 2.48 0.40 1.98 1.29 0.85 0

Instance B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 C.4 C.5

Zopt 69 76 80 79 72 227 219 243 219 215

New approaches

BCS Zmin 69 76 80 79 72 228 221 247 221 216

Zavg 70 79 80 81 73 230 223 249 223 217

RPD 0.00 0.00 0.00 0.00 0.00 0.44 0.9 1.62 0.9 0.46

Time (ms) 3255.8 3381.9 3372.4 3391.0 3455.6 3279.7 3392.3 3392.3 3352.3 3491.7

BBH Zmin 69 76 80 79 72 229 219 245 219 215

Zavg 70 77 81 81 73 231 220 246 219 216
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Table 8 continued

Instance B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 C.4 C.5

Zopt 69 76 80 79 72 227 219 243 219 215

RPD 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.82 0.00 0.00

Time 3122.1 3183.6 3452.0 3419.1 3501.0 3397.9 3291.1 3229.2 3323.1 3111.8

Previous approaches

BCSO Zmin 79 86 85 89 73 242 240 277 250 243

Zavg 79 89 85 89 73 242 241 278 250 244

RPD 14.5 13.2 6.3 12.7 1.4 6.6 9.6 14 12.3 13

BFO Zmin 71 78 80 80 72 230 223 253 225 217

Zavg 72 78 80 81 73 232 224 254 227 219

RPD 2.89 2.63 0 1.26 0 1.32 1.82 4.11 2.73 0.93

BSFLA Zmin 70 76 80 79 72 229 223 253 227 217

Zavg 70 77 80 80 73 231 225 253 228 218

RPD 1.45 0 0 0 0 0.88 1.83 4.12 3.65 0.93

BELA Zmin 86 88 85 84 78 237 237 271 246 224

Zavg 87 88 87 88 81 238 239 271 248 225

RPD 24.64 15.79 6.25 6.33 8.33 4.41 8.22 11.52 12.33 4.19

BABC Zmin 70 78 80 80 72 231 222 254 231 216

Zavg 70 79 80 81 74 233 223 255 233 217

RPD 1.45 2.63 0 1.27 0 1.76 1.37 4.53 5.48 0.47

Table 9 Computational results for instances set of groups D, E, F and G

Instance D.1 D.2 D.3 D.4 D.5 E.1 E.2 E.3 E.4 E.5

Zopt 60 66 72 62 61 29 30 27 28 28

New approaches

BCS Zmin 60 66 73 62 61 29 31 28 30 28

Zavg 60 66 74 62 62 30 32 29 31 30

RPD 0.00 0.00 0.14 0.00 0.00 0.00 0.32 0.36 0.67 0.00

Time 4681.7 4704.6 4697.1 5695.5 5746.4 5823.0 4815.0 4916.0 4847.0 4769.0

BBH Zmin 60 67 73 62 61 29 31 28 29 28

Zavg 60 68 74 62 62 30 31 29 31 29

RPD 0.00 1.51 1.38 0.00 0.00 0.00 3.33 3.7 3.57 0.00

Time 6021.0 6094.1 6147.7 6511.6 6712.2 6200.0 6115.1 5991.9 7081.0 7191.1

Previous approaches

BCSO Zmin 65 70 79 64 65 29 34 31 32 30

Zavg 66 70 81 67 66 30 34 32 33 30

RPD 8.3 6.1 9.7 3.2 6.6 0 13.3 14.8 14.3 7.1

BFO Zmin 60 68 75 62 63 29 32 29 29 29

Zavg 61 68 77 62 63 31 32 30 31 29

RPD 0 3.03 4.16 0 3.27 0 6.66 7.4 3.57 3.57

BSFLA Zmin 60 67 75 63 63 29 31 28 29 28

Zavg 62 68 77 65 66 29 32 28 30 31

RPD 0 1.52 4.17 1.61 3.28 0 3.33 3.7 3.57 0

BELA Zmin 62 73 79 67 66 30 35 34 33 30

Zavg 62 74 81 69 67 31 35 34 34 31

RPD 3.33 10.61 9.72 8.06 8.20 3.45 16.67 25.93 17.86 7.14

BABC Zmin 60 68 76 63 63 29 32 29 29 29

Zavg 61 68 77 65 66 33 32 31 30 32

RPD 0 3.03 5.56 1.61 3.28 0 6.67 7.41 3.57 3.57
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are reached by the proposed algorithms. Previous approa-

