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Abstract A population-based clustering technique, which

attempts to integrate different particle swarm optimizers

(PSOs) with the famous k-means algorithm, is proposed.

More specifically, six existing extensively studied PSOs,

which have shown promising performance for continuous

optimization, are hybridized separately with Lloyd’s k-

means algorithm, leading to six PSO-based clustering

methods. These PSO-based approaches use different social

communications among neighbors to make some particles

escape from local optima to enhance exploration, while k-

means is utilized to refine the partitioning results for

accelerating convergence. Comparative experiments on 12

synthetic and real-life datasets show that the proposed

population-based clustering technique can obtain better and

more stable solutions than five individual-based counter-

parts in most cases. Further, the effects of four different

population topologies, three kinds of parameter settings,

and two types of initialization methods on the clustering

performance are empirically investigated. Moreover, seven

boundary handling strategies for PSOs are firstly

summarized. Finally, some unexpected conclusions are

drawn from the experiments.

Keywords Population-based clustering technique �
Particle swarm optimization (PSO) � Lloyd’s k-means

1 Introduction

The classical clustering problems as well as diverse clus-

tering techniques have been extensively studied by differ-

ent disciplines such as machine learning, pattern

recognition, data mining, image processing, and so on

(Flynn et al. 1999). Typically, the data clustering problem

that partitions N data points into K mutually exclusive,

nonempty clusters can be modeled as a k-means-type

continuous optimization model where the centroids of

K clusters and cluster indexes of N data points act as inputs

and outputs, respectively. The most commonly used par-

titioning clustering methods (e.g., the most representative

one is k-means Jain 2010 which are sensitive to the initial

seeds), easily get trapped into local optima, in particular

when solving large-scale datasets (Tzortzis and Likas

2014). More effective and robust partitioning algorithms

are urgently required to uncover the hidden patterns and

structures for complex large-sized datasets.

Generally speaking, achieving one exact solution of

large-scale clustering problem is theoretically possible yet

computationally infeasible (Murthy and Chowdhury 1996),

since the total number of feasible solutions increases

exponentially with N and K (Chioua and Lan 2001).

Therefore, a variety of approximate clustering methods

have been designed and investigated. Recently, population-

based clustering techniques, which are regarded as an

important branch of approximate methods, become
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popularity, due to their attractive performance on many

datasets. The advantages of the population-based methods

over the individual-based counterparts (e.g., k-means) may

lie in their promising global exploration resulted in by the

parallel search and the robustness of final results obtained

via multiple agents. Almost all population-based stochastic

optimization techniques [e.g., genetic algorithms (Murthy

and Chowdhury 1996; Chioua and Lan 2001), evolution

strategies (Lee and Antonsson 2000), ant colony opti-

mization (Handl et al. 2006), differential evolution (Das

et al. 2008), artificial bee colony algorithms (Karaboga and

Ozturk 2011), and bacterial foraging optimization (Niu

et al. 2013), just to name a few] have been successfully

applied to some clustering problems.

As a powerful optimization tool, the particle swarm

optimizer (PSO) have been widely studied and improved by

different researchers, due to its simplicity of implementa-

tion, few parameter configuration and global exploration

ability on some complex problems. More detailed descrip-

tions of diverse PSO versions can be founded in Sect. 3,

where six commonly used PSOs are highlighted. A variety

of PSO-based clustering methods (e.g., Merwe and Engel-

brecht 2003; Chen and Fun 2012; Omran et al. 2005; Kao

et al. 2008; Alam et al. 2008; Abbas et al. 2010; Szabo et al.

2010; Niknam and Amiri 2010; Chuang et al. 2011; Radha

et al. 2011; Yuwono et al. 2014; Tsai et al. 2014) have been

developed, as shown in Sect. 2. Usually, they can show

successes at least on a subset of datasets which are picked

by their corresponding papers. For most of them, however,

the influences of different parameter settings, population

topologies, boundary handling strategies, and/or population

initialization methods on the clustering performance have

not been comprehensively studied. In addition, although

different PSOs show significantly different performances on

benchmark continuous functions, it is still not clear whether

such significant differences can still hold for diverse clus-

tering optimization problems. Note that the real-world

clustering problems may include some unique landscape

characteristics, which do not be represented by most con-

tinuous benchmark functions, which will be discussed in

Sect. 4. If the significant differences on the clustering per-

formance do exist among diverse PSOs, the following

question is which of PSO variants can obtain the best par-

titioning solutions for most clustering problems. These

unsolved yet important problems for PSO-based clustering

leave an open and broad space for further research.

Following this research line, in this paper, six PSO-

based clustering techniques are designed in one unified

algorithm framework and compared with each other on 12

synthetic and real-life datasets. Six existing PSO versions

with different population structures and different parameter

settings are taken into account (see Sect. 3 for more

information). In the unified algorithm framework, six PSOs

are hybridized separately with Lloyd’s k-means (Lloyd

1982), leading to the six PSO-based clustering algorithms.

The rationale of combining PSOs with k-means is simple

and natural: (1). the potential global search ability of PSOs

with slow convergence can complement the fast conver-

gence of k-means with local search ability; and (2). early

studies (e.g., Merwe and Engelbrecht 2003; Omran et al.

2005; Kao et al. 2008; Radha et al. 2011 which provide a

base for this paper) have shown the superiority of such

combination strategy. By comparative experiments, the

effects of four different population topologies, three kinds

of parameter settings, and two types of initialization

methods on the clustering performance are empirically

investigated. In addition, seven boundary handling strate-

gies are firstly summarized in Sect. 3.

The remainder of the paper is organized as following.

Section 2 reviews the applications of EAs (especially

PSOs) to data partitioning problems. In Sect. 3, a popula-

tion-based clustering algorithm framework is designed,

which incorporates six existing PSOs with Lloyd’s k-

means separately. Section 4 conducts comparative experi-

ments. Finally, conclusions and further research are drawn

in Sect. 5.

