
Some new results of P colonies with bounded parameters

Luděk Cienciala1 • Lucie Ciencialová1

Published online: 23 November 2016

� Springer Science+Business Media Dordrecht 2016

Abstract P colonies were introduced in 2004 as a type of

abstract computing device evolved from membrane sys-

tems—a biologically motivated computational massive

parallel model. A P colony is composed of independent

one-membrane agents, reactively acting and evolving in a

shared environment. In this paper we summarize the results

of computational power obtained for P colonies with

bounded number of agents and programs; we reduce these

parameters and we also add new results for so-called

homogeneous P colonies with capacity two and one.

Keywords P colonies � Computational power � Register

machine

1 Introduction

P colonies were introduced in Kelemen et al. (2004) as

formal models of a computing device inspired by mem-

brane systems (Păun (2000)) and by colonies, a model from

the area of grammar systems theory (Kelemen and Kele-

menová (1992)). This model intends to structure and

functionality of a community of living organisms in a

shared environment. The independent organisms living in a

P colony are called agents. The agent is given by a col-

lection of objects embedded in a membrane. Each agent

contains the same number of objects. The environment

contains several copies of a basic environmental object

denoted by e. The number of the copies of e placed in the

environment is sufficient for every computation.

A set of programs is associated with each agent. The

program determines the activity of the agent by rules. In

every moment of computation all the objects inside the

agent are being either evolved (by an evolution rule) or

transported (by a communication rule). Such two rules can

also be combined into checking rule, which specifies two

possible actions: if the first rule is not applicable then the

second one should be applied. So it sets the priority

between two rules.

The computation starts in the initial configuration. Using

their programs the agents can change their objects and

possibly objects in the environment. This gives possibility

to affect the behaviour of the other agents in the next steps

of computation. At each step of the computation, each

agent with at least one applicable program non-determin-

istically chooses one of them and executes it. The com-

putation halts when no agent can apply any of its programs.

The result of the computation is given by the number of

some specific objects present in the environment at the end

of the computation.

There are several different ways in which the initial state

of the computation can be defined.

(1) At the beginning of computation the environment

and all agents contain only copies of object e.

(2) All the agents can contain various objects at the

beginning of computation—the agents are in different

This work was supported by The Ministry of Education, Youth and

Sports from the National Programme of Sustainability (NPU II)

project ‘‘IT4Innovations excellence in science - LQ1602’’, by SGS/

24/2013 and SGS/6/2014.

& Lucie Ciencialová

lucie.ciencialova@fpf.slu.cz

Luděk Cienciala

ludek.cienciala@fpf.slu.cz

1 Institute of Computer Science and Research Institute of the

IT4Innovations Centre of Excellence, Silesian University in

Opava, Opava, Czech Republic

123

Nat Comput (2018) 17:321–332

https://doi.org/10.1007/s11047-016-9591-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-016-9591-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-016-9591-0&domain=pdf
https://doi.org/10.1007/s11047-016-9591-0

initial states. The environment contains only copies of

object e.

(3) Only environment can contain objects different from

the object e.

P colonies were studied in conjunction with three

parameters:

(1) the number of objects inside the agent – the capacity

of a P colony

(2) the number of agents in a P colony – the degree of a

P colony

(3) the maximal number of programs associated with

one agent – the height of a P colony.

In the following results the number of necessary agents or

the necessary programs stays unbounded to reach compu-

tational completeness.

In Freund and Oswald (2005), Kelemen et al. (2004),

the authors studied P colonies with two objects inside

agents. In this case programs consist of two rules, one for

each object. If the former of these rules is an evolution and

the latter is a communication or checking, we speak of

restricted P colonies. If another combination of the types of

the rules is also used, we obtain non-restricted P colonies.

The restricted P colonies with the checking rules are

computationally complete Freund and Oswald (2005).

In Csuhaj-Varjú et al. (2006b), the authors used P

colonies with the third type of initial configuration to

simulate small universal register machines introduced in

Korec (1996) to bound all parameters in computationally

complete classes of P colonies. We continue their work in

finding ‘‘optimized’’ computationally complete classes of P

colonies with all bounded parameters.

We start with definitions in Sect. 2. In Sect. 3 we will

deal with P colonies using checking programs with two

objects inside each agent. P colonies with programs con-

sisting of two rules of the same type without use of

checking programs are studied in Sect. 4.

2 Definitions

Throughout the paper we assume the reader to be familiar

with the basics of the formal language theory. For more

information on membrane computing, please refer to Păun

(2001). We briefly summarize notations used in the present

paper.

We use NRE to denote the family of the recursively

enumerable sets of non-negative integers and N to denote

the set of non-negative integers.

Let R be the alphabet. Let R� be the set of all words over

R (including the empty word e). We denote the length of

the word w 2 R� by wj j and the number of occurrences of

the symbol a 2 R in w by wj ja.

A multiset of objects M is a pair M ¼ ðV; f Þ, where V is

an arbitrary (not necessarily finite) set of objects and f is a

mapping f : V ! N; f assigns to each object in V its mul-

tiplicity in M. The set of all finite multisets over the finite

set V is denoted by V�.
Any finite multiset M over V can be represented as a

string w over alphabet V with wj ja¼ fMðaÞ for all a 2 V .

Obviously, all words obtained from w by permuting the

letters can also represent the same M, and e represents the

empty multiset. From this perspective the cardinality of M

can be denoted by |M| and it is defined by

jMj ¼
P

a2V fMðaÞ.

2.1 P colonies

We briefly recall the notion of P colonies introduced in

Kelemen et al. (2004). A P colony consists of agents and

environment. Both the agents and the environment contain

objects. With every agent the set of programs is associated.

There are two types of rules in the programs. The first type,

called the evolution rules, is of the form a ! b, which

means that object a inside of the agent is rewritten

(evolved) to the object b. The second type of rules, called a

communication, is in the form c $ d. When this rule is

performed, the object c inside the agent and the object

d outside of the agent change their positions after execution

of the rule object d appears inside the agent and c is placed

outside in the environment.

In Kelemen et al. (2004) the ability of agents was

extended by checking rule. This rule gives to the agents an

opportunity to opt between two possibilities. It has form

r1=r2. If the checking rule is performed, the rule r1 has

higher priority to be executed than the rule r2. It means that

the agent checks the possibility to use rule r1. If it can be

executed, the agent has to use it. If the rule r1 cannot be

applied, the agent uses the rule r2.

