
Multi-objective differential evolution based on normalization
and improved mutation strategy

Noor H. Awad1 • Mostafa Z. Ali2 • Rehab M. Duwairi2

Published online: 1 November 2016

� Springer Science+Business Media Dordrecht 2016

Abstract Developing efficient algorithms for solving

multi-objective optimization problems is a challenging and

essential task in many applications. This task involves two

or more conflicting objectives that need to be simultane-

ously optimized. Many real-world problems fall into this

category. We introduce an improved version of multi-ob-

jective differential evolution (DE) algorithm, namely

MOnDE that uses a new mutation strategy and a normal-

ization method to select non-dominated solutions. The new

mutation strategy ‘‘DE/rand-to-nbest’’ uses the best nor-

malized individual in terms of all the objectives to guide

the search towards the true pareto optimal solutions. As a

result, the probability of producing superior solutions is

increased and a faster convergence is achieved. Summation

of normalized objective values method is used instead of

non-domination sorting to overcome the high computa-

tional complexity and overhead problems of sorting non-

dominated solutions. The performance of our approach is

tested on a set of benchmark problems that consist of two

to five objectives. Different combinations of multi-objec-

tive evolutionary programming and multi-objective dif-

ferential evolution algorithms have been used for

comparisons. The results affirm the efficiency and robust-

ness of the proposed approach among other well-known

algorithms from the literature.

Keywords Multi-objective optimization problems �
Differential evolution � Summation of normalized objective

values method and multi-objective evolutionary

programming

JEL Classification 90C27 � 74P99 � 13P25 � 65K10 �
80M50

1 Introduction

Optimization is defined as the selection of the best feasible

solution from a set of available alternatives based on solu-

tion objectives and some constraints (Deb 2001). Opti-

mization problems are categorized into two types based on

the number of objectives: single objective and multi-objec-

tive optimization. Single objective optimization is concerned

with solving a single objective function and with finding the

best solution. This type of optimization provides a decision

making tool that gives insights into the nature of the prob-

lem, although it cannot handle multiple objectives. The

second type is multi-objective optimization, which is con-

cerned with solving multiple conflicting objectives simul-

taneously (Ehrgott 2005), (Miettinen 1999). Many real-

world problems are considered as multi-objective problems

because of their nature where two or more conflicting

objectives need to be simultaneously optimized (Fogel 1999;

Goldberg 1989; Ahn 2006; Sivanandam and Deepa 2008;

Rechenberg 1965; Knowles and Corne 1999). In economics,

most of the problems involve a process of optimizing mul-

tiple conflicting objectives (e.g. consumer’s demands for

various goods). In finance, the well-known portfolio prob-

lem provides a challenge to minimize the risk and maximize

the return simultaneously. In the medical field, micro data

classifications especially for cancer datasets need to reduce
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the number of misclassifications in both testing and learning

datasets and extract the appropriate features that have many

conflicts (Hamdi-Cherif and Kara-Mohammed 2011). Other

applications like electronic chip design formulates the

design tradeoffs such as processing time, power consump-

tion and architecture cost as multi-objective problem (Erbas

et al. 2006).

Most of the evolutionary algorithms are used for single

objective problems (SOPs). When dealing with such

problems, one criterion is used to compare all the solutions

because there is only one objective. Mathematically, the

solutions of a single objective problem are composed of a

set of ordered solutions. The selection of the best solution

for this type of optimization is given as the minimum or

maximum solution, which is related to the nature of the

problem. Existing optimization techniques use an evolu-

tionary process that consists of several steps: reproduction,

mutation, recombination and selection to guide the search

towards optimal solutions. If a problem has multiple

objectives that are not conflicting with each other then they

can be unified into a single objective and hence form a

single objective problem (Michalewicz 1994). Otherwise,

if the objectives are conflicting then the problem is called a

multi-objective problem (MOP).

Multi-Objective Evolutionary Algorithms (MOEAs)

were introduced in 1985 which involve decision making

criteria with evolutionary algorithms to find solutions

called pareto-optimal solutions for multiple conflicting

objectives (Schaffer 1985). Such problems pose a chal-

lenge for researchers in providing efficient algorithms that

are capable of helping decision makers. The main goal

when solving such type of problems is to avoid the problem

of premature convergence and stagnation scenario to pro-

duce good pareto optimal solutions. Pointing at the

developed techniques, we can refer to: Pareto Archived

Evolutionary Strategy (PAES) (Knowles and Corne 2000),

Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler

et al. 2001) and Non-dominated Sorting Genetic Algorithm

(NSGA) (Deb et al. 2002).

DE has been successfully extended to solve multi-ob-

jective optimization problems. In Babu et al. (2003), a

differential evolution with penalty function and a weighing

factor method is used to find pareto-optimum sets for an

engineering application of a cantilever design problem. In

Iorio and Li (2004), a DE approach has been proposed

based on correlated self-adapting mutation step sizes to

solve rotated multi-objective problems. In Kukkonen and

Lampinen (2004), a generalized DE technique that uses a

crowdedness mechanism for maintaining good non-domi-

nated solutions is proposed for constrained multi-objective

problems. A new paradigm of self-adaptive differential

evolution for multi-objective optimization has been intro-

duced in Huang et al. (2009). Furthermore, the hybrid DE

approaches have been introduced in, which other evolu-

tionary algorithms or kinds of local search have been

merged with DE. In Santana-Quintero et al. (2010) the

DEMORS technique, which is a hybrid multi-objective

optimization algorithm using differential evolution and a

local search based on a rough set theory, has been intro-

duced to solve constrained problems. Another hybridiza-

tion that combines a self-adaptive DE with a local search

method based on sequential quadratic programming can be

found in Zamuda et al. (2009).

In this paper, we introduce a differential evolution

algorithm with an improved mutation strategy and sum-

mation of normalized objectives method. The proposed

algorithm uses the differential evolution algorithm, because

it is a simple and powerful technique to solve diverse type

of problems with stochastic direct search and because of its

simplicity. The proposed algorithm is the first to use one of

the greedy strategies of differential evolution algorithm in

multi-objective optimization. The conflicting objectives

state a challenge to choose one of the objectives in a rea-

sonable time. A modified mutation strategy has been pro-

posed, which is able to benefit from all the best knowledge

of the best objective-wise solutions. The best objective-

wise solution is the solution, which has the best value for

one of the objectives. The new mutation strategy, namely

‘‘DE/rand-to-nbest’’, uses the best normalized individual in

terms of all the objectives to guide the search in each

optimization step. An external archive is used to store the

non-dominated solutions in each generation. The summa-

tion of normalized objective value has been used for non-

domination sorting to select the well-distributed solutions.

