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Abstract A mobile ad hoc network is a kind of popular

self-configuring network, in which multicast routing under

the quality of service constraints, is a significant challenge.

Many researchers have proved that such problem can be

formulated as a NP-complete problem and proposed some

swarm-based intelligent algorithms to solve the optimal

solution, such as the genetic algorithm (GA), bees algo-

rithm. However, a lower efficiency of local search ability

and weak robustness still limit the computational effec-

tiveness. Aiming to those shortcomings, a new hybrid

algorithm inspired by the self-organization of Physarum, is

proposed in this paper. In our algorithm, an updating

scheme based on Physarum network model (PM) is used

for improving the crossover operator of traditional GAs, in

which the same parts of parent chromosomes are reserved

and the new offspring by the PM is generated. In order to

estimate the effectiveness of our proposed optimized

scheme, some typical genetic algorithms and their updating

algorithms (PMGAs) are compared for solving the multi-

cast routing on four different datasets. The simulation

experiments show that PMGAs are more efficient than

original GAs. More importantly, the PMGAs are more

robustness that is very important for solving the multicast

routing problem. Moreover, a series of parameter analyses

is used to find a set of better setting for realizing the

maximal efficiency of our algorithm.

Keywords Multicast routing � Genetic algorithm �
Physarum network model

1 Introduction

A mobile ad hoc network (MANET) is composed of self-

organizing mobiles in dynamic topology networks. All

nodes cooperatively maintain network connectivity without

the aid of any fixed infrastructure unit. The communication

between two nodes is carried out either directly or with the

help of intermediate nodes which belong to the same net-

work (Wang et al. 2001). Currently, MANETs are very

popular due to the no-restricted mobility and feasible

deployment (Sesay et al. 2004).

Multicasting is one type of services in MANETs (Oli-

veira and Pardalos 2005). With the growing of distributed

multimedia application, the efficient and effective support

of QoS (i.e., Quality of Service) has became more and

more crucial for MANETs. The basic purpose of QoS

routing is to find paths with better QoS. Typical QoS

properties include the end-to-end delay, packet loss prob-

ability, delay jitter, available bandwidth and so on. In

general, these QoS properties can be classified into three

categories: additive metrics (e.g. end-to-end delay), mul-

tiplicative metrics (e.g. packet loss probability), and con-

cave metrics (e.g. available bandwidth) (Yen et al. 2011).

And there is a balance when we design a network archi-

tecture. First, some constraints of QoS have to be taken into

consideration, which make QoS routing more complex than
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a regular one. Second, resource utilization is the most

important metric for the efficiency of a routing network,

which affects both the QoS and occupied resources of a

routing (Wang et al. 2001). Therefore, the key issue in the

design of a network is how to efficiently manage the

resources and meet the requirements of QoS during each

connection.

Routing problems can be divided into the unicast and

multicast routing. The unicast routing is to find a feasible

path between a single source and a single destination.

Meanwhile, the multicast routing aims to find a tree

structure, which is used for efficiently delivering the same

data stream to different destinations in a network simulta-

neously. More importantly, in a QoS routing, some QoS

constrains are added to the entire tree. Thus, the object of

multicast routing problem is to compute a tree structure,

called the multicast tree, which has a minimal communi-

cation resources and meets QoS requirements (Peng and Li

2013). Like many other networks designs, the updating rule

of ‘‘choosing the best’’ strategy has a detrimental impact on

the outcome (Wang et al. 2012). Thereby, an optimization

algorithm is necessary. The QoS multicast routing problem

is also called the steiner tree problem, which is a typical

NP-complete problem (Wang and Crowcroft 1996). It

means this problem cannot be solved optimally with a

polynomial time complexity, which is very crucial for

application in the real world. Therefore, providing QoS

guarantees for data traffic and minimizing the cost of whole

network on multicast routing are significant challenges.

As the QoS multicast routing problem has draw more

and more attentions, many researchers have used different

methods to solve this problem. Ratnasamy et al. (2006)

have tried to modify the existing algorithms to satisfy QoS

constraints by best effort forwarding. But these algorithms

cannot guarantee a multicast tree for QoS constraints.

Some researchers have used swarm intelligence algorithms

to solve this problem, such as genetic algorithms (GA)

(Peng and Li 2013; Hwang et al. 2000), bee life-based

algorithms (Salim and Abdelhamid 2013). Those algo-

rithms first analyze the fitness of tree structures based on

the whole network topology, and then optimize those tree

structures by some meta-heuristic operators. But a weak

robustness and low efficiency of local search still limit the

performances of those algorithms.

Recently, more and more researchers focus on the self-

organization capability of a species of plasmodium, which

is a ‘vegetative’ phase of Physarum. This plasmodium

shows an amazing intelligence in foraging, which can

produce a robust protoplasmic network for connecting food

sources in order to deliver nutrients to all its body effec-

tively (Nakagaki et al. 2000). Moreover, biological

experiments have shown that the plasmodium has the

ability to form a self-adaptive and high efficient network

without central control mechanism (Adamatzky 2009). The

self-organization of Physarum is what MANETs need.

Taking the self-organization capability of Physarum, a new

crossover scheme is proposed in this paper. Based on the

multi-constrained genetic algorithmic approaches, we aim

to optimize the cost and QoS property metrics simultane-

ously. Utilizing Physarum model, our proposed scheme can

enhance the robustness and local search ability of genetic

algorithms. Simulation results demonstrate that the pro-

posed scheme improves the efficiency and robustness of

genetic algorithms.

The organization of this paper is as follows. Sect. 2

introduces the related work including the formulation of

multicast routing problem, some typical genetic algorithms

and the original Physarum network model. Section 3 pro-

poses the hybrid algorithm through optimizing traditional

crossover schemes of genetical algorithms based on the

Physarum network model. Section 4 provides some

experiments to estimate the effectiveness of proposed

hybrid algorithm and analyzes the parameters of modified

Physarum network model. Finally, Sect. 5 concludes this

paper.

2 Related work

Section 2.1 first formulates the multicast routing problem.

And Sect. 2.2 describes the basic idea of traditional algo-

rithms and genetic algorithms for the multicast routing

problem. Sect. 2.3 presents the main mechanism of original

Physarum networks model.

2.1 Formulation of multicast routing problem

A network is usually represented as an undirected graph

G ¼ ðV;EÞ, where V ¼ fv1; v2; . . .; vng denotes a set of

nodes representing routers or switches and E ¼ feij ¼
ðvi; vjÞjvi; vj 2 V; i 6¼ jg denotes a set of edges representing

physical or logical connectivity between nodes. In a mul-

ticast routing, there are a source node and destination

nodes. Let a node s 2 V stand for the source and a set

DE � V � fsg represent the set of destinations. And then a

multicast tree can be denoted as T(s, DE), which is a

connected sub-graph of G and covers node s and every

node in DE. The path from a node s to any destination node

d 2 DE is denoted as pTðs; dÞ. And the object of multicast

routing problem is to find a T(s, DE) with a minimal cost,

which has a set of paths with acceptable QoS metrics.

