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Abstract A basic property of one-dimensional surjective

cellular automata (CA) is that any preimage of a spatially

periodic configuration (SPC) is spatially periodic as well.

This paper investigates the relationship between the peri-

ods of SPC and the periods of their preimages for various

classes of CA. When the CA is only surjective and y is a

SPC of least period p, the least periods of all preimages of

y are multiples of p. By leveraging on the De Bruijn graph

representation of CA, we devise a general algorithm to

compute the least periods appearing in the preimages of a

SPC, along with their corresponding multiplicities (i.e. how

many preimages have a particular least period). Next, we

consider the case of linear and bipermutive cellular auto-

mata (LBCA) defined over a finite field as state alphabet. In

particular, we show an equivalence between preimages of

LBCA and concatenated linear recurring sequences (LRS)

that allows us to give a complete characterization of their

periods. Finally, we generalize these results to LBCA

defined over a finite ring as alphabet.

Keywords Cellular automata � Surjectivity � De Bruijn

graph � Bipermutivity � Linear recurring sequences � Linear
feedback shift registers

Mathematics Subject Classification 37B15 � 68Q80 �
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1 Introduction

Cellular Automata (CA) are a parallel computational model

that have been extensively studied as a particular type of

discrete dynamical systems, where cells arranged on a

regular lattice synchronously update their states according

to their neighbors by means of a local rule f.

One of the most investigated aspects concerns the tem-

porally periodic behavior of a CA, namely characterizing

those integers t 2 N such that, starting from a given con-

figuration x of the cells, the CA returns to x after t appli-

cations of its global rule F; formally, FtðxÞ ¼ x.

On the other hand, spatial periodicity of CA is a

much less researched topic. In this respect, one of the

basic results is that if F : AZ ! AZ is a surjective one-

dimensional CA over alphabet A, y 2 AZ is a spatially

periodic configuration (SPC) and x 2 F�1ðyÞ is a

preimage of y, then x is also spatially periodic

(see Cattaneo et al. 2000). This is a direct consequence

of the balancing of surjective CA, which implies that

every configuration can only have a finite number of

preimages (see Hedlund 1969).

To our knowledge, there are no works in the literature

that address the problem of actually characterizing the

periods of SPC preimages. The aim of this paper, which

is an extended version of Mariot and Leporati (2015), is

to fill this gap by investigating the relation between the
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periods of SPC and the periods of their preimages under

the action of several classes of surjective CA.

Besides being interesting from a theoretical perspective,

this research also has applications related to cryptography.

In fact, determining the periods of SPC preimages under

bipermutive CA corresponds to finding the maximum

number of players allowed in the secret sharing scheme

(SSS) proposed in Mariot and Leporati (2014). Further-

more, the theory of concatenated linear recurring

sequences, which is a key tool used in the present paper to

characterize the periods of preimages in linear and biper-

mutive CA, turns out to be useful also for studying the

dynamics of additive flowers, a particular class of genetic

regulatory networks introduced in Formenti et al. (2014).

A summary of the main contributions of the paper fol-

lows. Given a SPC y 2 AZ of least period p 2 N, we

observe that in generic surjective CA the least period of a

preimage x 2 F�1ðyÞ is a multiple of p, where the multi-

plier h ranges in f1; . . .; q2rg, with q being the size of the

alphabet and r the radius of the CA (Lemmas 3 and 4).

From this result, we also determine a first lower bound on

the multiplicity of the least period of x, that is, how many

other preimages of y have the same least period of

x (Lemma 5). Successively, using the De Bruijn graph

representation of CA, we introduce the notion of u-closure

graph of a SPC y, whose cycles lengths turn out to be

equivalent to the least periods of the preimages of

y (Lemma 6). We thus describe an algorithm to build the u-

closure graph starting from any surjective CA F and SPC

y. The complexity of this procedure turns out to be expo-

nential in the least period of y and in the radius of the CA.

Remarking that the u-closure graph of a SPC under a

bipermutive CA is composed only of disjoint cycles

(Lemma 7), we narrow our attention to the special case of

linear bipermutive CA (LBCA) defined over the finite field

Fq. In particular, we show that a preimage x 2 F�1ðyÞ is

equivalent to a concatenated linear recurring sequence

(CLRS), whose characteristic polynomial is the product of

the characteristic polynomials respectively induced by the

CA local rule and by configuration y (Theorem 6). Addi-

tionally, we present a procedure that given a 2r-cell block

of a preimage x 2 F�1ðyÞ as input determines the least

period of x. Moreover, we characterize the multiplicities of

the least periods under the tth iterate F�tðyÞ when the

characteristic polynomial of the local rule is irreducible and

does not divide the characteristic polynomial of y (Theo-

rem 8). Finally, these results are generalized to LBCA

defined over the finite ring Zm (Theorem 9), using the

product CA conjugacy described in Cattaneo et al. (2004).

The rest of this paper is organized as follows. Section 2

recalls some basic definitions and facts about cellular

automata, linear recurring sequences and linear feedback

shift registers. Section 3 shows that the least periods of

SPC preimages are multiples of the periods of their

respective images, and introduces the notion of u-closure

graph of a SPC along with the algorithm to compute the

multiplicities of the least periods in surjective CA. Sec-

tion 4 characterizes preimages of LBCA as concatenated

linear recurring sequences and derives a characteristic

polynomial for the latter. Section 5 presents an algorithm

to compute the least period of a single LBCA preimage,

characterizes the multiplicities of the least periods in the

particular case where the characteristic polynomial of the

local rule is irreducible and generalizes the previous results

to LBCA defined over finite rings as alphabets. Finally,

Sect. 6 summarizes the results presented throughout the

paper and points out some additional further developments

on the subject.

2 Basic definitions

2.1 Cellular automata

Let A be a finite alphabet having q symbols, and let An, A�

and AZ respectively denote the set of all words over

A having length n 2 N, the set of all finite words over

A and the full shift space consisting of all bi-infinite words

over A. Given x 2 AZ and i; j 2 Z such that i� j and

j� iþ 1 ¼ n, by x½i;j� we denote the finite block

ðxi; . . .; xjÞ 2 An. For k 2 N, rkðxÞ is the k-left shift of

x 2 AZ, where for all i 2 Z the ith component of rkðxÞ is

defined as rkðxÞi ¼ xiþk. If k ¼ 1, we simply write rðxÞ.
Given s 2 N and u; v 2 A� such that juj � s and jvj � s,

we define the s-fusion operator � as in Sutner (1991):

u� v ¼ z , 9x 2 As; u0; v0 2 A� : u ¼ u0x;

v ¼ xv0; z ¼ u0xv0

that is, z is obtained by overlapping the right part of u and

the left part of v of length s.

In what follows, we focus our attention on one-dimen-

sional cellular automata, formally defined below:

Definition 1 A one-dimensional cellular automaton is a

function F : AZ ! AZ defined for all x 2 AZ and i 2 Z as:

FðxÞi ¼ f ðx½i�r;iþr�Þ;

where f : A2rþ1 ! A is the local rule of the CA and r 2 N

is its radius.

From a dynamical point of view, a CA can be consid-

ered as a bi-infinite array of cells where, at each time step

t 2 N, all cells i 2 Z simultaneously change their state si 2
A by applying rule f on the neighborhood fi� r; . . .; iþ rg.
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The full shift space AZ can be regarded as a compact

metric space when endowed with the Cantor distance,

defined for all x; y 2 AZ as follows:

dðx; yÞ ¼ 2�i; i ¼ minfj 2 N : xj 6¼ yj _ x�j 6¼ y�jg:

Intuitively, under the Cantor distance two configurations

are near to each other if they agree on a large block cen-

tered around the origin. Hedlund’s theorem (see Hedlund

1969) gives a particularly useful characterization of CA

which leverages on this topological interpretation of the

full shift space:

Theorem 1 F : AZ ! AZ is a CA if and only if F is

continuous with respect to the Cantor distance and com-

mutes with the shift, i.e., FðrðxÞÞ ¼ rðFðxÞÞ for all x 2 AZ.

A CA F : AZ ! AZ can be represented by the truth table

of its local rule f. Further, a local rule f can be indexed by

its Wolfram code, which is the decimal representation of

the output column in the truth table of f.

Another common way for representing a CA is by

means of its De Bruijn graph. Given a finite alphabet A and

t 2 N, the corresponding De Bruijn graph has vertex set At,

and there exists a directed edge from w1 2 At to w2 2 At if

and only if w1 ¼ ax and w2 ¼ xb, where a; b 2 A and

x 2 At�1. In other words, two vertices are connected if and

only if their respective words overlap respectively on the

rightmost and the leftmost t � 1 symbols. For the purposes

of this paper, we give the following formal definition of De

Bruijn graph associated to a CA based on the s-fusion

operator:

Definition 2 Let F : AZ ! AZ be a CA defined by a local

rule f : A2rþ1 ! A of radius r. The De Bruijn graph asso-

ciated to F is the directed labeled graph GDBðf Þ ¼ ðV ;E; lÞ
defined as follows:

• V ¼ A2r

• Given v1; v2 2 V , ðv1; v2Þ 2 E if and only if there exists

z 2 A2rþ1 such that z ¼ v1 � v2, where � denotes the

s-fusion operator with s ¼ 2r � 1

• For all ðv1; v2Þ 2 E, the label function l : E ! A is

defined as lðv1; v2Þ ¼ f ðv1 � v2Þ

Figure 1 reports the De Bruijn graph associated to the

CA F : f0; 1gZ ! f0; 1gZ with elementary local rule 106

of radius r ¼ 1, defined as f106ðxi�1; xi; xiþ1Þ ¼ xi�1�
xi 	 xiþ1.