This method aims at developing a new sorting method

capable of solving the issues that other algorithms have

such as computational overhead. The results prove the

effectiveness of selecting non-dominated solutions that

approximate the true pareto front. The following sections

delineate the proposed technique in detail and analyze its

structure. Section 2 introduces a review of various multi-

objective differential evolution algorithms. Section 3 gives

some preliminaries for multi-objective optimization and

differential evolution algorithm. Section 4 presents the

proposed algorithm in detail. Section 5 presents experi-

mental results. Section 6 draws conclusions of this work.

2 Related work

Differential evolution was proposed by Storn and Price

(1997) as a metaheuristic evolutionary algorithm that was

designed to solve optimization problems over continuous

spaces. Different types of mutation and crossover strategies

were proposed for DE (Price et al. 2005; Brest et al. 2006;

Das et al. 2009). The individuals are represented as
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chromosomes and each decision parameter is encoded by a

real value. The initial population space is generated and

then evaluated based on an objective function. After that,

the selection process, which usually uses three random

parents to generate a new child takes place. The difference

vector between two parents is computed and added to the

third one. For single objective optimization, if the value of

the objective function using the newly obtained solution is

better than its parent, the child replaces its parent. While in

the context of multi-objective optimization, the domination

concepts are used to compare both individuals. DE is

considered as an effective global optimizer and a robust

technique for producing the optimal for many optimization

problems and real world applications (Joshi and Sanderson

1999; Zhang et al. 2008).

The classical DE performance is highly dependent on

the choice of the mutation strategy and the associated

control parameter values for the scaling factor (F), cross-

over rate (CR) and population size (NP). Any inappropriate

use of those control parameters or mutation strategy may

lead to premature convergence (Zhang et al. 2009; Gam-

perle et al. 2002). The early work introduced by Storn and

Price (1997) suggested a reasonable value of NP should be

between 5D and 10D where D is the problem dimensions

and 0.5, 0.1 were the initial values of F and CR, respec-

tively. Recent works suggested different values for NP,

F and CR based on results from experimental studies

(Swagatam et al. 2016). These values are fine-tuned

according to the tested benchmark problems to help

avoiding premature convergence. From such studies,

Swagatam et al. concluded that if the population reaches a

stagnation state, either F or NP can be increased or the

value of CR can be decreased.

Many multi-objective differential evolution algorithms

have been successfully introduced to solve multi-objective

problems. In Abbass (2002) a self-adaptive pareto DE

(SPDA) algorithm has been introduced. In each iteration, a

new population space is generated using basic mutation

and crossover operations except that a self-adaptive normal

distribution is used. In Babu et al. (2003), a new differ-

ential evolution technique for MOPs was proposed that

uses a penalty function method, and a weighting factor

method to find the Pareto optimum set for an engineering

application of cantilever design problem. In Iorio and Li

(2004), a new DE approach has been proposed based on

correlated self-adapting mutation step sizes to solve rotated

multi-objective problems. Another approach based on

pareto evaluation is applied to optimize the cycle time and

cost objectives for an enterprise planning problem (Xue

2003). In Madavan (2002), the elitism, ranking and non-

dominated sorting incorporated in NSGA-II Deb et al.

(2002) have also been used in differential evolution

method. Kukkonen and Lampinen (2004) proposed a

generalized DE technique that used a crowdedness mech-

anism for maintaining the good non-dominated solutions

for constrained multi-objective problems. Many other

approaches can be found in Mezura-Montes et al. (2008)

and Parsopoulos et al. (2004). A new paradigm of self-

adaptive differential evolution for multi-objective opti-

mization has been introduced (Huang et al. 2007). The

SaDE algorithm (Brest et al. 2006) was extended to

MOSaDE by introducing the domination concept when

comparing trial and target vectors. A modified version of

the aforementioned technique has been introduced in which

their proposed DE technique learns its suitable strategy and

associated parameters for each objective separately (Huang

et al. 2009).

Hybrid DE approaches have been introduced in which

other evolutionary algorithms or local searches were

merged with DE. In Santana-Quintero et al. (2010) the

DEMORS technique, as a multi-objective optimization

algorithm that hybridizes differential evolution and local

search based on a rough set theory has been introduced for

solving constrained multi-objective optimization problems.

In their approach there are two main steps, the first step is

to use a multi-objective DE technique to generate an initial

solution of the pareto front. The second one is a local

search technique of a rough set theory to find out more

solutions and guide the search towards better solutions.

Another hybridization that combines a self-adaptive DE

with a local search method based on sequential quadratic

programming can be found in Zamuda et al. (2009). An

enhanced version of DE algorithm has been merged with

simulated annealing algorithm (Chen et al. 2014). In this

algorithm, a new acceptance function based on a proba-

bility computation is used to utilize simulated annealing for

better guiding the search towards better regions. Another

technique that aims at reducing the complexity of multi-

objective differential evolution by computing the domina-

tion ranks and crowding distance is presented in Drozdik

(2014). A memetic search that used probabilistic solution

principles in the differential evolution algorithm is intro-

duced in Kumar et al. (2014). An advanced teaching–

learning technique has been merged with a modified dif-

ferential evolution algorithm for solving the reactive power

dispatch problem as can be found in Ghasemi et al. (2014).

The fuzzy clustering problem has been solved using a

multi-objective differential evolution algorithm (Das

2014).

The summation of normalized objective value (SNOV)

method was used in this context by the multi-objective

evolutionary algorithms. In Patel et al. (2011), an improved

selection scheme using the SNOV method is used with

genetic algorithm. In this algorithm, the SNOV method is

used as an improved ranking scheme to select the parents

for mutation in genetic algorithm. The summation of
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normalized objective value is also used in the differential

evolution algorithm. In Qu and Suganthan (2010), the

authors replace the non-domination sorting by the use of

SNOV and a diversified selection. The solutions are sorted

according to a normalized rank that represents the sum-

mation of all the individual objectives ranks.