As introduced in Sect. 1, QoS metrics can be classified

into three categories, i.e., additive metrics, multiplicative

metrics and concave metrics. And additive and multi-

plicative metrics can be deal with in the same way in our
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algorithm. For simplifying the QoS routing problem, we

focus on additive metrics (e.g. end-to-end delay) and

concave metrics (e.g. available bandwidth). Furthermore,

the cost is the most important property for the effectiveness

of a routing, thus our research focuses on the bandwidth-

delay constrained least-cost multicast routing problem.

The delay of a path from a node s to any destination d in

DE, denoted by delayðpTðs; dÞÞ, is defined as the sum of

delays in the pTðs; dÞ, i.e., delayðpTðs; dÞÞ ¼
P

e2pT ðs;dÞ
delayðeÞ. Meanwhile, the bandwidth of a path from a

node s to any destination node d in DE, denoted by

band widthðpTðs; dÞÞ, is defined as the minimum of

bandwidth along the path, i.e., bandwidthðpTðs; dÞÞ ¼
minfbandwidthðeÞje 2 pTðs; dÞg. And, according to existing
studies in Hwang et al. (2000); Lu and Zhu 2013), we unify the

cost of a multicast tree as the sum of costs in the tree, i.e.,

costðTÞ ¼
P

e2T costðeÞ, for comparing the effectiveness of

different GAs. Moreover, the delay and bandwidth of a multi-

cast tree T are defined as Eqs. (1) and (2), respectively.

delayðTðs;DEÞÞ ¼maxfdelayðpTðs; dÞÞjd 2 DEg ð1Þ

bandwidthðTðs;DEÞÞ ¼minfbandwidthðpTðs; dÞÞjd 2 DEg
ð2Þ

Let Dd be the upper bound of delay constraint and Db be

the lower bound of bandwidth constraint for every path. And

the bandwidth-delay constrained least-cost multicast routing

problem is defined as Eq. (3). We aim to minimize the cost

under the condition of bandwidth-delay constraints.

min costðTÞ
st:

delayðTÞ�Dd

bandwidthðTÞ�Db

�
ð3Þ

2.2 Algorithms for solving the multicast routing

problem

There are two main approaches, namely, exact methods

and heuristics, for solving the QoS multicast routing

problem. Exact methods are usually based on mathematical

programming, among which the dynamic programming

(Chow 1991) and branch-and-bound (Salama et al. 1997)

are the two most prevailing exact methods for QoS mul-

ticast routing. However, due to the high computational

complexity, those exact methods are only viable for small-

scale problems (Yin et al. 2014). With the development of

networks, heuristics are the mostly approaches for the QoS

multicast routing problem.

Capturing the features of genetic evolution, GA is a

powerful tool for solving NP-complete problems. By set-

ting an appropriate maximal iterative steps of GA, an

approximate optimal solution can be obtained within a

reasonable time. In genetic algorithms, candidate solutions

are coded as chromosomes. Moreover, the idea of natural

selection and genetic operators, such as the crossover and

mutation, are employed for searching better chromosomes.

Many researchers have applied GAs to solve the multicast

routing problem with various coding and genetic operators

(Peng and Li 2013; Hwang et al. 2000; Lu and Zhu 2013;

Karthikeyan and Baskar 2015; Mahmoud et al. 2014). In

the following, we will take some typical genetic algorithms

[i.e., GAMRA (Hwang et al. 2000), EEGA (Lu and Zhu

2013), ISGSA (Zhang et al. 2009)] as examples to describe

the solving process of different genetic algorithms for the

multicast routing problem.

To deal with the end-to-end delay constraint, Hwang

et al. (2000) have proposed an optimized GA, denoted as

GAMRA, where a routing table that stores some paths with

acceptable delays, has to be constructed first. But con-

structing such a routing table needs a lot of time. And the

crossover operator of GAMRA is a classical two-point

crossover, which leads to a weak robustness and lower

convergence rate. Wang et al. (2001) have proposed that it

is helpful to reserve the same links of two parent chro-

mosomes for the convergence of genetic algorithm. And

GAISA (Zhang et al. 2009) and EEGA (Lu and Zhu 2013)

have applied this idea to optimizing their crossover oper-

ators. Because the same links of parent chromosomes may

be in some separated connected components, different

schemes have been proposed to reconnect those connected

components, in GAISA and EEGA. For GAISA, the

reconnection is building a random path from destination

nodes, which are separated with the source node, to the

connected component including the source node. And for

EEGA, two separated components are reconnected by the

least-delay path. Although different genetic algorithms

have been proposed to solve the multicast routing problem,

weak robustness and a lower efficiency of local search

capability still limit the performances of genetic algo-

rithms. And making use of knowledge of experts or data,

mathematic models are valid methods for improve perfor-

mances of algorithms (Yu et al. 2011, 2014, 2015).

In order to compare the effectiveness and robustness

of different algorithms, some measurements are defined

as follows. Smin, Saverage and Svariance stand for the mini-

mum, average, and variance of results, respectively.

Results are all based on C times repeated computations

in order to wipe off the computational fluctuation. For

example, Smin is calculated as minfSi;stepsðkÞ; i ¼ 1; 2;

. . .;Cg, where Si;stepsðkÞ represents the optimal solution of

the multicast routing problem in the k step for the ith

time computation.
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2.3 Original Physarum model

Physarum has shown an amazing intelligent and self-or-

ganization capability. For example, Tero et al. have

reported that Physarum is cultivated to simulate the Tokyo

rail system on a substrate (Tero et al. 2010). And the net-

work generated by Physarum has a strong robustness, great

fault tolerance and high transport effectiveness on the

transportation (Watanabe et al. 2011). And Nakegaki et al.

have shown that Physarum has the ability to find the

minimum-length solution between two points in a maze

(Nakagaki et al. 2000).

The Physarum network model is inspired by the maze-

solving experiment (Nakagaki et al. 2000). Tero et al. have

captured the positive feedback mechanism of Physarum in

foraging, and built the Physarum network model (PM)

(Tero et al. 2007). In addition, The model, designed for

solving maze problems, has been used for the network

design (Liu et al. 2013) and complex problems solving

(Liu et al. 2014). Moreover, this model can be used for

building multicast trees in our study.

The main idea of Physarum network model is summa-

rized as follows. We assume the edges of a network are

pipelines with fluid inside. Qij and Dij stand for the flux and

conductivity of a pipeline respectively, which connects

nodes i and j. When the conductivity of a pipeline is

enhancing, the flux in the pipeline will be enhanced cor-

respondingly, vice versa.