Let F : AZ ! AZ be a CA with local rule f : A2rþ1 ! A.

For all m[ 2r, by Fm : Am ! Am�2r we denote the

restriction of F to input blocks of length m. The following

Lemma, proved in Hedlund (1969), states that surjective

CA are balanced, meaning that the sets of preimages on

every restriction Fm all have the same cardinality:

Lemma 1 Let F : AZ ! AZ be a surjective CA defined by

a local rule f : A2rþ1 ! A. Then, for all m[ 2r and for all

u 2 Am�2r, it results that jF�1
m ðuÞj ¼ q2r, where q ¼ jAj.

Additionally, for all y 2 AZ, it holds that jF�1ðyÞj � q2r.

One of the main classes of CA studied in this paper

consists of bipermutive CA, defined as follows:

Definition 3 A CA F : AZ ! AZ induced by a local rule

f : A2rþ1 ! A is called left permutive (respectively, right

permutive) if, for all z 2 A2r, the restriction fR;z : A ! A

(respectively, fL;z : A ! A) obtained by fixing the first

(respectively, the last) 2r coordinates of f to the values

specified in z is a permutation on A. A CA which is both

left and right permutive is said to be a bipermutive CA

(BCA).

Bipermutivity may also be expressed in terms of the De

Bruijn graph representation, by interpreting GDBðf Þ as a

finite state automaton. To this end, if lðv1; v2Þ ¼ x, define

the transition function as dðv1; xÞ ¼ v2. Then, F is biper-

mutive if and only if for all v1; v2 2 V with v1 6¼ v2 and for

all x 2 A, it holds that dðv1; xÞ 6¼ dðv2; xÞ, i.e. the De Bruijn
graph is a permutation automaton.

Another class of CA which can be defined by endowing

the alphabet with a group structure is that of linear (or

additive) cellular automata. We give the definition for

A ¼ Fq, that is, A is the finite field of q elements with

q ¼ qa, where q 2 N is a prime number (called the char-

acteristic of Fq) and a� 1 is a positive integer.

Definition 4 Let F : FZq ! FZq be a CA defined by a local

rule f : F2rþ1
q ! Fq. Then, F is linear if there exists
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0

0

0

Fig. 1 De Bruijn graph associated to the CA F defined by rule 106
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ðc0; . . .; c2rÞ 2 F2rþ1
q such that for all ðx0; . . .; x2rÞ 2 F2rþ1

q

the following equality holds:

f ðx0; . . .; x2rÞ ¼ c0 � x0 þ � � � þ c2r � x2r;

where þ and � respectively denote sum and product over Fq.

One may easily check that if both c0 and c2r in Defini-

tion 4 are nonzero then a linear CA is bipermutive as well.

Several results proved in this paper concern cellular auto-

mata which are both linear and bipermutive.

We now give the definition of spatially periodic con-

figuration (SPC).

Definition 5 A configuration x 2 AZ is spatially periodic

if there exists P 2 N, with P 6¼ 0, such that rPðxÞ ¼ x. In

particular, such a P is called a period of x. The smallest

integer p 2 N among all periods of x is called the least

period of x.

Following the notation of Perrin and Pin (2004), we

denote by y ¼ x ux the SPC y 2 AZ obtained as the bi-in-

finite concatenation of block u 2 A� with itself. Moreover,

given v 2 A� such that v ¼ wzw where w 2 As and z 2 A�,

by x ¼� v� we denote the SPC x 2 AZ of least period |wz|

obtained by the bi-infinite s-fusion of block v with itself.

Notice that if z is the empty word then �v� ¼ x wx.

A proof of the following Lemma about preimages of

SPC in surjective CA can be found in Cattaneo et al.

(2000).

Lemma 2 Let F : AZ ! AZ be a surjective CA. Then,

given a SPC y 2 AZ, each preimage x 2 F�1ðyÞ is also

spatially periodic.

As a matter of fact, surjective CA satisfy an even

stronger condition than the closure property implied by the

Lemma above. In particular, the global map F : AZ ! AZ

of a CA is surjective if and only if its restriction Fp to the

set of SPC is surjective (see Durand 1999). As a conse-

quence, one can study other properties of surjective CA, for

instance injectivity, by considering only their restriction to

SPC. In the model-theoretic setting set forth in Sutner

(2010), this means that the set of SPC is an elementary

substructure of the full shift space AZ for surjective CA.

Given t 2 N, by F�tðyÞ we denote the set of preimages

of y under the tth iterate of F, that is, the set of configu-

rations x 2 AZ such that FtðxÞ ¼ y. We call a preimage

x 2 F�tðyÞ a tth ancestor of y.

2.2 Linear recurring sequences and linear feedback

shift registers

We now recall some basic definitions and results about the

theory of linear recurring sequences and linear feedback

shift registers, which will be useful to characterize the

periods of preimages in LBCA. All the proofs of the facts

and the theorems mentioned in this section may be found

in Lidl and Niederreiter (1994).

Definition 6 Given k 2 N and a; a0; a1; � � � ; ak�1 2 Fq,

a linear recurring sequence (LRS) of order k is a sequence

s ¼ s0; s1; . . . of elements in Fq which satisfies the fol-

lowing relation:

snþk ¼ aþ a0sn þ a1snþ1 þ � � � þ ak�1snþk�1 8n 2 N:

ð1Þ

The terms s0; s1; � � � ; sk�1 which uniquely determine

the rest of the LRS are called the initial values of the

sequence. If a ¼ 0 the sequence is called homogeneous,

otherwise it is called inhomogeneous. In what follows, we

will only deal with homogeneous LRS.

A linear recurring sequence can be generated by a

device called linear feedback shift register (LFSR),

depicted in Fig. 2.Basically, a LFSR of order k is com-

posed of k delayed flip-flops D0; D1; � � � ; Dk�1, each

containing an element of Fq. At each step n 2 N, the ele-

ments sn; snþ1; � � � ; snþk�1 in the flip-flops are shifted one

place to the left, and Dk�1 is updated with the linear

combination a0 � sn þ � � � þ ak�1 � snþk�1, which corre-

sponds to the linear recurrence defined in Eq. (1). In the

relevant literature, this kind of linear feedback shift regis-

ters are also called Fibonacci LFSR, as opposed to Galois

LFSR where the adders are placed between one flip-flop

and the other.

Notice that the output produced by the LFSR (that is, the

LRS s ¼ s0; s1; . . .) is ultimately periodic, i.e. there exist

p; n0 2 N such that for all n� n0, snþp ¼ sn. In fact, for all

n 2 N the state of the LFSR is completely described by the

vector ðsn; snþ1; . . .; snþk�1Þ. Since all the components of

such a vector take values in Fq, which is a finite set of

q elements, after at most qk shifts the initial value of the

vector will be repeated. In particular, in Lidl and Nieder-

reiter (1994) it is proved that if a0 6¼ 0, then the sequence

produced by the LFSR (or, equivalently, the corresponding

LRS) is periodic, in the sense of Definition 5.

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

Fig. 2 Diagram of a linear feedback shift register
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The characteristic polynomial aðxÞ 2 Fq½x� of a kth

order homogeneous LRS s ¼ s0; s1; . . . is defined as:

aðxÞ ¼ xk � ak�1x
k�1 � ak�2x

k�2 � � � � � a0: ð2Þ

The multiplicative order of the characteristic polyno-

mial, denoted by ord(a(x)), is the least integer e such that

a(x) divides xe � 1, and it can be used to characterize the

period of s. In fact, in Lidl and Niederreiter (1994) it is

shown that if a(x) is irreducible over Fq and að0Þ 6¼ 0, then

the period p of s equals ord(a(x)), while in the general case

where a(x) is reducible ord(a(x)) divides p.

A common way of representing a LRS s ¼ s0; s1; . . . is

by means of its generating function G(x), which is the

formal power series defined as:

GðxÞ ¼ s0 þ s1xþ s2x
2 þ � � � ¼

X1

n¼0

snx
n ð3Þ

In this case, the terms s0; s1; . . . are called the coeffi-

cients of G(x). The set of all generating functions over Fq
can be endowed with a ring structure in which sum and

product are respectively pointwise addition and convolu-

tion of coefficients. The fundamental identity of formal

power series states that the generating function G(x) of a

kth order homogeneous LRS s can be expressed as a

rational function:

GðxÞ ¼ gðxÞ
a�ðxÞ ¼

�
Pk�1

j¼0

P j
i¼0 aiþk�jsix

j

xkað1=xÞ : ð4Þ

where g(x) is the initialization polynomial, which depends

on the k initial terms of sequence s (where ak ¼ �1), while

a�ðxÞ ¼ xkað1=xÞ denotes the reciprocal characteristic

polynomial of s.