Recently, a modified differential evolution algorithm for

multi-objective reactive power (VAR) is introduced (Singh

and Srivastava 2014). The aim of this work is to formulate

VAR as a multi-objective problem and to use a modified

differential evolution algorithm to address the problem of

minimizing the real power losses and voltage deviation,

simultaneously. The algorithm used a time varying chaotic

mutation and crossover to avoid time and effort in tuning

DE parameters. A modified differential evolution algorithm

for multi-objective optimization is also introduced (Ali

et al. 2012). This algorithm uses the concept of random

localization in mutation and also a new selection mecha-

nism for generating pareto optimal front. A multi-objective

differential evolution algorithm is also proposed in feature

selection of classification tasks (Xue et al. 2014). The aim

of this work is to minimize the classification error and the

number of features at the same time. A differential evo-

lution algorithm for solving multi-label feature selection is

also introduced in Zhang et al. (2015). The differential

evolution algorithm is also used to solve tunable multi-

objective engineering problems (Adeyemo and Olofintoye

2014). In this algorithm, the multi-objective differential

evolution and pareto selection methods are used to intro-

duce a new selection scheme. An enhanced differential

evolution algorithm is hybridized with simulated annealing

for solving multi-objective optimization problems (Chen

et al. 2014). Another application that uses a two-phase

differential evolution algorithm for solving time–cost

trade-offs in resource constrained construction projects is

also introduced in Cheng and Tran (2014). More recently, a

modified differential evolution algorithm that uses a new

diversity maintenance strategy is introduced (Chen et al.

2015). In this algorithm, a new cluster degree measure is

used to determine a better spread of non-dominated solu-

tions. An enhanced version of differential evolution algo-

rithm that uses an archive-base mutation is also proposed to

provide new direction information toward true pareto front

by utilizing useful inferior solutions (Fan and Yan 2015).

3 Scientific background

3.1 Basic concepts of multi-objective optimization

Multi-objective optimization problems consist of several

incommensurable and conflicting objectives that need to be

optimized simultaneously. They are usually expressed as

follows:

Min=Max f ðxÞ :¼ f1ðxÞ; f2ðxÞ; . . .; fkðxÞf g;
Subject to : gaðxÞ� 0 a ¼ 1; 2; . . .; n

hbðxÞ ¼ 0 b ¼ 1; 2; . . .; p

ð1Þ

where x ¼ ðx1; x2; . . .; xnÞT is the decision variables vector

such that fi : <n ! <, i ¼ 1; . . .;m is the objective func-

tion, k is the number of objective functions, ga; hb : <n !
<; a ¼ 1; . . .; n; b ¼ 1; . . .; p are the constraint functions

of the problem.

The domination concept is used to relate the association

between the two solutions x; y according to the following

definitions:

Definition 1 We say x dominates y (denoted by x �1...k y)

if both conditions below are met:

1. x is not worse than y in all objectives i ¼ 1; . . .; k and

2. x is strictly better than y in at least one objective.

x �1...k y iff fiðxÞ� fiðyÞ; 8i 2 1; . . .; k ^ 9j 2 1; . . .; kf
) fjðxÞ\fjðyÞg ð2Þ

Definition 2 The solution �x is said to be a non-dominated

or Pareto-optimal solution if it is not possible to find

another x̂ 2 v such that x̂ � x where v is the set of non-

dominated solutions.

Definition 3 The set of pareto-optimal solutions is called

Pareto Front qF� which is defined by:

qF� ¼ f1ðxÞ � � � fmðxÞ 2 <mjx 2 q�f g ð3Þ

where q� is the pareto optimal set which corresponds to

decision variable vectors for the pareto-optimal solutions

that can be expressed as:

q� ¼ x 2 vjx is Pareto� optimalf g ð4Þ

3.2 Classical differential evolution

The differential evolution algorithm is one of the most

promising population-based evolutionary algorithms because

of its simplicity with powerful stochastic direct search

technique. The algorithm consists of several steps as shown

in the following sub-sections.

3.2.1 Initialization step

The standard DE consists of a population of NP individu-

als. Each individual is represented as a vector of D-di-

mensional parameters as follows:

Xi;G ¼ x1i;G; . . .; x
D
i;G

n o
; i ¼ 1; . . .;NP ð5Þ
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where G is the generation number and NP is the number of

individuals in the population space. The DE algorithm aims

at evolving the population space towards the global optima

distributing random individuals within the search space and

preserving the lower and upper bounds of parameters for

the problem being solved represented by Xmin ¼ x1min; . . .;
�

xDming and Xmax ¼ x1max; . . .; x
D
max

� �
, receptively. Hence, the

initialization of the population space at generation G = 0 is

formulated in the following equation:

x
j
i;0 ¼ x

j
min þ randð0; 1Þ � ðx j

max � x
j
minÞ j ¼ 1; 2; . . .;D

ð6Þ

where j is the index of parameter value in the ith individual

at generation G = 0, and randð0; 1Þ is a uniformly dis-

tributed random generator in the range [0,1].

3.2.2 Mutation operation

Five mutation strategies were suggested for the original DE

(Price et al. 2005) as described below:

DE=rand=1 : viðtÞ ¼ xr1ðtÞ þ F � xr2ðtÞ � xr3ðtÞ
� �

DE=best=1 : viðtÞ ¼ xbestðtÞ þ F � xr1ðtÞ � xr2ðtÞ
� �

DE=current-to-best=1 : viðtÞ

¼ xiðtÞ þ F � xbestðtÞ � xiðtÞ þ xr1ðtÞ � xr2ðtÞ
� �

DE=best=2 : viðtÞ ¼ xbestðtÞ þ F � xr1ðtÞ � xr2ðtÞ þ xr3ðtÞ � xr4ðtÞ
� �

DE=rand=2 : viðtÞ ¼ xr1ðtÞ þ F � xr2ðtÞ � xr3ðtÞ þ xr4ðtÞ � xr5ðtÞ
� �

ð7Þ

The Vi;G ¼ fv1i;G; v2i;G; . . .; vDi;Gg is the mutant vector,

which is generated for each individual Xi;G in the popula-

tion space.ri1; r
i
2; r

i
3; r

i
4; r

i
5 are random integer numbers.

These numbers represent the indices of chosen individuals

within the range [1, NP]. These numbers and the super

index i should be mutually exclusive integers. F is the

mutation control parameter (scaling factor) and assumes

positive values for controlling the scaling ratio of the dif-

ference vector. The best individual vector of lowest fitness

value in the current population space at generation G is

denoted as Xbest;G:

After the initialization step, the mutation phase starts in

which each individual Xi;G in the population space is

mutated according to one of the abovementioned strategies

to generate a mutant vector Vi;G. The scaling factor

F controls the speed and convergence of the search space in

which the lower values exploit the search towards the local

optima and the larger values explore the search towards the

global optimum solution.