Definition 1 A P colony of the capacity c is a construct

P ¼ ðA; e; f ; vE;B1; . . .;BnÞ;

where

• A is an alphabet of the colony, its elements are called

objects,

• e is the basic object of the colony, e 2 A,

• f is the final object of the colony, f 2 A,

• vE is a multiset over A� feg,

• Bi; 1� i� n, are agents, each agent is a construct

Bi ¼ oi;Pið Þ, where

• oi is a multiset over A, it determines the initial state

(content) of agent Bi and joij ¼ c,

• Pi ¼ pi;1; . . .; pi;ki
� �

is a finite set of programs,

where each program contains exactly c rules, which

322 L. Cienciala, L. Ciencialová

123

are of one of the following forms: (1) evolution rule

a ! b, (2) communication rule c $ d and (3)

checking rule r1=r2; where r1; r2 are evolution or

communication rules.

The initial configuration of a P colony is an ðnþ 1Þ-
tuple of strings of objects present in the P colony at the

beginning of the computation. It is given by the multiset oi
for 1� i� n and by the set vE. Formally, the configuration

of the P colony P is given by ðw1; . . .;wn;wEÞ, where

jwij ¼ c; 1� i� n, wi represents all the objects placed

inside the i-th agent, and wE 2 ðA� fegÞ� represents all

the objects in the environment different from object e.

At each step of the computation, the contents of the

environment and of the agents change in the following

manner: In the maximally parallel derivation mode, each

agent which can use any of its programs should use one

(non-deterministically chosen), whereas in the sequential

derivation mode, one agent (non-deterministically chosen

from the set of agents with at least one applicable program)

uses one of its programs at a time. If the number of

applicable programs for the chosen agent is higher than

one, then the agent non-deterministically chooses one of

the programs.

A sequence of transitions is called a computation. A

computation is said to be halting, if a configuration is

reached where no program can be applied any more. With a

halting computation we associate a result which is given as

the number of copies of the objects f present in the envi-

ronment in the halting configuration.

Because of the non-determinism in choosing the pro-

grams, starting from the initial configuration we obtain

several computations, hence, with a P colony we can

associate a set of numbers, denoted by NðPÞ, computed by

all possible halting computations of the given P colony.

Given a P colony P ¼ ðA; e; f ; vE; B1; . . .; BnÞ the

maximal number of programs associated with the agents in

P colony P is called the height of P colony P. The degree

of P colony P is the number of agents in P colony P. The

third parameter characterizing a P colony is the capacity of

P colony P describing the number of the objects inside

each of the agents.

If the programs are composed of one rewriting and one

communication (or checking) rule in the case of P colony

with capacity two, we call such P colony restricted.

Restricted program is of one of following forms: \a !
b; c $ d[and \a ! b; c $ d=f $ g[.

Let us use the following notations:

NPCOLparðc; n; hÞ for the family of all sets of numbers

computed by these P colonies working in parallel, using no

checking rules and with: the capacity at most c, the degree

at most n and the height at most h.

If the checking rules are allowed the family of all sets of

numbers computed by P colonies is denoted by

NPCOLparK.

If the P colonies are restricted, we notate as NPCOLparR

and NPCOLparKR, respectively.

2.2 Register machines

In what follows we want to examine the computational

power of P colonies. We compare the families of sets of

natural numbers computed by P colonies with the recur-

sively enumerable sets of numbers. To achieve this aim we

use the notion of a register machine.

Definition 2 Minsky (1967), Korec (1996) A register

machine is the construct M ¼ ðm;H; l0; lh;PÞ where:

• m is the number of registers,

• H is the set of instruction labels,

• l0 is the start label, lh is the final label,

• P is a finite set of instructions injectively labelled with

the elements from the set H.

The instructions of the register machine are of the fol-

lowing forms:

• l1 : ðADDðrÞ; l2; l3Þ – Add 1 to the content of the

register r and proceed to the instruction (labelled with)

l2 or l3.

• l1 : ðSUBðrÞ; l2Þ – If the register r stores the value

different from zero, then subtract 1 from its content,

otherwise leave it unchanged and go to the instruction

labelled l2.

• l1 : ðCHECKðrÞ; l2; l3Þ – If the value stored in register r

is zero, go to the instruction labelled l2, otherwise go to

instruction labelled l3.

• l1 : ðCHECKSUBðrÞ; l2; l3Þ – If register r is non-empty,

then subtract 1 from its content and go to the instruction

labelled l2, otherwise go to instruction labelled l3.

• lh : HALT– Halt the machine. The final label lh is only

assigned to this instruction.

The register machine M computes a set N(M) of num-

bers in the following way: it starts with all registers empty

(hence storing the number zero) with the instruction

labelled l0 and it proceeds to apply the instructions as

indicated by the labels (and made possible by the contents

of registers). If it reaches the halt instruction, then the

number stored at that time in the register 1 is said to be

computed by M and hence it is introduced in N(M). (Be-

cause of the non-determinism in choosing the continuation

of the computation in the case of ADD-instructions, N(M)

can be an infinite set.) It is known (see e.g.Minsky (1967))

that in this way register machines using ADD,

Some new results of P colonies with bounded parameters 323

123

CHECKSUB and HALT instructions compute all Turing

computable sets.

In Korec (1996) the several results on small universal

register machines are presented. In this framework the

register machines are used to compute result of the function

of non-negative integers by having this argument of the

function stored in one of the registers at the beginning of

computation and the result can be found in other register

after halting computation. The universal machines have

eight registers and they can simulate computation of reg-

ister machine M with the information stored as a natural

number code(M) coding the particular machine M. The

code(M) is placed in the second register.

Theorem 1 Korec (1996) Let M be the set of register

machines. Then, there are register machines U1;U2;U3

with eight registers and a recursive function g : M ! N

such that for each M 2 M;NðMÞ ¼ NðUiðgðMÞÞÞ, where
NðUiðgðMÞÞÞ denotes the set of numbers computed by

Ui; 1� i� 3; with initially containing g(M) in the second

register. All these machines have one HALT instruction

labelled by lh, one instruction of the type ADD labelled l0,

and:

• U1 has 8 þ 11 þ 13 ¼ 32 instructions of the type

ADD; SUB and CHECK, respectively,

• U2 has 9 þ 13 ¼ 22 instructions of the type ADD and

CHECKSUB, respectively,

• U3 has 8 þ 1 þ 12 ¼ 21 instructions of the type

ADD;CHECK and CHECKSUB, respectively.

Moreover, these machines either halt using HALT in-

struction and have the result of the computation in the first

register, or their computation goes on infinitely.

The Theorem 1 is reformulated to meet notations and

definitions by Minsky (1967).

3 Using checking rules in P colonies with capacity
two

We open this section with list of results for classes of P

colonies with capacity two. The reader can find them in

literature described below.