In detail, we use a node s and a set DE to present the

inlet and outlets of flux respectively. According to the

Kirchhoff0s law, the flux of input at the node s is equal to

the total flux of output at all noes in DE. And, at any other

nodes, the sum of flux flowing in is equal to the sum of flux

flowing out. This process can be represented in Eq. (4)

where N stands for the cardinality of set DE.

X

i

Qij ¼
I0 � ðN � 1Þ; j ¼¼ s

�I0; j 2 DE

0; others

8
><

>:
ð4Þ

In each iterative step, Qij and pi can be calculated

according to Poiseuille0s law based on Eqs. (4) and (5),

where Lij represents the length of pipeline contacting nodes

i and j, and pi represents the pressure of node i. Equa-

tion (6) is called adapted equation. As the iteration going

on, the conductivities of pipelines adapt to the flux based

on Eq. (6). Then, the conductivities will feed back to the

flux based on Eq. (5) at the next iterative step. Two typical

functions of f(Q) are shown in Eqs. (7) and (8) based on

Tero et al. 2007.

Qij ¼
Dij

Lij
jpi � pjj ð5Þ

dDij

dt
¼f ðjQijjÞ � Dij ð6Þ

f ðQÞ ¼Qu; u[ 0 ð7Þ

f ðQÞ ¼ ð1þ aÞQu

1þ aQu
; u[ 1; a[ 0 ð8Þ

After above processes, an iterative step is completed.

This process will continue a loop iteration until the ter-

minal condition is satisfied. After the loop iteration, based

on the positive feedback mechanism between the conduc-

tivity and flux, critical pipelines will be reserved, and

others will disappear. Finally, we obtain a Physarum

spanning tree.

3 Genetic algorithm for the multicast routing
problem

In this section, a modified physarum networks model is

proposed in Sect. 3.1 first. And then, Sect. 3.2 introduces a

new crossover scheme based on PM for the multicast

routing problem. Finally, Sect. 3.3 presents the genetic

algorithms with the proposed crossover scheme.

3.1 A modified Physarum networks model

for multicast routing problem

In the original Physarum model, an equation system should

be solved by the Gaussian elimination at every iterative

step in the original Physarum model, i.e., each iteration

runs in OðN3Þ. Assuming the maximal iteration of Phy-

sarum model is G. For an iterative algorithm, an overall

computational complexity, OðG� N3Þ, is too high. In Liu

et al. (2015), an approximate expression of pi is derived as

Eq. (9) to reduce the computational complexity.

pi
tþ1 ¼

I0 þ
P

j

Dij

Lij
ðpjtÞ

P
j

Dij

Lij

; vi 2 DE

0; vi ¼¼ s
P

j

Dij

Lij
ðpjtÞ

P
j

Dij

Lij

; otherwise

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð9Þ

But in our numerical experiments, the pressures calcu-

lated by Eq. (9) fluctuate violently and cannot converge

sometimes. Based on Eqs. (9), (10) is used to eliminate the

fluctuation of pressures, where k controls the fluctuations

of pressures and conductivities.

88 M. Liang et al.

123



pi
tþ1 ¼

I0 þ
P

j

Dij

Lij
ðpjtÞ

P
j

Dij

Lij

� kþ ð1� kÞ � pit; vi 2 DE

0; vi ¼¼ s
P

j

Dij

Lij
ðpjtÞ

P
j

Dij

Lij

� kþ ð1� kÞ � pit; otherwise

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð10Þ

And the adapted equation in our paper is represented in

Eq. (11), where k is a parameter relative to the amplitude

of conductivities in the Physarum network.

Dij
tþ1 ¼

Dt
ij þ Qt

ij

k
ð11Þ

Based on Eqs. (5) and (10), the adapted equation is

equivalent to Eq. (12). And Eqs. (4) and (5) in the original

Physarum networks model do not have to be solved.

Dtþ1
ij ¼

LijD
t
ij þ Dt

ijjpti � ptjj
k

ð12Þ

By setting more than one destination node, i.e., jDEj[ 1,

thePhysarum networkmodel can find the shortest paths from

the source node to every destination node in DE simultane-

ously. Therefore, in the multicast routing problem, PM can

be used for building multicast trees. The detailed description

of modified Physarum network model for the shortest path

tree is shown in Algorithm 1.

3.2 A new crossover scheme based on PM for mul-

ticast routing problems

Generally speaking, there are two main genetic operators in

a genetic algorithm. The first is the crossover operator and

the other is the mutation operator. These two genetic

operators allow genetic algorithms to search for the global

optimum based on an evolutionary process. In an evolution

process, the crossover operator is the main way by which

chromosomes exchange informations. And the major

purpose of mutation operator is to help algorithms avoid

falling into the local optimum. Thereby the crossover

operator plays a key role in searching better chromosomes.

In the crossover operator, two chromosomes with greater

fitness values are selected from the chromosomes pool as

parent chromosomes. And the crossover operator combines

these genes in the parent chromosomes into new ones. In

other words, it is one of genetic operators in which the

genotypes of two selected parent chromosomes are merged

to generate new offsprings. The new offsprings will be put

back into the chromosomes pool. Furthermore, the muta-

tion operator is one kind of random change of genes in

chromosomes. The mutation operator aims to extend the

search range and reduce the possibility of falling into the

local optimum. Through these operators, new offsprings

with a higher fitness will be produced.

For overcoming the shortcomings of GAs, a universal

scheme is proposed for optimizing the crossover operator

of GAs, taking advantages of PM. The new crossover

operator is called PMcrossover. And the novel hybrid

algorithms with PMcrossover (denoted as PMGAs) are

used for solving the multicast routing problem. The main

idea of PMcrossover is to reserve the common links

between parent chromosomes and integrate the offspring

by PM based on the reserved links. Other parts of PMGAs

are same as the original ones. An example of crossover

process is shown in Fig. 1. The details of PMcrossover are

described as follows.

First, for utilizing PM, a new graph, denoted as NG,

needs to be created with the same topological structure as

the network graph in the multicast routing problem.

Because GAs may generate some unadaptable chromo-

somes, which do not satisfy the constraints. There are two

strategies to fit for different GAs. For the GAs, which do

not generate unadaptable chromosomes, such as GAMRA

(Hwang et al. 2000), Lij in NG is set equating to the delay

of eij. For others, such as EEGA (Lu and Zhu 2013),

ISGSA (Zhang et al. 2009), Lij in NG is set equating to the

product of cost and delay of eij.

And then, PMcrossover selects the same links of parent

chromosomes and reserves them in the offspring chromo-

somes. According to the definition of fitness function, the

selected parent chromosomes with higher fitness values are

more likely to satisfy the constraints and have lower costs.

Therefore, it is helpful to reserve the same links of two parent

chromosomes for the convergence of algorithms. Because

these same links may be in some separated sub-trees, PM is

used to transform these sub-trees into a multicast tree. In

order to reserve the same links in PM model, the length of

reserved links is set to 0 inNG. And then, inputting the graph

NG, source and destinations into PM, a complete multicast

A new genetic algorithm based on modified Physarum network model for bandwidth-delay... 89
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tree will be constructed. Algorithm 2 describes detailed steps

of PMcrossover operator in PMGAs.