ches fail in general to find optimum values as the instance

set becomes harder. Only BSFLA and BABC achieve one

optimum for the instances belonging to sets F and G, while

BBH and BCS reach three. Finally, for the most hard

instance set (see Table 10), namely H, we observe that the

RPD obtained by the proposed approaches outperform by

far the performance of competitors, remaining very close to

optimal values. Now, considering the time required to find

a best solution, we can observe that BCS is dramatically

more efficient than BBH, needing a less time for all

instances of group A.

Table 11 and Fig. 4 summarizes the performance of

compared approaches. BBH and BCS are the best per-

forming approaches reaching 35 global optimums, out-

performing by far its competitors, BSFLA taking the

third place with 14 global optimums, followed by

BSFLA, BFO, BCSO, and BELA with no global opti-

mum reached.

7.1 Binary cuckoo search versus binary black hole

In this section we contrast the proposed approaches in order to

determinewhich one performs better. To this endwe compare

convergence and we detailedly analyze the 30 executions

performed for each instance through the Kolmogorov–Smir-

nov–Lilliefors (Lilliefors 1967) and Wilcoxon’s signed rank

(Mann and Whitney 1947) statistical tests.

For instance group 4, 5, 6 and A, the convergence is

achieved between 25 and 50 ms, BCS showing a small

superiority. For more hard instance sets, such as B, C, and

D, the solving time needed slightly increases, ranging from

50 to 100 ms. Finally, for E, F, G and H instance groups,

the convergence is achieved between 700 and 1000 ms,

showing that although these instances are known to be

hard, both approaches are able to find a good solution in a

reasonable amount of time. We have also observed that the

optimization process applied after the repairing function

greatly helps the convergence of BBH and BCS, being as

Table 9 continued

Instance F.1 F.2 F.3 F.4 F.5 G.1 G.2 G.3 G.4 G.5

Zopt 14 15 14 14 13 176 154 166 168 168

New approaches

BCS Zmin 14 15 15 15 14 176 156 169 170 170

Zavg 14 17 16 15 15 177 157 170 171 171

RPD 0.00 0.00 0.67 0.67 0.71 0.00 0.13 0.77 0.12 0.12

Time 8361.0 9869.0 9823.0 9231.0 8820.0 10959.0 9518.0 9827.0 9339.0 9221.0

BBH Zmin 14 15 16 15 14 179 158 169 170 168

Zavg 15 16 16 16 15 181 160 169 171 169

RPD 0.00 0.00 4.28 7.14 7.69 1.7 2.59 1.8 1.19 0.00

Time 9118.5 10212.1 9293.8 11023.3 12220.2 14494.4 15584.5 14874.0 14919.2 15921.2

Previous approaches

BCSO Zmin 17 18 17 17 15 190 165 187 179 181

Zavg 17 18 17 17 16 193 166 188 183 184

RPD 21.4 20 21.4 21.4 15.4 8 7.1 20.6 6.5 7.7

BFO Zmin 15 16 16 15 15 185 161 175 176 177

Zavg 17 16 17 18 19 191 163 177 176 181

RPD 7.14 6.66 14.28 7.14 15.38 5.11 4.54 5.42 4.76 5.35

BSFLA Zmin 15 15 16 15 15 182 161 173 173 174

Zavg 15 15 17 16 17 183 161 174 177 174

RPD 7.14 0 14.29 7.14 15.38 3.41 4.55 4.22 2.98 3.57

BELA Zmin 17 18 17 17 16 194 176 184 196 198

Zavg 17 18 18 19 17 196 176 185 197 199

RPD 21.43 20 21.43 21.43 23.08 10.23 14.29 10.84 16.67 17.86

BABC Zmin 14 16 16 15 15 183 162 174 175 179

Zavg 15 16 17 17 16 184 163 175 177 181

RPD 0 6.67 14.29 7.14 15.38 3.98 5.19 4.82 4.17 6.55
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well an important step to improve the cost value of each

instance. The experimental results also exhibit the robust-

ness of the approaches as the fitness average for each

instance remains very near to the optimum global. How-

ever, as the results in terms of solving time obtained are not

conclusive to assert which approach performs better, we

have also performed a statistical analysis to the 30 execu-

tions of each instance.