A given LRS s ¼ s0; s1; . . . over Fq satisfies several

linear recurrence equations. Hence, several characteristic

polynomials can be associated to s, one for each recurrence

equation which s satisfies. The minimal polynomial

m(x) associated to s is the characteristic polynomial which

divides all other characteristic polynomials of s, and it can

be computed as follows:

mðxÞ ¼ aðxÞ
gcdðaðxÞ; hðxÞÞ ; ð5Þ

where a(x) is a characteristic polynomial of sequence

s and hðxÞ ¼ �g�ðxÞ is the reciprocal of the initialization

polynomial g(x) appearing in Eq. (4), with the sign

changed. In Lidl and Niederreiter (1994) it is proved that

the period of s equals the order of its minimal polynomial

m(x).

In order to study the periods of preimages of LBCA, we

also need some results about families of linear recurring

sequences. Denote by S(f(x)) the set of LRS having f(x) as

characteristic polynomial. Given s ¼ s0; s1 � � � 2 Sðf ðxÞÞ

and t ¼ t0; t1; . . . 2 Sðf ðxÞÞ define the sum of LRS r ¼
sþ t as rn ¼ sn þ tn for all n 2 N, and for c 2 Fq define

the scalar multiplication l ¼ c � s as ln ¼ c � sn for all

n 2 N. Under these two operations, the set S(f(x)) is a

vector space over Fq. The following theorem shows what is

the characteristic polynomial of the direct sum of two

families of LRS:

Theorem 2 Let f1ðxÞ; f2ðxÞ 2 Fq be non-constant monic

polynomials, and let Sðf1ðxÞÞ and Sðf2ðxÞÞ be the families of
LRS whose characteristic polynomials are respectively

f1ðxÞ and f2ðxÞ. Denoting by Sðf1ðxÞÞ þ Sðf2ðxÞÞ the family

of all LRS rþ s where r 2 Sðf1ðxÞÞ and s 2 Sðf2ðxÞÞ, it
follows that Sðf1ðxÞÞ þ Sðf2ðxÞÞ ¼ SðcðxÞÞ, where c(x) is the
least common multiple of f1ðxÞ and f2ðxÞ.

From Theorem 2, the following result states how to

compute the least periods of the sum of two LRS in the

special case when their characteristic polynomials are

coprime:

Theorem 3 Let r1 and r2 be two homogeneous LRS

having minimal polynomials m1ðxÞ;m2ðxÞ 2 Fq½x� and

periods p1; p2 2 N, respectively. If m1ðxÞ and m2ðxÞ are

relatively prime, then the minimal polynomial mðxÞ 2 Fq½x�
of the sum r ¼ sþ t is equal to m1ðxÞ � m2ðxÞ, while the

least period of r is the least common multiple of p1 and p2.

Finally, the following theorem characterizes the multi-

plicities of the least periods in S(f(x)) when f(x) is the

power of an irreducible polynomial:

Theorem 4 Let f ðxÞ ¼ gðxÞt with g(x) monic and irre-

ducible over Fq and such that gð0Þ 6¼ 0, degðgðxÞÞ ¼ k,

ordðgðxÞÞ ¼ e, and t 2 N a positive integer. Let s 2 N be

the smallest integer such that qs � t, where q is the char-

acteristic of Fq. If t ¼ 1 the family of LRS S(f(x)) is com-

posed of the following numbers of sequences with the

following least periods:

• one sequence of least period 1

• qk � 1 sequences of least period e

For t� 2, S(f(x)) additionally contains the following

numbers of sequences with the following least periods:

• for j 2 f1; . . .; s� 1g, qkqj � qkq
j�1

sequences of least

period eqj

• qkt � qkq
s

sequences of least period eqs

3 Problems statement and basic results

In this section, we present some basic results concerning

the periods of preimages of spatially periodic configura-

tions in surjective CA. To this end, we begin by formally
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stating the first main problem analyzed in this paper,

generalized to the tth iterate case:

Problem 1 Let F : AZ ! AZ be a surjective CA, y 2 AZ

be a SPC of least period p 2 N and x 2 F�tðyÞ be a tth

ancestor of y, for t 2 N. What is the least period of x?

Besides computing the period of a single preimage, we

are also interested in counting the multiplicities of all least

periods appearing in the set of preimages of a spatially

periodic configuration, as described below:

Problem 2 Let F : AZ ! AZ be a surjective CA, with

jAj ¼ q, and y 2 AZ be a SPC of least period p 2 N. For all

multipliers h 2 f1; . . .; q2rg, what is the number of preim-

ages Nhðy;FÞ of y under F having least period hp?

3.1 Periods of SPC preimages in surjective CA

We begin our analysis of Problem 1 by considering the

general case where the CA is only surjective. To this end,

we first show that if y 2 AZ is a SPC having least period

p 2 N, then the least periods of its preimages are multiples

of p.

Lemma 3 Let F : AZ ! AZ be a surjective CA, y 2 AZ be

a spatially periodic configuration of least period p 2 N

and x 2 F�1ðyÞ be a preimage of y. Then, the least period

k 2 N of x is a multiple of p.

Proof Suppose that k is not a multiple of p, and let k ¼
jpþ r with j ¼ bk=pc and 0\ r\ p. Since x is spatially

periodic of least period x, it follows that rkðxÞ ¼ x.

Moreover, by Hedlund’s theorem FðrtðxÞÞ ¼ rtðFðxÞÞ for
all t 2 Z. Hence,

y ¼ FðxÞ ¼ FðrkðxÞÞ ¼ rkðFðxÞÞ ¼ rkðyÞ
¼ rjpþrðyÞ ¼ rrðrjpðyÞÞ ¼ rrðyÞ 6¼ y

where the last inequality follows from the fact that r\p.

Having obtained a contradiction, k is a multiple of p. h

By employing the balancing condition of surjective CA,

the following result gives an upper bound on the value of

the least period multiplier:

Lemma 4 Let jAj ¼ q and let F : AZ ! AZ be a surjec-

tive CA defined by a local rule f of radius r. Further, let

y 2 AZ be a SPC of least period p 2 N and x 2 F�1ðyÞ be a
preimage of y having least period k ¼ hp. Then,

h 2 f1; . . .; q2rg.

Proof The proof of Lemma 3 already implies that h� 1,

so it suffices to show that h� q2r.

Let u 2 Ap be a block of length p taken from y (hence

y ¼ x ux), and let s ¼ 2r and Q ¼ qs. By Lemma 1, we

know that jF�1
m ðuÞj ¼ Q, where m ¼ pþ s. Hence, there

are Q distinct blocks x1; x2; . . .; xQ 2 Am such that FmðxiÞ ¼
u for all i 2 f1; . . .;Qg. Since x 2 F�1ðyÞ is spatially

periodic of least period hp, there exists a block v 2 Ahpþs

with v ¼ w1zw1 and w1 2 As such that x ¼� v� and

FhpþsðvÞ ¼ uh (see Fig. 3).As a consequence, block v is

obtained by ‘‘gluing’’ together h blocks of F�1
m ðuÞ using the

s-fusion operator. Formally, this means that v ¼
J

xj2S xj,

where S 
 F�1
m ðuÞ and jSj ¼ h. Recalling that jF�1

m ðuÞj ¼
Q ¼ jAjs ¼ jAj2r, it follows that h� q2r. h

The following Corollary straightforwardly generalizes

Lemma 4 to preimages under the tth iterate of F:

Corollary 1 Let jAj ¼ q, and let F : AZ ! AZ be a sur-

jective CA defined by a local rule of radius r. Further, let

y 2 AZ be a SPC of least period p 2 N and x 2 F�tðyÞ be a
t-th ancestor of y. Then, the least period of x equals

k ¼
Qt

i¼1 hi
� �

� p, where hi 2 f1; . . .; q2rg for all

i 2 f1; . . .; tg.

Proof We prove the result by induction on t 2 N. First,

remark that the base case t ¼ 1 corresponds to Lemma 4.

For the induction step, assume that the condition holds up

to t � 1, and consider a tth ancestor x 2 F�tðyÞ. Clearly,
x can be expressed as a preimage of a preimage xt�1 2
F�ðt�1ÞðyÞ under the ðt � 1Þth iterate of F, i.e.

x 2 F�1ðxt�1Þ. By Lemma 4 we know that the least period

of x is k ¼ htkt�1, where ht 2 f1; . . .; q2rg and kt�1 is the

least period of kt�1. Further, by induction hypothesis we

have kt�1 ¼
Qt�1

i¼1 hi

� �
� p, where hi 2 f1; . . .; q2rg for all

i 2 f1; . . .; t � 1g. Hence, it follows that k ¼ ht�
Qt�1

i¼1 hi

� �
�

p ¼
Qt

i¼1 hi
� �

� p. h

The following lemma gives a first lower bound on

Nhðy;FÞ:

Lemma 5 Let F : AZ ! AZ be a surjective CA such that

jAj ¼ q, y 2 AZ a SPC of least period p 2 N, and x 2
F�1ðyÞ a preimage of y having least period hp, with

h 2 f1; . . .; q2rg. Then, Nhðy;FÞ� h.