3.2.3 Crossover operation

After mutant vectors have been generated, the crossover

phase is applied to generate new offspring or trial vector

Ui;G ¼ fu1i;G; u2i;G; . . .; uDi;Gg. The original DE has defined a

binomial crossover as follows (Storn and Price 1997):

u
j
i;G ¼ v

j
i;G; if ðwith probability of CRÞ or ðj¼ jrandÞ
x
j
i;G; otherwise

( )
j¼ 1;2; . . .;D

ð8Þ

CR is the crossover rate, which is a user-defined value

within the range [0,1] to control the percentage of param-

eter values of mutant vectors that should be copied to form

a new child solution.jrand is a random index of a position in

the mutant vector within the range 1…D.

3.2.4 Selection operation

To ensure that the new trial vectors are within upper and

lower bounds, DE must check parameter values of its

trial vectors and when they exceed the search range,

their values will be reinitialized. After that, the fitness

values of trial vectors are calculated by computing the

objective function of the problem being solved. Then, a

selection criterion is performed as in Eq. 9 to fill in the

population space with new individuals for the next

generation by comparing fitness values of target and trial

vectors.

Xi;Gþ1 ¼
Ui;G; if f ðUi;GÞ� f ðXi;GÞ
Xi;G; otherwise

� �
ð9Þ

The above DE steps including mutation, crossover and

selection will be repeated until a termination criterion is

met, which is usually after finishing a specified number of

generations. When dealing with multi-objective optimiza-

tion, the domination concepts are needed to compare the

trial and target vectors as shown in the following sub-

section.

4 Proposed algorithm

A new multi-objective differential evolution is explained

in this section. The proposed algorithm introduces a new

mutation ‘‘DE/rand-to-nbest’’ and uses the summation of

normalized objective value (SNOV) method for selecting

the best individual and non-dominated solutions. The

following subsections explain the MOnDE algorithm in

detail.
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4.1 DE/rand-to-nbest

The most widely used strategy in differential evolution is

DE/rand/1 that is said to be the most successful mutation

strategy (Price et al. 2005). However, greedy strategies such

as DE/best/k and DE/current-to-best provide some advan-

tages by benefiting from the information of the best solution

in the search process (Gamperle et al. 2002). In this paper,

we introduce an improved greedy mutation suitable for

multi-objective optimization namely DE/rand-to-nbest.

The key difference between this new mutation and the

original DE/rand-to-best is in the way of selecting the best

individual. In single optimization, the selection of the best

individual during the search is carried out according to the

lowest fitness value. However, in multi-objective opti-

mization the conflicting objectives pose a challenge for

selecting the best individual. Using the crowding distance to

determine the best individual in terms of all objectives at

each generation is very time-consuming and imposes a high

risk on the diversity of solutions, especially when the

number of objectives is more than two (Kukkonen and Deb

2006). The DE/rand-to-nbest is proposed to overcome the

problem of choosing the best individual in multi-objective

optimization based on the summation of normalized

objective value (SNOV) method. The SNOV assigns one

normalized value for an individual to represent all the dif-

ferent objectives as being from different ranges and without

normalization, the obtained distribution might distort. It

starts by finding the minimum and maximum value of each

objective from the current DE solutions. Then new nor-

malized objective values are assigned to the individuals

after adding all the computed values to form one value for

each individual. Finally, the individual with the lowest

normalized value is returned and is used as the best indi-

vidual to guide the evolution process by benefiting from the

information of all the objective values.

The mutant vector in ‘‘DE/rand-to-nbest’’ is generated

as shown in Fig. 1. The selection of the best individual is

chosen based on SNOV. This process is called in each time

the mutant vector is generated. Using this approach, we

guarantee that the best M objectives will be used in each

generation to guide the search using the best solutions from

all objectives. To ensure that the new trial vector vi is

within bounds, lines 3–6 check the values and when they

exceed boundaries, their values are reinitialized.

4.2 MOnDE algorithm

The mutation strategy and its control parameters are the

dominant settings that reflect the DE performance. The

literature studies suggested many ways to enhance the

performance of the DE algorithm. The MOnDE algorithm

aims at finding the most suitable way of incorporating all

the different objectives of the problem being solved. The

algorithm suggests a new mutation strategy to overcome

the trade-off due to conflicting objectives and chooses the

best solution that can guide the search toward pareto

optimal solutions. Using the best solution in terms of one

objective guides the search in only one direction for only

one objective. This leads to an increase in the search speed

for one objective without having any enhancement for

others. To find a balanced way that aims at enhancing the

search for all the objectives, the DE/rand-to-nbest is pro-

posed. In each generation, this new mutation strategy is

called after selecting the best normalized solution. This

selection is done by computing the normalized rank for

each objective of each solution in the population space then

summing all these ranks to have one rank. After that, the

solutions are sorted to find the best solution that has the

lowest value.

It is known that choosing the non-dominated solutions is

the key step for every MOO optimization algorithm, and is

considered a time-consuming step. After testing the ability

of normalization in selecting the best solution in each

generation, a new method based on normalization is also

used to select the best non-dominated solutions. After the

termination criterion is met and the external archive is

filled with the non-dominated solutions in each generation,

this method is called. It starts by finding a normalization

rank for each solution in the external archive by summing

all the normalized values for each objective. Then all the

solutions are sorted and the best non-dominated solutions

with least values are selected. The number of selected

solutions is determined by a pre-defined value and the used

summation process keeps the archive domination-free.

The pseudo-code of MOnDE algorithm is presented in

Fig. 2. It starts by initializing a population of random indi-

viduals and evaluates the initial values of objectives for the

problem being solved. In each generation, the Summation of

Normalized Objective Value (SNOV) method is called and

takes the current population as an input to select the best

normalized individual. The SNOV assigns one normalized

value for each individual to represent all the objectives. This

is because the different objectives might be in very different

value ranges. Without normalization, the obtained distribu-

tion might be distorted. After that the ‘‘DE/rand-to-nbest’’ is

used to generate the mutant vector for each individual using

the best normalized individual that benefits from its fast

convergence by incorporating information from the best

solution for all the objectives in the evolutionary search.

After evaluating the trial vector, it is compared with the

corresponding target vector. If the new trial vector dominates

the target vector, replacement occurs and the trial vector

enters the external archive if it dominates some individuals in

the archive or if it is non-dominated with all the archive

solutions. The aforementioned steps are repeated until the
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maximum number of function evaluations is reached.

Finally, the size of the external archive is adjusted to choose

the best non-dominated solutions with the allowable size. To

enhance the time complexity and quality of solutions that are

considered some of the major shortcomings of other

heuristics, which is crucial in the MOO area, we used the

normalization sorting in which the solutions are sorted

according to their normalized values that the SNOV method

computed. Normalization sorting aims at discarding the

worst individuals from being selected as the best individual

to guide the evolutionary search and also use the best

information from all the objectives to keep the search as

diverse as possible.