We firtly employ the Kolmogorov-Smirnov-Lilliefors

test to determine the independence of samples and then we

statistically compare them through the Wilcoxon’s signed

rank. For both tests, we consider a hypothesis evaluation,

which is analyzed assuming a significance level of 0.05,

i.e., smaller values that 0.05 determine that the corre-

sponding hypothesis cannot be assumed. Both test were

conducted using GNU Octave2.

The first test allows us to analyze the independence of

samples by determining whether the fitness values obtained

from the 30 executions come from a normal distribution or

they are independent. To proceed we consider two

hypothesis: H0 and H1. H0 states that fitness values follow

a normal distribution and H1 otherwise. The conducted test

has yielded pvalues lower than 0.05, therefore we cannot

assume H0.

Then, as samples are independent and do not follow a

normal distribution, it is not feasible to use the central limit

theorem to approximate the distribution of the sample

mean as Gaussian. Therefore, we assume the use of a non-

parametric test for evaluating the heterogeneity of samples.

Under this assumption, we can use the Wilcoxon’s signed

rank test for matched pairs. This is a paired test that

compare the medians of two distributions. To proceed, we

consider again two hypothesis. H0 : ~XBBH � ~XBCS, where ~X
corresponds to the arithmetic median of fitness values

achieved; and H1 : ~XBCS\ ~XBBH .

Tables 12, 13, 14 and 15 compare the algorithms for all

tested instances via the Wilcoxon’s signed rank test. As the

significance level is also established to 0.05, smaller values

that 0.05 defines that H0 cannot be assumed. Bold font is

used for a winner value of the metaheuristic stated in the

column of the table, e.g. for instance 4.1, BCS is better than

BHH as its value is lower than 0.05, then H0 cannot be

assumed.

According to results, p values lower than 0.05 are equiva-

lent for bothmetaheuristics (24 for each one) illustrating again

a very similar performance for all tested instances. However

we may note that BHH performs clearly better than BCS for

the E group, which is the hardest one (Table 16).

8 Conclusions and future work

In this paper, we have presented new BBH and BCS algo-

rithms for solving SCPs. Both metaheuristics are quite sim-

ple to implement and can efficiently be adapted to binary
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Fig. 4 Summary of reached optimal (RPD ¼ 0)

Table 10 Computational results for intances of group H

Instance H.1 H.2 H.3 H.4 H.5

Zopt 63 63 59 58 55

New approaches

BCS Zmin 64 64 62 59 56

Zavg 64 64 63 60 57

RPD 0.16 0.16 0.48 0.17 0.18

Time 13801.0 14097.0 14049.0 16132.0 19384.0

BBH Zmin 66 67 65 63 62

Zavg 67 68 65 64 62

RPD 4.76 6.34 10.16 8.62 12.72

Time 17911.2 19733.4 21840.3 21421.7 22242.5

Previous approaches

BCSO Zmin 70 67 68 66 61

Zavg 71 67 70 67 62

RPD 11.1 6.3 15.3 13.8 10.9

BFO Zmin 69 66 65 63 59

Zavg 70 66 67 65 60

RPD 9.52 4.76 10.16 6.77 7.27

BSFLA Zmin 68 66 62 63 59

Zavg 69 66 63 64 61

RPD 7.94 4.76 5.08 8.62 7.27

BELA Zmin 70 71 68 70 69

Zavg 71 71 70 72 69

RPD 11.11 12.70 15.25 20.69 25.45

BABC Zmin 70 69 66 64 60

Zavg 71 72 67 64 61

RPD 11.11 9.52 11.86 10.34 9.09

2 Available at https://goo.gl/oeGvms.
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domains by using transfer functions and discretization