2 Literature overview

Many research efforts have been devoted to the applica-

tions of evolutionary algorithms (EAs) on a variety of

clustering problems. In this section, we provide a brief

literature overview of EA-based clustering algorithms, but

focus mainly on PSO-based techniques. Initially, genetic

algorithms (GAs) were investigated to improve the per-

formance of classic clustering algorithms and/or directly

solve the clustering optimization problems. For instance,

Murthy and Chowdhury (1996) firstly developed a GA-

based clustering algorithm that encoded each partitioning

as a real-valued string of length N. This encoding

scheme needs expensive storage requirements and com-

putational costs for medium-to-large scale datasets. The

corresponding experiments were conducted only on three

small datasets with N\ 100, which seemingly cannot

confirm its effectiveness on medium- and large-sized

datasets. Another similar GA-based clustering approach

was proposed by Chioua and Lan (2001), which adopted a

binary-encoding representation way. The binary-encoding

strategy leads to a large search space and increases com-

putational complexity. Therefore, a proper way of repre-

senting the partitioning solution is very crucial to any EA-

based clustering technique.

The particle swarm optimizer (PSO) has attracted

increasing attention from the scientific and engineering

communities, since it was originally proposed in Eberhart
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and Kennedy (1995). Due to its simplicity, PSO has been

widely studied and applied to clustering problems by many

researchers from both the data mining and evolutionary

computation community. The hybridization strategy among

different kinds of algorithms is an important research

direction for the clustering optimization field. Usually,

hybridization can unify the advantageous characteristics of

different techniques while weakening their own drawbacks,

and thus achieve good performance (Radha et al. 2011).

Based on the above merits, many researchers have

attempted to hybrid different PSO versions with diverse

clustering methods and/or other optimization techniques.

For example, (Merwe and Engelbrecht (2003) designed

two simple methods for PSO-based clustering. The first one

uses the partitioning result obtained by k-means to seed the

population, while the second refines the solution of k-

means by PSO. Both the methods will be further discussed

and validated in this paper. A hybrid version, which

incorporated EPSO with k-means, was proposed by Alam

et al. (2008). However, the experiments could not effec-

tively validate the performance of EPSO, since only a

small dataset (i.e., the well-known Ruspini dataset that has

75 data points and 2 attributes) was chosen as the bench-

mark dataset. More datasets with more dimensions and

more data points are expected to be tested. Kao et al.

(2008) designed a hybridized clustering method called K–

NM–PSO, which integrated k-means with PSO and the

Nelder–Mead simplex search technique. Niknam and

Amiri (2010) incorporated PSO with ACO and k-means,

which resulted in a more complicated implementation

procedure. Alam et al. (1995) integrated PSO with the

hierarchical agglomerative clustering method which,

however, is not suitable for large-scale clustering prob-

lems. The readers are encouraged to read the literature

survey on hybrid PSO-based clustering algorithms pro-

vided in Radha et al. (2011), and Mohamed and Sivakumar

(2011) for more details. Most hybridization strategies can

improve the performance but at the expense of complex

algorithmic structure and time-consuming implementation,

which limits their reusability and feasibility especially for

large-scale clustering.

Another research direction concentrates on improving

the local and/or global search ability of PSO for data

clustering. For example, Omran et al. (2005) represented a

PSO-based dynamic clustering approach called DCPSO for

providing the clustering solution and the optimal clustering

number simultaneously. For DCPSO, k-means functions as

a local refining strategy, which is also adopted by this

paper. Abbas et al. (2010) compared three PSO-based

clustering algorithms with three traditional techniques.

Experiments on nine small-sized datasets showed the

superiorities of PSO-based clustering methods against three

traditional counterparts. Szabo et al. (2010) proposed a

modified particle swarm clustering (mPSC) method which

eliminates the inertia weight and makes the velocity

memoryless. The implementation of mPSC, however, is

still time-consuming (Yuwono et al. 2014). Chuang et al.

(2011) represented an accelerated chaotic particle swarm

optimization (ACPSO) for data clustering. Empirical

studies on six small-sized datasets showed better clustering

ability for ACPSO by comparing it with six other cluster-

ing methods. The concept of chaos was employed by

adding more randomness, in order to increase the explo-

ration ability. Nevertheless, excessive randomness might

make it difficult and even impossible to theoretically ana-

lyze the search behavior of PSO and the clustering per-

formance of ACPSO.

More recently, a state-of-the-art version of PSO-based

clustering algorithms, abbreviated as RCE, was developed by

Yuwonoet al. (2014). ForRCE, eachparticle only represents a

cluster centroid, and the entire population constitutes a can-

didate partitioning solution for the clustering problem. This

representation way is more efficient than another commonly

used way that each particle stands for a candidate partitioning

solution, in termof both computational time andmemory cost.

Simulation experiments have also shown that, in most cases,

the run timeof the former is several orders ofmagnitude larger

than that of the latter (Yuwono et al. 2014).AlthoughRCEhas

simplified the rule of particle updating, it is still complicated to

choose the pbest and gbest for each particle. It has shown in

Trelea (2003) that, given enough number of iterations, all

particles will converge to one equilibrium point. In other

words, the attractive efforts of both pbest and gbestmaymake

all cluster centroids (i.e., all the particles) aggregate together,

which is against the fact that all cluster centroids should be

separated as soon as possible.

Roughly speaking, almost all PSO-based clustering

algorithms suffer from three serious issues: (1) how to

enhance the computational efficiency via properly

choosing the individuals’ representation strategy and

optimizing the implementation procedure; (2) how to

properly set related control parameters for different

clustering problems; and (3) how to prove the superiority

from the mathematic viewpoint instead of via empirical

comparative experiments. This may explain that fact that,

although various PSO-based clustering methods have been

studied by the academic community over the past dec-

ades, they were not widely accepted and used by the

industrial and commercial institutions. For more details of

the review and discussions on EA-based clustering, please

refer to Abbas et al. (2010), Mohamed and Sivakumar

(2011), Hruschka et al. (2009), Ahmed et al. (2013). In

summary, how to design an effective PSO-based cluster-

ing technique is still an interesting yet challenging task,

which will be further investigated in the following

sections.
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3 PSO-based clustering algorithms

In this section, a population-based algorithm framework,

which combines six different PSOs with k-means, is pro-

posed. These six PSO variants with different properties and

performances have been studied and compared extensively

in the context of continuous function optimization (e.g.,

Eberhart and Kennedy 1995; Shi and Eberhart 1998;

Eberhart and Shi 2000; Eberhart and Shi 2001; Clerc and

Kennedy 2002; Mendes et al. 2004; Ratnaweera et al.