3.3 Genetic algorithms with PMcrossover operator

In order to decrease the searching space and improve the

effectiveness of genetic algorithms. A refining operator is

employed to deal with the bandwidth constraint (Wang

et al. 2001). The links with a bandwidth less than the QoS

requirement will be removed by the refining operator. On

the one hand, if the source and all destinations are not in a

connected component in a refined graph, all paths in a

network cannot satisfy the bandwidth constraint, which

means the bandwidth constraint should be relaxed. On the

other hand, if the source node and all destination nodes are

in a connected component, the paths in a refined graph

must satisfy the bandwidth constraint. The flow chart of

typical genetic algorithms with the PMcrossover and

refining operator is shown in Fig. 2.

Figure 2 shows that the new proposed PMcrossover

scheme only changes the crossover part of original genetic

algorithms. As mentioned above, different genetic algo-

rithms have different crossover operators. For verifying the

universality of our proposed crossover scheme, we inte-

grate PMcrossover into three different genetic algorithms

[i.e., GAMRA (Hwang et al. 2000), EEGA (citeal-

t2Lu2013) ISGSA (Zhang et al. 2009)] and estimate the

efficiency in the next section.

4 Experiments

Section 4.1 introduces the datasets used in this paper. And

Sect. 4.2 shows and analyzes the results of different algo-

rithms on these datasets. Parameters analysis is shown in

Sect. 4.3, for a better performance. Finally, Sect. 4.4

reports the complexity analysis of PMcrossover.

4.1 Datasets

In order to estimate the effectiveness of PMcrossover

scheme, we implement GAMRA, EEGA, ISGSA and their

(a) (b)

(c)

Fig. 1 An example of PMcrossover operation. The numbers in edges

denote cost and delay respectively. a, b are selected as parent

chromosomes. And the common links of selected parent chromo-

somes are reserved in the offspring chromosome as shown in (c). But
the source and destination nodes are not in a connected component

with reserved links only. Therefore, Physarum model builds the

necessary links to reconnect source and destination. a Parent chro-

mosome A. b Parent chromosome B. c A new offspring which is

generated by parent chromosomes A and B based on PMcrossover

nodes
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updating algorithms on four datasets. The first dataset

(denoted as D1) is a 20-node random graph which is

constructed based on Hwang et al. (2000). In D1, costs and

delays of links are uniformly distributed between 0.3 and 1.

The second (denoted as D2) is shown in Fig. 1, which is

cited from Lu and Zhu (2013). For verifying the scalability

of PMcrossover scheme, the third dataset (denoted as D3)

is adopted. D3 is a synthetic graph generated by the Salama

graph generator (Salama 1996), where there are 50 nodes

and costs of links are generated between 3 and 10. More-

over, for comparing with other meta-heuristic algorithms,

we implement EEGA, ISGSA and their updated algorithms

on the fourth dataset (denoted as D4), which is came from

Salim and Abdelhamid (2013) and constructed by the

network simulator1. The details and thresholds of D1, D2,

D3 and D4 are shown in the ‘‘Appendix’’.

All experiments are under the same environment, i.e., all

parameters of PMGAs are same as these of original GAs.

And the results on D1, D2 and D3 in our experiments are

based on 50 repeated experiments in order to wipe off the

computational fluctuation. For comparing with the algo-

rithms in Salim and Abdelhamid (2013), some results on

D4 are based on ten repeated experiments.

4.2 Experimental analyze

Figure 3 reports the Smin, Saverage and Svariance of results

calculated by PM-GAMRA and original GAMRA (Hwang

et al. 2000) on D1. Although these two GAs can find

approximate optimal solutions, Smin and Saverage of PM-

GAMRA are less than that of original GAMRA, which

means that PM-GAMRA has a stronger ability to exploit

the optimal solution. Moreover, Svariance of PM-GAMRA is

less than that of GAMRA, which shows that the PM-

GAMRA has a stronger robustness.

As EEGA and ISGSA may generate unadaptable solu-

tions in the evolution, we compare the costs and delays of

results simultaneously. Figure 4a, b show Smin, Saverage and

Svariance of costs and delays respectively, where Smin,

Saverage and Svariance of PM-EEGA and PM-ISGSA are less

than those of EEGA and ISGSA in both costs and delays.

These results show that the PMcrossover scheme can

strength the searching ability for finding the optimal solu-

tion and improve the robustness of original GAs.

In order to further verify the accuracy and robustness of

PMGAs, Figs. 5 and 6 plot averages and variances of costs

and delays with the increment of generations in the con-

vergent process. Results show that the averages and vari-

ances of PM-EEGA and PM-ISGSA decrease more

obviously than those of EEGA and ISGSA. In detail, in the

earlier iteration, there is slight difference between averages

of PMGAs and GAs. The initial delays of PM-EEGA and

PM-ISGSA are even higher than those of EEGA and

ISGSA. With the increment of generations, the averages of

PM-EEGA and PM-ISGSA are less than that of EEGA and

ISGSA. PM-EEGA and PM-ISGSA exhibit a better accu-

racy. Furthermore, the variances of PM-EEGA and PM-

ISGSA are also less than those of EEGA and ISGSA,

which indicates that PM-EEGA and PM-ISGSA have much

stronger robustness.

To demonstrate the scalability of PMcrossover scheme,

we implement four GAs (i.e., EEGA, PM-EEGA, ISGSA,

PM-ISGSA) on D3 with the same parameters setting. For a

better performance, parameters are set based on Table 1.

Figure 7 shows that Smin and Saverage of PM-GAMRA, PM-

EEGA, PM-ISGSA are all less than that of original ones.

Furthermore, Svariance of PM-GAMRA and PM-ISGSA are

less than half those of GAMRA and ISGSA. Although

Svariance of PM-EEGA is higher than that of EEGA, the

difference is too slight to have an effect on the performance

of algorithms. These results indicate that GAs with

PMcrossover exhibit more stronger ability to find optimal

solutions. And PMcrossover scheme still work well when

the scale of problem is increasing.

For further verifying the effectiveness of proposed

scheme and comparing with other meta-heuristic
1 http://www.isi.edu/nsnam/ns/.

Fig. 2 The flow chart of typical PMGAs
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algorithms, we implement EEGA, ISGSA and their

updated algorithms on D4 and add a new constraint on

jitter, which is also a typical QoS property. In this paper,

the jitter of a path (denoted as jitterðpTðs; dÞÞ) and the

jitter of a tree (denoted as jitter(T)) are defined as

Eqs. (13) and (14) respectively. Some meta-heuristic

algorithms (i.e., BLA (bees life-based algorithm) (Salim

and Abdelhamid 2013), BA (bees algorithm) (Pham et al.