1. NPCOLparKRð2; �; 5Þ ¼ NRE in Csuhaj-Varjú et al.

(2006a), Kelemen et al. (2004),

2. NPCOLparRð2; �; 5Þ ¼ NRE in Freund and Oswald

(2005),

3. NPCOLparKRð2; 1; �Þ ¼ NRE in Freund and Oswald

(2005),

4. NPCOLparRð2; 2; �Þ ¼ NRE in Cienciala et al. (2007),

5. NPCOLparKR ð2; 23; 5Þ ¼ NPCOLparKR ð2; 22; 6Þ ¼
NRE in Csuhaj-Varjú et al. (2006b),

6. NPCOLparKð2; 22; 5Þ ¼ NRE in Csuhaj-Varjú et al.

(2006b),

7. NPCOLparð2; 35; 8Þ ¼ NPCOLparRð2; 57; 8Þ ¼ NRE in

Csuhaj-Varjú et al. (2006b).

The results 1.–4. do not allow nonempty environment in

the initial configuration. In this paper the results allow

nonempty environment in the initial configuration. If we

sum the programs associated with one agent in the P colony

defined in the proof of the result 3. (we can omit the pro-

grams for initialization of simulation generating label l0)

we obtain:

NPCOLparKRð2; 1; 93Þ ¼ NRE:

The next theorem determines computational power of P

colonies working with checking rules.

Theorem 2 NPCOLparKð2; 1; 66Þ ¼ NRE.

Proof Let us consider a register machine M. We construct

a P colony P1 ¼ ðA1; e; f ; vE1
;B1Þ simulating the compu-

tations of the register machine U2 with 8 registers from

Theorem 1 with:

• A1 ¼ fli; l0i j li 2 Hg [fam j 1�m� 8g,

• vE1
¼ a

gðMÞ
2 l0,

• f ¼ a1,

• B1 ¼ ðee;P1Þ
At the beginning of the computation the agent consumes

the object l0 (the label of starting instruction of U2) and

generates ar because the first instruction is of the type

ADD.

Then it starts to simulate instruction labelled l0 and it

generates the label of the next instruction. The set of

programs is as follows:

(1) For the simulation of the initial instruction l0 :

ðADDðrÞ; lj; lkÞ there are programs in P:

1 : e $ l0; e ! arh i; 2 : l0 ! lj; ar $ e
� �

;

3 : l0 ! lk; ar $ eh i

The initial configuration of P1 is ee; l0a
m
2

� �
;m ¼ gðMÞ.

After the first step of computation (only the program 1 is

applicable) the system enters configuration l0ar; a
m
2

� �
. Now

the second or the third program is applicable and agent uses

one of them. After the 2nd step the P colony is in the

configuration ie; ara
m
2

� �
; i 2 flj; lkg.

(2) For every ADD-instruction li : ðADDðrÞ; lj; lkÞ we

add to P the programs:

4 : li ! l0i; e ! ar
� �

; 5 : l0i ! lj; ar $ e
� �

;

6 : l0i ! lk; ar $ e
� �

When there is object li inside the agent, it generates one

copy of ar, puts it to the environment and generates the

324 L. Cienciala, L. Ciencialová

123

label of the next instruction (it nondeterministically choo-

ses one of the last two programs 5 and 6). The sequence of

configurations and labels of applicable programs are shown

in Table 1.

(3) For every CHECKSUB-instruction li : ðCHECKSUB
ðrÞ; lj; lkÞ, the next programs are added to set P:

7 : li ! l0i; e $ ar=e $ e
� �

; 8 : l0i ! e; ar ! lj
� �

9 : l0i ! e; e ! lk
� �

The simulation of the CHECKSUB instruction is done in

two steps. At the first step agent uses program no. 7 to

check whether there is any copy of object ar in the envi-

ronment. In positive case it consumes one ar. The second

step is done in accordance to the content (state) of agent. If

it contains ar agent generates object—label lj, if there is no

ar inside the agent it generates object—label lk. Instruction

li : ðCHECKSUBðrÞ; lj; lkÞ is simulated by the sequence of

steps shown in Table 2.

(4) For CHECK instruction we construct three programs

similar to previous programs.

10 : li ! l0i; e $ ar=e $ e
� �

; 11 : l0i ! lj; ar $ e
� �

12 : l0i ! lk; e ! e
� �

Instruction li : ðCHECKðrÞ; lj; lkÞ is simulated by the

sequence of steps shown in Table 3.

(5) For halting instruction lh there is no corresponding

program in the set P1.

P colony P1 correctly simulates all computations of the

register machine U2 and the number contained on the first

register of U2 corresponds to the number of copies of the

object a1 present in the environment of P1. The machine

U2 has one instruction l0, 8 ADD-instructions, 12

CHECKSUB-instructions, one CHECK-instruction and

finally one HALT-instruction. Notation l0ðADDÞ means

that the number bellow it corresponds to the instruction l0.

If we count the programs used for simulation of function of

register machine we obtain:

h ¼ 3
z}|{
l0ðADDÞ

þ 8 � 3
z}|{
ADD

þ 12 � 3
zfflffl}|fflffl{

CHECKSUB

þ 1 � 3
z}|{
CHECK

¼ 66

and the proof is complete. h

Now we add result for restricted P colonies with

checking programs.

Theorem 3 NPCOLparKRð2; 1; 74Þ ¼ NRE.

Proof Let us consider a register machine M. We construct

a P colony P2 ¼ ðA2; e; f ; vE2
;B2Þ simulating the compu-

tations of register machine U2 with 8 registers from The-

orem 1 with:

• A2 ¼ feg [fli; l0i j li 2 Hg [fam j 1�m� 8g,

• vE2
¼ a

gðMÞ
2 l0; f ¼ a1,

• B2 ¼ ðee;P2Þ
The beginning of simulation is very similar to the one in

previous theorem.

(1) For the simulation of the initial instruction l0 :

ðADDðrÞ; lj; lkÞ there are programs in P2:

1 : e ! ar; e $ l0h i; 2 : l0 ! lj; ar $ e
� �

;

3 : l0 ! lk; ar $ eh i

At the beginning of the computation the agent consumes

object l0 (the label of starting instruction of U2) and gen-

erates ar because the first instruction is of the type ADD.

Then it generates the label of the next instruction.

The initial configuration of P2 is ee; ee; l0a
m
2

� �
;

m ¼ gðMÞ. After the first step of computation (only the

program 1 is applicable) the system enters configuration

l0ar; ee; a
m
2

� �
. Now the second or the third program is

Table 1 The execution of

ADD-instruction in P colony P1
B1 Env1 P1

1. lie axrw 4

2. l0iar axrw 5 or 6

3. lje axþ1
r w

Table 2 The execution of CHECKSUB-instruction in P colony P1

B1 Env1 P1

If the register r stores nonzero value:

1. lie axrw 7

2. l0iar ax�1
r w 8

3. lje ax�1
r w

If the register r stores value zero:

1. lie w 7

2. l0ie w 9

3. lje w

Table 3 The execution of CHECK-instruction in P colony P1

B Env P

If the register r stores nonzero value:

1. lie axrw 10

2. l0iar ax�1
r w 11

3. lje axrw

If the register r stores value zero:

1. lie w 10

2. l0ie w 12

3. lke w

Some new results of P colonies with bounded parameters 325

123

applicable and agent uses one of them. After the second step

the P colony is in the configuration ie; ee; ara
m
2

� �
; i 2 flj; lkg.