2004; Liang et al. 2006; Kennedy 2010; Chen et al. 2013),

presented as following:

1. Particle swarm optimizer with a global (namely, ‘‘all’’)

topology and a random inertia weight (GPSO-RW)

(Ratnaweera et al. 2004): the inertia weight W is

randomly distributed in [0.5, 1], which simplifies its

settings for different optimization problems.

2. Particle swarm optimizer with a global neighborhood

structure and an inertia weight decreasing linearly

from 0.9 to 0.4 (GPSO-WV) (Shi and Eberhart 1998):

This is perhaps the most commonly used version,

owing to the good balance between local and global

search on many benchmark functions.

3. Global particle swarm optimizer with a constriction

factor (GPSO-CF) (Eberhart and Shi 2000): the

differences between it and the above two lie in the

introduction of the constriction factor that prevents

explosion of the particle system coupled with the

mathematic derivation-based parameter config-

ure (Clerc and Kennedy 2002).

4. Local particle swarm optimizer which adopts the ‘‘von

Neumann’’ population topology (LPSO-VN) (Eberhart

and Kennedy 1995): it has been widely argued that, in

general, LPSO outperforms GPSO on most multimodal

functions in term of solution quality, due to its higher

probability of avoiding premature convergence resulted

in by slower information flow (Eberhart and Shi 2001).

5. Fully informed particle swarm optimizer (FIPS) (Men-

des et al. 2004): the weight-based pbest of all

neighbors are used to update each particle’ position,

which reduces the influence of the best-performing one

(i.e., gbest). Note that only the Ring topology is

employed for FIPS in this paper, as suggested in

Mendes et al. (2004).

6. Comprehensive learning particle swarm optimizer

(CLPSO) (Liang et al. 2006): its main contribution

may be that for different dimensions, each agent learns

towards different neighbors in a dynamical population

topology. CLPSO show good exploitation abilities on

lots of multimodal functions.

To avoid repetition, it is assumed that the readers are

familiar with these six PSO versions. Otherwise, please

refer to the corresponding papers for more details of

implementation. These PSO variants can tackle various

continuous optimization problems but with different per-

formances. Note that it is still unknown whether these

PSOs can work well and show significant different per-

formances on diverse clustering problems as on continuous

benchmark functions. To further investigate such issue, a

simple population-based algorithm framework (PopbAF) is

designed, where six different PSO versions can be inte-

grated separately into it. The detailed description is rep-

resented in the following paragraphs.

3.1 Real-coded representation strategies

For evolutionary algorithms (EAs), the representation ways

of a candidate clustering solution can be simply classified

into three groups, as illustrated in the following.

1. The first category adopts a direct (integer/binary-

based) encoding strategy, which is also called the

object-cluster association (Das et al. 2008). Specifi-

cally, a partitioning solution is shown via a

(N 9 K) matrix where N is the total number of data

points in a dataset and K is the predefined number of

clusters (see examples: Murthy and Chowdhury 1996;

Chioua and Lan 2001; Hamid et al. 2012). This

representation way leads easily to two serious draw-

backs, i.e., prohibitively expensive storage and com-

putation cost (especially for large–scale clustering) and

redundancy (see Das et al. 2008 for further analyses).

2. The second one, which is perhaps the most widely

used, only takes into account the cluster centroids as k-

means. It encodes all cluster centers as an agent, which

is stored in a real-valued vector or matrix (e.g., Chen

and Fun 2012; Kao et al. 2008; Alam et al. 2008;

Niknam and Amiri 2010; Cohen and Castro 2006; Tsai

and Kao 2011). In other words, an agent (i.e., a particle

for PSO) can represent a partitioning result. Related

studies have clearly shown that the second represen-

tation strategy is better than the first one with regard to

computational complexity, in particular when solving

large-sized clustering problems.

3. The third (see Merwe and Engelbrecht 2003; Yuwono

et al. 2014; Alam et al. 1995) does also encode only the

cluster centers, which is similar to the second.

However, a candidate clustering solution consists of

all agents (rather than one agent), and therefore the

number of agents equals to K. In general, the third way

needs smaller storage spaces and less computation time

as compared with others. Nevertheless, for the third

way, a potential problem lies in that it may not take full

use of the advantages provided by the parallel search

of multiple agents, which will be in-depth illustrated in
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the experiments. For any EA, the parallel search of

multiple agents is extensively argued to be a crucial

driven force for optimization.

Based on the following comparisons, the second is

adopted in the PopbAF. The real-coded representation

strategy for particle Pt
!

(t ¼ 1; . . .; S, where S is the swarm

size) is presented in the following vector:

Pt
!¼ Ct

1

�!
; . . .; Ct

K

�!� �

; where Ct
k

�!
¼ Mt

k1; . . .;M
t
kd

� �

: ð1Þ

Ct
k

�!
¼ Mt

k1; . . .;M
t
kd

� �

is a real-coded vector corresponding

to a clustering centroid for particle t, and Mkd
t is the d-

dimensional position of centroid Ct
k

�!
.

3.2 Population initializations

For most EA-based clustering techniques, two initialization

approaches are commonly studied and used. One is to

locate all the individuals at random in the entire search

space (note that the search space needs to be normal-

ized/standardized before employing the partitioning clus-

tering algorithms); while the other is to choose K random

samples from the entire dataset as the centroids. Other

advanced initialization methods can be founded in Peña

et al. (1999), Bradley and Fayyad (1998), Celebi et al.

(2013) and Zhang et al. (2014). These studies have

attempted to investigate the effects of different initializa-

tion methods on the clustering performance. However,

different conclusions were drawn from different research

papers, which may be due to the fact that different datasets

with arbitrary shapes and sizes are used by different papers

while the performances of partitioning clustering methods

depend heavily on the chosen datasets, the settings of

parameters, and the choices of initial seeds.