5 Experimental results

5.1 Experimental setup

To test the performance of the proposed algorithm, the CEC

2009 benchmark suite for multi-objective optimization

(Zhang et al. 2009a, b) is used. This benchmark suite consists

of 13 unconstrained multi-objective instances including 7

functions of two-objectives, 3 functions of 3 objectives and 3

functions of five objectives (Zhang et al. 2009a, b). The

algorithm was coded using Java 1.7, and was run on a PC

with 2.4 GHz Core processor and 8 GB RAM on windows 7.

The experiments are performed with a maximum number of

300,000 function evaluations (FEs) and the sizes of the

external archive are 100, 150 and 800 for problems with 2, 3

and 5 objectives, respectively. After extensive experiments

and tuning the parameters, the control parameters of the

proposed algorithm have been chosen. A sensitivity analysis

for F, CR and NP is presented in Table 1. Four values are

used to test each parameter. The best settings Based on

experimentations for scaling factor (F) is 0.5, crossover rate

(CR) is 0.01 and the size of population space (NP) is 200 for

all the problems instances. 30 independent runs have been

executed for each test problem using the proposed algorithm.

5.2 Performance measure

In multi-objective optimization, a performance metric is

needed to compare the performance of different algorithms

from two points of view: (1) diversity and (2) convergence

approximation set of obtained pareto-optimal solutions.

Algorithm: DE/current-to-nbest 

Input: Entire population pat generation G: 
1 , ...,G G

G NPx xP = , target vector ix ,crossover rate iCR , 

scaling factor  iF , dimension of problem D, lower and upper boundaries { }1
, ...,up up up

D
x x x= and

{ }1
, ...,lu lu lu

D
x x x= ,and number of objectives M

Output: Trial vector iv

1. Find minimum and maximum objective value of 
thj  objective,  

min max{ , }j jf f

2. Normalize objectives of each individual (1 : )i NP∈ as follows: 
min

max min
, 1, ..,

i

j ji

j

j j

n
f f

f j k
f f

−
= =

−
3. For 1 :i NP=

4.       Sum all normalized objectives vector  
i

nf
5. EndFor 

6. Find the best individual nbestx of lowest nf value 

7. Generate mutant vector 
i

V as follows 

8. For  j=1 to D

9.    If ( 
j up

i jv x> ) 

10.
j up

i jx x=

11. Else If ( 
j up

i jv x< ) 

12.
j lu

i jv x=
13.   End if
14. End For

1 2 43.( ) .( )nbest rrri rv x F x x F x x= + − + −

Fig. 1 DE/rand-to-nbest

mutation based on summation

of normalized objective value

(SNOV)
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The inverted generalized distance (IGD) (Zhang et al.

2009a, b) performance metric is used as shown in Eq. (10).

IGDðA;P�Þ ¼

P
v2P�

dðv;AÞ

jP�j ð10Þ

where dðv;AÞ is the minimum Euclidean distance between

true pareto front P� and a set of solutions obtained by an

algorithm A: Smaller IGD values are better for measuring

the diversity and convergence of the algorithm.

5.3 Simulations results

The numerical results of the proposed algorithm MOnDE

are presented in Table 2. The statistical measure of the

IGD performance metric including best, worst, mean and

Algorithm: MOnDE 
Input: Multi-Objective Problem with M objectives 
Output: Final approximation set of non-dominated solutions 
1. Initialization Step

2. Initializing a population space of NP individuals uniformly distributed in the range [ , ]lu upX X where { }1 , ...,lu lu lu

Dx x x=

and { }1 , ...,up up up

Dx x x=  as follows: { }1, ,, ...,G G NP GP x x=  where 
, (0,1)( )ulpuul

i Gx X rand X X= + − ,

1, ...,i NP= , G is generation number and D is problem dimension.  

3. Evaluate the initial population 0GP =  by computing objectives values 1{ , ..., }Mf f

4. Fill external archive A with the individuals of 0GP =

5. Optimization Step

6. While
max

G G<

7.    Mutate and recombine:
8.     For i=1 to NP

9.      Randomly choose 1 2 3 4, , ,r r r rx x x x  such that 43214321 , , , [1, 2, ..., ],r r r r NP r r r r i∈ ≠ ≠ ≠ ≠

10.     Choose the best normalized individual nbestX using (SNOV) method   

11.     Generate mutant vector using “DE/rand-to-nbest” as shown in Fig. 1                             

12.    Apply Binomial Crossover:

13.         Generate a random position within problem dimension randint(1, )
rand

j D=

,

,

,

)()(,
1, 2, ...,

,

j

dnariGij

i G j

i G

v if with probability of CR or j j
Dju

x otherwise

=
==

⎫⎧
⎬⎨
⎭⎩

14.      Evaluate the offspring  iu
15. Domination Selection:

16. If ix dominates iu discard iu

17. Else If iu dominates ix , replace ix with iu

18. Else If iu and ix are non-dominated, select the best normalized one using SNOV method shown in Figure 5 

19. End if

20. iu will be added to the external archive A if 

(i) iu dominates some individual of A and dominated solutions are removed from  A

(ii) or iu is non-dominated with A individuals  

21. End For
22. Adjust the size of external archive A using the SNOV method that takes the best M normalized solutions where M is the allowable 

size. 

1 2 43.( ) .( )nbest rrri rv x F x x F x x= + − + −

Fig. 2 Pseudo-code of MOnDE algorithm
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standard deviation over 30 independent runs for all the test

functions, are shown in Table 2. Note that most of these

results have small values for the mean measure on all the

functions F1–F13 except for F12, however the mean value

for this function, which equals to 8.03E?00, shows a

superior result compared to other MOEAs as the following

sub-sections show. Referring to this table, one can find that

at 30D, the obtained mean values are of order 10-4 in 3

problems (F1, F2 and F4), 10
-3 in 7 other problems (F3, F6–

F11), 10
-2 in 2 problems (F5 and F13) and greater than zero

in one problem (F12). Referring to the best and worst values

of each problem over 30 independent runs as shown in

Table 2, the results reveal the stability of MOnsDE algo-

rithm when generating the optimal pareto front solutions.

Moreover, the algorithm was able to converge to the true

pareto front very smoothly.

The results in Table 2 reveal that MOnDE appears to

provide high quality results when optimizing multi-objec-

tive problems that consist of 2–5 difficult conflicting

objectives at the same time. Results assert the fact that the

proposed method effectively solves the multi-objective

benchmark problems that reflect complicated real-life

problems. The IGD performance metric affirms that

MOnDE was capable of finding a set of non-dominated

solutions that approximate the true pareto front. The smaller

mean values of IGD show high diversity and convergence

of MOnDE algorithm that provide very competitive results

to the best known results from other powerful MOEAs as

the following sub-sections demonstrate.