(2) For every ADD-instruction li : ðADDðrÞ; lj; lkÞ we

add to P2 the programs:

4 : e ! e; li $ eh i; 5 : e ! ar; e $ lih i;
6 : li ! lj; ar $ e

� �
7 : li ! lk; ar $ eh i

When there is object li inside the agent, it generates one

copy of ar, puts it into the environment and generates the

label of the next instruction (it nondeterministically

chooses one of the last two programs 6 and 7). The part

of the computation is shown in Table 4.

(3) For every CHECKSUB-instruction li : ðCHECKSUB
ðrÞ; lj; ljÞ, the following programs are added to set P2:

8 : li ! l0i; e $ ar=e $ e
� �

; 9 : ar ! lj; l
0
i $ e

� �

10 : l0i ! lk; e $ e
� �

The simulation of theCHECKSUB instruction is done in two

steps. In the first step agent uses program no. 8 to check whether

there is any copy of object ar in the environment. In positive

case it consumes one ar. The second step is done in accordance

to the content (state) of agent. If it contains ar agent generate

objectlabel l2, if there is no ar inside the agent it generate

object—label l3. Instruction li : ðCHECKSUBðrÞ; lj; lkÞ is

simulated by the sequence of steps shown in Table 5. w 2 A�
2

(4) For CHECK instruction li : ðCHECKðrÞ; lj; lkÞ we

construct three programs similar to previous programs.

11 : li ! l0i; e $ ar=e $ e
� �

; 12 : l0i ! lj; ar $ e
� �

13 : l0i ! lk; e $ e
� �

Instruction li : ðCHECKðrÞ; lj; lkÞ is simulated by the

sequence of steps shown in Table 6.

(5) For halting instruction lh there is no corresponding

program in the set P2.

P colony P2 correctly simulates all computations of the

register machine U2 and the number contained on the first

register ofU2 corresponds to the number of copies of the object

a1 present in the environment of P2. If we count the programs

used for simulation of function of register machine we obtain:

h ¼ 3
z}|{
l0ðADDÞ

þ 8 � 4
z}|{
ADD

þ 12 � 3
zfflffl}|fflffl{

CHECKSUB

þ 1 � 3
z}|{
CHECK

¼ 74

and the proof is complete. h

4 Bounded classes of homogeneous P colonies

The program is said to be homogeneous if it is composed of

rules of the same type. A P colony having only homoge-

neous programs is called homogeneous. Each P colony

with capacity one that does not use checking rules is

homogeneous. Let us summarize results found in papers

described below and state the unbounded parameter that we

can compute from proofs of the theorems:

• NPCOLparKH ð1; �; 6Þ ¼ NPCOLparKH ð1; 26; 6Þ ¼
NRE in Cienciala et al. (2008)

• NPCOLparHð1; 4; �Þ ¼ NPCOLparHð1; 4; 302Þ ¼ NRE

in Cienciala et al. (2007)

• NPCOLparKH ð2; �; 4Þ ¼ NPCOLparKH ð2; 25; 4Þ ¼
NRE in Cienciala et al. (2008)

• NPCOLpar KHð2; 1; �Þ ¼ NPCOLparKH ð2; 1; 176Þ ¼
NRE in Cienciala et al. (2008)

• NPCOLparKH ð3; 2; �Þ ¼ NPCOLparKH ð3; 2; 236Þ ¼
NRE in Cienciala and Ciencialová (2011)

It seems that no result is published related to homogeneous

P colonies with capacity two that do not use checking rules

and related to P colonies with capacity one using checking

programs.

Table 4 The execution of

ADD-instruction in P colony P2
B2 Env2 P2

1. lie axrw 4

2. ee lia
x
rw 5

3. arli axrw 6 or 7

4. lje axþ1
r w

Table 5 The execution of CHECKSUB-instruction in P colony P2

B2 Env2 P2

If the register r stores nonzero value:

1. lie axrw 8

2. l0iar ax�1
r w 9

3. lje ax�1
r l0iw

If the register r stores value zero:

1. lie w 8

2. l0ie w 10

3. lke w

Table 6 The execution of CHECK-instruction in P colony P2

B2 Env2 P2

If the register r stores nonzero value:

1. lie axrw 11

2. l0iar ax�1
r w 12

3. lje axrw

If the register r stores value zero:

1. lie w 11

2. l0ie w 13

3. lke w

326 L. Cienciala, L. Ciencialová

123

Theorem 4 NPCOLparHð2; 2; 163Þ ¼ NRE.

Proof Let us consider a register machine M. We construct

a P colony P3 ¼ ðA3; e; f ; vE3
;B31

;B32
Þ simulating the

computations of register machine U2 with 8 registers from

Theorem 1 with:

• A3 ¼ fe; e0g [fli; l0i; l000i ; li j li 2 Hg[
[fam j 1�m� 8g;

• vE3
¼ a

gðMÞ
2 l0; f ¼ a1,

• B3n ¼ ðee;P3nÞ; n ¼ f1; 2g
At the beginning of the computation the agent B31

con-

sumes the object l0 (the label of starting instruction of U2).

(1) For the simulation of the initial instruction l0 :

ðADDðrÞ; lj; lkÞ there are programs in P1:

1 : e $ l0; e $ eh i; 2 : l0 ! l00; e ! ar
� �

;

3 : l00 $ e; ar $ e
� �

; 4 : e $ l00; e $ e
� �

;

5 : l00 ! lj; e ! e
� �

; 6 : l00 ! lk; e ! e
� �

The initial configuration of P3 is ee; ee; l0a
m
2

� �
;m ¼

gðMÞ. Agent B31
consumes object l0 and then it starts to

simulate instruction labelled l0. It generates the label of the

next instruction. Because each program is homogeneous

the agent can only rewrite all its content or exchange both

objects inside it for another two objects from the environ-

ment. If the content of agent B31
is ee only programs with

communication rules are applicable.