The proposed algorithm chooses the first method to

initialize the population. Note that the second initialization

method will be compared with the former on some datasets

in the following experiments, to show the effects of dif-

ferent initialization approaches on the clustering perfor-

mance. For refining the quality of clustering and

accumulating the convergence of population, the centroids

obtained by k-means can be organized as a particle (e.g.,

acting as gbest or lbest) before executing the PSO algo-

rithm. However, such trick initial method is optional. This

refining strategy will be compared with the non-refining

strategy in the following experiments to validate its influ-

ence on the convergence performance.

3.3 Fitness evaluations

In practice, different fitness functions [e.g., Davies–Boul-

din index (1979), Silhouettes index (Rousseeuw 1987), just

to name a few] can be used for measuring the quality of a

solution (Das et al. 2008). For example, Omran et al.

(2002) considered the maximization of inter-cluster dis-

tances as well as the minimization of intra-cluster dis-

tances. However, the extra introduction of control

parameters in function evaluations (FEs) increases the

difficulty of parameter settings and computational burden.

For partitioning clustering algorithms, one widely used

metric, i.e., mean squared error (MSE), is used to evaluate

the quality of portioning, according to the suggestion from

Tsai et al. (2014). MSE (namely, the sum of intra-cluster

distances) is calculated by

MSE ¼
X

K

j¼1

X

Xi
!

2Cj

Xi
!� Cj

!�

�

�

�

�

�

�

�

�

�

�

�

2

ð2Þ

where Xi
!¼ Xi1; . . .;Xidð Þ is the data point i (i ¼ 1; . . .;N)

in the d-dimensional real space, and Cj
!

is the centroid of

cluster j, and �j jj j2 denotes the squared Euclidean distance

between two points (note that other distance metrics can be

also used here). The centroid of cluster j is updated by

Cj
!¼

X

i2Cj

Xi
!
= Cj

�

�

�

� ð3Þ

where Cj

�

�

�

� is the number of instances in cluster j. Note that

MSE is only suitable to clustering problems where the

number of clusters is predefined (see Chioua and Lan 2001

for detailed explanations). How to determine the optimal

number of clusters is ongoing research. Please refer to Das

et al. (2008), Pham et al. (2005), Milligan and Cooper

(1985)) and so on for related studies. In this paper, the

number of clusters, K, is supposed to be known a prior. In

fact, multiple fitness functions can be taken into account

during the optimization process, leading to multiobjective

clustering (Mukhopadhyay et al. 2014a, b), which are

beyond the scope of this paper.

3.4 Position updating rules of particles

For PSOs, each particle t with the velocity itself moves

stochastically toward its personally historically best posi-

tion (PBt
�!

) and its neighbors’ best positions (NBt
��!

), until the

maximum number of iterations (generations) is exceeded.

For the global PSO version, the neighbors of a particle are

defined as the entire population. For the local PSO version,

the neighbors of a particle consist of l particles satisfying

l � S: Different neighborhood topologies (e.g., Ring and

von Neumann) use different l values and different ways to

judge its neighbors. Learning toward pbest and lbest pro-

vides some particles the opportunities of escaping from

local optima, to some extent. The velocity Vt
!

and position
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Pt
!

adjustment rule for particle t (t ¼ 1; . . .; S) are presented
in the following:

Vt
!¼ k � w � Pt

!þ c1 � Rt1 � PBt
�!� Xt

!� ��

þ c2 � Rt2 � NBt
��!� Xt

!� ��

ð4Þ

Pt
!¼ Pt

!þ Vt
! ð5Þ

where k is the constriction factor that prevents explosion of

the particle system (Clerc and Kennedy 2002), w is the

inertia weight that controls the balance between exploita-

tion and exploration (Shi and Eberhart 1998), c1 and c2 are

the cognitive and social learning coefficients that have

important effects on the convergence rate of algorithm, and

Rt1 and Rt2 are two separately generated number randomly

distributed in the range [0,1). Then, the updating rule of

PBgþ1
t

���!
at generation (g ? 1) is illustrated as following:

PBgþ1
t

���!
¼

Pg
t

�!
; if f PBg

t

��!� �

� f Pg
t

�!� �

PBg
t

��!
; otherwise

8

<

:

ð6Þ

Note that six different PSO variants have some differences

in terms of the definition of neighbors, detailed imple-

mentation procedure, and concrete parameter configure.

Their comprehensive descriptions are referred to the orig-

inal papers, to save space.

3.5 Boundary handling

Recent study (Chu et al. 2011) has shown that the

boundary handling strategy has an important impact in

the optimization performance of PSO when solving a

complex problem, however, which is often ignored on

optimizing benchmark functions. A variety of boundary

handling schemes have been designed: (1) periodic model

(Zhang and Xie 2003; Zhang et al. 2004); (2) absorbing

model (Robinson and Samii 2004); (3) invisible model

(Robinson and Samii 2004); (4) damping model (Huang

and Mohan 2005); (5) reflecting model (Chu et al. 2011);

(6) random model (Chu et al. 2011); and (7) zoomed

model (Cao et al. 2013). In the PopbAF, the most

commonly used scheme, viz., the random model, is

employed to handle the particles flying outside of the

search space.

Specifically, once the particle t flies outside the search

bound for any dimension d, its position is reinitialized

uniformly randomly in the predefined range which is lim-

ited by the upper and lower bound. Empirically, the upper

and low bound for dimension d are fixed as the maximum

and minimum of dataset on dimension d.

3.6 Pseudocode of the PSO-based clustering

algorithm framework

In this section, six kinds of PSO-based clustering methods

are unified into a simple population-based algorithmic

framework, as presented in the follows:

Step 1 Initialize Pt
!

(see Sects. 3.1--

3.2) for each particle t ¼ 1; . . .; S, and dis-

tribute Vt
!

uniformly randomly in the

standardized search space;

Step 2 Assign each data point Xi
!

(i ¼ 1; . . .;N) into its nearest clusters Cj
!