2006), MBO (marriage in honey bees optimization algo-

rithm) (Abbass 2001) are used to compare the efficiency

with our proposed methods. And the fitness values of

those algorithms (as listed in Fig. 8a) are extracted from

Salim and Abdelhamid (2013) directly. Moreover, the

fitness and property values in Table 2 are calculated based

on D4 and topological structures of best results shown in

Salim and Abdelhamid (2013), which are generated by

those algorithms.

jitterðpTðs; dÞÞ ¼
X

e2pT
jitterðeÞ ð13Þ

jitterðTÞ ¼maxfjitterðpTðs; dÞÞjd 2 DEg ð14Þ

f ðTÞ ¼w1fcðTÞ þ w2fdðTÞ þ w3fjðTÞ þ w4fbðTÞ ð15Þ

As the fitness function is an important part of GA, we

retain the original fitness functions, when algorithms run,

and calculate new fitness values based on Eq. (14) for a fair

comparison. In Eq. (14), fcðTÞ, fdðTÞ, fjðTÞ and fbðTÞ stand
for the cost, delay, jitter, bandwidth of a multicast tree T,

respectively. Meanwhile, wi represents the objective

weighting coefficient. The objective weighting coefficients

Fig. 3 Comparing costs of results of PM-GAMRA and GAMRA on

D1. a, b report the average, minimum and variance of cost,

respectively. Compared with GAMRA, PM-GAMRA shows a better

search ability and a stronger robustness

Fig. 4 Comparing results of

GAs and PMGAs on D2. a,
b report the cost and delay

comparisons, respectively.

Compared with GAs, PMGAs

can find better solutions with

stronger robustness

Fig. 5 The averages of delays

and costs calculated by GAs and

PMGAs on D2 are plotted in (a,
b) respectively. Results show
that delay and cost averages of

PMGs have a higher descent

rate than those of GAs
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and thresholds of constraints are set based on Salim and

Abdelhamid (2013).

Table 2 lists the fitness value, cost, delay, jitter and

bandwidth of the best multicast trees generated by different

algorithms. As shown in Table 2, BLA, EEGA and PM-

EEGA converge to the multicast tree with the lowest cost.

Meanwhile, ISGAS and PM-ISGAS converge to the mul-

ticast tree with the lowest fitness value.

To further compare the efficiencies of those algorithms,

the averages and variances of fitness values, which are

generated by 10 repeated experiments, are calculated and

shown in Fig. 8a, b respectively. Although the averages of

EEGA and ISGSA are close to those of their updated

algorithms, variances of EEGA, ISGSA and those of their

updated algorithms have a significant difference. As shown

in Fig. 8b, variances of PM-EEGA and PM-ISGSA are

much lower than those of EEGA and ISGSA. It means

PMcrossover still can enhance the robustness of original

algorithms, when the original algorithms can find optimal

solutions.

4.3 Parameters analysis

As mentioned in Sect. 3.1, there are two parameters, k and

k, which affect the amplitude of conductivities in the

Physarum network. In order to further analyze the con-

vergence rate of Physarum model, we run this model with

different k and k values. Because the computational time is

affected by computing environments which are hard to be

fully controlled, we use iterative steps instead of compu-

tational time to compare the convergence rate. We remark

the iterative steps with different k and k values on D2 and

D3. The iterative steps are recorded when the terminal

condition is satisfied. In this paper, the terminal condition

is that iterative steps beyond the maximal iterative steps or

Eq. (16) is satisfied (Zhang et al. 2014), where Dij
t stands

for Dij at iterative step t. And the maximal iterative steps

are set as 10000 and 50000 when the model runs on D2 and

D3 respectively.

MaxfjDt
ij � Dt�1

ijjj8i; jg\10�6 ð16Þ

As shown in Fig. 9, iterative steps of Physarum model

are more sensitive to k rather than k. The relationship

between k and iterative steps is simple. The higher k is, the

lower iterative steps are. But if k is too high, conductivities

in the Physarum networks will fall sharply, which may lead

to the disappearance of some crucial links. For the

parameter k, 0.l is a special value. When k is equal to 0.1,

iterative steps reach the maximal iterative steps, except

when k is equal to 1.2. It means, in most situations, the

Fig. 6 The variances of delays

and costs calculated by GAs and

PMGAs on D2 are plotted in (a,
b), respectively. Results
indicate that PMGAs have a

lower variances than those of

GAs, which means that PMGAs

have a stronger robustness

Table 1 Parameters setting of GAs

Parameter Explanation Value

PS The popular size of generations 64

MG Maximal generation 50

pc Crossover probability 1

pm Mutation probability 0.3

NR The number of routs in the routing table 100

Fig. 7 Comparison costs of results on D3. Results show that

PMcrossover can reduce the average cost of results and enhance the

robustness of GAs
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Physarum model cannot converge when the iterative steps

reach the maximal iterative steps. As shown in Fig. 9a, the

higher k is, the higher iterative steps are. But in Fig. 9b,

iterative steps have a decline at the final stage with the

increment of k. And the reason of this decline is that k is

too high, which results in slight amplitudes of conductiv-

ities. Thereby some redundant links have not been cut,

when Eq. (16) is satisfied.

Comparing iterative steps between Fig. 9a, b, the aver-

age of iterative steps arises from 3348.7 to 13963, but the

minimum of iterative steps just arises from 1669 to 1726.

Although the average of iterative steps has a significant

rise, the minimum of iterative steps rises slightly. These

results suggest the modified Physarum model with a better

parameters setting has a good ability to adapt to the

increment of problem scales.

4.4 Complexity analysis of PMcrossover

Computational complexities of GAs with different coding

schemes and genetic operators are hardly described uni-

formly. Hence, we just focus on the computational com-

plexities of crossover operators. For a comparison, we

analyze the crossover operators of EEGA, GAMRA,

ISGSA and PMcrossover. All experiments are imple-

mented on Matlab 2012b, with Pentium(R) Dual-Core CPU

E5700 and 1.8 GB RAM.

• PMcrossover: Let N, E be the numbers of nodes and

edges in a network respectively, and IT be the iterative

steps of Physarum model. First, PMcrossover spends

O(E) time units on selecting common links between

parent chromosomes. In the iterative stage, O(N) time

units are used for calculating the pressure at every node

Fig. 8 The averages and

variances of fitness calculated

by different algorithms on D4

are plotted in (a, b) respectively.
The average fitness values of

GAs and PMGAs are lower than

those of other algorithms. And

the gap between variances of

PMGAs and GAs is significant

Table 2 Fitness and property

values of best results generated

by different algorithms on D4.