(2) For every ADD-instruction li : ðADDðrÞ; lj; lkÞ we

add to P31
the programs:

7 : li ! l0i; e ! ar
� �

; 8 : l0i $ e; ar $ e
� �

;

9 : e $ l0i; e $ e
� �

; 10 : l0i ! lj; e ! e
� �

;

11 : l0i ! lj; e ! e
� �

When there is object li inside the agent, it generates one

copy of ar, puts it to the environment and generates the

label of the next instruction (it nondeterministically choo-

ses one of the last two programs 10 and 11). The sequence

of steps is shown in Table 7.

(3) For every CHECKSUB-instruction li : ðCHECKSUB
ðrÞ; lj; lkÞ, the next programs are added to sets P31

and P32
:

P31

12 : li ! l0i; e ! l00i
� �

; 13 : l0i $ e; l00i $ e
� �

;

14 : e $ l00i ; e $ ar
� �

; 15 : l00i ! li; ar ! e0
� �

;

16 : li $ e; e0 $ e
� �

; 17 : e $ li; e $ e
� �

;

18 : li ! lj; e ! e
� �

; 19 : e $ l00i ; e $ l000i
� �

;

20 : l00i ! lk; l
000
i ! e

� �

P32

21 : e $ l0i; e $ e
� �

; 22 : l0i ! l000i ; e ! e
� �

;

23 : l000i $ e; e $ e
� �

; 24 : e $ l000i ; e $ e0
� �

;

25 : l000i ! e; e0 ! e
� �

The simulation of the CHECKSUB instruction as follows:

Agent B31
puts to object (l0i; l

00
i) corresponding to given

instruction into the environment; object l0i is consumed by

agentB32
; at the next step object l00i can be consumed by agent

B31
only together with object ar. If there is no ar in the

environment, agent B31
has to wait until object l000i appears in

the environment (agent B32
generates it). Now program 19 is

applicable. The next step is done in accordance to the content

(state) of agent B31
. If it contents ar agent generates object—

label l2 and puts object l0i to the environment, if there is no ar
inside the agent it generates object—label l3. Instruction li :

ðCHECKSUBðrÞ; lj; lkÞ is simulated by the sequence of steps

shown in Table 8. Multiset w 2 fam j 1�m� 8g� is placed

in the environment.

(4) For CHECK instruction we construct three programs

similar to previous programs for CHECKSUB instruction.

Table 7 The execution of ADD-instruction in P colony P3

B31
B32

Env3 P31
P32

1. lie ee w 7 -

2. l0iar ee w 8 -

3. ee ee l0iarw 9 --

4. l0ie ee arw 10 or 11 -

6. lje ee arw - -

Table 8 The execution of CHECKSUB-instruction in P colony P3

B31
B32

Env3 P31
P32

If the register r stores non-zero value:

1. lie ee axrw 12 -

2. l0il
00
i ee axrw 13 -

3. ee ee l0il
00
i a

x
rw 14 21

4. l00i ar l0ie ax�1
r w 15 22

5. lie
0 l000i e ax�1

r w 16 23

6. ee ee lie
0l000i a

x�1
r w 17 24

7. lie l000i e
0 ax�1

r w 18 25

8. lje ee ax�1
r w � -

If the register r stores value zero:

1. lie ee w 12 -

2. l0il
00
i ee w 13 -

3. ee ee l0il
00
i w � 21

4. ee l0ie l00i w � 22

5. ee l000i e l00i w � 23

6. ee ee l000i l
00
i w 19 -

7. l000i l
00
i ee w 20 -

8. lke ee w � -

Some new results of P colonies with bounded parameters 327

123

P31

26 : li ! l0i; e ! l00i
� �

; 27 : l0i $ e; l00i $ e
� �

;

28 : e $ l00i ; e $ ar
� �

; 29 : l00i ! li; ar ! ar
� �

;

30 : li $ e; ar $ e
� �

; 31 : e $ li; e $ l000i
� �

;

32 : li ! lj; l
000
i ! e

� �
; 33 : e $ l00i ; e $ l000i

� �
;

34 : l00i ! lk; l
000
i ! e

� �

P32

35 : e $ l0i; e $ e
� �

; 36 : l0i ! l000i ; e ! e
� �

;

37 : l000i $ e; e $ e
� �

Instruction li : ðCHECKðrÞ; l2; l3Þ is simulated by the

sequence of steps shown in Table 9.

(5) For halting instruction lh there is no corresponding

program in the set P31
[P32

.

P colony P3 correctly simulates all computations of the

register machine M and the number contained on the first

register ofU2 corresponds to the number of copies of the object

a1 present in the environment of P3. If we count the programs

used for simulation of function of register machine we obtain:

h1 ¼ 6
z}|{
l0ðADDÞ

þ 8 � 5
z}|{
ADD

þ 12 � 9
zfflffl}|fflffl{

CHECKSUB

þ 1 � 9
z}|{
CHECK

;

h2 ¼ 0
z}|{
l0ðADDÞ

þ 8 � 0
z}|{
ADD

þ 12 � 5
zfflffl}|fflffl{

CHECKSUB

þ 1 � 3
z}|{
CHECK

;

h ¼ max h1; h2f g ¼ 163

and the proof is complete. h

In next result we reduce the number of programs asso-

ciated with agent.

Theorem 5 NPCOLparHð2; 92; 3Þ ¼ NRE.

Proof Let us consider a register machine M. We construct

a P colony P4 ¼ ðA4; e; f ; vE4
;B41

; . . .;B492Þ simulating the

computations of register machine U2 with 8 registers from

Theorem 1 with:

• A4 ¼ fe; e0g [fli; l0i; l000i ; li j li 2 Hg[
[fam j 1�m� 8g;

• vE4
¼ a

gðMÞ
2 l0; f ¼ a1;

• B4i ¼ ðee;P4iÞ; i ¼ f1; . . .; 92g
Because we want to minimize the number of programs

associated with each agent we have to divide simulation of

each instruction among more agents. To set order among

agents we use the following labelling: Bli;j implies that this

is the j-th agent associated with instruction li.

At the beginning of the computation the agent B1 consumes

the object l0 (the label of starting instruction of U2).

(1) For the simulation of the initial instruction l0 :

ðADDðrÞ; lj; lkÞ and every ADD-instruction li ¼
ðADDðrÞ; lj; lkÞ there are programs in Pli;p; p ¼ f1; 2; 3g.

To simulate the ADD-instruction we need three agents: one

agent to generate object ar and two agents to generate

object – label of the next instruction.

Pli;1

1 : e $ li; e $ eh i; 2 : li ! l0i; e ! ar
� �

;

3 : l0i $ e; ar $ e
� �

Pi;2

4 : e $ l0i; e $ e
� �

; 5 : l0i ! l2; e ! e
� �

;

6 : l2 $ e; e $ eh i
Pi;3

7 : e $ l0i; e $ e
� �

; 8 : l0i ! l3; e ! e
� �

;

9 : l3 $ e; e $ eh i

In Table 11 the reader can find a part of computation—

simulation of execution of initial instruction l0 – sequence

of configurations and the labels of used programs.