(j ¼ 1; . . .;K) for t ¼ 1; . . .; S;

Step 3 Update centroids Cj
!

of all clusters

for t ¼ 1; . . .; S by Eq. (3) and Lloyd’s k-

means (optional);

Step 4 Calculate all particles’ fitness by

Eq. (2), update PBt
�!

by Eq. (6), and update

LBt
�!

according to the corresponding topol-

ogy structure;

Step 5 Repeat step 6 to step 8:

Step 6 Update Pt
!

and Vt
!

for t ¼ 1; . . .; S by

Eq. (4) and (5), handle particles flying

outside the search space using random

model (see Sect. 3.5);

Step 7 Refine all the centers provided by

all the particles using Lloyd’s k-means

algorithm;

Steo.8 Update all particles’ fitness by

Eq. (2), update PBt
�!

by Eq. (6), and update

LBt
�!

according to the corresponding topol-

ogy structure,

Step 9 Until some stopping conditions

(e.g., convergence of MSE, no changes of

clustering indexes during two successive

iterations, or maximum number of itera-

tions) is met.

Step 10 Output the cluster centroids,

clustering indexes, and MSE.

Note that, in this paper, only the maximum allowable

number of iterations (maxIter) is set as the stopping con-

dition for fair comparisons among different PSO versions.

4 Experimental studies

To evaluate the effectiveness and efficiency of the pro-

posed algorithm, 12 datasets and 6 benchmark algorithms

are chosen for the comparative experiments. These 12
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datasets consist of 3 synthetic datasets and 9 real-life

datasets. Three synthetic datasets, which are abbreviated as

SD1, SD2, and SD3, are generated following the sugges-

tions from (Niu et al. 2013; Laszlo and Mukherjee 2007).

All they have distinct data structures and regular distribu-

tion rules (see Niu et al. 2013 for graphical descriptions). It

appears to be hard to claim that a clustering technique that

performs poor on artificial well-behaved datasets can be

able to success on real-life datasets with less well-defined

distribution rules (Milligan and Cooper 1985). Therefore,

the efficiency of the clustering algorithm is assessed firstly

on these artificial datasets. Nine real-world datasets have

been widely used in the data mining community and

reported comprehensively in the famous UCI machine

learning repository.1 Short descriptions of these datasets

are summarized in Table 1, where N and D represent the

number of instances and attributes, respectively. For fur-

ther information of these datasets, please refer to the cor-

responding papers (Tzortzis and Likas 2014; Niu et al.

2013; Laszlo and Mukherjee 2007) or the openly available

website (see footnote 1). Note that almost all datasets

(except the Coil2 dataset) have been standardized for

eliminating the discrepancy among different scales of dif-

ferent attributes.

The experiments are conducted using the Matlab com-

putation platform on a single personal computer with the

Win8 operating system (2.5 GHz Intel Core i5-3210 M

CPU and 2 GB RAM). For comprehensive comparisons,

the experiments choose six clustering algorithms as the

baselines, as presented in the following.

1. Agglomerative clustering algorithm with single link2:

it is abbreviated as ACA-SL in this paper. The details

of its Matlab implementation are presented in the

Statistics Toolbox (see footnote 3).3

2. Agglomerative clustering algorithm with complete

link4: it is named as ACA-CL in this paper. Its Matlab

implementation can be also found in footnote 3.

3. Agglomerative clustering algorithm with average

link5: it is called as ACA-AL in this paper. For the

Matlab implementation, please refer to footnote 3.

4. Lloyd’s k-means (Lloyd 1982): It adopts the batch

scheme to iteratively and separately update the

centroids of clusters and clustering memberships of

data points. The Matlab code can be seen in Lloyd6.

5. MacQueen’s k-means (MacQueen 1967): the cluster-

ing memberships and centroids are iteratively updated

in the online scheme. For the Matlab implementation,

please refer to MacQueen7.

6. Particle swarm clustering method using variants of

rapid centroid estimation (Yuwono et al. 2014): it is

abbreviated as PSC-RCE in this paper. The Matlab

code is openly available at http://www.mathworks.

com/matlabcentral/fileexchange/38107-rapid-centroid-

estimation via the Internet, thanks to the authors’

courtesy.

Note that the parameter settings of all involved algo-

rithms follow the suggestions of the original papers and/or

the most commonly used configurations. Each algorithm

(except three ACAs) performs on each dataset for 30

independent runs. Note that the mean and worst values are

recorded on each dataset for all algorithms. The worst case

can provide an upper bound on the performance of a

clustering technique, which is always expected to be

minimized. To visualize the worst-case performance of

different algorithms, the final clustering solutions obtained

on two synthetic datasets (SD1 and SD2) are depicted in

Figs. 1 and 2. In each figure, the sub-figure in the top left

corner represents the actual partitioning, while the

remaining sub-figures are the partitioning solutions

obtained by two k-means and one PSO-based clustering

algorithm, respectively. Note that the final partitional

results achieved by all PSO-based clustering methods are

similar, and therefore only one is drawn for saving space.

For the dataset SD1, there exists a distinct clustering

pattern, where 1000 data points are distributed regularly and

can be clearly divided into five groups, as seen from Fig. 1.

However, for Lloyd’s k-means algorithm, not all runs (only

16 out of 30 runs) can find the ideal partitioning. It can be

seen in the top right corner of Fig. 1 that the cluster 3 and

cluster 5 should be merged into one cluster while the cluster

1 coupled with cluster 2 compresses excessive data points.

The similar case is also found for MacQueen’s k-means

algorithm. On contrary, the optimal partitioning results are

obtained by the proposed algorithm on all runs.