methods. We have integrated to the core of both meta-

heuristics an effective pre-processing phase as well as mul-

tiple transfer functions and discretization methods. Pre-

processing serves as a filtering phase to discard values

leading to unfeasible solutions, while transfers function and

discretization methods are used for efficiently handling the

binary nature of the problem.We have tested 65 non-unicost

instances from the Beasley’s OR-Library where several

global optimum values were reached by both approaches,

remaining very close to optimal values when was not pos-

sible to reach them, particularly for the hardest instances.We

have also compared both approaches by using statistical tests

yielding very similar results in terms of performance.

Table 11 Summary of reached

optimal (RPD ¼ 0)
Group instances Total BCS BBH BCSO BFO BSFLA BELA BABC

4.x 10 8 5 0 2 0 0 0

5.x 10 8 8 0 3 4 0 2

6.x 5 4 3 0 2 1 0 1

A.x 5 1 3 0 1 1 0 1

B.x 5 5 5 0 1 4 0 1

C.x 5 0.00 3 0 0 0 0 0

D.x 5 4 3 0 2 1 0 1

E.x 5 2 2 1 1 2 0 1

F.x 5 2 2 0 0 1 0 1

G.x 5 1 1 0 0 0 0 0

H.x 5 0.00 0.00 0 0 0 0 0

Total % 65 35 53.84 35 53.84 1 1.53% 12 18.46% 14 21.53% 0 0% 8 12.3%

Table 12 Exact p values obtained on instance of groups 4 and 5

4-Group 5-Group

H0 BBH BCS H0 BBH BCS

4.1 BBH – 2:1E�6 5.1 BBH – [ 0:05

BCS [ 0:05 – BCS [ 0:05 –

4.2 BBH – 5E�12 5.2 BBH – [ 0:05

BCS [ 0:05 – BCS [ 0:05 –

4.3 BBH – 3:2E�8 5.3 BBH – [ 0:05

BCS [ 0:05 – BCS 2:5E�14 –

4.4 BBH – 0:04 5.4 BBH – 1:1E�7

BCS [ 0:05 – BCS [ 0:05 –

4.5 BBH – [ 0:05 5.5 BBH – 2:1E�18

BCS 6:2E�5 – BCS [ 0:05 –

4.6 BBH – [ 0:05 5.6 BBH – 5E�12

BCS [ 0:05 – BCS [ 0:05 –

4.7 BBH – [ 0:05 5.7 BBH – [ 0:05

BCS 0:01 – BCS [ 0:05 –

4.8 BBH – [ 0:05 5.8 BBH – 0:04

BCS [ 0:05 – BCS [ 0:05 –

4.9 BBH – [ 0:05 5.9 BBH – [ 0:05

BCS 4:7E�5 – BCS [ 0:05 –

4.10 BBH – [ 0:05 5.10 BBH – [ 0:05

BCS 0:02 – BCS 0:04 –
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As future work, we plan to experiment with additional

modern metaheuristics and to provide a larger comparison of

recent bio-inspired techniques to solve SCPs. The integration

of autonomous search to the presented approach would be

another direction of research to follow as well, for instance to

dynamically select the best binarization strategy during

solving according to performance indicators as analogously

studied in (Soto et al. 2013, 2015b, d).