If the agent Bi;3 uses the program 7 in the configuration

4, the label l3 is generated instead of l2.

(2) For every CHECKSUB-instruction li : ðCHECKSUB
ðrÞ; lj; lkÞ, the next programs are added to sets Pli;p; p 2
f1; . . .; 5g:

Table 9 The execution of CHECK-instruction in P colony P3

B31
B32

Env3 P31
P32

If the register r stores non-zero value:

1. lie ee axrw 26 -

2. l0il
00
i ee axrw 27 -

3. ee ee l0il
00
i a

x
rw 28 35

4. l00i ar l0ie ax�1
r w 29 36

5. l2ar l000i e ax�1
r w 30 37

6. ee ee l2l
000
i a

x
rw 31 -

7. l2l
000
i

ee axrw 32 -

8. lje ee axrw � -

If the register r stores value zero:

1. lie ee w 26 -

2. l0il
00
i ee w 27 -

3. ee ee l0il
00
i w � 35

4. ee l0ie l00i w � 36

5. ee l000i e l00i w � 37

6. ee ee l000i l
00
i w 33 -

7. l000i l
00
i ee w 34 -

8. lke ee w - -

328 L. Cienciala, L. Ciencialová

123

Pli;1

10 : e $ li; e $ eh i; 11 : li ! l0i; e ! l00i
� �

;

12 : l0i $ e; l00i $ e
� �

Pi;2

13 : e $ l0i; e $ ar
� �

; 14 : l0i ! lj; ar ! li
� �

;

15 : lj $ e; li $ e
� �

Pi;3

16 : e $ l00i ; e $ e
� �

; 17 : l0i ! l000i ; e ! e
� �

;

18 : l000i $ e; e $ e
� �

Pi;4

19 : e $ l0i; e $ l000i
� �

; 20 : l0i ! lk; l
000
i ! e

� �
;

21 : lk $ e; e $ eh i
Pi;5

22 : e $ l000i ; e $ li
� �

; 23 : l0000i ! e; li ! e
� �

The simulation of the CHECKSUB instruction as follows:

Agent Bli;1 puts objects (l0i; l
00
i) corresponding to given

instruction to the environment; object l0i is consumed by

agent Bli;2 if there is at least one copy of ar in the envi-

ronment agent Bli;2 rewrites objects ar and l0i to object

corresponding to label of the next instruction and to object

li – the message for agent Bli;5 that the unused object l000i
must be erased from the environment. The agent Bli;3

consumes object l00i and in the next step it rewrites this

object to object l000i and in the following step agent puts this

object into the environment.

In the case that register r stores value zero, agent Bl1;4

consumes objects l0i and l000i and finally it generates object—

label lk. Instruction li : ðCHECKSUBðrÞ; lj; lkÞ is simulated

by the sequence of steps as present in Table 10. Multiset

w 2 fam j 1�m� 8g� is placed in the environment.

(3) For CHECK instruction we construct three programs

similar to programs in previous paragraph. The only

change is in programs associated with agent Bli;5.

Pi;5

22 : e $ l000i ; e $ li
� �

; 23 : l000i ! e; li ! ar
� �

;

24 : ar $ e; e $ eh i

(4) For halting instruction lh there is no corresponding

program in the set Pi; 1� i� 92.

P colony P4 correctly simulates all computations of the

register machine U2 and the number contained on the first

register of U2 corresponds to the number of copies of the

object a1 present in the environment of P4. If we count the

programs used for simulation of function of register

machine we obtain:

n ¼ 1 � 3
z}|{
l0ðADDÞ

þ 8 � 3
z}|{
ADD

þ 12 � 5
zfflffl}|fflffl{

CHECKSUB

þ 1 � 5
z}|{
CHECK

¼ 92

and the proof is complete. h

Table 10 Simulation of

execution CHECKSUB

instruction in P colony P4

Bli ;1 Bli ;2 Bli;3 Bli ;4 Bli ;5 Env4 Pli ;1 Pli ;2 Pli ;3 Pli;4 Pli ;5

If the register r stores non-zero value:

1. ee ee ee ee ee lia
x
rw 10 � � � �

2. lie ee ee ee ee axrw 11 � � � �
3. l0il

00
i ee ee ee ee axrw 12 � � � �

4. ee ee ee ee ee l0il
00
i a

x
rw � 13 16 � �

5. ee l0iar l00i e ee ee ax�1
r w � 14 17 � �

6. ee ljli l000i e ee ee ax�1
r w � 15 18 � �

7. ee ee ee ee ee ljlil
000
i a

x�1
r w � � � � 22

8. ee ee ee ee lil
000
i ax�1

r w � � � � 23

9. ee ee ee ee ee ax�1
r w � � � � �

If the register r stores value zero:

1. ee ee ee ee ee liw 10 � � � �
2. lie ee ee ee ee w 11 � � � �
3. l0il

00
i ee ee ee ee w 12 � � � �

4. ee ee ee ee ee l0il
00
i w � � 16 � �

5. ee ee l00i e ee ee l0iw � � 17 � �
6. ee ee l000i e ee ee l0iw � � 18 � �
7. ee ee ee ee ee l0il

000
i w � � � 19 �

8. ee ee ee l0il
000
i ee w � � � 20 �

9. ee ee ee lke ee w � � � 21 �
10. ee ee ee ee ee lkw � � � � �

Some new results of P colonies with bounded parameters 329

123

Theorem 6 NPCOLparHð2; 70; 5Þ ¼ NRE.

It is very easy to see that we obtain the result by union of

agents Bli;2 and Bli;3 constructed in previous proof for

ADD-instructions.

The last result of this paper is devoted to the homogeneous

P colony with capacity one using checking programs.

Theorem 7 NPCOLparKHð1; 3; 325Þ ¼ NRE.

Proof Let us consider a register machine M. We construct

a P colony P5 ¼ ðA5; e; f ; vE5
;B51

; B52
;B53

Þ simulating the

computations of register machine U2 with 8 registers from

Theorem 1 with:

•
A5 ¼ fe; d; gg [fli; l0i; l00i ; l000i ; li; li; li; li; lai ; lbi ; lci ;

ldi ; L
a
i ; L

b
i ; L

0
i; L

00
i j li 2 Hg[

[fam j 1�m� 8g [fgk j 1� k� 5g;
• vE5

¼ a
gðMÞ
2 l0dg; f ¼ a1,

• B5j ¼ ðe;P5jÞ; j ¼ f1; 2; 3g
At the beginning of the computation the agent B51

gener-

ates the object l00 (corresponding to the label of starting

instruction of U2).