As we can see from Fig. 2, both Lloyd’s k-means and

MacQueen’s k-means obtain the wrong partitioning solu-

tions on the dataset SD2 at the worst case. This is due to the

fact that the performance of k-means heavily depends on

the initial seed coupled with the order of data points

(Ahmed et al. 2013). For all proposed PSO-based algo-

rithms, however, the optimal position for the centroids can

be properly detected for all runs. The reason that the

population-based methods outperform individual-based

counterparts may lie in that for the former, each individual

1 http://archive.ics.uci.edu/ml/.
2 http://en.wikipedia.org/wiki/Single-linkage_clustering.
3 http://www.mathworks.cn/cn/help/stats/hierarchical-clustering.

html.
4 http://en.wikipedia.org/wiki/Single-linkage_clustering.
5 http://nlp.stanford.edu/IR-book/completelink.html.
6 http://lear.inrialpes.fr/*verbeek/software. 7 http://www.mathworks.cn/cn/help/stats/kmeans.html.
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can not only make full use of the inherent information

obtained by it, but also the external information collected

by other individuals. On the dataset SD3, MacQueen’s k-

means obtains the worst result in terms of MSE, following

by the Lloyd’s k-means, as compared with all the proposed

algorithms.

Table 1 Brief descriptions of

12 datasets chosen in the

experiements

SD1 SD2 SD3 Iris Wine Coil2

N 1000 800 10,000 150 178 216

D 3 2 2 4 13 1000

Type Synthetic Synthetic Synthetic Real-life Real-life Real-life

Breast cancer German credit Optdigits Musk Magic04 Road network

N 683 1000 5620 7074 19,020 434,874

D 9 20 64 166 10 4

Type Real-life Real-life Real-life Real-life Real-life Real-life
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Fig. 1 Comparisons of the worst-case final clustering solutions on the SD1 dataset
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In the following subsections, the comparative experi-

ments are divided into two parts. The experiments I focus

mainly on the comparisons between the hierarchical and

partitioning clustering methods, while in the experiments II

the comparisons between different kinds of PSO-based

clustering are concentrated on.

4.1 Comparative experiments-I

For the comparative experiment I, all results obtained by

all algorithms on each dataset are listed in Table 2, where

Lloyd and MQ represent Lloyd’s ad MacQueen’s k-means.

On the Iris and Wine dataset which are probably the most

cited datasets in the data mining field, six PSO-based

clustering techniques are the best performers with the same

performance, followed by MacQueen’ k-means. For the

Coil2 dataset, different PSO-based methods show slightly

(but not significantly) performance differences, where

GPSO-CF achieves the best solution and GPSO-RW ranks

the second. However, the worst cases are encountered by

all them on some runs. Note that, for the Coil2 dataset, only

ACA-CL obtains the worst performance as compared with

all its competitors. On the Breast Cancer dataset, all par-

titioning-based clustering techniques significantly outper-

form three agglomerative methods. Both the Lloyd’s and

MacQueen’s k-means lack robustness (i.e., a small vari-

ance) for the German Credit dataset while the proposed

algorithms are not sensitive to the initial seeds.

Some abnormalities (where the proposed algorithms

achieve the worst clustering performance) can be observed on

the Optdigits dataset. By carefully investigations, we found

such exception put down to the difference between population

initialization strategies (see Sect. 3.2). In effect, if the pro-

posed algorithm adopts the second initialization method, the

best clustering performance (i.e., 224,860.82827) can be

attained with 18 % improvement. For the Musk dataset, the

proposed algorithms are significantly better than all rivals in

terms of MSE. Note that since three ACAs are computation-

ally prohibitively unfeasible for large-scale datasets (here,

Magic04 and Road Network can be regarded as large-sized
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Fig. 2 Comparisons of the worst-case final partitioning solutions on the SD2 dataset
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Table 2 Comparative results of 11 algorithms on 9 real-life datasets

Algorithm Dataset

Iris Wine Coil2

Mean Worst Std Mean Worst Std Mean Worst Std

ACA-SL 213.65 213.65 0.00 2198.93 2198.93 0.00 154.03 154.03 0.00

ACA-CL 152.86 152.86 0.00 1475.11 1475.11 0.00 174.91 174.91 0.00

ACA-AL 196.86 196.86 0.00 2199.65 2199.65 0.00 154.03 154.03 0.00

Lloyd 154.02 220.87 27.71 1305.54 1650.63 100 155.00 158.00 1.47

MQ 147.57 195.96 19.78 1281.00 1578.26 56.1 154.53 160.05 1.74

GPSO-RW 138.89 138.89 0.00 1270.75 1270.75 0.00 154.02 155.24 0.41

GPSO-WV 138.89 138.89 0.00 1270.75 1270.75 0.00 154.05 155.24 0.42

GPSO-CF 138.89 138.89 0.00 1270.75 1270.75 0.00 153.99 155.24 0.42

LPSO-VN 138.89 138.89 0.00 1270.75 1270.75 0.00 154.08 155.24 0.42

FIPS 138.89 138.89 0.00 1270.75 1270.75 0.00 154.08 155.24 0.42

CLPSO 138.89 138.89 0.00 1270.75 1270.75 0.00 154.08 155.24 0.42

Algorithm Dataset

Breast cancer German credit Optdigits

Mean Worst Std Mean Worst Std Mean Worst Std

ACA-SL 6094.20 6094.20 0.00 22,836.1 22,836.1 0.00 317,533 317,533 0.00

ACA-CL 3378.81 3378.81 0.00 22,836.1 22,836.1 0.00 305,714 305,714 0.00

ACA-AL 4987.70 4987.70 0.00 22,836.1 22,836.1 0.00 309,332 309,332 0.00

Lloyd 2724.42 2724.47 0.09 22,400.2 24,000.0 335 230,000 236,000 2400

MQ 2724.16 2724.16 0.00 22,298.8 22,532.1 105 228,754 235,327 2519

GPSO-RW 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 288,987 304,216 6989

GPSO-WV 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 289,006 303,669 7107

GPSO-CF 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 289,439 302,969 7107

LPSO-VN 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 289,877 304,216 7111