Proof Since x is a preimage of y, we have to show that

there are at least h� 1 other preimages of y having least

period hp. Given that rpðyÞ ¼ y, by Hedlund’s theorem we

know that the following identity stands for all i 2 Z:

FðripðxÞÞ ¼ ripðFðxÞÞ ¼ ripðyÞ ¼ y;

In particular, if i 2 f1; . . .; h� 1g then ripðxÞ 6¼ x (other-

wise, this would contradict the hypothesis that x has

least period hp). Thus, we can construct h� 1 distinct

preimages of y by simply shifting x of ip coordinates, for
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i 2 f1; . . .; h� 1g. All these preimages have least period

hp, hence it follows that Nhðy;FÞ� 1þ h� 1 ¼ h. h

3.2 Graph characterization of preimages

We now introduce a graph-based method to study the

periods of preimages in surjective CA. Given a CA F :

AZ ! AZ defined on an alphabet A such that jAj ¼ q, and a

configuration y 2 AZ, a preimage x 2 F�1ðyÞ can be

viewed as a bi-infinite path p labeled by y on the associated

De Bruijn graph GDBðf Þ, i.e. p ¼ fvigi2Z such that

lðvi; viþ1Þ ¼ yi for all i 2 Z. In particular, by setting

s ¼ 2r � 1, preimage x can be defined as the bi-infinite s-

fusion of the vertices visited by p, that is, x ¼
J

vi2p vi. If

F is surjective, for all configurations y 2 AZ we can always

find at least one bi-infinite path on GDBðf Þ labeled by y.

We now define a second graph which will be used to

determine the least periods of the preimages and their

numbers:

Definition 7 Let F : AZ ! AZ be a surjective CA and let

GDBðf Þ be its De Bruijn graph. Additionally, let y 2 AZ be

spatially periodic of least period p 2 N, and let u 2 Ap be a

block of length p of y, i.e. y ¼ x ux. The u-closure of

GDBðf Þ (also called the unfolding of GDBðf Þ along u) is the

graph Gu
DBðf Þ ¼ ðV;EÞ, where:

• V ¼ A2r

• Given v1; v2 2 V , ðv1; v2Þ 2 E if and only if there exists

a finite path p ¼ v1; . . .; v2 labeled by u on the De

Bruijn graph GDBðf Þ

As the next Lemma shows, the cycle structure of the u-

closure graph is directly related to the least periods of the

preimages of y ¼ x ux and their multiplicities.

Lemma 6 Let F : AZ ! AZ be a CA defined by local rule

f : A2rþ1 ! A, and let y ¼ x ux 2 AZ for u 2 Ap be spa-

tially periodic of least period p 2 N. Given

h 2 f1; . . .; q2rg, denote by Cu
hðf Þ the (possibly empty) set

of distinct cycles of length h in the u-closure graph Gu
DBðf Þ.

Then, the number of preimages x 2 F�1ðyÞ of least period
hp equals Nhðy;FÞ ¼ h � jCu

hðf Þj.

Proof Remark that an edge ðw1;w2Þ of Gu
DBðf Þ represents

the first and the last 2r-cell blocks of a finite preimage

v 2 F�1
pþ2rðuÞ. Considering Fig. 3, this means that the

blocks w1; . . .;wh;w1 occurring in x 2 F�1ðyÞ between the

end and the beginning of a copy of u correspond to a cycle

c 2 Cu
hðf Þ of length h in Gu

DBðf Þ. Thus, by Lemma 3 a

single cycle c 2 Cu
hðf Þ identifies h possible preimages of

least period hp, depending from which vertex the path

starts. Therefore, the number of preimages of least period

hp is given by the number of distinct cycles of length

h multiplied by h. h

In order to build the u-closure graph, it is possible to use

a variation of depth-first search (DFS) in which the De

Bruijn graph is explored up to depth p following only the

paths labeled by u, without checking if a node has already

been visited or not. In order to assess the time complexity

of this procedure, observe first that the out-degree of each

vertex v 2 A2r in GDBðf Þ is jAj ¼ q, and thus v can have at

most q outgoing edges labeled by the same symbol s 2 A.

Consequently, starting from v 2 A2r the DFS can visit at

most the following number of vertices:

1þ qþ q2 þ � � � þ qp ¼
Xp

i¼0

qi ¼ qpþ1 � 1

q� 1
¼ OðqpÞ:

In particular, the worst case occurs when for each symbol

ui of u each node in the ith level of the DFS tree has

q outgoing edges labeled by ui. Since the DFS must be

called for all v 2 A2r, the time complexity for building the

u-closure graph is thus Oðq2r � qpÞ ¼ Oðqpþ2rÞ.
The u-closure graph contains at most q2r edges, since

u has exactly q2r preimages under F�1
pþ2rðuÞ and there can

be at most a one-to-one correspondence between the pre-

fixes and the suffixes of length 2r of these preimages. Thus,

once the u-closure graph is built, a DFS visit can be

employed to determine its cycles and their respective

lengths in Oðq2rÞ steps. Starting from the De Bruijn graph

u· · · u · · ·

· · ·

u · · ·

w1· · · w2 w3 · · · wh w1 · · ·

uh ∈ Ahp

v= w1zw1 ∈ Ahp+s

x j1 ∈ Am x j2 ∈ Am x jh ∈ Am

Fig. 3 Setting s ¼ 2r, preimage x is generated by the bi-infinite s-fusion x ¼� v� of block v 2 Ahpþs, which is in turn obtained by the s-fusion of

h blocks xj1 ; . . .; xjh in F�1
m ðuÞ. The blocks shaded in gray are the overlapping parts of length s between two consecutive blocks xji ; xjiþ1
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of a surjective CA as input, this means that the overall

procedure to compute the least periods of the preimages of

y and their cardinalities takes Oðqpþ2r þ q2rÞ steps.
Notice that, in general, the u-closure of GDBðf Þ is not

composed of disjoint cycles. Figure 4a, b report two

examples of u-closure graphs for the CA F based on rule

106, the former corresponding to the configuration y ¼
x011x and the latter for y ¼ x 1000x.

In both cases, the resulting u-closure graphs have cycles

with preperiods, and all 2r-cell blocks in the preperiods

cannot appear in any preimage of y (otherwise, the

preimages containing them would not be spatially periodic,

contradicting Lemma 2).

We now show that if the local rule is bipermutive then

Gu
DBðf Þ is composed only of disjoint cycles:

Lemma 7 Let F : AZ ! AZ be a surjective CA defined by

a bipermutive local rule f : A2rþ1 ! A. Then, for all spa-

tially periodic configurations y ¼ x ux of least period p 2
N with u 2 Ap, the u-closure graph Gu

DBðf Þ is composed

only of disjoint cycles.

Proof Let v 2 A2r be a vertex of the De Bruijn graph

GDBðf Þ. Since f is right permutive, the set of labelings

lðv;wiÞ of the outgoing edges of v is a permutation on

A. Hence, there exists exactly one path starting from v and

labeled by u on the De Bruijn graph, which means that

v has exactly one outgoing edge in the u-closure graph

Gu
DBðf Þ. Analogously, since f is also left permutive, the set

of labelings lðwi; vÞ of the incoming edges of v is a per-

mutation on A as well. As a consequence, there is exactly

one path ending in v and labeled by u on GDBðf Þ, meaning

that v has exactly one incoming edge Gu
DBðf Þ. Since each

vertex of the u-closure graph Gu
DBðf Þ has both in-degree

and out-degree equal to 1, the thesis follows. h

A consequence of Lemma 7 is that the construction of

the u-closure graph takes Hðq2r � pÞ steps for bipermutive

CA, since each call of the DFS on the De Bruijn graph

returns only one path labeled by u. As an example, Fig. 5a,

b depict the u-closure graphs for y ¼ x 011x and y ¼
x1000x under the elementary bipermutive rule 150, which

is defined as f150ðxi�1; xi; xiþ1Þ ¼ xi�1 	 xi 	 xiþ1.

As a concluding remark for this section, observe that the

construction of the u-closure graph, as well as Lemma 6,

can be generalized by induction to the tth iterate Ft. Of

course, in this case both the construction of the graph and

its visit become exponential in t, thus yielding a total

complexity of Oðqpþ2rt þ q2rtÞ for determining the multi-

plicities of the least periods in F�tðyÞ. On the other hand,

once the u-closure graph of F�tðyÞ has been built, it is not

difficult to see that the number of tth ancestors x 2 F�tðyÞ
having least period hp are h � jCu

hðf Þj, where h ¼
Qt

i¼1 hi by

Corollary 1, with hi 2 f1; . . .; q2rg for all i 2 f1; . . .; tg.