(1) For the simulation of the initial instruction l0 :

ðADDðrÞ; lj; lkÞ there are programs in P51
and in P52

:

P51

1 : e ! l00
� �

; 2 : l00 $ l0=l
0
0 $ d

� �
; 3 : l0 ! l0

� �

4 : l0 ! lj
� �

; 5 : l0 ! lk
� �

; 6 : d ! dh i;
P52

7 : e $ l00
� �

; 8 : l00 ! ar
� �

; 9 : ar $ eh i

The initial configuration of P5 is e; e; l0a
m
2 gd

� �
;m ¼ gðMÞ.

Agent B51
generates object l00 and ensures itself by con-

suming object l0 from the environment that it generated the

right object (corresponding to the label of initial instruction

of the machine M). In negative case the agent consumes

object d, agent start to rewrite object d in the circle and

computation never ends. In positive case agent generates

the label of the next instruction. The agent B52
executes

adding one object ar to the environment. The situation

when simulation is done correctly, is shown in Table 12.

The part of computation when the agent B51
generates in

the first step wrong object is shown in Table 13.

(2) For every ADD-instruction li : ðADDðrÞ; lj; lkÞ we

add to P51
the programs:

P51

10 : li $ eh i; 11 : e ! li
� �

; 12 : li ! li

D E

13 : li ! l0i

D E
; 14 : l0i $ l00i =l

0
i $ d

� �
; 15 : l00i ! li

� �
;

16 : li ! lj
� �

; 17 : li ! lk
� �

;

P52

18 : e $ lih i; 19 : li ! l00i
� �

; 20 : l00i $ e
� �

21 : e $ l0i
� �

; 22 : l0i ! ar
� �

; 23 : ar $ eh i

When there is object li inside the agent B51
, it puts it to the

environment and tries to generate object l0i. Then it

exchanges object l0i by object l00i from the environment.

Finally agent B51
generates the label of the next instruction

(it non-deterministically chooses one of the last two pro-

grams 16 and 17) and the agent B52
generates one object ar

and puts it to the environment (Table 14).

(3) For every CHECKSUB-instruction li : ðCHECKSUB
ðrÞ; lj; lkÞ, the next programs are added to sets P51

, P52
and

P53
:

P51

24 : li $ eh i; 25 : e ! li
� �

; 26 : li ! li

D E
;

27 : li ! l0i

D E
; 28 : l0i $ l00i =l

0
i $ d

� �
; 29 : l00i ! li

� �
;

30 : li ! li

D E
; 31 : li ! Li

D E
; 32 : Li $ ar=Li $ l000i

� �
;

33 : l000i ! lai
� �

; 34 : lai ! lbi
� �

; 35 : lbi ! lci
� �

;

36 : lci ! ldi
� �

; 37 : ldi ! lk
� �

; 38 : ar ! Lai
� �

;

39 : Lai ! Lbi
� �

; 40 : Lbi ! L00i
� �

; 41 : L00i $ L0i=L
00
i $ d

� �
;

42 : L0i ! lj
� �

;

P52

43 : e $ lih i; 44 : li ! l00i
� �

; 45 : l00i $ e
� �

46 : e $ l0i
� �

; 47 : l0i ! l000i
� �

; 48 : l000i $ g
� �

49 : g ! g1h i; 50 : g1 ! g2h i; 51 : g2 ! g3h i
52 : g3 ! g4h i; 53 : g4 ! g5h i; 54 : g5 $ L00i =g5 $ L00i

� �

55 : L00i ! e
� �

; 56 : L0i ! e
� �

;

P53

56 : e $ Lih i; 57 : Li ! L0i
� �

; 58 : L0i $ l000i =L
0
i $ e

� �

59 : l000i ! e
� �

; 60 : e $ g5h i; 61 : g5 ! gh i
62 : g $ eh i

The simulation of the CHECKSUB instruction as follows:

Agent B51
puts the object (li) corresponding to given

instruction into the environment; object li is consumed by

agent B52
; Agent B51

generates object l0i and exchanges it by

object l00i . Agent B51
rewrites object l00i to Li. Then agent B51

tries to consume object ar. Three agents help each other to

generate object corresponding to the label of the next

Table 11 The execution of initial instruction in P colony P4

Bi;1 Bi;2 Bi;3 Env4 P1;1 Pi;2 Pi;3

1. ee ee ee wli 1 � -

2. lie ee ee w 2 �
3. l0iar ee ee w 3 �
4. ee ee ee l0iarw � 4 or 7

5. ee l0ie ee arw - 5 -

6. ee lje ee arw � 6 -

7. ee ee ee ljarw � � -

330 L. Cienciala, L. Ciencialová

123

instruction. The part of computation the reader can see on

Table 15.

(4) For halting instruction lh there is no corresponding

program in the set Pj; j 2 f1; 2; 3g.

P colony P5 correctly simulates all computations of the

register machine U2 and the number contained on the first

register of U2 corresponds to the number of copies of the

object a1 present in the environment of P5. If we count the

programs used for simulation of function of register

machine we obtain:

Table 12 The execution of initial instruction in P colony P5—the

right program was executed

B51
B52

Env P51
P52

1. e e ak2l0dg 1 -

2. l00 e ak2l0dg 2 -

3. l0 e ak2l
0
0dg 3 7

4. l0 l00 ak2dg 4 or 5 8

5. lj ar ak2gd ? 9

6. ? e ara
k
2gd � -

Table 13 The execution of initial instruction in P colony P5—non-

corresponding object was generated

B51
B52

Env P51
P52

1. e e ak2l0dg x -

2. l0y e ak2l0dg 2 -

3. d e ak2l
0
0g 6 7

4. d l00 ak2g 6 8

5. d ar ak2g 6 9

6. d e ara
k
2g 6 -

Table 14 The execution of ADD-instruction in P colony P5

B51
B52

Env P51
P52

1. li e w 10 –

2. e e liw 11 18

3. li li w 12 19

4. li l00i w 13 20

5. l0i e l00i w 14 –

6. l00i e l0iw 15 21

7. li l0i w 16 or 17 22

8. lj ar w ? 23

9. e e arwlj – –

Table 15 The execution of CHECKSUB-instruction in P colony P5

B51
B52

B53
Env P51

P52
P53

If the register r stores non-zero value:

1. li e e axrgw 24 � -

2. e e e lia
x
rgw 25 43 -

3. li li e axrgw 26 44 -

4. li
l00i e axrgw 27 45 -

5. l0i e e l00i a
x
rgw 28 � -

6. l00i e e l0ia
x
rgw 29 46 -

Table 15 continued

B51
B52

B53
Env P51

P52
P53

7. lie l0i e axrgw 30 47 -

8. li
l000i e axrgw 31 48 -

9. Li g e l000i a
x
rw 32 49 -

10. ar g1 e Lil
000
i a

x�1
r w 38 50 57

11. Lai g2 Li l000i a
x�1
r w 39 51 58

12. Lbi g3 L0i l000i a
x�1
r w 40 52 59

13. L00i g4 l000i L0ia
x�1
r w 41 53 60

14. L0i g5 e L00i a
x�1
r w 42 54 -

15. lj L00i e g5a
x�1
r w ? 55 61

16. e e g5 lja
x�1
r w ? � 62

17. ? ? g ?ax�1
r w ? ? 63

18. ? ? e ?ax�1
r gw ? � -

If the register r stores value zero:

1. li e e gw 24 � -

2. e e e ligw 25 43 -

3. li li e gw 26 44 -

4. li
l00i e gw 27 45 -

5. l0i e e l00i gw 28 � -

6. l00i e e l0igw 29 46 -

7. lie l0i e gw 30 47 -

8. li
l000i e gw 31 48 -

9. Li g e l000i w 32 49 -

10. l000i g1 e Liw 33 50 57

11. lai g2 Li w 34 51 58

12. lbi g3 L0i w 35 52 59

13. lci g4 e L0iw 36 53 -

14. ldi g5 e L0iw 37 54 -

15. lk L0i e g5w ? 56 61

16. e e g5 lkw ? � 62

17. ? ? g ?w ? ? 63

18. ? ? e ?gw ? � -

Some new results of P colonies with bounded parameters 331

123

h1 ¼ 6
z}|{
l0ðADDÞ

þ 9 � 8
z}|{
ADD

þ 13 � 19
zfflfflffl}|fflfflffl{

CHECKSUB

;

h2 ¼ 3
z}|{
l0ðADDÞ

þ 9 � 6
z}|{
ADD

þ 13 � 9 þ 5
zfflfflfflfflfflffl}|fflfflfflfflfflffl{
CHECKSUB

;

h3 ¼ 0
z}|{
l0ðADDÞ

þ 9 � 0
z}|{
ADD

þ 13 � 4 þ 3
zfflfflfflfflfflffl}|fflfflfflfflfflffl{
CHECKSUB

;

h ¼ max h1; h2; h3f g ¼ 325

and the proof is complete. h

5 Conclusions

In this paper we focused on P colonies with all bounded

parameters. In the first part we improve results for P

colonies with checking rules. In the second part we focus

on homogeneous P colonies with or without use of

checking programs. We can summarize our results in fol-

lowing list:

• NPCOLparKð2; 1; 66Þ ¼ NRE

• NPCOLparKRð2; 1; 74Þ ¼ NRE

• NPCOLparHð2; 2; 163Þ ¼ NRE

• NPCOLparHð2; 92; 3Þ ¼ NRE

• NPCOLparHð2; 70; 5Þ ¼ NRE

• NPCOLparKHð1; 3; 325Þ ¼ NRE

For more information on membrane computing, see Păun

(2001); for more on computational machines and colonies

in particular, see Minsky (1967) and Kelemen and Kele-

menová (1992), Kelemen et al. (2004), respectively.

Activities carried out in the field of membrane computing

are currently numerous and they are available also at P

systems web page (2001).

References

(2001) P systems web page. http://ppage.psystems.eu

Cienciala L, Ciencialová L (2011) Computation, cooperation, and

life. Springer-Verlag, Berlin, Heidelberg, chap P Colonies and

Their Extensions, pp 158–169

Cienciala L, Ciencialová L, Kelemenová A (2007) On the number of

agents in P colonies. In: Proceedings of the 8th international

conference on membrane computing, Springer-Verlag, Berlin,

Heidelberg, WMC’07, pp 193–208

Cienciala L, Ciencialová L, Kelemenová A (2008) Homogeneous P

colonies. Comput Inform 27(3?):481–496

Csuhaj-Varjú E, Kelemen J, Kelemenová A (2006a) Computing with

cells in environment: P colonies. Mult Valued Logic Soft

Comput 12(3–4):201–215

Csuhaj-Varjú E, Margenstern M, Vaszil G (2006b) P colonies with a

bounded number of cells and programs. In: Hoogeboom HJ,

Paun G, Rozenberg G, Salomaa A (eds) Membrane Computing,

7th international workshop, WMC 2006, Leiden, The Nether-

lands, July 17–21, 2006, Revised, Selected, and Invited Papers,

Springer, Lecture Notes in Computer Science, vol 4361,

pp 352–366, doi:10.1007/11963516_22

Freund R, Oswald M (2005) P colonies working in the maximally

parallel and in the sequential mode. In: Zaharie D, Petcu D,

Negru V, Jebelean T, Ciobanu G, Cicortas A, Abraham A,

Paprzycki M (eds) Seventh International symposium on sym-

bolic and numeric algorithms for scientific computing (SYNASC

2005), 25–29 September 2005, Timisoara, Romania, IEEE

Computer Society, pp 419–426, doi:10.1109/SYNASC.2005.55

Kelemen J, Kelemenová A (1992) A grammar-theoretic treatment of

multiagent systems. Cybern Syst 23(6):621–633. doi:10.1080/

01969729208927485

Kelemen J, Kelemenová A, Păun Gh (2004) Preview of P colonies: a

biochemically inspired computing model. In: Workshop and

tutorial proceedings. Ninth international conference on the

simulation and synthesis of living systems (Alife IX), Boston,

Massachusetts, USA, pp 82–86

Korec I (1996) Small universal register machines. Theor Comput Sci

168(2):267–301. doi:10.1016/S0304-3975(96)00080-1

Minsky ML (1967) Computation: finite and infinite machines.

Prentice-Hall Inc, Upper Saddle River

Păun G (2000) Computing with membranes. J Comput Syst Sci

61(1):108–143. doi:10.1006/jcss.1999.1693

Păun G (2001) Current trends in theoretical computer science. World

Scientific Publishing Co., Inc., River Edge, NJ, USA, chap

Computing with Membranes (P Systems): An Introduction,

pp 845–866

332 L. Cienciala, L. Ciencialová

123

http://ppage.psystems.eu
http://dx.doi.org/10.1007/11963516_22
http://dx.doi.org/10.1109/SYNASC.2005.55
http://dx.doi.org/10.1080/01969729208927485
http://dx.doi.org/10.1080/01969729208927485
http://dx.doi.org/10.1016/S0304-3975(96)00080-1
http://dx.doi.org/10.1006/jcss.1999.1693

	Some new results of P colonies with bounded parameters
	Abstract
	Introduction
	Definitions
	P colonies
	Register machines

	Using checking rules in P colonies with capacity two
	Bounded classes of homogeneous P colonies
	Conclusions
	References