5.4 Algorithm running time

The average running time for each multi-objective problem

in the benchmark set for 30 independent runs per function

is presented in Table 3. It is apparent from the table that the

running time of the problems raises slightly as the number

of objectives increases. The average running time for the

problems of 2 objectives (F1–F7) does not have a big dif-

ference from those problems with 3 objectives (F8–F10).

The average elapsed time for solving (F1–F7) is ranged

between (0.06 and 0.086) min and (0.074 and 0.098) min

for (F8–F10). The last three functions appear to require

more time ranged from (0.15 to 4.41) min since they

consist of 5 objectives that need to be optimized at the

same time. However functions F11 and F12 are slightly

different compared to other problems with 2 or 3 objectives

but F13 took an average of 4 min because of its complexity

and difficult nature with new extended rotated features that

reflect the real world applications (Huband et al. 2006).

5.4.1 Comparison with other MODE algorithms

In this section, the performance of MOnDE algorithm is

compared with other algorithms from the literature. Com-

parisons with other MOEAs algorithms are presented. The

chosen MODE algorithms are summarized as follows:

Table 1 Average IGD value for a sensitivity analysis for F, CR and

NP for MOnDE

F 0.1 0.3 0.5 0.7

F1 5.4517E-01 1.6842E-01 1.3180E-03 3.7845E-02

F3 6.8425E-01 2.4627E-02 4.9150E-03 5.7432E-02

F5 7.7841E-01 6.7456E-02 3.9987E-02 8.4216E-02

F8 8.7456E-01 9.8616E-02 6.0850E-03 4.7861E-03

F10 4.7961E-01 2.6574E-02 3.8330E-03 1.2148E-02

F11 9.5426E-01 5.5419E-01 1.1969E-02 3.8743E-02

F13 9.7452E-01 7.5412E-02 6.9751E-02 8.6321E-02

CR 0.001 0.01 0.1 0.2

F1 9.7425E-02 1.3180E-03 5.8743E-01 9.6541E-01

F3 8.4126E-02 4.9150E-03 6.8742E-01 8.3145E-01

F5 3.7643E-01 3.9987E-02 7.6435E-01 9.4692E-01

F8 7.6428E-02 6.0850E-03 5.4631E-01 7.8513E-01

F10 5.8476E-02 3.8330E-03 8.2148E-02 7.6189E-01

F11 9.5419E-02 1.1969E-02 5.7319E-01 7.5842E-01

F13 9.8426E-02 6.9751E-02 7.8452E-01 9.2541E-01

NP 50 100 200 300

F1 9.5483E-01 4.2159E-01 1.3180E-03 3.8452E-02

F3 7.5129E-01 4.6541E-01 4.9150E-03 6.8426E-02

F5 8.9694E-01 5.5419E-01 3.9987E-02 7.8456E-02

F8 7.7456E-01 5.5403E-01 6.0850E-03 4.3618E-02

F10 5.7531E-01 2.8435E-02 3.8330E-03 2.5631E-03

F11 8.7531E-01 5.4216E-01 1.1969E-02 6.8423E-02

F13 9.4256E-01 5.1269E-01 6.9751E-02 9.5136E-02

The best entries are marked in boldface

Table 2 The IGD value statistical results of the final approximation

set obtained for each test problem for MOnDE algorithm at 30D

Best Worst Mean StD

F1 3.82E-04 0.002535 0.001318 5.88E-04

F2 0.002479 0.009405 0.006373 0.001499

F3 0.003874 0.005758 0.004915 5.34E-04

F4 0.001595 0.002115 0.00188 1.37E-04

F5 0.033868 0.044841 0.039987 0.002692

F6 0.008389 0.010971 0.009618 6.21E-04

F7 0.001083 0.004847 0.001875 6.87E-04

F8 0.003702 0.006605 0.006085 6.81E-04

F9 0.001294 0.007033 0.003161 0.001484

F10 0.003203 0.004644 0.003833 2.83E-04

F11 0.008047 0.016441 0.011969 0.002214

F12 6.640672 10.30076 8.860979 0.850274

F13 0.067742 0.071655 0.069751 9.82E-04
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1. GDE3 (Kukkonen and Lampinen 2009): The third

version of the generalized differential evolution. The

authors proposed a new concept called constraint

domination to compare solutions for constrained

problems. The authors didn’t use an external archive

for holding non-dominated solutions. Instead, they

used a population space of size equals to the size of

the approximation set. They also used a pruning

technique in each generation if the size of the

population space exceeds the allowable size since

they added the target and trial individuals if they are

non-dominated by each other. The F and CR were set

to 0.5 and 0.0 respectively.

2. OWSaDE (Huang et al. 2009): An objective-wise self-

adaptive differential evolution algorithm in which

suitable mutation strategies and control parameters

were learned for each objective. The authors used DE/

rand/1 and DE/rand/2 with binomial crossover. The

scaling factor F is generated using a normal distribu-

tion of a mean ranging from [1.0, 0.05] and a standard

deviation of 0.1. The crossover rate CR is also

generated using normal distribution of a mean

changed dynamically based on the success during

previous generations and a standard deviation of 0.1.

The population size is set to 50 and for non-domina-

tion sorting they used harmonic average distance.

3. DECMOSA-SQP (Zamuda et al. 2009): A hybrid

approach that combines Differential Evolution with

Self-adaptation and sequential quadratic program-

ming as local search. The authors assigned F and CR

for each individual in the population and adapted their

values in each generation using a Gaussian distribu-

tion between 0 and 1. The size of the population is set

to the same size of the approximation set.

4. MO-ABC/DE (Rubio-Largo et al. 2012): A multi-

objective artificial bee colonywith differential evolution

for unconstrained multi-objective optimization. In this

hybrid approach, the collective intelligence of bee

swarms and differential evolution properties are com-

bined together to develop a new enhanced algorithm that

is capable of solving multi-objective problems.

A comparison between MOnDE algorithm and the

aforementioned MODE algorithms is presented in

Table 4. The table shows the mean values of IGD per-

formance metric over 30 independent runs. This com-

parison tests the validity and performance between our

proposed algorithm and other variations of multi-objec-

tive differential evolution algorithms which follow in

three categories. Generalized differential evolution with

constant values for F and CR (GDE3), self-adaptive dif-

ferential evolution (OWMOSaDE, DECMOSA-SQP and

MOnDE) and hybrid differential evolution with local

search (DECMOSA-SQP, MO-ABC/DE and MOnDE).