Table 13 Exact p values

obtained on instance of groups

6, A and B

6-Group A-Group B-Group

H0 BBH BCS H0 BBH BCS H0 BBH BCS

6.1 BBH – [ 0:05 A.1 BBH – [ 0:05 B.1 BBH – 0:01

BCS 9:3E�4 – BCS 1:1E�5 – BCS [ 0:05 –

6.2 BBH – [ 0:05 A.2 BBH – 2:1E�18 B.2 BBH – 3:2E�4

BCS 6:3E�7 – BCS [ 0:05 – BCS [ 0:05 –

6.3 BBH – [ 0:05 A.3 BBH – 9E�5 B.3 BBH – [ 0:05

BCS 1:5E�3 – BCS [ 0:05 – BCS 0:02 –

6.4 BBH – 8:1E�13 A.4 BBH – 2:1E�18 B.4 BBH – [ 0:05

BCS [ 0:05 – BCS [ 0:05 – BCS [ 0:05 –

6.5 BBH – [ 0:05 A.5 BBH – [ 0:05 B.5 BBH – [ 0:05

BCS [ 0:05 – BCS [ 0:05 – BCS [ 0:05 –

Table 14 Exact p values

obtained on instance of groups

C, D and E

C-Group D-Group E-Group

H0 BBH BCS H0 BBH BCS H0 BBH BCS

C.1 BBH – [ 0:05 D.1 BBH – [ 0:05 E.1 BBH – [ 0:05

BCS 4:8E�14 – BCS 6:5E�5 – BCS [ 0:05 –

C.2 BBH – 2:2E�12 D.2 BBH – [ 0:05 E.2 BBH – 1:8E�5

BCS [ 0:05 – BCS 1:6E�16 – BCS [ 0:05 –

C.3 BBH – 4:1E�14 D.3 BBH – [ 0:05 E.3 BBH – [ 0:05

BCS [ 0:05 – BCS [ 0:05 – BCS [ 0:05 –

C.4 BBH – 2:1E�18 D.4 BBH – [ 0:05 E.4 BBH – 0:04

BCS [ 0:05 – BCS [ 0:05 – BCS [ 0:05 –

C.5 BBH – 4:9E�3 D.5 BBH – [ 0:05 E.5 BBH – 0:02

BCS [ 0:05 – BCS 0:03 – BCS [ 0:05 –

Table 15 Exact p values

obtained on instance of groups

F, G and H

F-Group G-Group H-Group

H0 BBH BCS H0 BBH BCS H0 BBH BCS

F.1 BBH – 1:1E�7 G.1 BBH – [ 0:05 H.1 BBH – [ 0:05

BCS [ 0:05 – BCS 2:7E�15 – BCS 2:1E�18 –

F.2 BBH – [ 0:05 G.2 BBH – [ 0:05 H.2 BBH – [ 0:05

BCS [ 0:05 – BCS 5:3E�14 – BCS 2:1E�18 –

F.3 BBH – [ 0:05 G.3 BBH – 5:9E�10 H.3 BBH – [ 0:05

BCS 6:7E�5 – BCS [ 0:05 – BCS 2:9E�15 –

F.4 BBH – [ 0:05 G.4 BBH – [ 0:05 H.4 BBH – [ 0:05

BCS 9:2E�9 – BCS [ 0:05 – BCS 2:1E�18 –

F.5 BBH – [ 0:05 G.5 BBH – 4:2E�14 H.5 BBH – [ 0:05

BCS [ 0:05 – BCS [ 0:05 – BCS 4:2E�14 –
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Pontificia Universidad Católica de Valparaı́so (INF-PUCV 2015).

References

Avis D (1980) A note on some computationally difficult set covering

problems. Math Program 18(1):138–145

Baker E, Bodin L, Finnegan W, Ponder R (1979) Efficient heuristic

solutions to an airline crew scheduling problem. AIIE Trans

11(2):79–85

Balas E (1997) A dynamic subgradient-based branch-and-bound

procedure for set covering. Locat Sci 5(3):203–203

Bartholdi J (1981) A guaranteed-accuracy round-off algorithm for

cyclic scheduling and set covering. Oper Res 29(3):501–510

Beasley J (1987) An algorithm for set covering problem. Eur J Oper

Res 31(1):85–93
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Yelbay B, Birbil Şİ, Bülbül K (2014) The set covering problem

revisited: an empirical study of the value of dual information.

JIMO 11(2):575–594

Solving the non-unicost set covering problem by using cuckoo… 229

123


	Solving the non-unicost set covering problem by using cuckoo search and black hole optimization
	Abstract
	Introduction
	Related work
	Problem description
	Bio-inspired approaches
	Cuckoo search algorithm
	Black hole optimization

	Binary approaches
	Heuristic feasibility operator
	Experimental results
	Binary cuckoo search versus binary black hole

	Conclusions and future work
	Acknowledgements
	References