4 Linear bipermutive CA and linear recurring
sequences

Lemma 7 suggests that both Problems 1 and 2 are easier to

analyze in the bipermutive context, since BCA do not

feature paths with preperiods in the u-closure graph. In this

section, we narrow our attention to the class of LBCA,

showing that in this case further information about the

periods of preimages can be obtained. In particular, we

characterize the preimages of LBCA as a particular kind of

concatenated linear recurring sequences, and determine

the corresponding characteristic polynomials.

4.1 LBCA preimages and concatenated LRS

Let F : FZq ! FZq be a LBCA of radius r with local rule

f : F2rþ1
q ! Fq defined by a vector ðc0; . . .; c2rÞ 2 F2rþ1

q ,

where c0 6¼ 0 and c2r 6¼ 0. Given x 2 F2rþ1
q and y ¼ f ðxÞ,

the following equalities hold:

00

0110

11

(a)

00

0110

11

(b)

Fig. 4 Examples of u-closure graphs Gu
DBðf106Þ for the CA F based on

the elementary rule 106. a y ¼ x 011x. b y ¼x 1000x

00

0110

11

(a)

00

0110

11

(b)

Fig. 5 Examples of u-closure graphs Gu
DBðf150Þ for the CA F based on

the elementary rule 150. a y ¼ x 011x. b y ¼ x 1000x
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y ¼ c0x0 þ c1x1 þ � � � þ c2r�1x2r�1 þ c2rx2r

x2r ¼ c�1
2r ð�c0x0 � c1x1 � � � � � c2r�1x2r�1 þ yÞ:

Setting d ¼ c�1
2r and ai ¼ �d � ci for all i 2 f0; . . .; 2r � 1g,

we obtain

x2r ¼ a0x0 þ a1x1 þ � � � þ a2r�1x2r�1 þ dy: ð6Þ

Equation (6) defines the inverse f�1
R;z of the permutation

fR;z : Fq ! Fq obtained by fixing the first 2r coordinates of

f to the values of z ¼ ðx0; . . .; x2r�1Þ. Hence, given a con-

figuration y 2 FZq and the 2r-cell block x½0;2r�1� 2 F2rq in a

preimage x 2 F�1ðyÞ, for all n[ 2r it results that:

xn ¼ a0xn�2r þ a1xn�2rþ1 þ � � � þ a2r�1xn�1 þ dyn�r; ð7Þ

and by setting k ¼ 2r and vn ¼ ynþr for all n 2 N, Eq. (7)

can be rewritten as

xnþk ¼ a0xn þ a1xnþ1 þ � � � þ ak�1xnþk�1 þ dvn: ð8Þ

Equation (8) reminds the definition of a linear recurring

sequence of order k ¼ 2r, with the exception of term dvn.

However, if y is a spatially periodic configuration of period

p then it is possible to describe the sequence v ¼ v0; v1; . . .

as a linear recurring sequence of order l� p defined by

vnþl ¼ b0vn þ b1vnþ1 þ � � � þ bl�1vnþl�1; ð9Þ

where bi 2 Fq for all i 2 f0; . . .; l� 1g, and the initial

terms of the sequence are v0 ¼ yr, v1 ¼ yrþ1, � � �,
vl�1 ¼ yrþl�1. In the worst case, the LRS v will have order

l ¼ p, and it will be generated by the trivial LFSR which

cyclically shifts a word of length p.

As a consequence, preimage x 2 F�1ðyÞ is a linear

recurring sequence of a special kind, where xnþk is deter-

mined not only by the previous k ¼ 2r terms, but it is also

‘‘disturbed’’ by the LRS v. In particular, we define x as the

concatenation of sequences s and v, which we denote by

s v, where s ¼ s0; s1; . . . is the kth order LRS satisfying

the recurrence

snþk ¼ a0sn þ a1snþ1 þ � � � þ ak�1snþk�1; ð10Þ

and whose initial values are s0 ¼ x0, s1 ¼ x1, � � �,
sk�1 ¼ xk�1.

Equivalently, a preimage x 2 F�1ðyÞ is generated by a

LFSR of order k ¼ 2r where the feedback is summed with

the output of an lth order LFSR multiplied by d ¼ c�1
2r ,

which produces the sequence v. Similarly to concatenated

LRS, we call this system a concatenation of LFSR. Fig-

ure 6 depicts the block diagram of this concatenation.

In conclusion, we have shown that the periods of the

preimages x 2 F�1ðyÞ are equivalent to the periods of the

concatenated LRS generated by the LFSR in Fig. 6, where

the disturbing LFSR is initialized with the values yr, � � �,
yrþl�1. In particular, since multiplying the terms of a LRS

by a constant does not change its period, in what follows

we will assume d ¼ 1.

4.2 Sum decomposition of concatenated LRS

In order to study the period of the concatenated linear

recurring sequence s v giving rise to preimage

x 2 F�1ðyÞ, we first prove that it can be decomposed into

the sum of two LRS: namely, sequence s and the 0-con-

catenation u = s 0 v satisfying the same recurrence

Eq. (8) of x, but whose k initial terms u0, � � �, uk�1 are set to

0.

Theorem 5 Let s ¼ s0; s1; . . . and v ¼ v0; v1; . . . be the

LRS respectively satisfying Eqs. (9) and (10), with s0 ¼ x0,

� � � ; sk�1 ¼ xk�1 and v0 ¼ yr; . . .; vl�1 ¼ yrþl�1. Further, let

x= s v be the concatenation of s and v defined by

Eq. (8), where d ¼ 1, and let u = s 0 v be the 0-con-

catenation of sequences s and v, where u0 ¼ u1 ¼ � � �
¼ uk�1 ¼ 0. Then, xn ¼ sn þ un for all n 2 N.

Proof Since u0 ¼ � � � ¼ uk�1 ¼ 0, for all n 2 f0; . . .;
k � 1g it holds

sn þ un ¼ sn þ 0 ¼ xn:

Therefore, it remains to prove xn ¼ sn þ un for all n� k.

We proceed by induction on n. For n ¼ k, we have

sk þ uk ¼ a0s0 þ � � � þ ak�1sk�1

þ a0u0 þ � � � þ ak�1uk�1 þ v0

¼ a0x0 þ � � � þ ak�1xk�1 þ v0 ¼ xk:

For the induction step we assume sn þ un ¼ xn for all

n in the range fk; . . .;mg. For n ¼ mþ 1, the sum smþ1 þ
umþ1 is equal to:

E0

d

b0 b1

+

E1

·· ·

bl−2

+·· ·

El−2

bl−1

+

El−1D0

x

a0 a1

+

D1

···

ak−2

+···

Dk−2

ak−1

+

Dk−1

+

Fig. 6 Diagram of two

concatenated LFSR
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smþ1 þ umþ1 ¼ a0sm�kþ1 þ � � � þ ak�1sm

þ a0um�kþ1 þ � � � þ ak�1um þ vm�kþ1

¼ a0ðsm�kþ1 þ um�kþ1Þ þ � � �
þ ak�1ðsm þ umÞ þ vm�kþ1:

ð11Þ

By induction hypothesis, sm�kþi þ um�kþi ¼ xm�kþi for

all i 2 f1; . . .; kg. Hence, Eq. (11) can be rewritten as

smþ1 þ umþ1 ¼ a0xm�kþ1 þ � � � þ ak�1xm þ vm�kþ1 ¼ xmþ1:

h

4.3 Characteristic polynomial of concatenated LRS

Theorem 5 tells us that a preimage x 2 F�1ðyÞ can be

generated by the sum of two LRS: the LRS generated by

the concatenated LFSR of Fig. 6, where the disturbed

LFSR is initialized to zero, and the LRS produced by the

non-disturbed LFSR, that is, the leftmost LFSR in Fig. 6

initialized to the values x0; . . .; xk�1 without the feedback

from the rightmost LFSR.

We now show that this sum decomposition allows one to

determine a characteristic polynomial of the concatenated

sequence x= s v. To this end, we first need a result

proved in Chassé (1990) which concerns the generating

function of the 0-concatenation u = s 0 v. The proof

stands on the observation that for all n 2 N, the nth term of

u is given by the linear combination
Pn�1

i¼0 A
ðiÞ
n � vi, where

the terms A
ðiÞ
n depend only on the coefficients aj which

define Eq. (10). In particular, we will need the values of

A
ð0Þ
n for n� 0, which can be computed by the following

recurrence equation:

Að0Þ
n ¼

Pk�1

j¼0

ajA
ð0Þ
n�kþj; if n[ 1

1; if n ¼ 1

0; if n ¼ 0

8
>>><

>>>:
ð12Þ

where k ¼ 2r and A
ð0Þ
n�kþj ¼ 0 if n� k þ j\0. Using our

notation and terminology, Chassé’s result can thus be sta-

ted as follows:

Proposition 1 Let u = s 0 v be the 0-concatenation of

the LRS s and v defined in Theorem 5, and let V(x) be the

generating function of v. Denoting by AðxÞ the generating
function of the sequence A ¼ fAð0Þ

nþ1gn2N, the generating

function of u is equal to

UðxÞ ¼ x �AðxÞ � VðxÞ: ð13Þ

Moreover, if aðxÞ 2 Fq½x� is the characteristic polynomial

of the sequence s associated to the recurrence Eq. (10),

then a(x) is also a characteristic polynomial of A.