The best values of properties

are emphasized by boldtype

Algorithms BLA BA MBO EEGA PM-EEGA ISGSA PM-ISGSA

Fitness 18905.29 20266.64 18987.34 18905.29 18905.29 18822.64 18822.64

Cost 1740.38 1876.53 1762.65 1740.38 1740.38 1746.19 1746.19

Delay 616.34 616.13 493.14 616.34 616.34 493.14 493.14

Jitter 8.75 8.75 7.00 8.75 8.75 7.00 7.00

Bandwidth 797.54 797.65 797.57 797.54 797.54 797.54 797.54

Fig. 9 Iterative steps of

physarum model with different

k and k. Based on those results,

best parameters setting of

Physarum model can be

obtained. a, b report the

iterative steps of physarum

model with the increment of k
under different k value on D2

and D3 respectively
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based on Eq. (10). After that, O(E) time units are spent

on calculating the conductivities of links based on

Eq. (12). And then PMcrossover goes to the next

iteration. Thereby the total computational complexity

of PMcrossover is represented in Eq. (17).

OðEÞ þ OðIT � ðE þ NÞÞ ¼ OðIT � ðE þ NÞÞ ð17Þ

• The crossover operator of GAMRA: Let L be the

number of destinations. First, two chromosomes with

larger fitness values are picked. After that, O(1) time

units are used for selecting star and end points of

portion to be exchanged. And then changing the

selected portion between two chromosomes spends at

most O(L) time units. Thereby the complexity of such

crossover operator is measured by Eq. (18).

Oð1Þ þ OðLÞ ¼ OðLÞ ð18Þ

• The crossover operator of ISGSA: There are three

steps in the processing of crossover operator. First,

operator reserves the same links of parent chromo-

somes, which spends O(E) time units. And then,

operator adds links randomly from destinations, which

are separated by the source node, to the connected

component including the source node. This step needs

at most O(E) time units. In the third step, excrescent

links are deleted, and OðN2Þ time units are spent on the

this step. Thereby the complexity of such crossover

operator is represented by Eq. (19).

OðEÞ þ OðEÞ þ OðN2Þ ¼ OðE þ N2Þ ð19Þ

• The crossover operator of EEGA: The crossover

operator of EEGA also spends O(E) time units on

selecting the common links between parent chromo-

somes. We assume that there are S sub-trees with just

the common links between parent chromosomes. And

then at most S� 1 least-delay paths need to be found to

connect these sub-trees. In the worst situation, the

operator needs OðN2Þ time units to find a least-delay

path. Thereby the complexity of such crossover oper-

ator is represented in Eq. (20).

OðEÞ þ OððS� 1Þ � ðN2ÞÞ ð20Þ

Although the crossover operator of GAMRA has the

lowest computational complexity, the GAMRA spends a

lot of time on constructing the routing table. Therefore, it is

less significant to compare GAMRA with others. However,

we present the time complexity of these crossover opera-

tors. The actual situations are more complex. For further

analyzing the computational cost of PMcrossover scheme,

we show the extra computational cost (denoted as ECC)

and the improvement-ratio (denoted as IR) of PMGAs in

the evolutionary process on D2, simultaneously. Based on

definitions in Huang and Lee (2007), the IRi is measured by

Eq. (21), where Siaverage and bSiaverage stand for the average

cost of results at the ith generation of GAs and their

updating algorithms respectively. And the ECCi is defined

as Eq. (22), where Sitime and bSitime represent for computa-

tional cost which GAs and PMGAs spend on the ith gen-

eration respectively. And the computational cost is defined

as the time spending on computation in scends.

IRi ¼
ðSiaverage � bSiaverageÞ

Siaverage
ð21Þ

ECCi ¼bSitime � Sitime ð22Þ

Figure 10 shows the IR and ECC of PM-EEGA and PM-

ISGSA on D2, respectively. ECC values of PM-ISGSA and

PM-EEGA both are higher at the initial stage and then

show a downtrend. Meanwhile, IR values of PM-ISGSA

and PM-EEGA also have a rise at the initial stage. The

main difference between PM-ISGSA and PM-EEGA is the

decline rate of IR with the increment of generations. In

Fig. 10 The dynamic changes of IR and ECC. a, b show the ECC and

IR of PM-EEGA and PM-ISGSA on D2 respectively. ECC values of

PM-ISGSA and PM-EEGA both descent with the increment of

generations. Comparing with IR of PM-EEGA, IR of PM-ISGSA

declines quickly with the increment of generations. Results suggest

the efficiency of PMGAs has the significant improvement for GAs
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detail, IR of PM-EEGA descends slightly while IR of PM-

ISGSA descends rapidly. At the final stage, IR of PM-

EEGA is still higher while IR of PM-ISGSA is not so

remarkable, compared with the initial stage. Because

PMGAs can find the optimal solution with a fewer gener-

ations, their computational costs can be reduced by setting

a lower maximal generation. Based on above observations,

we can conclude that PMcrossover has the significant

improvement for GAs.

5 Conclusion

Inspired by Physarum polycephalum forming an optimized

network in foraging food sources, a genetic algorithm

based on the modified Physarum network was proposed to

solve the multicast routing NP-complete problem. In the

proposed PMGA, a new crossover operator was presented,

which can improve the effectiveness of GA. Some exper-

iments on four datasets were used to verify the efficiency of

proposed method. Moreover, for further improving the

efficiency of PMGA, the original Physarum network model

is modified by simplifying the calculation of pressures in

Physarum networks. Furthermore, parameters analyses

indicate that the modified Physarum model with a better

parameters setting has a better scalability.
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Appendix

D1 = {(number of endpoint, number of endpoint, cost,

delay)| (8, 1, 0.682, 0.853) (10, 1, 0.975, 0.547) (15, 1,

0.860, 0.0305) (17, 1, 0.595, 0.173) (7, 2, 0.820, 0.961) (15,

2, 0.367, 0.744) (4, 3, 0.856, 0.505) (13, 3, 0.758, 0.801)

(14, 3, 0.413, 0.913) (16, 3, 0.648, 0.042) (20, 3, 0.456,

0.617) (5, 4, 0.923, 0.549) (9, 4, 0.404, 0.403) (10, 4, 0.480,

0.188) (19, 5, 0.308, 0.190) (7, 6, 0.484, 0.868) (8, 6, 0.757,

0.075) (16, 6, 0.878, 0.096) (8, 7, 0.579, 0.239) (19, 7,

0.684, 0.460) (10, 8, 0.467, 0.625) (12, 8, 0.334, 0.111) (11,

9, 0.464, 0.622) (13, 9, 0.874, 0.237) (14, 9, 0.310, 0.136)

(20, 9, 0.615, 0.584) (11, 10, 0.950, 0.587) (12, 10, 0.843,

0.408) (13, 10, 0.640, 0.458) (17, 10, 0.655, 0.627) (20, 11,

0.604, 0.906) (13, 12, 0.721, 0.546) (14, 12, 0.797, 0.653)