The results show that MOnDE outperforms the three

categories on all the benchmark functions. This affirms

the effectiveness of using Cauchy and Normal distribu-

tions to adapt the F and CR values compared to the self-

adaptive style used in OWMOSaDE and DECMOSA-SQP

algorithms. Another perspective of comparison is the use

of hybrid approaches. Our proposed technique outper-

forms other hybrid approaches that uses sequential

quadratic programming in DECMOSA-SQP algorithm

and artificial bee colony in MO-ABC/DE. The MOnDE

algorithm showed its capability when optimizing prob-

lems of five objectives as shown in the last three functions

compared with other MODE algorithms. Those functions

are considered the most difficult problems in multi-ob-

jective benchmark problems in general because of their

complex nature with 5 conflicting objectives that resem-

ble sample complicated real-life applications. Hence it

represents a good measure for studying the performance

of any MOEA algorithm. It is clear that the proposed

algorithm (MOnDE) was better than all other MODE

algorithms in those functions with a big difference espe-

cially for F12 which is a round E?02.

5.4.2 Comparison with other MOEAs algorithms

Other recent multi-objective evolutionary algorithms are

also used for comparisons and they are briefly described as

follows:

1. NSGAIILS (Sindhya et al. 2009): The last version of

non-sorting GA, which is hybridized with an achieve-

ment scalarizing function (ASF) as a local search to

approximate pareto front points only.

2. MOEA/D (Zhang et al. 2009a, b): Multi-Objective

Evolutionary Algorithm based on decomposition.

Table 3 Average CPU time for

each test problem over 30

independent runs for MOnDE

algorithm

CPU time in minutes

F1 0.059714

F2 0.071034

F3 0.086264

F4 0.069011

F5 0.06485

F6 0.066488

F7 0.058705

F8 0.098333

F9 0.080461

F10 0.074511

F11 0.152905

F12 0.271422

F13 4.415561
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They converted the multi-objective problem to a

number of single optimization problems using

Tchebycheff approach.

3. MTS (Tseng and Chen 2009): Multiple trajectory

search for the multi-objective optimization. The

technique consists of three local search methods with

different size of neighborhood regions to generate

foreground and background solutions.

4. ClusteringMOEA (Wang et al. 2009): Clustering

multi-objective evolutionary algorithm based on

orthogonal and uniform design.

5. LiuLiAlgorithm (Liu and Li 2009): Multi-objective

evolutionary algorithm based on determined weight

and sub-regional search.

6. DMOEADD (Liu et al. 2009): Multi-objective evo-

lutionary algorithm based on domain decomposition

to divide the decision variable domain into different

sub-domains.

7. MOPC (Waldock and Corne 2010): Multi-objective

probability collectives. This algorithm uses the prob-

ability collectives to evaluate multi-objective

optimization.

8. MOPC/D (Morgan et al. 2013) A new probability

collectives algorithm for multi-objective optimiza-

tion. This algorithm is an enhanced version of MOPC

which uses decomposition strategies.

9. AMGA (Tiwari et al. 2009): A hybrid archive-based

micro genetic algorithmwith gradient-based optimizer.

10. OMOEAII (Gao et al. 2009): Multi-objective evolu-

tionary algorithm based on orthogonal lower-dimen-

sional crossover and linear breeding operator.

11. SNOVMOGA (Patel et al. 2011): An improved

ranking scheme for selection of parents in multi-

objective genetic algorithm.

The new algorithm (MOnDE) is compared with these

MOEAs as the best performing algorithms from the liter-

ature on the used benchmarks. It is worth noticing that all

the compared algorithms including MODE algorithms used

the same general control parameters which are: number of

function evaluations as 300,000, the size of external

archive is set to 100, 150 and 800 for 2, 3 and 5 objectives-

problems, respectively. And the same true pareto front

have been used for computing IGD values.

The mean values for IGD are presented in Tables 4 and 5.

As shown in the results, there is a clear difference between

MOnDE and all the other algorithms. The MOnDE obtained

the best results for all the functions except for F5. MOnDE

got the second best for this function with a difference equals

to 0.0151 compared to MTS algorithm, which obtained the

first rank when tested using this function. Tables 4 and 5

shows a significant difference in F11, F12, and F13. Those

problems are considered the most difficult problems as

pointed earlier. Referring to those results, one can simply

notice that the proposed algorithm outperformed all MODE

and the other MOEAs algorithms that reported the best

results in the literature on these benchmarks.

The results in Table 5 that the proposed algorithm is able

to generate good solutions near to the true pareto front

solutions in most of the functions. The final approximation

set for F3, F4, and F5 is small, as a result when a solution is

considered as a non-dominated solution, a large number of

weak solutions have been removed from the optimal true

pareto set. The MOnDE algorithm was able to generate

limited number of non-dominated solutions and this reflects

the IGD value for those functions. That explains that our

proposed algorithm is ranked the second in F5 after the MTS

algorithm. F6 follows the same behavior except that F6
consists of two continuous regions as F5.

Table 4 Average IGD value

for a comparison between

MODE algorithms and MOnDE

Fun GDE3 OWMOSaDE DECMOSA-SQP MO-ABC/DE MOnDE

F1 5.34E-03 1.22E-02 7.70E-02 6.32E-03 1.32E-03

F2 1.20E-02 8.10E-03 2.83E-02 6.14E-03 6.37E-03

F3 1.06E-01 1.03E-01 9.35E-02 4.55E-02 4.92E-03

F4 2.65E-02 5.13E-02 3.39E-02 2.90E-02 1.88E-03

F5 3.93E-02 4.30E-01 1.67E-01 2.50E-02 4.00E-02

F6 2.51E-01 1.92E-01 1.26E-01 8.65E-02 9.62E-03

F7 2.52E-02 5.85E-02 2.42E-02 5.61E-02 1.88E-03

F8 2.49E-01 9.45E-02 2.16E-01 1.87E-01 6.09E-03

F9 8.25E-02 9.83E-02 1.41E-01 2.77E-01 3.16E-03

F10 4.33E-01 7.43E-01 3.70E-01 2.93E-01 3.83E-03

F11 2.34E-01 3.95E-01 3.83E-01 N.A 1.20E-02

F12 2.02E?02 7.35E?02 9.43E?02 N.A 8.86E?00

F13 3.21E?00 3.26E?00 1.92E?00 N.A 6.98E-02

The best entries are marked in boldface

N.A not available
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An extensive statistical analysis was added for the pur-

pose of evaluating the statistical significance of observed

performance differences. For an input of n algorithms, this

analysis employs a statistical test procedure to rank the

performance of each compared algorithm. The test high-

lights whether there are statistical significant differences in

the performance ranking of at least one pair of these

compared algorithms. For this purpose, the Friedman test

which is a non-parametric multiple comparison test is used

to test the differences between the 15 compared algorithms

(including MOnDE). Table 6 presents the average rankings

using the Friedman test. The last two rows in Table 6 show

the test-statistic for this test and the corresponding mea-

sured p value, respectively. These p values suggest that

there are significant differences among the compared

algorithms at the 0.05 significance level. Friedman test

assigns the lowest rank to the best performing algorithm.