We now prove that the characteristic polynomial of the

concatenation s v is the product of the characteristic

polynomials of s and v.

Theorem 6 Let s v be the concatenation of LRS s and

v defined by Eq. (8) with d ¼ 1, and let aðxÞ; bðxÞ 2 Fq½x�
be the characteristic polynomials of s and v, respectively

associated to the linear recurring Eqs. (10) and (9). Then,

aðxÞ � bðxÞ is a characteristic polynomial of s v.

Proof By Theorem 5 the concatenation of LRS s and

v can be written as s v= s+u, where u = s 0 v is the
0-concatenation associated to s v. By applying the fun-

damental identity of formal power series (Eq. 4) and

Proposition 1, the following equalities hold:

SðxÞ ¼ gsðxÞ
a�ðxÞ ð14Þ

UðxÞ ¼ x � gAðxÞ � gvðxÞ
a�ðxÞ � b�ðxÞ ; ð15Þ

where gsðxÞ, gAðxÞ and gvðxÞ are polynomials whose

coefficients are computed according to the numerator in the

RHS of Eq. (4). Hence, the generating function of s v is:

GðxÞ ¼ SðxÞ þ UðxÞ ¼ gsðxÞ � b�ðxÞ þ x � gAðxÞ � gvðxÞ
a�ðxÞ � b�ðxÞ :

ð16Þ

By applying again the fundamental identity of formal

power series to Eq. (16), we deduce that the reciprocal of

cðxÞ ¼ a�ðxÞ � b�ðxÞ is a characteristic polynomial of s v.
Denoting by k and l the degrees of a(x) and b(x) respec-

tively, it follows that cðxÞ ¼ xkþl � að1=xÞ � bð1=xÞ, and thus
the reciprocal of c(x) is

c�ðxÞ ¼ xkþl � 1

xkþl
� aðxÞ � bðxÞ ¼ aðxÞ � bðxÞ: ð17Þ

Therefore, aðxÞ � bðxÞ is a characteristic polynomial of

s v. h

Theorem (6) thus gives a characteristic polynomial for

all preimages x 2 F�1ðyÞ of a spatially periodic configu-

ration y 2 FZq . As a matter of fact, the polynomials a(x) and

b(x) do not depend on the particular value of the block

x½0;2r�1�, but only on the local rule f and on configuration y,

respectively. From the LFSR point of view, this means that

a preimage x 2 F�1ðyÞ can be generated by a single LFSR

implementing the ðk þ lÞth order recurrence equation:
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rnþkþl ¼ c0rn þ c1rnþ1 þ � � � þ ckþl�1rnþkþl�1; ð18Þ

where for all l 2 f0; . . .; k þ l� 1g the term cl is the lth
convolution coefficient in the product aðxÞ � bðxÞ given by

cl ¼
X

iþj¼l

aibj; fori 2 f0; . . .; kg andj 2 f0; . . .; lg: ð19Þ

Additionally, the first k ¼ 2r initial terms r0; . . .; rk�1 in

Eq. (18) are initialized to the values in x½0;2r�1�, while the

remaining l ones are obtained using the recurrence Eq. (8).

Hence, by applying the fundamental identity of formal

power series, the numerator of Eq. (16) can also be

expressed as:

gðxÞ ¼ �
Xk�1

j¼0

Xj

i¼0

ciþk�jrix
j: ð20Þ

As in the case of Lemmas 4 and 6, Theorem 6 can be

easily extended to the tth iterate Ft for any t[ 1. In this

case, a tth ancestor x 2 F�tðyÞ can be expressed by the

following sequence of concatenated LRS:

x= s(t) s(t −1) · · · s(1) v ð21Þ

where s(i) belongs to the family of LRS S(a(x)) for all

i 2 f1; . . .; tg. In other words, the tth ancestor x 2 F�tðyÞ is
obtained by concatenating t sequences generated by the

characteristic polynomial a(x) of the CA local rule, which

are in turn concatenated with the r-left shift of configura-

tion y. Notice that the preimage computation process, in

this case, can be carried out by a cascade of concatenated

LFSR, where the leftmost t ones all have the same char-

acteristic polynomial but possibly different initialization

values, while the rightmost one generates v.

Consequently, by iteratively applying Theorem 6, we

obtain that the characteristic polynomial of x 2 F�tðyÞ is
cðxÞ ¼ aðxÞt � bðxÞ: ð22Þ

5 Applications to periods computation,
multiplicities count and finite rings alphabets

To summarize the results discussed so far, in this section

we explore the applications of the equivalence between

LBCA preimages and CLRS presented in Sect. 4, starting

from the most specific one and then generalizing. Specifi-

cally, in Sect. 5.1 we describe an algorithm which, given as

inputs a SPC y of a LBCA over Fq and a 2r-cell block of

one of its preimages x 2 F�1ðyÞ, computes the least period

of x. On the other hand, Sect. 5.2 characterizes the multi-

plicities of the preimages of a SPC y in the particular case

where the characteristic polynomial of the local rule is

irreducible and it is not a factor of the polynomial of

y. Finally, Sect. 5.3 generalizes the results presented in

Sect. 4 to the case where the CA alphabet is a finite ring.

5.1 Computing the period of a single preimage

We now present a high-level procedure to compute the

spatial period of a single preimage. Given a LBCA F :

FZq ! FZq defined by a local rule f : F2rþ1
q ! Fq of radius

r 2 N, a spatially periodic configuration y 2 FZq and a 2r-

cell block x½0;2r�1� 2 F2rq of a preimage x 2 F�1ðyÞ, the

procedure can be described as follows:

1. Compute the minimal polynomial b(x) of the linear

recurring sequence v, where vn ¼ ynþr for all n 2 N.

2. Set the characteristic polynomial a(x) associated to the

inverse permutation f�1
R;z to aðxÞ ¼ xk � ak�1x

k�1 � � � �
�a0, where k ¼ 2r and the coefficients ai are those

appearing in the recurrence Eq. (10).

3. Compute the polynomial g(x) given by Eq. (20), and

set hðxÞ ¼ �g�ðxÞ.
4. Determine the minimal polynomial of the preimage by

computing

mðxÞ ¼ aðxÞ � bðxÞ
gcdðaðxÞ � bðxÞ; hðxÞÞ : ð23Þ

5. Compute the order of m(x), and output it as the least

period of preimage x.

For step 1, the minimal polynomial of v can be found

using the Berlekamp-Massey algorithm Massey (1969), by

giving as input to it the string composed by the first

2p elements of v, where p is the period of y (and hence the

period of v as well). The time complexity of this algorithm

is Oðp2Þ. Step 4 requires the computation of a greatest

common divisor, which can be performed using the

Euclidean division algorithm in Oðn2Þ steps, where

n ¼ maxfdegðaðxÞbðxÞÞ; degðhðxÞÞg. Finally, the order of

m(x) in step 5 can be determined by first factorizing the

polynomial, for example by using Berlekamp’s algorithm

described in Berlekamp (1967), which has a time com-

plexity of OðD3Þ where D is the degree of m(x), if the

characteristic q of Fq is sufficiently small. Once the fac-

torization of m(x) is known, ord(m(x)) can be computed

using the following theorem proved in Lidl and Niederre-

iter (1994):

Theorem 7 Let mðxÞ 2 Fq½x� be a polynomial of positive

degree such that mð0Þ 6¼ 0. Let mðxÞ ¼ a �
Qn

i¼0 fiðxÞ
bi be

the canonical factorization of m(x), where a 2 Fq, b1; . . .;

bn 2 N and f1ðxÞ; . . .; fnðxÞ 2 Fq½x� are distinct monic

irreducible polynomials. Then ordðmðxÞÞ ¼ eqt, where q is
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the characteristic of Fq, e ¼ lcmðordðf1ðxÞÞ; . . .;
ordðfnðxÞÞÞ and t is the smallest integer such that

qt � maxfb1; . . .; bng.

Notice that Theorem 7 depends on the knowledge of the

orders of the irreducible polynomials involved in the fac-

torization of m(x). A method to find the order of an irre-

ducible polynomial that relies on the factorization of

qD � 1 is reported in Lidl and Niederreiter (1994). There

exist several factorization tables for numbers in this form,

especially for small values of q (see Wagstaff 2002).

We now present a practical application of the procedure

described above. The computations in the following

example have been carried out with the computer algebra

system MAGMA.

Example 1 Let F : FZ2 ! FZ2 be the LBCA with local rule

150, defined as f ðx1; x2; x3Þ ¼ x1 	 x2 	 x3 for all

ðx1; x2; x3Þ 2 F32. Let y 2 FZ2 be a SPC of least period p ¼ 4

generated by the block y½0;3� ¼ ð0; 0; 1; 1Þ, and let x½0;1� ¼
ð1; 0Þ be the initial 2-cell block of a preimage x 2 F�1ðyÞ.
Since r ¼ 1, sequence v is generated by block

v½0;3� ¼ ð0; 1; 1; 0Þ. Feeding the string (0, 1, 1, 0, 0, 1, 1, 0)
to the Berlekamp-Massey algorithm yields the minimal

polynomial bðxÞ ¼ x3 þ x2 þ xþ 1, while the characteris-

tic polynomial associated to rule 150 is aðxÞ ¼ x2 þ xþ 1.