(19, 12, 0.596, 0.376) (14, 13, 0.462, 0.494) (15, 14, 0.800,

0.028) (18, 15, 0.798, 0.698) (19, 18, 0.999, 0.226)},

Dd ¼ 5:

D2 = {(number of endpoint, number of endpoint, cost,

delay)| (2, 1, 11, 4) (3, 1, 7, 6) (8, 1, 21, 3) (4, 2, 4, 4) (5, 2,

2, 5) (11, 2, 5, 3) (4, 3, 24, 3) (6, 4, 7, 11) (6, 5, 39, 1) (12,

5, 3, 5) (7, 6, 22, 3) (14, 6, 35, 4) (12, 7, 15, 4) (13, 7, 2, 3)

(9, 8, 21, 3) (10, 8, 14, 6) (10, 9, 10, 7) (12, 9, 13, 1) (12,

10, 20, 3) (12, 11, 21, 3) (15, 13, 5, 3) (15, 14, 6, 4)},

Dd ¼ 18:

D3 = {(number of endpoint, number of endpoint, cost,

delay)| (1, 6, 8.197, 0.307) (1, 7, 7.549, 0.367) (1, 11,

4.214, 0.642) (1, 12, 9.743, 0.518) (1, 15, 7.722, 0.655) (2,

5, 5.654, 0.312) (2, 6, 7.986, 0.451) (2, 9, 3.002, 0.3662) (2,

11, 3.935, 0.490) (2, 13, 3.155, 0.583) (3, 4, 9.337, 0.539)

(3, 7, 6.643, 0.421) (3, 8, 4.057, 0.360) (3, 10, 5.365, 0.441)

(4, 8, 7.970, 0.647) (4, 10, 3.572, 0.413) (4, 14, 8.306,

0.398) (5, 9, 9.688, 0.374) (5, 11, 4.029, 0.610) (5, 13,

8.719, 0.387) (6, 7, 7.679, 0.562) (6, 9, 9.061, 0.490) (6, 11,

6.316, 0.346) (6, 12, 6.882, 0.522) (6, 15, 7.190, 0.502) (6,

16, 3.485, 0.612) (7, 8, 6.436, 0.352) (7, 10, 7.347, 0.631)

(7, 12, 7.551, 0.329) (7, 15, 9.843, 0.601) (8, 10, 8.144,

0.291) (8, 12, 6.567, 0.479) (8, 14, 5.807, 0.622) (8, 19,

8.837, 0.631) (8, 22, 8.636, 0.660) (9, 11, 7.803, 0.252) (9,

13, 5.529, 0.315) (9, 15, 5.862, 0.651) (9, 16, 6.463, 0.435)

(9, 18, 5.801, 0.461) (9, 20, 6.337, 0.622) (9, 21, 5.509,

0.645) (10, 14, 7.929, 0.336) (10, 17, 9.245, 0.455) (11, 12,

6.445, 0.608) (11, 13, 9.912, 0.531) (11, 15, 4.762, 0.403)

(11, 16, 4.007, 0.295) (11, 18, 9.952, 0.503) (11, 21, 5.329,

0.470) (11, 23, 9.146, 0.622) (12, 15, 4.351, 0.295) (12, 19,

9.411, 0.373) (12, 21, 4.566, 0.616) (13, 16, 9.953, 0.572)

(13, 18, 6.545, 0.379) (13, 20, 3.090, 0.387) (13, 23, 6.023,

0.638) (14, 17, 9.680, 0.303) (14, 25, 3.959, 0.594) (15, 16,

5.267, 0.371) (15, 19, 9.173, 0.385) (15, 21, 7.194, 0.329)

(15, 27, 5.202, 0.584) (15, 29, 7.961, 0.634) (16, 18, 3.80,

0.332) (16, 20, 8.485, 0.606) (16, 21, 4.405, 0.211) (16, 23,

8.201, 0.348) (16, 27, 4.002, 0.470) (16, 30, 7.739, 0.582)

(17, 22, 9.816, 0.523) (17, 24, 8.302, 0.398) (17, 25, 6.715,

0.334) (17, 32, 4.940, 0.590) (18, 20, 7.453, 0.274) (18, 21,

8.467, 0.471) (18, 23, 9.232, 0.259) (18, 27, 7.068, 0.589)

(18, 28, 8.130, 0.441) (18, 30, 8.697, 0.500) (19, 21, 7.585,

0.531) (19, 22, 7.701, 0.455) (19, 24, 3.276, 0.640) (19, 26,

8.093, 0.360) (19, 27, 3.893, 0.622) (19, 29, 3.688, 0.431)

(19, 31, 7.232, 0.494) (20, 23, 4.357, 0.441) (20, 28, 7.091,

0.345) (20, 30, 9.546, 0.596) (21, 23, 3.220, 0.352) (21, 27,

5.448, 0.293) (21, 29, 5.166, 0.515) (21, 30, 6.833, 0.507)

(21, 33, 8.709, 0.553) (22, 24, 5.198, 0.185) (22, 25, 7.572,

0.602) (22, 26, 6.844, 0.219) (22, 29, 9.269, 0.629) (22, 31,

6.252, 0.445) (22, 32, 3.272, 0.392) (23, 27, 9.829, 0.352)

(23, 28, 6.379, 0.385) (23, 30, 5.975, 0.259) (23, 33, 6.377,

0.500) (23, 35, 7.838, 0.663) (23, 36, 7.603, 0.600) (23, 37,

9.731, 0.613) (24, 25, 3.208, 0.417) (24, 26, 6.701, 0.376)

(24, 31, 7.755, 0.564) (24, 32, 9.647, 0.274) (24, 38, 8.590,

0.638) (25, 32, 5.922, 0.428) (25, 34, 7.025, 0.442) (26, 29,

7.727, 0.413) (26, 31, 5.885, 0.241) (26, 32, 3.088, 0.473)

(26, 40, 9.290, 0.615) (27, 28, 6.010, 0.661) (27, 29, 9.107,
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0.370) (27, 30, 3.222, 0.324) (27, 31, 4.900, 0.651) (27, 33,

9.154, 0.261) (27, 36, 3.054, 0.496) (27, 37, 8.970, 0.656)

(27, 39, 5.462, 0.615) (28, 30, 9.940, 0.363) (28, 35, 5.724,

0.349) (28, 36, 6.793, 0.601) (28, 37, 7.897, 0.445) (28, 41,

8.896, 0.631) (29, 31, 3.070, 0.281) (29, 33, 8.962, 0.434)

(29, 36, 8.669, 0.692) (29, 39, 6.361, 0.491) (29, 40, 6.408,

0.590) (30, 33, 3.811, 0.313) (30, 35, 3.595, 0.498) (30, 36,

9.168, 0.343) (30, 37, 6.422, 0.376) (30, 41, 8.374, 0.637)