FIPS 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 289,851 304,216 7415

CLPSO 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 289,851 304,216 7415

Algorithm Dataset

Musk Magic04 Road network

Mean Worst Std Mean Worst Std Mean Worst Std

ACA-SL 1,171,570 1,171,570 0.00 – – – – – –

ACA-CL 1,152,430 1,152,430 0.00 – – – – – –

ACA-AL 1,167,550 1,167,550 0.00 – – – – – –

Lloyd 901,000 982,000 41,900 137,000 137,000 0.00 1.003e6 1.012e6 1e4

MQ 899,887 981,513 42,632 136,919 136,919 0.00 1.003e6 1.012e6 1e4

GPSO-RW 869,655 869,655 0.00 136,919 136,919 0.00 9.939e5 9.940e5 1e3

GPSO-WV 869,655 869,655 0.00 136,919 136,919 0.00 9.939e5 9.940e5 1e3

GPSO-CF 869,655 869,655 0.00 136,919 136,919 0.00 9.939e5 9.940e5 1e3

LPSO-VN 869,655 869,655 0.00 136,919 136,919 0.00 9.938e5 9.940e5 1e3

FIPS 869,655 869,655 0.00 136,919 136,919 0.00 9.939e5 9.940e5 1e3

CLPSO 869,655 869,655 0.00 136,919 136,919 0.00 9.939e5 9.940e5 1e3

Mean, worst and Std denote the mean, worst and standard deviations of MSE obtained in 30 runs
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datasets), the results obtained on them by ACAs are not

provided in Table 2. For large-scale datasets, MacQueen’s k-

means shows better refining ability than Lloyd’s k-means.

In summary, all the proposed algorithms show better

(at least as good as) and more robust clustering per-

formance than other five competitors on most cases.

However, PSO-based clustering algorithms require more

computation recourses. But we believe that such price

(i.e., extra computational burden) is worthy of being paid

in many real-life cases (e.g., clustering-based customer

segmentation). Furthermore, six different PSO-based

clustering techniques do not show significant differences

in the clustering performance. This means that, in the

context of PSO, these optimization strategies (e.g., dif-

ferent population topologies and parameter settings)

which can perform well on continuous benchmark func-

tions do not necessarily work well on the clustering

problems. The reason behind it may be that the clustering

optimization problems have unique fitness landscape

structures, which need to be investigated further, while

such unique fitness landscape structures may not be fully

represented by most benchmark functions (Fig. 3).

Fig. 3 Final clustering results on ‘MGD’ for different clustering algorithms (different colors mark different cluster assignments for each sub-

figure)
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4.2 Comparative experiments-II

The well-designed 2-dimensional ‘MGD’ dataset, as pre-

sented in Fig. 1, consists of two separated clusters with

mixed Gaussian distributions. In effect, mixed normal

distributions have been extensively accepted as the base for

generating artificial data sets in the clustering literature

(e.g., Huang et al. 2005), perhaps as Gaussian distribution

is the most commonly used probability distribution in both

academic research and real-life datasets. On contrary,

uniform distribution is chosen as the base for creating noise

variables.

As shown in Fig. 1, only the DensityClust method (sub-

fig. E) finds the almost same clustering assignments as the
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Fig. 4 Final clustering results on the ‘R15’ dataset of different

algorithms (different colors mark different cluster assignments in each

sub-figure). a ‘R15’ Dataset (2-D), b hierarchical, c DBSCAN, d K-

means, e DensityClust, f spectral clustering, g W–K-means,

h CLPSO-K-means, i PSO-RCE
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original dataset (sub-fig. A), with two centroids located in

two highest-density areas. For K-Means, W-K-Means and

CLPSO-K-Means, three similar linearly-separated decision

boundaries are obtained, which are presented in sub-fig. D,

G and H respectively. By visual inspection of sub-fig. D,

we can see that two predicted centroids are sited in regions

with low density, which seems to violate the intuitive

definition of centroids. Owing to more complex optimiza-

tion space,W-K-Means (sub-fig. G) cannot correctly update

the weights of two variables (consequently, 0.4603 vs.

0.5364), resulting in unbalanced clustering assignments. In

fact, these two dimensionalities have the exactly same

weight, perhaps which is the most common clustering

scenario in the literature. In general, K-Means-type clus-

tering algorithms, coupled with PSO-RCE (sub-fig. I),

excel in the detection of sphere-shaped clustering struc-

tures, rather than eclipse-shaped ones. For the ‘MGD’

dataset, the HClust method (sub-fig. B) gives the similar

clustering result as K-Means, but with slightly different

non-linear segmentation boundary. Note that, for all the

above clustering techniques, it is assumed that the number

of clusters (i.e., k) can be specified in advance.

For both the DBSCAN (sub-fig. C) and SpectralClust

(sub-fig. F) method, however, it is difficult to find the right

number of clusters and good clustering solutions, as they

cannot directly put k as the system parameter. Although the

above fact appears to give unfair advantages to K-Means-

type clustering algorithms, absolutely fair comparisons for

different types of clustering methods with different opti-

mization mechanisms seems to be unrealistic and even

impossible in many situations, since they may have totally

different understandings for the concept of clustering and

optimization procedure for different objective functions.

Fortunately, at least for the ‘MGD’ dataset, the Densi-

tyClust methods can find both the correct number of clus-

ters and clustering solution simultaneously, though at the

cost of computational complexity (i.e., h(n^2)).
The above conclusion can be also found in Fig. 4.

4.3 Comparative experiments-III

In the experiment II, one state-of-the-art version of PSO-

based clustering, viz., PSC-RCE, is chosen as the bench-

mark algorithm. The comparative results are summarized

in Table 3. For clarity of comparisons, in Table 3, the best

means and worst for each dataset are marked in boldface.

Note that since six PSO-based clustering algorithms

achieve the same or very similar clustering performance on

these nine chosen dataset, only one version is selected to

save space.

As we can see from Table 3, the proposed algorithm

outperforms PSC-RCE in most cases except on the Opt-

digits and Magic04 dataset. However, the proposed algo-

rithm shows more robust and the same performance on the

Optdigits and Magic04 dataset as compared with the

competitor, respectively.