Hence, it follows that cðxÞ ¼ aðxÞ � bðxÞ ¼ x5 þ x3 þ x2 þ
1 is a characteristic polynomial of the preimage. Since the

first 5 elements of preimage x are 1, 0, 1, 0, 0, the initial-

ization polynomial of Eq. (20) is gðxÞ ¼ x4 þ x3 þ 1, from

which we deduce that hðxÞ ¼ x4 þ xþ 1. Considering that

h(x) is irreducible, the greatest common divisor of c(x) and

f(x) is 1, and thus by Eq. (23) c(x) is also the minimal

polynomial of the preimage. The factorization of c(x) is

ðxþ 1Þ3ðx2 þ xþ 1Þ, and the orders of xþ 1 and x2 þ xþ
1 are respectively 1 and 3, from which it follows that the

least common multiple e is 3. Finally, the smallest integer

t such that 2t � 3 is t ¼ 2. Therefore, by applying Theo-

rem 7 the least period of preimage x is e2t ¼ 12. Figure 7

shows the actual value of the block x½0;11� which generates

preimage x.

The above procedure can be adapted to the case of tth

ancestors x 2 F�tðyÞ by setting the characteristic polyno-

mial in step 2 to aðxÞt, according to Eq. (22). Clearly, at

step 3 the computation of polynomial g(x) defined in

Eq. (20) becomes more expensive, since the sequence r of

Eq. (18) is now a ðkt þ lÞ-order LRS. Additionally, the

complexity of step 5 grows exponentially in the degree

D of the minimal polynomial m(x) computed at step 4,

since it depends on the factorization of qD � 1.

5.2 Periods multiplicities

As a further application of Theorem 6, we characterize the

least periods of preimages with respect to the tth iterate of

LBCA in the special case where a(x) is irreducible and

relatively prime to b(x).

Our characterization result, which is analogous to The-

orem 4, is the following:

Theorem 8 Let F : FZq ! FZ
q be a LBCA having local

rule f : F2rþ1
q ! Fq, and let aðxÞ ¼ xk � ak�1x

k�1 � � � � �
a0 be the characteristic polynomial associated to f, where

k ¼ 2r, and ordðaðxÞÞ ¼ e. For t 2 N, let s 2 N be the

smallest integer such that qs � t, where q is the charac-

teristic of Fq. Further, let y 2 FZq be a spatially periodic

configuration of least period p 2 N, and let b(x) be the

minimal polynomial of sequence v defined as vn ¼ ynþr for

all n 2 N. If a(x) is irreducible and does not divide b(x),

then:

• If t ¼ 1, F�tðyÞ is composed of one sequence with least

period p and qk � 1 sequences with least period

lcmðe; pÞ.
• If t� 2, F�tðyÞ also contains qkq

j � qkq
j�1

sequences

with least period lcmðeqj; pÞ for j 2 f1; . . .; s� 1g, and
qkt � qkq

s

sequences with least period lcmðeqs; pÞ.

Proof Recall that by Eq. (22) aðxÞt � bðxÞ is a character-

istic polynomial for all x 2 F�tðyÞ, which means that

F�tðyÞ 
 SðaðxÞt � bðxÞÞ: ð24Þ

Since a(x) and b(x) are coprime, it holds that

lcmðaðxÞt; bðxÞÞ ¼ aðxÞt � bðxÞ: ð25Þ

Thus, on account of Theorem 2 and Eq. (25), the following

equality holds:

SðaðxÞt � bðxÞÞ ¼ SðaðxÞtÞ þ SðbðxÞÞ: ð26Þ

Consequently, by Eqs. (24) and (26) we conclude that

F�tðyÞ ¼ SðaðxÞÞ þ v, i.e. the set of preimages of y under

F�t is a coset of the vector space SðaðxÞtÞ þ SðbðxÞÞ. In
particular, F�tðyÞ is obtained by forming all possible sums

0
y0

··· 0
y1

1
y2

1
y3

0
y4

0
y5

1
y6

1
y7

0
y8

0
y9

1
y10

1
y11

0
y12

0
y13

···

0

x1

1

x0

··· 1

x2

0

x3

0

x4

0

x5

0

x6

1

x7

0

x8

1

x9

1

x10

1

x11

1

x12

0

x13

···

Fig. 7 Block x½0;11� which generates preimage x 2 F�1ðyÞ under rule
150, computed using Eq. (7). Notice that ðx12; x13Þ ¼ ðx0; x1Þ and

ðy12; y13Þ ¼ ðy0; y1Þ. Hence, for all n� 12 and n\0 the preimage will

periodically repeat itself
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uþ v for u 2 SðaðxÞÞ. Since a(x) and b(x) are coprime,

Theorem 3 states that the least period of uþ v is lcmðl; pÞ,
where l is the least period of u. Finally, since a(x) is

irreducible, Theorem 4 characterizes the possible values of

l and the corresponding numbers of sequences in SðaðxÞtÞ
attaining those values of l as least period, thus concluding

the proof. h

5.3 LBCA over finite rings alphabets

In this section, we assume that A ¼ Zm, where Zm is the

finite ring of residue classes modulo m 2 N. A CA F :

ZZ
m ! ZZ

m is linear and bipermutive if and only if the

leftmost and rightmost coefficients c0 and c2r of its local

rule are invertible over Zm, i.e. gcdðc0;mÞ ¼ gcdðc2r;mÞ
¼ 1.

Let us first consider the case where m ¼ q1q2 with q1
and q2 relatively prime. In Cattaneo et al. (2004), the

authors showed that a LBCA F : ZZ
m ! ZZ

m is conjugated

to the function G : ZZ
q1
� ZZ

q2
! ZZ

q1
� ZZ

q2
, which is

defined for all ðx1; x2Þ 2 ZZ
q1
� ZZ

q2
as

Gðx1; x2Þ ¼ ðFq1ðx1Þ;Fq2ðx2ÞÞ; ð27Þ

where Fq1 and Fq2 denote the application of rule F respec-

tively reduced modulo q1 and q2. In particular, the homo-

morphism which maps a configuration x 2 ZZ
m to its pair of

factor configurations ðx1; x2Þ 2 ZZ
q1
� ZZ

q2
is defined as

wðxÞ ¼ ð½x�q1 ; ½x�q2Þ; ð28Þ

where ½x�q1 and ½x�q2 respectively denote componentwise

reduction modulo q1 and q2 of configuration x. The inverse

homomorphism which recomposes a pair of configurations

ðx1; x2Þ 2 ZZ
q1
� ZZ

q2
into a configuration x 2 ZZ

m is defined

as

w�1ðx1; x2Þ ¼ x2 þ q2½ðx1 � x2Þq̂2�q1 ; ð29Þ

where addition and subtraction are performed component-

wise, and q̂2 is the multiplicative inverse of q2 over Zq1 .

Notice that q̂2 exists since gcdðq1; q2Þ ¼ 1.

The conjugacy can be extended to any m 2 N as fol-

lows. First, let m ¼
Qs

i¼1 q
ai
i be the prime power factor-

ization of m, and let qi ¼ qaii for all i 2 f1; . . .; sg. It

follows that gcdðqi; qjÞ ¼ 1 for all i 6¼ j, since qi and qj are

distinct prime numbers. The homomorphism ws : Z
Z
m !

ZZ
q1
� � � � � ZZ

qs
is defined for all x 2 ZZ

m as:

wsðxÞ ¼ ð½x�q1 ; . . .; ½x�qsÞ: ð30Þ

For the inverse homomorphism, observe that q1; . . .; qs
induce two sequences of rings fR2; . . .;Rsg and

fQ2; . . .;Qsg, where Rj and Qj are defined for j 2 f2; . . .; sg
as:

Rj ¼ ZZ
q1
� � � � � ZZ

qj
; ð31Þ

Qj ¼ ZZ
mj
;mj ¼

Yj

i¼1

qi: ð32Þ

Likewise, values q1; . . .; qs induce a sequence of map-

pings fw�1
2 ; . . .;w�1

s g where for j 2 f2; . . .; sg the inverse

homomorphism w�1
j : Rj ! Qj is defined for all

ðx1; . . .; xjÞ 2 Rj as follows:

w�1
j ðx1; . . .; xjÞ ¼

w�1ðx1; x2Þ; if j ¼ 2

w�1ðw�1
j�1ðx1; . . .; xj�1Þ; xjÞ; if j[ 2

(

ð33Þ

The following theorem shows how to compute the least

periods of the preimages of a spatially periodic configu-

ration under a linear and bipermutive CA F : ZZ
m ! ZZ

m.