As it can be seen in this table, the lowest rank score was

obtained by MOnDE (rank = 1.6000) with a clear differ-

ence compared to MTS as the second-best performing

algorithm (rank = 5.5000). Furthermore, a post hoc anal-

ysis is used to inspect which algorithm exhibits significant

variation relative to the MOnDE as a base algorithm.

Table 7 demonstrates the results of the post hoc Holm,

Holland, Rom and Finner tests. Referring to the p value for

each post hoc test with a p value B0.05, there is a statistical

significant difference between the proposed work and all

the other contestant algorithms.
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Table 6 Average ranking of competitor algorithms, achieved by the

Friedman test

Algorithm Ranking

GDE3 8.6500

OWMOSaDE 11.2000

DECMOSA-SQP 10.4000

MO-ABC/DE 6.9000

NSGAIILS 10.8500

MOEA/D 5.6500

MTS 5.5000

ClusteringMOEA 11.3000

LiuLiAlgorithm 7.5000

DMOEADD 5.7500

MOPC 13.4000

MOPC/D 5.7000

AMGA 10.1000

OMOEAII 12.3000

SNOVMOGA 9.2000

MOnDE 1.6000

Statistic 6.5947E?01

p value 2.3371E-08

The best entries are marked in boldface
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5.5 Comparison on the second benchmark test suits

For the sake of having a thorough comparison with the

recent algorithms, we selected the algorithm named: multi-

objective differential evolution based on the summation of

normalized objectives and improved selection method

namely SNOV_IS (Kukkonen and Deb 2006). This algo-

rithm replaces the non-domination sorting with the use of

SNOV method and diversified selection methods. They

used fixed values for F and CR parameters and they set to

0.5 and 0.1, respectively. Since they didn’t mention what

the mutation strategy they used and because they used

different benchmark problems, we were forced to run the

algorithms on their functions in order to get a fair com-

parison. The used problems are the CEC2007 benchmark

(Zhang et al. 2007). Another important performance mea-

sure which was used is the R indicator that can be

expressed as follows:

IR2 ¼
P

k2^ u
�ðk;AÞ � u�ðk;RÞ

j ^ j ð11Þ

where R is a reference set, u* is the maximum value

reached by the utility function u with weight vector k on an

approximation set A. We choose the augmented Tcheby-

cheff function as the utility function. Table 8 shows the

comparison for average R value for 30 independent runs.

The proposed algorithm shows a superior performance in

comparison to all the algorithms that competed in the

CEC2007 benchmark problems but we did not add all their

results from their tables and instead compared our work to

the results from SNOV_IS algorithm which obtained the

first rank in that completion. One can notice that the pro-

posed algorithm shows good performance comparing to

SNOV_IS algorithm for all the functions and this proves

the power of using the normalization in MOnDE algorithm.

6 Conclusion

In this study, we introduce an improved mutation strategy

for Differential Evolution (DE) that is based on the sum-

mation of normalized objective values (SNOV) method for

solving multi-objective optimization problems. ‘‘DE/rand-

to-nbest’’ is used to help getting out of premature conver-

gence and finding new feasible optimal solutions by

choosing the best normalized individual for all the

Table 7 A comparison of

adjusted p values (control

method: MOnDE)

i hypothesis pHolm PHolland PRom PFinner

1 MOPC 0.0033333 0.0034137 0.0035067 0.0034137

2 OMOEAII 0.0035714 0.0036571 0.0037572 0.0068158

3 ClusteringMOEA 0.0038462 0.0039379 0.0040461 0.0102062

4 OWMOSaDE 0.0041667 0.0042653 0.0043832 0.0135851

5 NSGAIILS 0.0045455 0.0046522 0.0047816 0.0169524

6 DECMOSA-SQP 0.0050000 0.0051162 0.0052597 0.0203083

7 AMGA 0.0055556 0.0056830 0.0058439 0.0236527

8 SNOVMOGA 0.0062500 0.0063912 0.0065741 0.0269856

9 GDE3 0.0071429 0.0073008 0.0075128 0.0303072

10 LiuLiAlgorithm 0.0083333 0.0085124 0.0087642 0.0336175

11 MO-ABC/DE 0.0100000 0.0102062 0.0105154 0.0369164

12 DMOEADD 0.0125000 0.0127415 0.0131094 0.0402041

13 MOPC/D 0.0166667 0.0169524 0.0166667 0.0434806

14 MOEA/D 0.0250000 0.0253206 0.0250000 0.0467459

15 MTS 0.0354772 0.0347995 0.0378457 0.0470143

Table 8 Average R value for a comparison between MOnDE and

SNOV_IS algorithms over 30 independent runs

Fun SNOV_IS MOnDE

F1 -1.07E-03 -1.05E-02

F2 1.12E-06 8.42E-07

F3 1.67E-07 5.27E-08

F4 5.95E-04 2.83E-05

F5 1.20E-03 9.53E-04

F6 2.51E-06 4.71E-07

F7 9.21E-05 6.29E-06

F8 1.50E-03 1.51E-05

F9 -2.91E-02 -1.06E-01

F10 -1.03E-02 -6.38E-01

F11 4.72E-07 5.06E-08

F12 1.25E-05 6.83E-07

F13 3.37E-02 5.27E-03

F14 -1.27E-02 -5.37E-01

F15 2.88E-04 6.72E-06

The best entries are marked in boldface
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objectives at the same time to guide the evolution process.

The conflicting objectives might have different value ran-

ges and using un-normalized solution might distort the DE

distribution. For non-domination sorting, we used SNOV

method to fill in the external archive with the best non-

dominated solutions and to overcome the time complexity

that other methods have. Normalization is capable of dis-

carding the bad solutions which cannot locate the optimal

front. The CEC 2009 benchmark suite for multi-objective

optimization was used to test the performance of our

approach. The IGD metric is used to assess the results.

Experimental results indicate that, the proposed algorithm

is better and more powerful than other well-known state-

of-the-art MOEAs algorithms.
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