Table 3 Comparative results of PSO-based algorithms on 9 real-life datasets

Algorithm Dataset

Iris Wine Coil2

Mean Worst Std Mean Worst Std Mean Worst Std

PSC-RCE 142.90 148.61 2.33 1321.46 1358.12 12.7 156.48 157.21 0.45

CLPSO 138.89 138.89 0.00 1270.75 1270.75 0.00 154.08 155.24 0.42

Algorithm Dataset

Breast cancer German credit Optdigits

Mean Worst Std Mean Worst Std Mean Worst Std

PSC-RCE 2798.83 2841.83 19.02 23,012.1 23,485.3 194 278,013 319,329 13,392

CLPSO 2724.16 2724.16 0.00 22,171.1 22,171.1 0.00 289,851 304,216 7415

Algorithm Dataset

Musk Magic04 Road network

Mean Worst Std Mean Worst Std Mean Worst Std

PSC-RCE 890,520 909,881 11,481 136,919 136,919 0.00 1.024e6 1.026e6 2e3

CLPSO 869,655 869,655 0.00 136,919 136,919 0.00 9.939e5 9.940e5 1e3

Where mean, worst and Std denote the mean, worst and standard deviations of MSE obtained in 30 runs
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5 Conclusion

In this paper, six different PSO versions have been hybri-

dized with k-means to solve the data clustering problems.

In terms of MSE, the proposed algorithms show better

performances than six competitors on 12 datasets in most

case. This should be put down to their parallel search

abilities obtained via multiple agents. Interesting, no sig-

nificant differences on the clustering performances among

these PSOs have been observed. Note that the k-means-type

optimization problems have their own unique fitness

landscapes, which may be not fully represented by con-

tinuous benchmark functions. Hence, some commonly used

optimization strategies (e.g., four types of population

topologies and three kinds of parameter setting methods in

this paper) can work well on many benchmark functions

while fail on the k-means-type optimization problems.

Further, the population initialization approaches may have

a critical impact on the clustering performance.

In this paper, we only focus on the study of hybridizing

the PSO algorithms with K-means algorithm. However,

other evolutionary computation techniques, such as artifi-

cial bee colony optimization, bacterial foraging optimiza-

tion, and differential evolution, can also be used to

hybridize with K-means algorithm. In the future work,

more other recent evolutionary computation techniques or

some other variants of PSO will be combined with

K-means algorithm to solve the data clustering problems
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Peña JM, Lozano JA, Larrañaga P (1999) An empirical comparison of

four initialization methods for the k-means algorithm. Pattern

Recogn Lett 20(10):1027–1040

Pham DT, Dimov SS, Nguyen CD (2005) Selection of K in K-means

clustering. http://www.ee.columbia.edu/*dpwe/papers/PhamDN05-

kmeans.pdf

PSC-RCE. http://www.mathworks.com/matlabcentral/fileexchange/38107-

rapid-centroid-estimation] Matlab Code. Visited: 2014-09-16

Radha T, Millie P, Ajith A, Pascal B (2011) Particle swarm

optimization: hybridization perspectives and experimental illus-

trations. Appl Math Comput 217(12):5208–5226

Ratnaweera A, Halgamuge S, Watson HC (2004) Self-organizing

hierarchical particle swarm optimizer with time-varying accel-

eration coefficients. IEEE Trans Evol Comput 8(3):240–255

Robinson J, Samii YR (2004) Particle swarm optimization in

electromagnetics. IEEE Trans Antennas Propag 52(2):397–407

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis. J Comput Appl Math 20:53–65

Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In:

Proceedings of IEEE congress on evolutionary computation,

Anchorage, AK, pp 69–73

Szabo A, Prior AKF, Castro LN (2010) The proposal of a velocity

memoryless clustering swarm. In: Proceedings of IEEE congress

on evolutionary computation, pp 1–5

Single Link. http://en.wikipedia.org/wiki/Single-linkage_clustering.

Visited: 2014-09-16

Trelea IC (2003) The particle swarm optimization algorithm:

convergence analysis and parameter selection. Inf Process Lett

85(3):317–325

Tsai CY, Kao IW (2011) Particle swarm optimization with selective

particle regeneration for data clustering. Expert Syst Appl

38(6):6565–6576

Tsai CW, Huang WK, Yang CS, Chiang MC (2014) A fast particle

swarm optimization for clustering. Soft Comput 19(2):321–338

Tzortzis G, Likas A (2014) The minmax k-means clustering

algorithm. Pattern Recogn 47(7):2505–2516

UCI Repository. http://archive.ics.uci.edu/ml/. Visited: 2014-09-16

Yuwono M, Su SW, Moulton BD, Nguyen HT (2014) Data clustering

using variants of rapid centroid estimation. IEEE Trans Evol

Comput 18(3):366–377

Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with

differential evolution operator. In: IEEE International conference

on systems, man and cybernetics, pp 3816–3821

Zhang WJ, Xie XF, Bi DC (2004) Handling boundary constraints by

PSO in periodic search space. In: Proceedings of the congress on

evolutionary computation, pp 2307–2311

Zhang H, Yang ZR, Oja E (2014) Improving cluster analysis by co-

initializations. Pattern Recogn Lett 45(1):71–77

A population-based clustering technique using particle swarm optimization and k-means 59

123

http://lear.inrialpes.fr/%7everbeek/software
http://lear.inrialpes.fr/%7everbeek/software
http://www.mathworks.cn/cn/help/stats/kmeans.html
http://www.mathworks.cn/cn/help/stats/kmeans.html
http://www.ee.columbia.edu/~edpwe/papers/PhamDN05-kmeans.pdf
http://www.ee.columbia.edu/~edpwe/papers/PhamDN05-kmeans.pdf
http://www.mathworks.com/matlabcentral/fileexchange/38107-rapid-centroid-estimation
http://www.mathworks.com/matlabcentral/fileexchange/38107-rapid-centroid-estimation
http://en.wikipedia.org/wiki/Single-linkage_clustering
http://archive.ics.uci.edu/ml/

	A population-based clustering technique using particle swarm optimization and k-means
	Abstract
	Introduction
	Literature overview
	PSO-based clustering algorithms
	Real-coded representation strategies
	Population initializations
	Fitness evaluations
	Position updating rules of particles
	Boundary handling
	Pseudocode of the PSO-based clustering algorithm framework

	Experimental studies
	Comparative experiments-I
	Comparative experiments-II
	Comparative experiments-III

	Conclusion
	Acknowledgments
	References