Theorem 9 Let m ¼
Qs

i¼1 qi be a positive integer where

qi ¼ qaii with qi prime and ai � 1 for all i 2 f1; . . .; sg.
Additionally, let F : ZZ

m ! ZZ
m be a linear bipermutive CA,

and let y 2 ZZ
m be a spatially periodic configuration having

least period p 2 N, with p1; . . .; ps 2 N respectively being

the least periods of the factor configurations y1 ¼
½y�q1 ; . . .; ys ¼ ½y�qs . Then, given a preimage x 2 F�1ðyÞ, the
least period of x is k ¼ lcmðk1; . . .; ksÞ, where ki ¼ hipi and

hi 2 f1; . . .; q2ri g for all i 2 f1; . . .; sg.

Proof We prove only the case m ¼ q1q2, the general case

following by induction on the values qi. Since F is linear

and bipermutive, it follows that F is conjugated to the

product CA G of Eq. (27) through the isomorphism defined

in Eqs. (28) and (29). As a consequence,

F�1ðyÞ ¼ F�1ðw�1ðy1; y2ÞÞ ¼ w�1ðG�1ðy1; y2ÞÞ:

Thus, the least period of x 2 F�1ðyÞ equals the least period
of wðxÞ ¼ ðx1; x2Þ 2 G�1ðy1; y2Þ.

Remark that P 2 N is a period of ðx1; x2Þ if and only if

P is a period of both x1 and x2. By Lemma 4, x1 and x2
have least period k1 ¼ h1p1 and k2 ¼ h2p2 respectively,

with h1 2 f1; . . .; q2r1 g and h2 2 f1; . . .; q2r2 g. Since k ¼
lcmðk1; k2Þ is a common multiple of k1 and k2, it follows

that k is a period of both x1 and x2, and thus it is a period of

ðx1; x2Þ as well. Let us now suppose that k is not the least

period of ðx1; x2Þ, i.e. there exists k0\k such that

rk
0 ðx1; x2Þ ¼ ðx1; x2Þ. From the discussion above, it follows

that k0 is a period of both x1 and x2 as well, and thus k0 is a
common multiple of k1 and k2, contradicting the fact that

k ¼ lcmðx1; x2Þ. h
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As a final remark, observe that if q is prime then the ring

of residue classes Zq is a finite field. Consequently, if m has

a square-free factorization m ¼
Qs

i¼1 q
ai
i with ai ¼ 1 for all

i 2 f1; . . .; sg, and F : ZZ
m ! ZZ

m is a LBCA over Zm, the

least periods of the tth ancestors x 2 F�tðyÞ can be char-

acterized by first determining the least periods of the factor

preimages ½x�q1 ; . . .; ½x�qs using Theorem 8, and then by

computing their least common multiple according to

Theorem 9.

6 Conclusions

In this work, we studied the relation between the periods of

spatially periodic configurations of surjective CA and the

periods of their preimages. In the generic surjective case

the periods of preimages are multiples of the periods of

their respective images. Starting from this fact, we intro-

duced a graph-theoretic method based on the De Bruijn

representation of CA that allows one to compute the least

periods of preimages and their multiplicities. Successively,

by focusing on the linear and bipermutive case, we showed

that every LBCA preimage can be characterized as a

concatenated LRS, whose characteristic polynomial is the

product of the characteristic polynomials which are asso-

ciated to the component sequences. From this result, we

derived an algorithm to compute the least period of a single

LBCA preimage and we characterized the periods of all

preimages along with their multiplicities, in the case where

the characteristic polynomial of the local rule is irre-

ducible. We finally showed how to generalize these results

to LBCA defined over the finite ring Zm as state alphabet.

There are several directions along which the present

work can be extended and improved. As a matter of fact,

this paper addressed two extreme cases of the preimages

periods problem: the most generic one dealing with sur-

jective CA, for which some facts and bounds can be

derived, and the case of linear and bipermutive CA over

finite fields, about which every major question can be

settled by leveraging on the theory of linear recurring

sequences. We remark that although the latter case refers to

a highly-structured and specialized class of CA, it turns out

to be very useful in applications related to cryptography,

namely secret sharing schemes Mariot and Leporati

(2015), and to genetic regulatory networks, specifically

additive flowers Formenti et al. (2014).

Still, one can consider several intermediate classes

between surjective CA and LBCA, one of the most inter-

esting being bipermutive CA equipped with nonlinear local

rules. Notice that the affine case can be still solved using

the tools of concatenated LRS presented throughout this

paper. Specifically, let F : FZq ! FZq be a bipermutive CA

with affine local rule f : F2rþ1
q ! FZq of radius r, i.e. f is a

linear combination of the neighborhood cells plus a con-

stant a 2 Fq, meaning that the LRS associated to the

inverse permutation f�1
R;z is inhomogeneous. Rewrite Eq. (1)

by substituting nþ 1 in place of n:

snþkþ1 ¼ aþ a0snþ1 þ � � � þ ak�1snþk: ð34Þ

Subtracting Eqs. (34) and (1) yields the following

equalities:

snþkþ1 � snþk ¼ aþ a0snþ1 þ � � � þ ak�1snþkþ
� a� a0sn � � � � � ak�1snþk�1

¼ b0sn þ � � � þ bk�1snþk�1 þ bksnþk;

ð35Þ

where b0 ¼ �a0, bi ¼ ðai � ai�1Þ for i 2 f1; . . .; k � 1g,
and bk ¼ ð1� ak�1Þ. Hence, a kth order inhomogeneous

LRS can be expressed as a ðk þ 1Þth order homogeneous

LRS, which allows one to apply all the results proved in

this paper about concatenated LRS to the affine case as

well. From the CA point of view, this means that an affine

local rule of radius r can be seen as a linear rule defined on

a larger neighborhood, namely fi� r; . . .; iþ r þ 1g.
Clearly, the above procedure cannot be applied to gen-

eric nonlinear rules, where the preimages are generated by

a Nonlinear Feedback Shift Register (NFSR) disturbed by

the LFSR which generates the configuration y. However,

this case is interesting also from the cryptographic per-

spective, since the concatenation of NFSR and LFSR is the

main primitive upon which the stream cipher Grain is

based (see Hell et al. 2008). Hence, finding a general

method to study the periods of preimages of nonlinear

BCA could also be useful to cryptanalyze this cipher.

Successively, one could also consider classes of sur-

jective CA more general than bipermutive CA. The open-

ness property could be an interesting starting point to

investigate, since configurations of open CA have a con-

stant number of preimages, which can be viewed as a

weaker condition than bipermutivity (where each configu-

ration has exactly q2r preimages). Hence, the openness

property could induce some regularities on the structure of

the u-closure graph that could simplify the analysis.

Concerning generic surjective CA, we also remark that

the upper bound about the time complexity for the con-

struction of the u-closure graph via DFS is not tight. As a

matter of fact, the worst case mentioned in Sect. 3.2 cannot

occur in surjective CA due to their balancing property,

which implies that the DFS tree associated to a vertex can

be balanced only up to a certain depth. Taking into account

this fact, one could derive a better upper bound on the time

complexity of the graph construction procedure.

Additionally, another interesting direction for future

research is to investigate the connection between LBCA
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preimages and cyclic codes. As Lidl and Niederreiter

(1994) observe, linear recurring sequences can be used to

generate codewords of cyclic codes, and this process can be

implemented in LFSR. In particular, if we assume that the

configuration y is finite, the preimage computation process

under the action of a LBCA is very similar to the encoding

scheme described in McEliece (2002).

Finally, a further extension concerns the period of a

preimage of a totally spatially periodic configuration of a

given linear CA in dimension D� 2. By totally spatially

periodic configuration (TSPC) we mean a configuration

y 2 AZD

that is periodic with respect to each vector from a

set of D linearly independent vectors. Remark that, if the

CA is bipermutive according to Definition 8 in Dennunzio

et al. (2014), then, by Propositions 25 and 15 in the same

paper a TSPC always admits a totally spatially periodic

preimage (in general, this fact is not assured for multidi-

mensional CA). This is due to the so called slicing con-

struction, which allows one to cut any D-dimensional

configuration into slices of dimension D� 1, and to see the

given CA as a new one-dimensional CA operating on

configurations made of slices. When the given CA is

restricted on periodic configurations, the slicing construc-

tion gives a one-dimensional CA on a finite alphabet and a

TSPC y becomes a one-dimensional SPC. So, the study of

the spatial periodicity of a totally spatially periodic

preimage of y can be reduced to that for the corresponding

one-dimensional preimage in the obtained one-dimensional

CA. By Proposition 22 in Dennunzio et al. (2014), if the

given D-dimensional CA is bipermutive, then also the

obtained one-dimensional CA is bipermutive. Therefore,

except for very simple cases such as those in which all

vectors of the CA neighborhood are pairwise linearly

dependent, to lift the results from this paper to the D-

dimensional setting it is required to guarantee that, if A ¼
Zm and the given D-dimensional CA is linear, then the

obtained one-dimensional CA on the alphabet Zs
m (for

some power s depending on the periodicity of y) is linear

with respect to some group operation to be investigated.

Such a group operation is necessarily different from the

usual one, but should preserve the main properties of linear

CA.
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