(30, 42, 5.428, 0.648) (30, 44, 4.848, 0.694) (31, 32, 8.768,

0.551) (31, 33, 5.957, 0.667) (31, 38, 6.297, 0.617) (31, 39,

3.348, 0.537) (31, 40, 6.643, 0.410) (32, 34, 7.376, 0.464)

(32, 38, 6.803, 0.374) (32, 40, 4.431, 0.637) (32, 43, 5.908,

0.668) (33, 36, 5.626, 0.266) (33, 37, 7.402, 0.491) (33, 39,

7.982, 0.417) (33, 42, 8.390, 0.450) (33, 44, 8.534, 0.627)

(34, 38, 3.360, 0.499) (34, 43, 4.324, 0.456) (35, 36, 5.521,

0.510) (35, 37, 4.452, 0.251) (35, 41, 9.006, 0.305) (35, 44,

9.669, 0.579) (35, 46, 8.093, 0.655) (36, 37, 7.797, 0.263)

(36, 39, 5.230, 0.500) (36, 41, 7.476, 0.458) (36, 42,

3.0563, 0.313) (36, 44, 8.227, 0.379) (36, 49, 4.107, 0.668)

(37, 41, 7.264, 0.260) (37, 42, 3.519, 0.507) (37, 44, 6.914,

0.391) (37, 46, 3.308, 0.631) (38, 40, 6.990, 0.435) (38, 43,

5.081, 0.386) (38, 47, 6.347, 0.561) (38, 48, 7.744, 0.681)

(39, 40, 4.309, 0.419) (39, 42, 5.630, 0.355) (39, 44, 3.077,

0.654) (39, 45, 7.530, 0.497) (39, 50, 8.132, 0.601) (40, 45,

9.557, 0.526) (40, 47, 9.185, 0.574) (41, 42, 6.132, 0.572)

(41, 44, 3.230, 0.319) (41, 46, 6.869, 0.378) (41, 49, 4.788,

0.511) (42, 44, 5.267, 0.300) (42, 45, 6.418, 0.575) (42, 49,

4.340, 0.493) (42, 50, 9.512, 0.429) (43, 47, 3.246, 0.528)

(43, 48, 8.404, 0.316) (44, 46, 7.936, 0.438) (44, 49, 8.298,

0.294) (44, 50, 6.236, 0.513) (45, 47, 3.476, 0.530) (45, 50,

4.900, 0.372) (46, 49, 7.593, 0.364) (47, 48, 7.700, 0.553)

(49, 50, 8.928, 0.423)}, Dd ¼ 5:

D4 = {(number of endpoint, number of endpoint, cost,

delay, jitter, bandwidth)| (1, 2, 229.2, 123.27, 1.751,

797.457) (1, 5, 277.884, 123.312, 1.7516, 797.403) (1, 16,

153.24, 123.205, 1.75, 797.539) (1, 17, 132.163, 123.187,

1.7497, 797.562) (1, 18, 53.8145, 123.12, 1.7487, 797.648)

(1, 19, 168.808, 123.219, 1.7502, 797.522) (2, 3, 215.969,

123.259, 1.7508, 797.471) (2, 4, 267.247, 123.303, 1.7515,

797.415) (2, 5, 63.7104, 123.129, 1.7488, 797.637) (2, 6,

176.894, 123.226, 1.7503, 797.513) (2, 8, 152.6, 123.205,

1.75, 797.54) (2, 9, 239.438, 123.279, 1.7511, 797.446) (2,

11, 202.107, 123.247, 1.7506, 797.486) (2, 12, 266.533,

123.302, 1.7515, 797.416) (2, 16, 126.895, 123.183,

1.7496, 797.568) (2, 18, 197.297, 123.243, 1.7506,

797.491) (3, 5, 260.038, 123.297, 1.7514, 797.423) (3, 6,

63.0259, 123.128, 1.7488, 797.638) (3, 8, 248.496,

123.287, 1.7513, 797.435) (3, 9, 80, 123.143, 1.749,

797.62) (4, 5, 221.549, 123.264, 1.7509, 797.465) (4, 8,

294.157, 123.326, 1.7519, 797.386) (4, 11, 244.492,

123.283, 1.7512, 797.44) (4, 12, 82.8908, 123.145, 1.7491,

797.616) (4, 13, 52.5624, 123.119, 1.7487, 797.65) (4, 16,

224.185, 123.266, 1.7509, 797.462) (5, 6, 210.481,

123.254, 1.7508, 797.477) (5, 8, 116.669, 123.174, 1.7495,

797.579) (5, 9, 266.66, 123.302, 1.7515, 797.416) (5, 11,

144.867, 123.198, 1.7499, 797.549) (5, 12, 208.471,

123.253, 1.7507, 797.479) (5, 13, 255.831, 123.293,

1.7514, 797.427) (5, 16, 147.683, 123.2, 1.7499, 797.545)

(5, 18, 238.255, 123.278, 1.7511, 797.447) (6, 8, 186.141,

123.233, 1.7504, 797.504) (6, 9, 64.9019, 123.13, 1.7488,

797.636) (6, 11, 272.403, 123.307, 1.7516, 797.409) (6, 16,

294.214, 123.326, 1.7519, 797.386) (7, 8, 239.9, 123.279,

1.7511, 797.445) (7, 10, 84.9586, 123.147, 1.7491,

797.614) (7, 11, 221.828, 123.264, 1.7509, 797.464) (8, 9,

219.14, 123.262, 1.7509, 797.468) (8, 10, 280.165,

123.314, 1.7517, 797.401) (8, 11, 86.539, 123.148, 1.7491,

797.612) (8, 12, 248.458, 123.287, 1.7513, 797.435) (8, 16,

263.536, 123.3, 1.7515, 797.419) (10, 11, 235.5, 123.276,

1.7511, 797.449) (11, 12, 182.129, 123.23, 1.7504,

797.508) (11, 13, 250.027, 123.288, 1.7513, 797.434) (11,

16, 284.1, 123.317, 1.7517, 797.397) (12, 13, 68.656,

123.133, 1.7489, 797.632) (12, 16, 262.887, 123.299,

1.7515, 797.419) (13, 14, 264.3, 123.3, 1.7515, 797.418)

(13, 16, 275.18, 123.31, 1.7516, 797.406) (14, 15, 199,

123.244, 1.7506, 797.489) (16, 17, 235.9, 123.276, 1.7511,

797.449) (16, 18, 102.801, 123.162, 1.7493, 797.595) (16,

19, 297.402, 123.329, 1.7519, 797.382) (17, 18, 146.756,

123.2, 1.7499, 797.547) (17, 19, 71.1157, 123.135, 1.7489,

797.629) (17, 20, 261.873, 123.298, 1.7514, 797.421) (18,

19, 200, 123.245, 1.7506, 797.489) (19, 20, 200, 123.245,

1.7506, 797.489)}, Dd ¼ 1200;Db ¼ 797:4;Dj ¼ 17:
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